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The Scaled Sturm
Sequence Computation

J. Zhang∗

1 Introduction
The Sturm sequence computation is used by the bisection method to compute eigen-
values of real symmetric tridiagonal matrices. Let Tn be a symmetric tridiago-
nal matrix with the diagonal elements α1, α2, . . . , αn and the off-diagonal elements
β1, β2, . . . , βn−1. Given a number λ, the sequence of characteristic polynomials
pj(λ) for the leading j × j principal submatrices of Tn can be computed with the
following three-term linear recurrence [7, 4].

p0(λ) = 1,

p1(λ) = α1 − λ,

pj(λ) = (αj − λ)pj−1(λ) − β2
j−1pj−2(λ), j = 2, · · · , n. (1)

The sequence {pj(λ)} is referred to as the Sturm sequence. In this paper,
it is called the classical Sturm sequence. It is well known[4] that the number of
eigenvalues smaller than λ is equal to the number of sign disagreements between
consecutive members in the classical Sturm sequence. Therefore, given that the ith
eigenvalue of Tn is located in an interval, we can extract the ith eigenvalue to meet
the desired precision by repeated bisection of the interval based on the classical
Sturm sequence evaluation. Due to its overflow and underflow problems, in real
application the classical Sturm sequence computation gives way to the following
variant [1]

q1(λ) = α1 − λ,

qj(λ) = αj − λ − β2
j−1/qj−1(λ), j = 2, · · · , n. (2)

where qj(λ) = pj(λ)/pj−1(λ). The sequence {qj(λ)} is called the Sturm sequence
in this paper. With the Sturm sequence, the number of eigenvalues that are less
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than λ is equal to the number of negative members in the sequence. Because of its
self scaling, the Sturm sequence computation (2) can avoid overflow and underflow
problems. It can be noted that the Sturm sequence computation may break down
if qj(λ) = 0 for some 1 ≤ j < n. To prevent this, the following guardian [1] is
designed: if qj−1(λ) = 0, set qj(λ) = αj − λ − |βj−1|/ε where ε is the machine
epsilon. Applying the guardian is equivalent to introducing a perturbation |βj−1 · ε|
to the diagonal element αj−1.

The bisection with the Sturm sequence computation (2) is quite accurate in
computing eigenvalues of Tn. However, due to the nonlinear nature of the recurrence
used for the computation, the Sturm sequence is difficult to be parallelized. In this
paper, the scaled Sturm sequence computation is presented by modifying the classical
Sturm sequence computation. The scaled Sturm sequence computation is suitable
for being parallelized. It is shown that the scaled Sturm sequence computation
is backward stable and is capable of avoiding overflow and underflow problems.
The numerical result shows that the scaled Sturm sequence computation achieves
the same accuracy in computing eigenvalues of Tn as that of the Sturm sequence
computation although its running time is about one and a half times of that taken
by the Sturm sequence computation.

To compute eigenvalues of Tn correctly, it is important to avoid or handle
the nonmonotonicity for the result of the Sturm sequence computation [3]. The
nonmonotonicity denotes the phenomenon that the number of negative members of
the Sturm sequence computed for one number x is less than that of another number
y < x. The scaled Sturm sequence computation can be another resort in case the
nonmonotonicity occur in the Sturm sequence computation.

2 The scaled Sturm sequence computation

The scaled Sturm sequence computation is developed based on the classical sturm
sequence computation. As observed in [2], the classical Sturm sequence computation
can be represented with the matrix-vector multiplication

Pi = MiPi−1 (3)

where

Mi =
[

αi − λ −β2
i−1

1 0

]
, Pi =

[
pi(λ)

pi−1(λ)

]
. (4)

Note that P0 is defined to be [1, 0]T and β0 is set to 0. The first elements Pi[1]
of those vectors Pi form the classical Sturm sequence. To prevent the overflow and
underflow problems, we use a scaling factor to multiply with Pi when necessary.
Therefore, the scaled Sturm sequence computation can be expressed as the following
sequence of matrix-vector multiplications.

