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How to Find Matrix
Modifications Keeping
Essentially Unaltered a
Selected Set of
Eigenvalues∗

S. Noschese and L. Pasquini†

1 Introduction
In this paper we consider a matrix A ∈ Cn×n and we show how to construct a matrix
F ∈ Cn×n in such a way that A+F keeps practically unaltered a set of ν, 1 ≤ ν ≤ n,
simple eigenvalues of A. The main interest is in the case of matrix modifications F
that belong to the subspace generated by the matrices having the same structure
of A. However, in this paper, we do not make any restriction on the structure of F .
Analogously, no restriction is made in the selection of the eigenvalues.

We start with Wilkinson’s theory of the perturbation of a simple eigenvalue
λ(A) [8], [1] and we characterize unit-norm matrices E that annihilate the coefficient
of the first term in the expansion of λ(A + εE)− λ(A) in powers of ε.

Let m denote the number of the entries in E that are not set to zero. We show
that if m ≥ ν+1 there exist infinitely many matrices E with the required properties
and that if m < ν + 1 the absence of such matrices E is a generic property. In the
latter case, solutions exist under suitable conditions. However, as we shall see, even
in case the mentioned conditions are not satisfied, convenient choices of E and of
F = ε E might be found if the tolerance on the invariance of the ν eigenvalues is
conveniently weakened.

∗This work has been performed within the activities of the National GNCS-INDAM Research
Project: “Algebra Lineare Numerica per matrici con struttura”and supported by the related funds.

†Dipartimento di Matematica “Guido Castelnuovo”, Università di Roma “La Sapienza”, P.le
A. Moro, 2, 00185 Roma, Italy. Email: noschese@mat.uniroma1.it, lionello.pasquini@uniroma1.it.
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Motivations to choose the m entries in A (in E and in F = εE) to be properly
defined might be the following. i) One wants to know how substantially a selected
subset of entries in A influences certain eigenvalues. ii) A subset of entries of a
given matrix A undergoes to errors heavier than those affecting the remaining ones.
iii) The problem that led to consider the matrix A allows entries to range in some
sets. iv) Entries are subject to changes caused by modifications to the problem that
led to consider the matrix. v) A = A(τ1, τ2, . . . , τp) belongs to a family of matrices
whose entries depend on parameters t1, t2, . . . , tp (Homotopies, for instance).

Motivations to choose the ν eigenvalues might be the following. i) They are the
largest and/or smallest ones in absolute value. ii) They are the worst conditioned
ones [4]. iii) They are clustered. iv) They play an important role in the problem
that led to consider the matrix. v) They are the ones closest to the imaginary axis
in a spectrum σ(A) that lies in the left half of the complex plane.

The outline of the paper is as follows.
In Section 2 we set out the underlying theory. From Wilkinson’s perturbation

theory we derive a set of equations that characterize the matrices E relevant to
the particular case under examination. The set is formed by a homogeneous linear
system of ν equations in m unknowns and by a further normalization nonlinear
equation. We discuss the possible cases getting the results outlined above.

In Section 3 we outline two algorithms designed to face different situations,
discussing in some detail their advantages and their drawbacks.
One of them essentially consists in a procedure for solving the above mentioned set
of equations. It works in the case of m ≥ ν + 1 and when the homogeneous linear
system mentioned before is of maximum rank (i.e. it is a generic homogeneous
linear system). It is appropriate for the case of large values of ν.
The other is derived by first transforming the problem represented by the nonlinear
system into a direct search optimization one, and then by using the MATLAB func-
tions mdsmax and nmsmax by N.J. Higham [3] to maximize a suitable function.
It is particularly appropriate for the case in which m ≤ ν and the homogeneous
linear system mentioned above is of maximum rank (rank= m, no solution), to get
useful information, and for the case in which the homogeneous linear system is not
of maximum rank - or ”close” to one of maximum rank (uncertain maximum rank)
- to compute matrices having the properties we require.

Tests and examples carried out using matrices A selected in [3], taken from the
literature [2], [5], or randomly generated, are reported in Section 4. Matrices F =
α E, with α large enough to make the inherent error to dominate the algorithmic
one, can be used to get useful information about the algorithmic errors arising from
the computation of each considered eigenvalue and about the phenomena arising in
case of ill-conditioned eigenvalues [4].

Conclusions are drawn in Section 5.

