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Iterative methods prior to about 1930

The earliest reference to an iterative approach to solving

Ax = b appears to be contained in a letter by Gauss to his

student Gerling dated 26 December 1823, in the context of

solving least squares problems via the normal equations.

After briefly describing his method (essentially a relaxation

procedure) on a 4× 4 example, Gauss wrote:

You will in future hardly eliminate directly, at least not when

you have more than two unknowns. The indirect procedure

can be done while one is half asleep, or is thinking about

other things.

Cf. Werke, IX, p. 278. See also E. Bodewig, Matrix Calculus,

1956.



Iterative methods prior to about 1930 (cont.)

In 1826 Gauss gave a block variant of the method in the

Supplementum to his famous work on least squares, Theoria

Combinationis Observationum Erroribus Minimis Obnoxiae

(English translation by Pete Stewart published by SIAM in

1995).

Solution of normal equations by iteration became stan-

dard in 19th Century Germany, especially among geodesists

and astronomers (including Gerling, Bessel, Schumacher,...).

According to Bodewig, Gauss had to solve systems with 20-30-40 un-

knowns. These systems were diagonally dominant and convergence was

fast. In 1890, Nagel used iteration to solve a system of 159 unknowns

arising in the triangulation of Saxony.



Iterative methods prior to about 1930 (cont.)

In 1845 Jacobi introduced his own iterative method, again

for solving normal equations for least squares problems

arising in astronomical calculations.1

In the same paper he makes use of carefully chosen plane

rotations to increase the diagonal dominance of the co-

efficient matrix. This is perhaps the first occurrence of

preprocessing of a linear system in order to speed up the

convergence of an iterative method. He gives a 3×3 example.

Only in a subsequent paper (1846) he will use plane rotations

to diagonalize a symmetric matrix.

1Über eine neue Auflösungsart der bei der Methode der klein-

sten Quadrate vorkommenden linearen Gleichungen, Astronomische

Nachrichten, 22 (1845), 297–306. Reprinted in Gesammelte Werke, vol.

III, pp. 469–478.



Jacobi’s example

Jacobi takes for his example a linear system that appears in

Gauss’ Theoria Motus Corporum Coelestium in Sectionibus

Conicis Solem Ambientium (1809).

In modern notation, Jacobi wants to solve Ax = b where

A =

 27 6 0
6 15 1
0 1 54

 and b =

 88
70

107

 .
Jacobi uses a plane rotation (with angle α = 22o 30′) to anni-

hilate the (1,2)-(2,1) coefficient. After this, the transformed

system is solved in three iterations of Jacobi’s method. Each

iteration adds about one digit of accuracy.



Iterative methods prior to about 1930 (cont.)

Again in the context of least squares, in 1874 another

German, Seidel, publishes his own iterative method.

The paper contains what we now (inappropriately) call

the Gauss–Seidel method, which he describes as an

improvement over Jacobi’s method.

Seidel notes that the unknowns do not have to be pro-

cessed cyclically (in fact, he advises against it!); instead,

one could choose to update at each step the unknown

with the largest residual. He seems to be unaware that

this is precisely Gauss’ method.

In the same paper, Seidel mentions a block variant of his scheme. He

also notes that the calculations can be computed to variable accuracy,

using fewer decimals in the first iterations. His linear systems had up

to 72 unknowns.



Iterative methods prior to about 1930 (cont.)

Another important 19th Century development that is

worth mentioning were the independent proofs of con-

vergence by Nekrasov (1885) and by Pizzetti (1887) of

Seidel’s method for systems of normal equations (more

generally, SPD systems).

These authors were the first to note that a necessary and

sufficient condition for the convergence of the method

(for an arbitrary initial guess x0) is that all the eigenvalues

of the iteration matrix must satisfy |λ| < 1. Nekrasov

and Mehmke (1892) also gave examples to show that

convergence can be slow.

Nekrasov seems to have been the first to relate the rate of convergence

to the dominant eigenvalue of the iteration matrix. The treatment is

still in terms of determinants, and no use is made of matrix notation.



Iterative methods prior to about 1930 (cont.)

In the early 20th century we note the following important

contributions:

• The method of Richardson (1910);

• The method of Liebmann (1918).