Pi = siMiPi−1(i = 1, 2, . . . , n) (5)

where si is the scaling factor used in step i, which is computed with the following
algorithm.
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The Scaling factor algorithm
Input: P̂i = MiPi−1

output: The scaling factor si

w = max{|P̂i[1]|, |P̂i[2]|}
if w > Φ then si = Φ/w
else if w < Υ then si = Υ/w else si = 1
return si

The values of Φ and Υ are set to 1010 and 10−10 respectively in our imple-
mentation. The sequence {Pi[1]} is referred to as the scaled Sturm sequence. It is
easy to see that due to the scaling operations, the first and second elements of Pi

are equal to C · pi(λ) and C · pi−1(λ) respectively where pi(λ) is the ith member
of the classical Sturm sequence and C is a positive constant. Therefore, the count
of sign disagreements for the scaled Sturm sequence {Pi[1]} is the same as that
of the classical Sturm sequence {pi(λ)}. It should be mentioned that in the real
implementation, the scaled Sturm sequence is not calculated with the matrix-vector
multiplication. Instead, a more efficiently designed algorithm is used to compute
the members of the scaled Sturm sequence and count the number of sign disagree-
ments. We put the scaled Sturm sequence computation in this form just for the
clearance and convenience in the analysis below. In the following discussion, we
call the scaled Sturm sequence computation (5) the vector form of the scaled Sturm
sequence computation. In showing the backward stability of the scaled Sturm se-
quence computation, we need the following remark.

Remark 2.1: In the matrix-vector multiplication P̂i = MiPi−1, since the second
row of Mi is [1, 0], P̂i[2] is always equal to Pi−1[1]. To simulate the real algorithm for
the scaled Sturm sequence computation, we consider that the value of the element
P̂i[2] is directly set to the value of the element Pi−1[1] instead of being computed
as the inner product of the vectors [0, 1]T and Pi−1.

As to the possibility of being parallelized, it can be seen from (5) that Pi =
siMisi−1Mi−1 . . . s1M1P0. Therefore, the computation of Pi (1 ≤ i ≤ n) can be
parallelized by the typical prefix computation of

Pn = snMnsn−1Mn−1 . . . s1M1P0.

Such a parallel algorithm for computing the scaled Sturm sequence is presented
in [8, 9].

As an example similar to the one in [3], the following matrix will incur the
nonmonotonicity for the Sturm sequence computation at the points −10−32 and 0
when the guardian described in section 1 is used to deal with the zero denominator.

A =
[

0 2ε
2ε 3

]
Here, ε = 1.11 × 10−16. It is easy to verify that the scaled Sturm sequence com-
putation can avoid the nonmonotonicity in the example. It should be mentioned
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that some more sophisticated guardian for the Sturm sequence computation like
the one in [6] can avoid the nonmonotonicity with the above example. In spite of
this, the scaled Sturm sequence computation can be one more resort to deal with
the nonmonotonicity.

3 The backward stability
The following theorem shows that the scaled Sturm sequence computation is back-
ward stable.

Theorem 3.1: Let Pi = siMiPi−1 (i = 1, 2, . . . , n) be the vector form of the
scaled Sturm sequence computation for the symmetric tridiagonal matrix Tn with
the diagonal elements αi (i = 1, 2, . . . , n) and the off-diagonal elements βi (i =
1, 2, . . . , n − 1) at the number λ where P0 = (1, 0)T . Then, the first component
Pi[1] of each Pi is the exact result computed from the symmetric tridiagonal matrix
T̃n with the diagonal elements α̃i (i = 1, 2, . . . , n) and the off-diagonal elements β̃i

(i = 1, 2, . . . , n−1) where α̃i and β̃i are obtained by introducing perturbations ∆αi

and ∆βi to αi and βi respectively. Furthermore, |∆αi| ≤ 4ε(max1≤k≤n{|αk|}+ |λ|)
for i = 1, 2, . . . , n and |∆βi| < 2.5ε max1≤k≤n−1{|βk|} for i = 1, 2, . . . , n − 1 where
ε is the machine epsilon.

Proof: The result can be proved for each Pi[1] (i = 1, 2, . . . , n) by induction on i.
For the base case, it can be seen that P1[1] is computed as P1[1] = α1 � λ where �
denotes the numerical minus operation. With the fundamental axiom of the floating
point arithmetic, P1[1] = (α1 − λ)(1 + ε) = α1 + ε(α1 − λ) − λ. Therefore, P1[1] is
the exact result computed from T̃n with α̃1 = α1 + ∆α1 where ∆α1 = ε(α1 − λ).
It can be seen that |∆α1| = ε|α1 − λ| ≤ ε(|α1| + |λ|) < 4ε(max1≤k≤n{|αk|} + |λ|).
Therefore, the result holds for the base case.