2 Theoretical results
Let λ be a simple eigenvalue of a matrix A ∈ Cn×n and let x and y be respectively
the right and left eigenvector associated to λ with ‖x‖2 = ‖y‖2 = 1. Following the
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classical perturbation theory [8], [1], we can write, for ε > 0 small enough,

(A + ε E) x(ε) = λ(ε)x(ε), ‖E‖2 = 1,

where x and λ are differentiable functions such that λ(0) = λ and x(0) = x. Wilkin-
son proves that one has

∣∣∣∣
dλ

dε

∣∣∣∣
ε=0

=
∣∣∣∣
yHE x

yHx

∣∣∣∣ ≤
‖y‖2 ‖E‖2 ‖x‖2

|yHx| =
1

|yHx| , (1)

and points out that the upper-bound is attained if E = y xH .

Remark 1. It is worth noting that in the above outlined theory the Frobenius norm
can replace everywhere the 2−norm.

In the sequel, the matrix y xH will be referred to as the Wilkinson matrix and
denoted by Wλ.
The inner product yHx is usually denoted by s(λ),

s(λ) := yHx, (2)

while 1 /|s(λ)| is denoted by κ(λ) and called the condition number of λ,

κ(λ) :=
1

|yHx| =
1

|s(λ)| . (3)

In this paper we follow an approach that is the opposite of that outlined above.
Instead of considering the matrix E that yields the worst result in (1), we look for
a unit-norm matrix E that annihilates the ratio

∣∣yHE x
/
yHx

∣∣.
In order to include any structured and/or sparse modification to A, we assume

the matrix E to have at most m ≤ n2 nonzero arbitrarily selected entries, that is
to have n2 − m arbitrarily selected zero entries. Also, to investigate the general
problem, we consider an arbitrarily chosen set of eigenvalues of A.
This way we look for matrices E such that modifications α E to A keep essentially
unchanged a set σ̃(A) ⊆ σ(A) of eigenvalues for small enough values of α.

We start by giving the following

Theorem 2. Let λ be a simple eigenvalue of A. Let x and y respectively be the
right and left eigenvector associated to λ. Let ‖x‖2 = ‖y‖2 = 1. Let E = [eij ] belong
to Cn×n. One has

yHE x =
∑

i,j=1:n

yi eij xj = trace(WH
λ E).

Proof. Standard arguments lead to the first equality. The second one easily follows
by observing that

∑

i,j=1:n

yi eij xj =
∑

i,j=1:n

(yi xj) eij =
∑

i,j=1:n

(x yH)ji eij =
∑

j=1:n

(WH
λ E)jj .

This concludes the proof.
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2.1 Some remarks

Before going any further, it is worth listing some consequences of Theorem 2.
First we observe that if, slightly modifying an idea in [6], we define in the

matrix space the inner product

(A,B) := trace(BHA),

that leads to the Frobenius norm, we can read Theorem 2 saying that the matrices
E which annihilate yHE x are those orthogonal to the Wilkinson matrix Wλ. We
can add that the more E is close to be orthogonal to Wλ, the more

∣∣yHE x
∣∣ is small.

Then we note that if λ is an ill-conditioned eigenvalue, a matrix E that makes∣∣yHE x
/
yHx

∣∣ very small can be simply obtained by taking E = WH
λ . In fact, Wλ

and WH
λ are unit-norm matrices (both in the 2 and in the Frobenius norm) and

∣∣∣∣
yHWH

λ x

yHx

∣∣∣∣ =
∣∣∣∣
yH x yHx

yHx

∣∣∣∣ = |s(λ)| = 1
κ(λ)

.

It is interesting to note that this agrees with the above results. In fact, a straight-
forward computation shows that

(Wλ, WH
λ ) = (WH

λ , Wλ) = s(λ)2,

so that the more the eigenvalue λ is ill-conditioned, the more Wλ and WH
λ are close

to be orthogonal to each other.
Finally, note that WH

λ = Wλ (i.e. Wλ is Hermitian) if and only if |s(λ)| = 1
and that the case of a defective eigenvalue associated with a unique Jordan block
(s(λ) = 0) can be viewed as the limit case of orthogonality between Wλ and WH

λ .

