Friday, June 22
Room: Plenary Room

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00–9:45</td>
<td>IP 1</td>
<td>Computations with some classes of matrices related to P-matrices</td>
<td>Juan Manuel Peña (Chair: José Mas)</td>
</tr>
<tr>
<td>10:10–10:55</td>
<td>IP 2</td>
<td>Reduction of quadratic matrix polynomials to triangular form</td>
<td>Françoise Tisseur (Chair: Froilán M. Dopico)</td>
</tr>
<tr>
<td>11:00–12:40</td>
<td>MS 74</td>
<td>Recent advances in the numerical solution of large scale matrix</td>
<td>Valeria Simoncini and Daniel B. Szyld</td>
</tr>
<tr>
<td>11:00–11:25</td>
<td></td>
<td>Hierarchical and Multigrid methods for matrix and tensor equations</td>
<td>Lars Grasedyck</td>
</tr>
<tr>
<td>11:25–11:50</td>
<td></td>
<td>A Survey on Newton-ADI based solvers for large scale AREs</td>
<td>Jens Saak,</td>
</tr>
<tr>
<td>11:50–12:15</td>
<td></td>
<td>An invariant subspace method for large-scale algebraic Riccati and Bernoulli equations</td>
<td>Luca Amodei</td>
</tr>
<tr>
<td>12:15–12:40</td>
<td></td>
<td>Delay Lyapunov equations and model order reduction of time delay systems</td>
<td>Tobias Damm</td>
</tr>
</tbody>
</table>
MS 70
Accurate algorithms and applications
Organizer: Roberto Barrio and Siegfried M. Rump

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00–11:25</td>
<td>High precision and accurate algorithms in Physics and Mathematics</td>
<td>Roberto Barrio</td>
</tr>
<tr>
<td>11:25–11:50</td>
<td>Accurate evaluation of 1D and 2D polynomials in Bernstein form</td>
<td>Hao Jiang,</td>
</tr>
<tr>
<td>11:50–12:15</td>
<td>Some issues related to double roundings</td>
<td>Jean-Michel Muller</td>
</tr>
<tr>
<td>12:15–12:40</td>
<td>Error bounds for floating-point summation and dot product</td>
<td>Siegfried M. Rump</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>11:00–12:40</td>
<td>MS 69</td>
<td>Advances in sparse matrix Factorization</td>
</tr>
<tr>
<td>11:00–11:25</td>
<td></td>
<td>A Sparse inertia-revealing factorization</td>
</tr>
<tr>
<td>11:25–11:50</td>
<td></td>
<td>Multifrontal factorization on heterogeneous multicore systems</td>
</tr>
<tr>
<td>11:50–12:15</td>
<td></td>
<td>Towards an optimal parallel approximate sparse factorization algorithm using hierarchically semi-separable structures</td>
</tr>
<tr>
<td>12:15–12:40</td>
<td></td>
<td>Improving multifrontal methods by means of low-rank approximation techniques</td>
</tr>
</tbody>
</table>
MS 71

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00–11:25</td>
<td>Theoretical and applied aspects of graph Laplacians</td>
<td>Shaun Fallat and Steve Kirkland</td>
</tr>
<tr>
<td>11:25–11:50</td>
<td>Potential theory for perturbed Laplacian of finite networks</td>
<td>Margarida Mitjana,</td>
</tr>
<tr>
<td>11:50–12:15</td>
<td>Subclasses of graphs with partial ordering with respect to the spectral radius of generalized graph Laplacians</td>
<td>Josef Leydold</td>
</tr>
<tr>
<td>12:15–12:40</td>
<td>Graph bisection from the principal normalized Laplacian eigenvector</td>
<td>Dragan Stevanovic</td>
</tr>
<tr>
<td>11:00–12:40</td>
<td>Some new results on the signless Laplacian of graphs</td>
<td>Slobodan K. Simic</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>11:00–12:40</td>
<td>MS 75</td>
<td>Points that minimize potential functions</td>
</tr>
<tr>
<td>11:00–11:25</td>
<td></td>
<td>Discretizing compact manifolds with minimal energy</td>
</tr>
<tr>
<td>11:25–11:50</td>
<td></td>
<td>Well conditioned spherical designs and potential functions</td>
</tr>
<tr>
<td>11:50–12:15</td>
<td></td>
<td>Probabilistic frames in the 2-Wasserstein metric</td>
</tr>
<tr>
<td>12:15–12:40</td>
<td></td>
<td>Numerical minimization of potential energies on specific manifolds</td>
</tr>
</tbody>
</table>
Linear algebra for structured eigenvalues computations arising from (matrix) polynomials
Organizer: L. Gemignani and R. Vandebril

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00–11:25</td>
<td>A QR algorithm with generator compression for structured eigenvalue computation</td>
<td>P. Boito</td>
<td></td>
</tr>
<tr>
<td>11:25–11:50</td>
<td>Quadratic realizability for structured matrix polynomials</td>
<td>D.S. Mackey</td>
<td></td>
</tr>
<tr>
<td>11:50–12:15</td>
<td>Fast computation of zeros of a polynomial</td>
<td>D.S. Watkins</td>
<td></td>
</tr>
<tr>
<td>12:15–12:40</td>
<td>Eigenvector recovery of linearizations and the condition number of eigenvalues of matrix polynomials</td>
<td>F. De Terán</td>
<td></td>
</tr>
</tbody>
</table>

Friday, June 22
Room: 2.12
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Presenter</th>
</tr>
</thead>
</table>
| 11:00–12:40 | MS 73 | *Algebraic Riccati equations associated with M-matrices: numerical solution and applications*
Organizer: Beatrice Meini | |
| 11:00–11:25 | | *Monotone convergence of Newton-like methods for M-matrix algebraic Riccati equations*
Chun-Hua Guo | |
| 11:25–11:50 | | *Accurate solution of M-matrix algebraic Riccati equation by ADDA: alternating-directional doubling algorithm*
Ren-Cang Li | |
| 11:50–12:15 | | *When fluid becomes Brownian: the morphing of Riccati into quadratic equations*
Giang Nguyen | |
| 12:15–12:40 | | *Analyzing multi-type queues with general customer impatience using Riccati equations*
Benny Van Houdt | |
Friday, June 22

Room: 2.15

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00–12:40</td>
<td>MS 72</td>
<td>Linear techniques for solving nonlinear equations</td>
<td>Organizer: Vicente F. Candela and Rosa M. Peris Sancho</td>
</tr>
<tr>
<td>11:00–11:25</td>
<td></td>
<td>A Gauss-Seidel process in iterative methods for solving nonlinear equations</td>
<td>José M. Gutiérrez</td>
</tr>
<tr>
<td>11:25–11:50</td>
<td></td>
<td>A greedy algorithm for convergence of a fractional blind deconvolution</td>
<td>Vicente F. Candela</td>
</tr>
<tr>
<td>11:50–12:15</td>
<td></td>
<td>Overview of iterative methods using a variational approach</td>
<td>Sonia Busquier Sáez</td>
</tr>
<tr>
<td>12:15–12:40</td>
<td></td>
<td>Iterative methods for ill-conditioned problems</td>
<td>Rosa M. Peris Sancho</td>
</tr>
</tbody>
</table>