For the induction hypothesis, assume that for 2 ≤ j ≤ i, the result of the
theorem holds for Pj−1[1]. From the computation Pi = siMiPi−1,

Pi[1] = si ⊗ [(αi � λ) ⊗ Pi−1[1] � (βi−1 ⊗ βi−1) ⊗ Pi−1[2]] (6)

where like �, ⊗ represents the numerical multiplication operation. For the item
Pi−1[2] in (6), consider the computation Pi−1 = si−1Mi−1Pi−2. According to Re-
mark 2.1, we directly use Pi−2[1] as the second element of the resulting vector
Mi−1Pi−2. Therefore, Pi−1[2] = si−1 ⊗ Pi−2[1]. Plugging the result into (6), we
have

Pi[1] = si ⊗ [(αi � λ) ⊗ Pi−1[1] � (βi−1 ⊗ βi−1) ⊗ (si−1 ⊗ Pi−2[1])] (7)

Repeatedly applying the fundamental axiom of the floating point arithmetic,
we have

Pi[1] = si[(αi − λ)Pi−1[1](1 + ε1)(1 + ε2)(1 + ε6)(1 + ε7) − β2
i−1si−1Pi−2[1]
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(1 + ε3)(1 + ε4)(1 + ε5)(1 + ε6)(1 + ε7)] (8)

For the item (1 + ε1)(1 + ε2)(1 + ε6)(1 + ε7) in (8), unfolding the expression
and eliminating the items of higher order, we have (1+ ε1)(1+ ε2)(1+ ε6)(1+ ε7) ≈
1+ε1+ε2+ε6+ε7 ≈ 1+4ε. Similarly, for the item (1+ε3)(1+ε4)(1+ε5)(1+ε6)(1+ε7)
in (8), we can approximate it with 1 + 5ε. Plugging the results into (8), we have

Pi[1] = si[(1 + 4ε)(αi − λ)Pi−1[1]) − (1 + 5ε)β2
i−1si−1Pi−2[1]]. (9)

For the item (1 + 4ε)(αi − λ) in (9), it is easy to see that it can be replaced
with αi + ∆αi − λ with ∆αi = 4ε(αi − λ). For ∆αi, we have |∆αi| = 4ε|αi − λ| ≤
4ε(|αi| + |λ|) ≤ 4ε(max1≤k≤n{|αk|} + |λ|).

For the item (1 + 5ε)β2
i−1 in (9), in order to express it with (βi−1 + ∆βi−1)2,

∆βi−1 should satisfy the equation

(βi−1 + ∆βi−1)2 = (1 + 5ε)β2
i−1 (10)

Since Tn is an unreduced symmetric tridiagonal matrix, |βi−1| is great enough
to meet the criterion for deflating small off-diagonal elements. Therefore, it is
reasonable to assume that the perturbation ∆βi−1 will not change the sign of βi−1,
that is, βi−1 + ∆βi−1 and βi−1 should have the same sign. Then, from (10), it
follows that

βi−1 + ∆βi−1 =
√

1 + 5εβi−1 (11)

From (11), we have

∆βi−1 = (
√

1 + 5ε − 1)βi−1

=
5ε

1 +
√

1 + 5ε
βi−1 (12)

From (12), it follows that |∆βi−1| < 2.5ε · |βi−1| ≤ 2.5 max1≤k≤n−1{|βk|}ε.
Therefore, by the induction hypothesis, the result of the theorem also holds for Pi.
Hence, we completed the induction.�

4 The effectiveness of eliminating the overflow and
underflow problems

In order to show that the scaled Sturm sequence computation can eliminate the
overflow and underflow problems, we need to bound the absolute values of elements
in a symmetric tridiagonal matrix Tn with the diagonal elements αi (i = 1, 2, . . . , n)
and the off-diagonal elements βi (i = 1, 2, . . . , n − 1). The absolute values of those
elements satisfy the following constraints.

|αi| ≤ φ (1 ≤ i ≤ n)

υ ≤ |βi| ≤ φ (1 ≤ i ≤ n − 1). (13)
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When some elements of Tn are greater than φ in absolute value, we can scale Tn

to make the absolute values of elements of Tn bounded by φ. The lower bound υ can
be appropriately set to meet the criterion for deflating small off-diagonal elements.
Therefore, the off-diagonal elements that are less than υ in absolute value can be
deflated to 0, and the eigenproblem of Tn will be decomposed into eigenproblems
of those resulting unreduced symmetric tridiagonal submatrices. In the following
discussion, we select 10−15 as the value of υ since it is near the machine precision
ε. For φ, we select the value 1015.