2.2 Further consequences of Theorem 2: a case study

In Theorem 2 we consider only one eigenvalue λ (ν = 1) and we do not assign in
advance a structure to the matrix E (m = n2). In this case, to get

∣∣yHE x
/
yHx

∣∣ =
0, we have to solve one linear equation in the n2 unknowns eij plus the nonlinear
equation ‖E‖2 = 1, or ‖E‖F = 1 (cf. Remark 1). To clarify the matter that follows,
it is worth formally re-writing that equation in the form

n2∑

k=1

αk ξk = 0,

where the ξk are the unknowns eij arranged by columns in a n2-length vector ξ.
We put, for i, j = 1 : n, k = 1 : n2,

k = (j − 1)n + i; j =
k + n− i

n
, i = k − n(j − 1),

ξk = eij ,

αk = αk(λ) =
yi xj

yHx
.
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In the general case 1 ≤ ν ≤ n, 0 < m ≤ n2, we have to deal with a homoge-
neous linear system of ν equations in m unknowns and, again, with the nonlinear
equation ‖E‖2 = 1, or ‖E‖F = 1. Again we can represent that homogeneous linear
system in a more usual form, writing

m∑

k=1

αhk ξk = 0, h = 1 : ν, (4)

even though things become quite complicated. To arrange the unknowns by columns
we have to take the n2 −m zero entries of E into account and properly modify the
relationships among i, j and k. We denote by ζ(i, j) the number of the zero entries
in E that precede an eij belonging to the set of the selected m entries and we write,
for i, j = 1 : n, k = 1 : m,

k = (j − 1)n + i− ζ(i, j); j =
k + n− i + ζ(i, j)

n
, i = k − n(j − 1) + ζ(i, j),

ξk = eij ,

αhk = αhk(λh) = y
(h)
i x

(h)
j

/
y(h)H x(h) .

Here the superscript (h) points out that the two eigenvectors correspond to λh.
The above notations allow us to transform our problem into another one which

is essentially a Linear Algebra problem. In fact, they show that a specific vector
ξ = (ξ1, ξ2, . . . ξm) corresponds to a shaped, structured or full matrix E and vice-
versa. So they are useful since they lead to prove the following theorem.

Theorem 3. With regard to the existence of matrices E that satisfy the non-
linear system formed by the linear equations in (4) and by the nonlinear equation
‖E‖2 = 1 [and by the nonlinear equation ‖E‖F = 1], the following two cases can be
distinguished.

1. If m ≤ ν, a generic property is that no matrix E satisfying the above defined
nonlinear system exists. Solutions might exist only under suitable conditions.

2. If m ≥ ν + 1, a generic property is that the matrices E satisfying the above
defined nonlinear system belong to a subspace of dimension m − ν and to
the 2−norm [Frobenius norm] unit-ball. The mentioned subspace of solutions
might have a greater dimension only under suitable conditions.

Proof. The proof is an immediate consequence of the two following considerations.
Since the subset of full rank matrices is open and dense in the whole matrix space,
a generic linear system (4) will have full rank. As a consequence, by virtue of well
known Linear Algebra results, only the trivial solution ξ = 0 [E = 0] exists in case
1, whereas the solutions ξ [the solutions E] belong to a subspace of dimension m−ν
in case 2. Again, well known conditions of Linear Algebra, not generically satisfied,
state when solutions in case 1, or a greater dimensional subspace of solutions in
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case 2, may arise. The proof follows then by considering the further nonlinear
equation ‖E‖2 = 1 [the further nonlinear equation ‖E‖F = 1] that forces the
possible solutions of the homogeneous linear system to belong to the unit-ball.

Remark 4. In the case of m = ν + 1, the infinitely many solutions ξ of a generic
linear system (4) give rise to only two opposite real normalized matrix solutions.

3 Outline of two algorithms
We give a sketch of two algorithms we propose. Both are implemented using MAT-
LAB. The refined versions will be adequately discussed in [4].

Trying a numerical solution of the homogeneous linear system (4), then con-
structing the matrix E∗ corresponding to the computed solution ξ∗ of (4), and
finally normalizing E∗, seems to be the most natural approach to follow.

This idea leads to an algorithm (Algorithm 2) that works efficiently - even in
case of large systems - if (4) is a generic (full rank) system with m ≥ ν +1 (see case
2 in Theorem 3). However, it suffers the case of a non generic system and does not
work at all when no solution exists. To this regard note that unit-norm matrices E
making the ratios

∣∣y(h)HE x(h)
/
y(h)Hx(h)

∣∣ , h = 1 : ν, small enough, might exist
even when there is no solution to (4) (i.e. in the generic case considered in Theorem
3, case 1). They would be unit-norm matrices whose corresponding vectors ξ solve
the non-homogeneous linear system

m∑

k=1

αhk ξk = tolh, h = 1 : ν,

for particular choices of vector tol. Even though those matrices E would work, it
would be practically impossible to find a priori the corresponding vectors tol which
allow to find them.

