
RandNLA:
Randomization in Numerical Linear Algebra:

Theory and Practice

To access our web pages use your favorite search engine.

Petros Drineas Ilse Ipsen (organizer) Michael W. Mahoney
RPI NCSU UC Berkeley

Why RandNLA?

Randomization and sampling allow us to design provably accurate algorithms for
problems that are:

 Massive

(matrices so large that can not be stored at all, or can only be stored in slow memory devices)

 Computationally expensive or NP-hard

(combinatorial optimization problems, such as the Column Subset Selection Problem)

Randomized algorithms
• By (carefully) sampling rows/columns of a matrix, we can construct new, smaller matrices that
are close to the original matrix (w.r.t. matrix norms) with high probability.

• By preprocessing the matrix using “random projection” matrices , we can sample rows/columns
much less carefully (uniformly at random) and still get nice bounds with high probability.

Matrix perturbation theory

• The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular
vectors) to the original matrices thanks to the norm bounds.

RandNLA in a slide

Example:
Randomized

Matrix
Multiplication

Interplay

Theoretical Computer Science

Randomized and approximation
algorithms

Numerical Linear Algebra

Matrix computations and linear
algebra (ie., perturbation theory)

Applications in BIG DATA

(Data Mining, Information Retrieval,
Machine Learning, Bioinformatics, etc.)

(Petros) discrete probability, randomized matrix multiplication

(Ilse) randomized Gram matrix multiplication, least-squares problems

(Michael) RandNLA practice: implementations and evaluations

RandNLA work will also be covered in Haim Avron’s plenary talk on “Sketching-Based
Matrix Computations for Large-Scale Data Analysis.”

(IP3, Monday October 26, 1:45 pm-2:30 pm)

Tutorial roadmap

Let’s start with discrete probability.

I will actually skip most of the (fairly introductory) material in the next
several slides and will focus on measure concentration inequalities that are
particularly useful in the analysis of RandNLA algorithms.

Overview
 Probabilistic experiments (definition, state space, events, independence, probabilities,

conditional probabilities, union bound, etc.)

 Random variables (definition, independence, expectation, variance, etc.)

 Measure concentration inequalities (Markov, Chebyschev, Bernstein/Chernoff/Hoeffding,
etc.)

Intro to discrete probability theory

A random experiment is any procedure that can be infinitely repeated and has a
well-defined set of possible outcomes.

Sample space Ω: the finite set of all possible outcomes of the random experiment.

Bernoulli trial: a random experiment with exactly two possible outcomes (success
and failure)

Event: any subset of the sample space Ω.

Example: let the random experiment be: “toss a coin three times”. The sample
space is

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

The event E described by “the output of the experiment was either all heads or all
tails” is the set {HHH,TTT}.

Random or probabilistic experiment

Probability: the probability measure or probability function Pr mapping the finite
sample space to the interval [0,1], e.g., the function Pr mapping every element ω in
Ω to 0 ≤ Pr(ω) ≤ 1.

Additional property (finite Ω):

Uniform probability: all elements of the sample space have the same probability.

Let A be an event (a subset of Ω). The probability of A is:

Obviously, .

Probability

Countably infinite sample spaces Ω must be treated with some care; one can
define the discrete probability space to be the set of all possible subsets of Ω, i.e.,
the powerset of Ω.

In this case, the probability measure or probability function Pr is defined over all
possible events and satisfies the so-called positivity, normalization, and additivity
properties.

If the set of all possible events is a proper subset of the powerset of Ω or if Ω
is uncountably infinite, even more care is necessary; this is not discrete probability
any more.

Discrete vs. continuous probability

Events are sets, thus set operations (union, intersection, complementation) are
applicable.

Examples:

The first property follows from the inclusion-exclusion principle, which can be
generalized to more than two sets and thus to more than two events.

Additionally, if A is a subset of B, then .

Properties of events

Union bound: for any set of events Ai, i=1…n,

Simple inductive proof, using the inclusion-exclusion principle for two sets.

The events (sets) Ai do not need to satisfy any special property.

Union bound

Disjoint or mutually exclusive events: events A and B are disjoint or mutually
exclusive if their intersection is empty.

Independent events: events A and B are independent if the occurrence of one does
not affect the probability of the other.

Formally, two events A and B are independent if

Disjoint and independent events

Random variables: functions mapping the sample space Ω to real numbers.