The Gershgorin Circle Theorem [4] is used in the proof of some theorem and
proposition listed below. So, it is proper to state the theorem here. According
to the Gershgorin Circle Theorem, all the eigenvalues of Tn are contained in the
interval

[ min
1≤i≤n

{αi − (|βi−1| + |βi|)}, max
1≤i≤n

{αi + (|βi−1| + |βi|)}]. (14)

In practice, interval (14) is used as the initial interval to find eigenvalues of
Tn with the bisection method.

The following theorem shows that there is no overflow problem in the scaled
Sturm sequence computation.

Theorem 4.1: There is no overflow problem for the computation Pi in the vector
form of the scaled Sturm sequence computation (5).

From the element value restriction (13), the scaling operation, and the Ger-
shgorin Circle Theorem (14), it is not difficult to derive that the absolute value of
elements in Pi is bounded by 2Φ · φ2 in the scaled Sturm sequence computation.
With the values set for Φ and φ, 2Φ · φ2 = 2 × 1040 that is far below the limit
of large real numbers an ordinary machine expresses. For instance, in Sun Sparc
workstations, the maximum real number expressed with the double precision has
the same order of magnitude as that of 10324. The proof of Theorem 4.1 can be
found in [9].

The following two propositions are needed to show that the scaled Sturm
sequence computation is valid in eliminating the underflow problem.

Proposition 4.1: In the vector form of the scaled Sturm sequence computation (5),
Pi �= [0, 0]T for i = 1, 2, . . . , n.

Proof: The proposition can be proved by induction on i. For the base case,
when i = 1, from the configuration of Mi, P1[2] = P0[1]. Therefore, by P0[1] = 1,
P1 is a nonzero vector.

For the induction hypothesis, assume that Pi−1 �= [0, 0]T for i > 1. Let

P̂i = MiPi−1 =
[

αi − λ −β2
i−1

1 0

] [
Pi−1[1]
Pi−1[2]

]
. (15)

In the following, we show that P̂i is a nonzero vector. When Pi−1[1] �= 0, from
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(15), P̂i[2] = Pi−1[1]. Therefore, P̂i �= [0, 0]T . Otherwise, when Pi−1[1] = 0, from
(15), we have

P̂i[1] = −β2
i−1Pi−1[2]. (16)

By the induction hypothesis, Pi−1 �= [0, 0]T . Therefore, by Pi−1[1] = 0 and
the scaling operation, |Pi−1[2]| ≥ Υ. Applying the result and the element value
restriction (13) to (16), we have |P̂i[1]| ≥ Υ · υ2. With the values set to Υ and
υ, Υ · υ2 = 10−40 which is far above the limit of small positive real numbers an
ordinary machine can express. For instance, the minimum positive real number
expressed with double precision in Sun Sparc workstations is equal to 10−324 in the
order of magnitude. Therefore, no underflow will occur in the computation of P̂i[1]
and P̂i �= [0, 0]T . Then, by the scaling operation, Pi �= [0, 0]T . Hence, induction is
completed.�

In the following proposition and theorem, pj is the characteristic polynomial
of the leading j × j principal submatrix of Tn.

Proposition 4.2: When λ is not equal to any zero of pj and pj−1 (2 ≤ j ≤ n),
then |pj(λ)|/|pj−1(λ)| > |λk,j − λ| and |pj−1(λ)|/|pj(λ)| > 1

9φ−2|λk′,j−1 − λ| where
λk,j is the zero of pj which is the closest to λ and λk′,j−1 is the zero of pj−1 which
is the closest to λ.

It is not difficult to prove the proposition based on the property that the
zeros of pj and pj−1 interlace with each other [7] as well as the Gershgorin Circle
Theorem (14). The proof of the proposition can be found in [9].

The following theorem shows the correctness of the scaled Sturm sequence
computation in eliminating the underflow problem.

Theorem 4.2: For one step of the vector form of the scaled Sturm sequence (5),
there will be no underflow problem in the computation of Pi[1] if λ is not close to
any zero λj of pi with respect to the following criterion (17).

|λ − λj | > ε2 (17)

There will be no underflow problem in the computation of Pi[2] if λ is not close to
any zero λj of pi−1 with respect to the criterion (17).

Proof: Let P̂i = MiPi−1. Then,[
P̂i[1]
P̂i[2]

]
=

[
αi − λ −β2

i−1

1 0

]
·
[

Pi−1[1]
Pi−1[2]

]
. (18)

Assume that λ is not close to any zero of pi with respect to the criterion (17).
In the following, we show that there is no underflow problem in the computation of
P̂i[1] in (18).