As a consequence of these drawbacks of Algorithm 2, and to get an algorithm
able to carry out any kind of tests, we decided to adopt first a different strategy
that could suit even the above cases (Algorithm 1).

The basic idea was that of using the MATLAB functions mdsmax and nms-
max by Higham [3]. This way we transform the problem of solving the nonlinear
system in a direct search optimization problem. In fact, both those functions at-
tempt to maximize a given real function fun prepared by the user. Our function
fun computes

1

/
ν∑

h=1

∣∣∣∣∣
y(h)HẼ x(h)

y(h)Hx(h)

∣∣∣∣∣ , (5)

Ẽ being a unit-norm matrix with the same shape or structure of E.
Both Algorithm 1 and Algorithm 2 return the matrix solution E. They both

require the user to enter the matrix A, to select the ν eigenvalues to be preserved
and to specify the kind of the matrix E. The eigenvalues of A are computed by the
MATLAB function eig. More detail follows.
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3.1 Algorithm 1

To specify the selected kind of the matrix E, the user is required to enter a string.
Currently, eight strings are available: ’trid’, ’trizd’, ’ubid’, ’lbid’, ’uhess’, ’lhess’,
’sparse’, ’full’. The first six stand for tridiagonal, tridiagonal with zero diagonal,
upper bidiagonal, lower bidiagonal, upper Hessemberg and lower Hessemberg. They
correspond to six structuring functions. String ’sparse’ is to be used in case E has
neither to be ’full’ nor to have one of the above mentioned structures.

Except for the ’full’ case, both our function fun and Higham’s function mds-
max [and Higham’s function nmsmax] must work on a m-length vector - that
stands for vector ξ in Sect. 2.2 - to keep the structure or the shape of E. Then a
reshaping procedure is needed. In case of structured matrices, we realized such a
procedure by means of the relevant structuring function that constructs a suitable
reshaping matrix B ∈ Rn2×m, extending a technique due to Francoise Tisseur [7].
In case of sparse matrices, the user is required to enter the m couples of indices
defining the shape of E and the reshaping procedure is simply realized by means of
the relationships among i, j and k shown in Sect 2.2.

The user is required to select one of the functions mdsmax and nmsmax.
Both of them call fun and interact with it to maximize the function implemented
therein. The attempt is achieved iteratively. At each iteration, fun computes the
implemented function at the current data received by the calling routine. In detail,
it derives a unit-norm matrix Ẽ from the data and returns the corresponding value
of the function in (5). Checks are carried out by mdsmax [by nmsmax] to verify
whether the iteration has to be stopped or not.

We refer the reader to the leading comment lines in the routines in [3] for
further detail.

3.2 Algorithm 2

Arbitrarily chosen values are assigned by the user to m − ν selected components
of the unknown ξ in (4) and the homogeneous system is transformed into a non-
homogeneous one. The non-singularity of the resulting coefficient matrix is checked.
Since normally the right and left eigenvalues are full vectors, such a non-homogeneous
linear system turns out to be generally a full one. Thus, Gaussian elimination seems
to be the more advisable numerical method. We used the \ MATLAB function.

An auxiliary matrix F that is initialized to the 0 n× n matrix is used to
1. allow the user to select the m − ν components of the unknown ξ to be

assigned a value (−1 is assigned to m− ν properly singled out entries in F );
2. allow the user to mark the ν components of ξ that will act as unknowns (1

is assigned to ν properly singled out entries in F );
3. reshape the whole computed m-length solution ξ∗ of (4) (the components

of ξ∗ appropriately substitute for the −1’s and the 1’s).
Normalization of the final version of F will give the required approximation

to the matrix E.
Note that the matrix F also specifies the kind (structure, shape, etc.) of the

matrix E (cf. points 1 and 2).
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4 Numerical tests
Both the algorithms outlined in Sect. 3 have been checked under MATLAB 6.0.0.88
(R12). In this section we report on the tests we carried out. To make the test
repeatable, the command rand(’seed’,0) has been inserted in the implementation
of Algorithm 1 before providing mdsmax [nmsmax] with the starting guess it
requires, and issued before entering any randomly generated matrix.