(They are called variables, even though they really are functions.)

Notice that given any real number a, the inverse

is a subset of Ω and thus is an event and has a probability.

Random variables

Random variables: functions mapping the sample space Ω to real numbers.

(They are called variables, even though they really are functions.)

Notice that given any real number a, the inverse

is a subset of Ω and thus is an event and has a probability.

Abusing notation: we use instead of .

This function of a is of great interest. We can also define Pr(X ≤ a) as follows:

Random variables

Example: let Ω be the sample space of two dice rolls with 36 elements and assume
that both dice are fair.

The sum of the two numbers on the two dice (denoted by – say – S) is a random
variable, taking values between 2 and 12.

We can compute the probabilities Pr(S=s):

Example

Probability mass function or pmf:

Cumulative distribution function or cdf:

Clearly, .

If the sample space is countably infinite some more care required; a lot more care
is required if the sample space is uncountably infinite.

PMF and CDF

Two random variables X and Y are independent if (for all reals a, b)

Independent random variables

Joint mass function

Given a random variable X, its expectation E(X) is defined as

X(Ω) is the image of X (recall that X is a function). For finite Ω

For countably infinite sample spaces care needs to be taken regarding the
convergence of the appropriate sum.

The Lebesgue-Stieljes integral can be used for uncountable sample spaces.

Expectation

Linearity of expectation: for any random variables X and Y and real λ

The first property generalizes to any (finite) sum of random variables and holds
even if the random variables are not independent.

If two random variables X and Y are independent then

Properties of expectation

The variance of a random variable X is defined as

In words, it measures the average of the (square) of the difference X – E(X).

The standard deviation is the square root of the variance.

Easy to prove:

Variance

If X and Y are independent random variables, then

For any real λ

Properties of variance

Markov’s inequality

Let X be a non-negative random variable; for any a > 0

Really simple to apply: only needs a bound for the expectation of X.

Markov’s inequality: equivalent formulas

Let X be a non-negative random variable; for any k > 1

or, equivalently,

Markov’s inequality: proof hint

Let X be a non-negative random variable; for any a > 0

(Proof hint: define the random variable Ia that takes the value 1 if X ≥ a and 0
otherwise; come up with an obvious upper bound for Ia and then bound its
expectation.)

Chebyshev’s inequality

Let X be a random variable with expectation E(X) (finite) and variance Var(X) = σ2

(also finite:); Then, for any a > 0,

We now need bounds for the expectation and the variance of X.

Proof hint: Apply Markov’s inequality on (X-E(X))2.

Bernstein-type inequalities

We now focus on inequalities that measure how much a sum of random variables
deviates from its expectation.

Given independent random variables Xi for i=1…n we seek bounds for:

These bounds should hold with “high probability”.

Bernstein-type inequalities

We now focus on inequalities that measure how much a sum of random variables
deviates from its expectation.

Given independent random variables Xi for i=1…n we seek bounds for:

These bounds should hold with “high probability”.

Remark 1: We already know from the Central Limit Theorem that a sum of n
independent, identically distributed random variables with bounded, common, mean
and variance converges to a normal distribution as n approaches infinity. The
inequalities that we will discuss deal with smaller, finite values of n.

Remark 2: Early versions of such inequalities are often attributed to Bernstein in
the 1920’s, but have been rediscovered in various forms several times (starting in
the 1950s with Chernoff bounds, Hoeffding’s inequality, Azuma’s inequality, etc.).

Bernstein-type inequalities

Given independent random variables Xi such that E(Xi) = 0 and –M ≤ Xi ≤ M for all
i=1…n,

Given independent random variables Xi such that E(Xi) = 0 and –M ≤ Xi ≤ M for all
i=1…n,

Bernstein-type inequalities

a a

Bernstein-type inequalities

Given independent random variables Xi such that E(Xi) = 0 and –M ≤ Xi ≤ M for all
i=1…n,

The above inequality holds for any a > 0.

 The expectation of the sum of the Xi’s is zero.

 In words, the above inequality states that the probability that the sum of the
Xi’s deviates from its expectation by more than a is bounded.

 Many variants can be derived.

Problem Statement

Given an m-by-n matrix A and an n-by-p matrix B, approximate the product A·B,

OR, equivalently,

Approximate the sum of n rank-one matrices.