By Proposition 4.1, Pi−1 is a nonzero vector. When |Pi−1[1]| ≥ |Pi−1[2]|, due
to the scaling operation, |Pi−1[1]| ≥ Υ. From (18), P̂i[2] = Pi−1[1]. Thus,
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|P̂i[2]| ≥ Υ. (19)

As we know, Pi−1[1] = Cpi−1 and Pi−1[2] = Cpi−2 where C is a positive
constant. Therefore, by Proposition 4.2,

|P̂i[1]|
|P̂i[2]| =

|Cpi(λ)|
|Cpi−1(λ)| =

|pi(λ)|
|pi−1(λ)| > |λk,i − λ|. (20)

where λk,i is the zero of pi that is the closest to λ. According to (19) and (20),
|P̂i[1]| > Υ · |λk,i − λ|. Since λ is not close to any zero of pi with respect to
the criterion (17), we have |P̂i[1]| > Υ · ε2. With the values set for Υ and ε,
|P̂i[1]| > 10−42 that is far above the limit of small positive real numbers an ordinary
machine can express.

When |Pi−1[1]| < |Pi−1[2]|, we will discuss the situation according to the
following two cases.
(i) |Pi−1[1]| < 1

8υ2 · Υ · φ−1

From (18), P̂i[1] = (αi −λ)Pi−1[1]− β2
i−1 ·Pi−1[2]. Since |Pi−1[1]| < |Pi−1[2]|,

due to the scaling operation, |Pi−1[2]| ≥ Υ. By the element value restriction (13),
β2

i−1 ≥ υ2. Therefore, β2
i−1|Pi−1[2]| ≥ υ2Υ. According to the element value re-

striction (13) and the Gershgorin Circle Theorem (14), |αi − λ| ≤ 4φ. Therefore,
by |Pi−1[1]| < 1

8υ2 · Υ · φ−1, |αi − λ||Pi−1[1]| < 1
2υ2 · Υ. Therefore, |P̂i[1]| =

|(αi − λ)Pi−1[1] − β2
i−1 · Pi−1[2]| > 1

2υ2 · Υ. With the values set for υ and Υ, there
is no underflow in the computation of P̂i[1] in this case.
(ii) |Pi−1[1]| ≥ 1

8υ2 · Υ · φ−1

From (18), P̂i[2] = Pi−1[1]. Thus, |P̂i[2]| ≥ 1
8υ2 · Υ · φ−1. Therefore, by

Proposition 4.2, |P̂i[1]| > |λk,i − λ||P̂i[2]| ≥ 1
8υ2 · Υ · φ−1|λk,i − λ| where λk,i is the

zero of pi that is the closest to λ. Since λ is not close to any zero of pi with respect
to the criterion (17), from the above result, |P̂i[1]| > 1

8υ2 · Υ · φ−1 · ε2 > 10−88

with the values set for υ, Υ, φ, and ε. Therefore, there is still no underflow in the
computation of P̂i[1] in this case.

In the above, we showed that if λ is not close to any zero of pi with respect
to the criterion (17), then there is no underflow in the computation of P̂i[1] in
(18). Therefore, when si in (5) is greater than 1, Pi[1] = siP̂i[1] will have no
underflow in its computation. When si < 1, by Proposition 4.1, Pi is a nonzero
vector. With the scaling operation, it can be seen that max{|Pi[1]|, |Pi[2]|} ≥ Υ.
Therefore, if |Pi[1]| = max{|Pi[1]|, |Pi[2]|}, there is naturally no underflow in the
computation of Pi[1] in (5). When |Pi[2]| = max{|Pi[1]|, |Pi[2]|}, by Proposition 4.2,
|Pi[1]| > |λk,i − λ||Pi[2]| ≥ Υ|λk,i − λ|. By the assumption that λ is not close to
any zero of pi with respect to the criterion (17), |Pi[1]| > ε2 ·Υ ≥ 10−42. Therefore,
there is no underflow in the computation of Pi[1] in (5).

We now prove the second part of the theorem. Assume that λ is not close
to any zero of pi−1. With the above result, there will be no underflow in the
computation of Pi−1[1] in Pi−1 = si−1Mi−1Pi−2. Let P̂i = MiPi−1. From the
configuration of Mi, P̂i[2] = Pi−1[1]. Therefore, if the scaling factor si is greater
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than 1, there will be naturally no underflow in the computation of Pi[2]. If si < 1,
we will make the proof according to the following two cases.