These papers mark the first use of iterative methods in

the solution of finite difference approximations to elliptic

PDEs.

Richardson’s method is still well known today, and can be

regarded as an acceleration of Jacobi’s method by means

of over- or under-relaxation factors. Liebmann’s method

is identical with Seidel’s.



Iterative methods prior to about 1930 (cont.)

The first systematic treatment of iterative methods

for solving linear systems appeared in a paper by the

famed applied mathematician Richard von Mises and his

collaborator (and later wife) Hilda Pollaczek-Geiringer,

titled Praktische Verfharen der Gleichungsauflösung

(ZAMM 9, 1929, pp. 58–77).

This was a rather influential paper. In it, the authors

gave conditions for the convergence of Jacobi’s and

Seidel’s methods, the notion of diagonal dominance

playing a central role.

The paper also studied a stationary version of Richard-

son’s method, which will be later called Mises’ method

by later authors.



Richard von Mises and Hilda Pollaczek-Geiringer

Two pioneers in the field of iterative methods.



Mauro Picone and the INAC

The paper by von Mises and Pollaczek-Geiringer was

read and appreciated by Mauro Picone (1885-1977)

and his collaborators at the Istituto Nazionale per le

Applicazioni del Calcolo (INAC).

The INAC was among the first institutions in the

world entirely devoted to the development of numerical

analysis. Both basic research and applications were

pursued by the INAC staff.

The Institute had been founded in 1927 by Picone, who was at that

time professor of Infinitesimal Analysis at the University of Naples.

In 1932 Picone moved to the University of Rome, and the INAC was

transferred there. It became a CNR institute in 1933.



Mauro Picone and the INAC (cont.)

Picone’s interest in numerical computing dated back to

his service as an artillery officer in WWI, when he was

put to work on ballistic tables.

The creation of the INAC required great perseverance

and political skill on his part, since most of the mathe-

matical establishment of the time was either indifferent

or openly against it.

Picone’s own training was in classical (“hard”) analysis. He worked

mostly on the theory of differential equations and in the calculus of

variations. He was also keenly interested in constructive and compu-

tational functional-analytic methods.



Mauro Picone in 1903



Mauro Picone around 1950



Mauro Picone and the INAC (cont.)

Throughout the 1930’s and beyond, under Picone’s

direction, the INAC employed a number of young math-

ematicians, many of whom later became very well known.

INAC researchers did basic research and also worked on

a large number of applied problems supplied by industry,

government agencies, and the Italian military. Picone was

fond of saying that

Matematica Applicata = Matematica Fascista

In the 1930s the INAC also employed up to eleven computers and

draftsmen. These were highly skilled men and women who were

responsible for carrying out all the necessary calculations using a

variety of mechanical, electro-mechanical, and graphical devices.



Mauro Picone and the INAC (cont.)

As early as 1932, Picone designed and taught one of

the first courses on numerical methods ever offered

at an Italian university (the course was called Calcoli

Numerici e Grafici). The course was taught in the

School of Statistical and Actuarial Sciences, because

Picone’s colleagues in the Mathematics Institute denied

his request to have the course listed among the electives

for the degree in Mathematics.

The course covered root finding, maxima and minima,

solutions of linear and nonlinear systems, interpolation,

numerical quadrature, and practical Fourier analysis.

Both Jacobi’s and Seidel’s method are discussed (including block

variants). Picone’s course was not very different from current

introductory classes in numerical analysis.



Mauro Picone and the INAC (cont.)

In the chapter on linear systems, Picone wrote:

The problem of solving linear systems has enormous importance in

applied mathematics, since nearly all computational procedures lead

to such problem. The problem can be considered as a multivariate

generalization of ordinary division... While for ordinary division there

exist automatic machines, things are not so for the solution of

linear systems, although some great minds have set themselves this

problem in the past. Indeed, the first researches go back to Lord

Kelvin. Recently, Professor Mallock of Cambridge University has

built a highly original electrical machine which can solve systems of

n ≤ 10 equations in as many unknowns. This and other recent ef-

forts, however, are far from giving a practical solution to the problem.