We collect a few tables below. They summarize the results obtained in some
tests we singled out since they illustrate significant aspects. Unfortunately, for lack
of space, we can not deal with other interesting questions.

Matrices F = α E, with α large enough to make the inherent error to dominate
the algorithmic one have been used. We have taken α = 10µ eps, eps being the
MATLAB floating point relative accuracy and µ a non negative integer. Then we
observed the relevant induced perturbations |λh(A)− λh(A + α E)|. The values
assigned to the integer µ are reported in the first row of each table, while the
relevant induced perturbations are drawn up in columns, under the values of µ,
often roughly reporting only the negative exponent in their normalized exponential
representation. The first column shows the indices of the ν eigenvalues we selected
as they appear in the list displayed by eig. Sometimes the table reports global
information related to the other (non selected) eigenvalues in the last row.

A concise information about the tables follows.
Table 1. A=2*(rand(20)-.5). The eight negative real part eigenvalues (four complex
conjugate pairs) and ’uhess’ structure of E were selected.
Table 2. A=2*(rand(15)-.5). The four eigenvalues closest to zero (two of them
form a complex conjugate pair) and ’full’ structure of E were selected.
Table 3. up=2*(rand(29,1)-.5); dg=2*(rand(30,1)-.5); lw=2*(rand(29,1)-.5); A=
full(gallery(’tridiag’,lw,dg,up)). The largest and the smallest in absolute value
eigenvalues and ’trizd’ structure of E were selected.
Table 4. As before, but ’ubid’ instead of ’trizd’ structure of E was selected.
Table 5. A=gallery(’clement’,30). The two eigenvalues closest to zero and ’trid’
structure of E were selected.
Table 6. Du=diag(-1./sqrt(4*(1:14).ˆ2-1),1); Dd=diag([-1 zeros(1,14)]); Dl=
diag(1./sqrt(4*(1:14).ˆ2-1),-1); A = Du + Dd + Dl. Bessel matrix of dimension
15 - spectrum in the left half of the complex plane - (see e.g. [2], [5]). The two
eigenvalues closest to the imaginary axis (a complex conjugate pair) and ’sparse’
shape of E (i.e. E(14, 15) and E(15, 14)) were selected.
Table 7. As before, but dimension 25 instead of 15 and E(24, 25), E(25, 24) instead
of E(14, 15), E(15, 14).
Table 8. A=rand(10). The last three eigenvalues and ’sparse’ shape of E (i.e.
E(1, 2), E(5, 5) and E(9, 10)) were selected.
Table 9. A=rand(30). All the eigenvalues and ’sparse’ shape of E (i.e. the diagonal
and E(30, 1)) were selected.
Table 10. up=2*(rand(99,1)-.5); dg=2*(rand(100,1)-.5); lw=2*(rand(99,1)-.5);
A=full(gallery(’tridiag’,lw,dg,up)). All the eigenvalues and ’sparse’ shape of E
(i.e. the diagonal and E(100, 1)) were selected.
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µ/λ 0↗9 10 11 12 13 14 15
1,2 -15,-14 7.4e-14 7.5e-12 7.5e-10 7.5e-8 7.5e-6 7.5e-4

12,13 -16,-15 6.8e-14 6.5e-12 6.5e-10 6.5e-8 6.5e-6 6.5e-4
16,17 -16,-15 1.7e-13 1.7e-11 1.7e-9 1.7e-7 1.7e-5 1.7e-3
19,20 -16,-15 2.2e-13 2.2e-11 2.2e-9 2.2e-7 2.2e-5 2.2e-3
others -14↗-8 -7 -6 -5 -4 -3 -2