When |P̂i[2]| ≥ |P̂i[1]|, from the scaling operation, Pi[2] = siP̂i[2] will be
equal to Φ in absolute value. Therefore, there is naturally no underflow in the
computation of Pi[2].

When |P̂i[2]| < |P̂i[1]|, by Proposition 4.2,

|Pi[2]|
|Pi[1]| =

|P̂i[2]|
|P̂i[1]| =

|pi−1(λ)|
|pi(λ)| >

1
9
φ−2|λk,i−1 − λ| (21)

where λk,i−1 is the zero of pi−1 that is the closest to λ. From the scaling operation,
Pi[1] = siP̂i[1] will be equal to Φ in absolute value. Therefore, from (21), |Pi[2]| >
1
9φ−2|λk,i−1 − λ|Φ. By the assumption that λ is not close to any zero of pi−1 with
respect to the criterion (17), we have |Pi[2]| > 1

9φ−2ε2Φ > 10−53 with the values set
for φ, ε, and Φ. Therefore, there is still no underflow in the computation of Pi[2] in
this case.�

From the proof of Theorem 4.2, the threshold in the criterion (17) can be set to
be much smaller than ε2 and the theorem will still hold. When the distance between
λ and a zero of pi or pi−1 is much less than ε2, underflow may occur in computing
Pi[1] or Pi[2] in (5). In this case, we can consider that λ is an approximation of
a zero of pi or pi−1. From the convention of counting sign disagreements between
two consecutive members of the Sturm sequence [4], this type of underflows will not
influence the correct count of the sign disagreements.

5 Numerical result
In the numerical experiment, the Sturm sequence computation and the scaled Sturm
sequence computation are tested on the Sun workstation. Table 1 lists their accu-
racy and time results for the computation of particular eigenvalues of the following
testing matrices presented in [5]. For those testing matrices, the error of the eigen-
value evaluation can be directly evaluated as

|λ̃i − λi|/‖Tn‖.

where λ̃i is the approximation of the exact eigenvalue λi and ‖Tn‖ = ‖Tn‖∞ =
max1≤i≤n(|βi−1| + |αi| + |βi|). The machine epsilon is set as ε = 1.11 × 10−16.

Type 1: Toeplitz matrices [b, a, b] with αi = a and βi = b. Exact eigenvalues:
{a + 2b cos kπ

n+1}1≤k≤n. In generating testing matrices, a and b are set to 0.2 and
0.1 respectively.

Type 2: α1 = a−b, αi = a for i = 2, . . . , n−1, αn = a+b. βi = b for i = 1, . . . , n−1.
Exact eigenvalues: {a+2b cos (2k−1)π

2n }1≤k≤n. In generating testing matrices, a and
b are set to 0.2 and 0.1 respectively.

Type 3: αi =
{

a for odd i,
b for even i,

and βi = 1. Exact eigenvalues:
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{
a + b ± [(a − b)2 + 16 cos2 kπ

n+1 ]1/2

2

}
1≤k≤n/2

and a if n is odd.

In generating testing matrices, a and b are set to 0.2 and 0.1 respectively.

Type 4: αi = −[(2i − 1)(n − 1) − 2(i − 1)2], βi = i(n − i). Exact eigenvalues:
{−k(k − 1)}1≤k≤n.

Table 1. The accuracy and time comparison between the Sturm sequence and
the scaled Sturm sequence (The order of matrices is 2000; the time unit is the microsecond,
i.e., 10−6 sec.)

matrix eigenvalue Sturm Scaled Sturm

type index accuracy time accuracy time

1 0.19ε 0.012 0.19ε 0.020
type 1 1000 0 0.012 0 0.019

2000 1.25ε 0.012 1.25ε 0.019

1 0.57ε 0.012 0.57ε 0.020
type 2 1000 1.25ε 0.012 1.25ε 0.019

2000 0 0.012 0 0.019

1 0 0.012 0 0.013
type 3 1000 0.23ε 0.012 0.23ε 0.014

2000 1.82ε 0.012 1.82ε 0.014

1 0 0.012 0 0.019
type 4 1000 0.52ε 0.012 0.52ε 0.020

2000 0.50ε 0.012 0.50ε 0.020

From table 1, the scaled Sturm sequence has the same accuracy result as
that of the Sturm sequence. In fact, the bisection with the scaled Sturm sequence
computation produces the same value for each of the eigenvalues listed in the table
as the bisection with the Sturm sequence computation. It also can be seen that the
running time of the scaled Sturm sequence computation is around 1.5 times of that
of the Sturm sequence computation.
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