Lamberto Cesari’s work on iterative methods

Lamberto Cesari (Bologna, 1910; Ann Arbor, MI, 1990)

studied at the Scuola Normale in Pisa under L. Tonelli,

then in 1934 went to Germany to specialize under the

famous mathematician C. Carathéodory. After his return

from Germany, Cesari joined the INAC in Rome.

While at INAC Cesari wrote the paper Sulla risoluzione dei

sistemi di equazioni lineari per approssimazioni successive

(La Ricerca Scientifica, 8, 1937, pp. 512–522.)

Cesari later became a leading expert in various branches of mathemat-

ical analysis and optimization. In 1948 he emigrated to the US, where

he had a brilliant career, first at Purdue, then at Michigan.



Lamberto Cesari (1910-1990)



Lamberto Cesari’s 1937 paper

Cesari gives a general theory of stationary iterations in terms

of matrix splittings. Having written the linear system as

ωAx = ωb, ω 6= 0 ,

he introduces the splitting

ωA = B + C, det (B) 6= 0 ,

and proves that the stationary iteration associated with this

splitting converges for any choice of the initial guess if and

only if the smallest (in magnitude) root of

det (B + λC) = 0

is greater than 1. This is equivalent to the usual condition

ρ(B−1C) < 1.



Lamberto Cesari’s 1937 paper (cont.)

In the same paper, Cesari applies his general theory to

the methods of Jacobi, Seidel, and von Mises (stationary

Richardson). He uses ω 6= 1 only for the latter.

In the case of von Mises’ method (analyzed for the SPD

case), Cesari notes that, regardless of ω, the rate of

convergence of the method deteriorates as the ratio of the

extreme eigenvalues of A increases. He writes:

In practice, we found that already for λmax(A)
λmin(A) > 10 the

method of von Mises converges too slowly.

This observation leads Cesari to the idea of polynomial pre-

conditioning.



Lamberto Cesari’s 1937 paper (cont.)

Given estimates a ≈ λmin(A) and b ≈ λmax(A), Cesari

determines the coefficients of the polynomial p(x) of degree

k such that the ratio of the maximum and the minimum of

q(x) = xp(x) is minimized over [a, b], for 1 ≤ k ≤ 4.

The transformed system

p(A)Ax = p(A)b ,

which he shows to be equivalent to the original one, can be

expected to have a smaller condition number.

Cesari ends the paper with a brief discussion of when this approach may

be useful and gives the results of numerical experiments with all three

methods on a 3× 3 example using a polynomial of degree k = 1.



Lamberto Cesari’s 1937 paper (cont.)

Cesari’s paper was not without influence: it is cited,

sometimes at length, in important papers by Forsythe

(1952-1953) and in the books by Bodewig (1956), Faddeev

& Faddeeva (1960), Householder (1964), Wachspress

(1966) and Saad (2003) among others.

It is, however, not cited in the influential books of Varga

(1962) and Young (1971).

Cesari’s paper is important for our story also because of the

effect it had on a former student and assistant of Picone.



Cimmino’s method

Gianfranco Cimmino (Naples, 1908; Bologna, 1989) grad-

uated at Naples with Picone in 1927 with a thesis on

approximate solution methods for the heat equation in 2D.

After a period spent at INAC and a study stay in Germany

(again with Carathéodory), he undertook a brilliant academic

career. He became a full professor in 1938, and in 1939

moved to the chair of Mathematical Analysis at Bologna,

where he spent his entire career.

Cimmino’s work was mostly in analysis: theory of linear elliptic PDEs,

calculus of variations, integral equations, functional analysis, etc. He also

wrote 5-6 short papers on matrix computations.



Gianfranco Cimmino (1908-1989)



Cimmino’s method (cont.)

In 1938 La Ricerca Scientifica published a short (8 pages)

paper by Cimmino, titled Calcolo approssimato per le

soluzioni dei sistemi lineari.

As Picone himself explained in a brief introductory note,

after reading Cesari’s paper Cimmino reminded him of a

method that he had developed around 1932 while he was

at INAC. Cimmino’s method did not appear to fit under

Cesari’s “systematic treatment,” yet

it is most worthy of consideration in the applications because of its gen-

erality, its efficiency and, finally, because of its guaranteed convergence

which can make the method practicable in many cases. Therefore, I

consider it useful to publish in this journal Prof. Cimmino’s note on the

above mentioned method, note that he has accepted to write upon my

insistent invitation.