Table 1

µ/λ 0↗9 10 11 12 13 14 15
12,13 -16,-15 1.7e-13 1.7e-11 1.7e-9 1.7e-7 1.7e-5 1.8e-3
14 -16,-15 1.3e-14 1.3e-12 1.3e-10 1.3e-8 1.3e-6 1.4e-4
15 -16,-15 2.7e-14 2.7e-12 2.7e-10 2.7e-8 2.7e-6 2.7e-4

others -14↗-8 -7 -6 -5 -4 -3 -2
Table 2

µ/λ 0↗8 9 10 11 12 13 14
20 -16,-15 4.7e-15 1.9e-13 1.9e-11 1.9e-9 1.9e-7 1.9e-5
24 -17,-16 1.0e-15 7.6e-14 7.6e-12 7.6e-10 7.6e-8 7.6e-6

others -14↗-9 -9,-8 -8,-7 -7,-6 -6,-5 -5,-4 -4,-3
Table 3

µ/λ 0↗8 9 10 11 12 13 14
20 -16,-15 0 1.8e-14 1.5e-12 1.5e-10 1.5e-8 1.5e-6
24 -17,-16 6.9e-15 6.6e-13 6.6e-11 6.6e-9 6.6e-7 6.7e-5

others -14↗-9 -9,-8 -8,-7 -7,-6 -6,-5 -5,-4 -4,-3
Table 4

µ/λ 11 12 13 14 15 16 17
26 9.5e-13 1.7e-11 1.7e-9 1.7e-7 1.7e-5 1.7e-3 1.4e-1
27 2.5e-12 2.1e-11 1.7e-9 1.7e-7 1.7e-5 1.7e-3 1.4e-1

Table 5

µ/λ 0↗7 8 9 10 11 12 13 14
1,2 -17,-16 -15 -13 -11 -9 -7 -5 -3

Table 6

µ/λ 0↗8 9 10 11 12 13 14
1,2 –16,-15 -13 -11 -9 -7 -5 -3

Table 7

µ/λ 0↗6 7 8 9 10 11 12 13 14 15
8 –16,-15 -15 -14 -13 -12 -12 -9 -7 -5 -3
9 –15↗-13 -11 -10 -9 -8 -7 -6 -5 -4 -3
10 –17,-16 -16 -16 -15 -13 -11 -9 -7 -5 -3

others –16↗-10 -10,-9 -9,-8 -8,-7 -7,-6 -6,-5 -5,-4 -4,-3 -3,-2 -2,-1
Table 8

µ/λ 0↗8 9 10 11 12 13 14
1:30 -16,-15,-14 -15,-14 -13,-12 -11,-10 -9,-8 -7,-6 -5,-4

Table 9
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µ/λ 0↗16
1:100 -17,-16,-15,-14

Table 10

Except for Tables 8 and 10, all other tables show a behavior of the inherent
error λh(A)− λh(A + α E) related to the selected eigenvalues that is typical of the
case in which the first term in the expansion in powers of α is extremely small (if
not zero). The exceptions observable in Tables 8 and 10 are due to reasons that
will be explained below.

The results summarized in Tables 1-5 were obtained using both the algorithms.
The results summarized in Tables 6-8 can not be obtained using Algorithm 2. In
fact, they refer to cases deliberately constructed to make Algorithm 2 to fail.
In all the cases one has m = ν (case 1 in Theorem 3).
In the first two cases the coefficient matrix in system (4) is declared ”close to
singular” and ”singular to working precision” respectively, and this makes Algorithm
2 to fail. On the contrary, Algorithm 1 succeeded in finding values of (5) very large
(1.9e+016 and 6.4e+015 respectively).
In the last case the coefficient matrix in system (4) is definitely non singular and
again this makes Algorithm 2 to fail. Algorithm 1 obtained the value 4.5e+001.
Thus, the above mentioned first term in the expansion in powers of α is not small
and this explains the anomalous behavior of the second row of Table 8. However,
the results, on the whole, are not so bad.

We rather used Algorithm 2 to get the results reported in Table 9 and 10. In
fact the function (5) to be maximized by mdsmax [by nmsmax] requires a big
amount of computations when ν, n, m are large. Note the very satisfactory result
reported in Table 10 that gives an explanation for the exception mentioned above.

5 Conclusions
Given any matrix A ∈ Cn×n, we show how to determine matrices E (directions in
Cn×n) in such a way that A + α E keeps essentially unaltered a set of eigenvalues
of A for reasonably large values of α. We show that the problem has solutions, no
matter how the set of eigenvalues has been singled out and the kind of E (shape
or structure, fullness, etc.) has been selected, provided that a number of entries
in E greater than that of the chosen eigenvalues can be properly determined. The
opposite case is also discussed in Theorem 3, which gives a complete answer to the
existence of such matrices E.

Two algorithms having complementary qualities are briefly described.
Selected tests among the many we carried out are reported. They illustrate

interesting aspects and show that satisfactory results can be obtained even when
no solution exists according to Theorem 3.
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