Cimmino’s method (cont.)

Cimmino considers the system Ax = b where A is a real

n× n matrix, initially assumed to be nonsingular.

If aTi = [ai1, ai2, . . . , ain] denotes the ith row of A, the so-

lution x∗ = A−1b is the unique intersection point of the n

hyperplanes described by

〈ai,x〉 = bi, i = 1, 2, . . . , n . (1)

Given an initial approximation x(0), Cimmino takes, for each

i = 1, 2, . . . , n, the reflection (mirror image) x(0)
i of x(0) with

respect to the hyperplane (1):

x(0)
i = x(0) + 2

bi − 〈ai,x(0)〉
‖ai‖2

ai . (2)



Cimmino’s method (cont.)

Given n arbitrarily chosen positive quantities m1, . . . ,mn,

Cimmino constructs the next iterate x(1) as the center of

gravity of the system formed by placing the n masses mi

at the points x(0)
i given by (2), for i = 1, 2, . . . , n. Cimmino

notes that the initial point x(0) and its reflections with respect

to the n hyperplanes (1) all lie on a hypersphere the center

of which is precisely the point common to the n hyperplanes,

namely, the solution of the linear system. Because the center

of gravity of the system of masses {mi}ni=1 must necessarily

fall inside this hypersphere, it follows that the new iterate

x(1) is a better approximation to the solution than x(0):

‖x(1) − x∗‖ < ‖x(0) − x∗‖ .

The procedure is then repeated starting with x(1).



Cimmino’s method (n = 2)

From C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.



Cimmino’s method (cont.)

Cimmino proves that his method is always convergent.

In the same paper Cimmino shows that the iterates converge

to a solution of Ax = b even in the case of a singular (but

consistent) system, provided that rank (A) ≥ 2.

He then notes that the sequence {x(k)} converges even

when the linear system is inconsistent, always provided that

rank (A) ≥ 2. Much later (1967) Cimmino wrote:

The latter observation, however, is just a curiosity, being

obviously devoid of any practical usefulness. [sic!]

It can be shown that for an appropriate choice of the masses

mi, the sequence {x(k)} converges to the minimum 2-norm

solution of ‖b−Ax‖2 = min.



Cimmino’s method (cont.)

In matrix form, Cimmino’s method can be written as follows:

x(k+1) = x(k) +
2

µ
ATD(b−Ax(k))

(k = 0,1, . . .), where

D = diag

(
m1

‖a1‖2
,
m2

‖a2‖2
, . . . ,

mn

‖an‖2

)

and µ =
n∑
i=1

mi.

Therefore, Cimmino’s method is a special case of von Mises’

method (stationary Richardson) on the normal equations if

we let mi = ‖ai‖2. Cimmino’s method corresponds to us-

ing ω = 2/µ for the relaxation factor. With such a choice,

convergence is guaranteed.



Cimmino’s legacy

Cimmino’s method, like the contemporary (and related)

method of Kaczmarz, did not attract much attention until

many years later.

Although it was described by Forsythe (1953) and in the

books of Bodewig (1956), Householder (1964), Gastinel

(1966) and others, I was able to find only 8 journal citations

of Cimmino’s 1938 paper until 1980.

After 1980, the number of papers and books citing Cimmino’s

(as well as Kaczmarz’s) method picks up dramatically, and it

is now in the hundreds. Moreover, both methods have been

reinvented several times.



Kaczmarz’s method (n = 2)

From C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.



Cimmino’s legacy (cont.)

Two major reasons for this surge in popularity are the

fact that the method has the regularizing property when

applied to discrete ill-posed problems, and the high degree

of parallelism of the algorithm.

Today, Cimmino’s method is rarely used to solve linear

systems. Rather, it forms the basis for algorithms that are

used to solve systems of inequalities (the so-called convex

feasibility problem), and it has applications in computerized

tomography, radiation treatment planning, medical imaging,

etc.

Indeed, most citations occur in the medical physics literature,

an outcome that would have pleased Gianfranco Cimmino.
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