Each term in the
summation is a

rank-one matrix

i-th column of A

i-th row of B

A*i Bi*

Approximating Matrix Multiplication
(Drineas, Kannan, Mahoney SICOMP 2006)

A sampling approach
(DKM SICOMP 2006)

Algorithm

1. Fix a set of probabilities pi, i =1…n, summing up to one.

2. For t = 1…c,

set jt = i, where Pr(jt = i) = pi .

(Pick c terms of the sum, with replacement, with respect to the pi.)

3. Approximate the product AB by summing the c terms, after scaling.

i-th column of A

i-th row of B

A*i Bi*

Sampling (cont’d)
(DKM SICOMP 2006)

Keeping the terms
j1, j2, … jc.

i-th column of A

i-th row of B

A*i Bi*

A*jt Bjt*

The algorithm (matrix notation)

Algorithm

1. Pick c columns of A to form an m-by-c matrix C and the corresponding
c rows of B to form a c-by-p matrix R.

2. Approximate A · B by C · R.

Notes

3. We pick the columns and rows with non-uniform probabilities.

4. We scale the columns (rows) prior to including them in C (R).

The algorithm (matrix notation, cont’d)

• Create C and R by performing c i.i.d. trials, with replacement.

• For t = 1…c, pick a column A(jt) and a row B(jt) with probability

• Include A*jt
/(cpjt

)1/2 as a column of C, and Bjt* /(cpjt
)1/2 as a row of R.

We can also use the sampling matrix notation:

Let S be an n-by-c matrix whose t-th column (for t = 1…c) has a single
non-zero entry, namely

The algorithm (matrix notation, cont’d)

Clearly:

We can also use the sampling matrix notation:

Let S be an n-by-c matrix whose t-th column (for t = 1…c) has a single
non-zero entry, namely

The algorithm (matrix notation, cont’d)

Clearly:

Remark: S is sparse (has exactly c non-zero elements, one per column).

rescaling
factor

Simple Lemmas

• It is easy to implement this particular sampling in two passes, when the
input matrices are given as a sequence of triplets (i,j,Aij).

•The expectation of CR (element-wise) is AB (unbiased estimator),
regardless of the sampling probabilities, i.e.,

•We can also bound the variance of the (i,j)-th entry of CR:

Simple Lemmas

The above two bounds can now be used to bound

Our particular choice of sampling probabilities minimizes the above
expectation.

A bound for the Frobenius norm

For the above algorithm,

• We can now use Markov’s inequality to directly get a “constant probability”
bound.

• “High probability” follows from a martingale argument (we will skip this
discussion).

• The above bound immediately implies an upper bound for the spectral norm
of the error AB-CR (but better bounds can be derived).

Special case: B = AT

If B = AT, then the sampling probabilities are

Also, R = CT, and the error bounds are:

Special case: B = AT (cont’d)
(Drineas et al. Num Math 2011, Theorem 4)

A better spectral norm bound via matrix Chernoff/Bernstein inequalities:

Assumptions:

• Spectral norm of A is one (not important, just normalization)

• Frobenius norm of A is at least 0.2 (not important, simplifies bounds).

• Important: Set

Then: for any 0 < ε < 1, with probability at least 1 - δ,

An inequality by Oliveira
(Oliveira 2010, Lemma 1)

Let y1,y2,…,yc be independent identically distributed copies of the m-dimensional
random vector y with

Then, for any a > 0,

holds with probability at least

and

Proof outline
(Drineas et al. Num Math 2011, Theorem 4)

Define the random vector y such that

Now, it is easy to see that the matrix C has columns

where y1,y2,…,yc are independent copies of y. It is easy to prove that

and

Proof outline
(Drineas et al. Num Math 2011, Theorem 4)

We can now upper bound the norm of the vector y:

Also, given our assumption that the spectral norm of A is at most one, we get:

We can now apply a matrix-Bernstein inequality (Lemma 1 of Oliveira 2010) to get
the desired bound.

Using a dense S (instead of a sampling matrix…)

We approximated the product AAT as follows:

Recall that S is an n-by-c sparse matrix (one non-zero entry per column).

Let’s replace S by a dense matrix, the random sign matrix:

Note that S is oblivious to the input matrix A !

Using a dense S (instead of a sampling matrix…)
(and assuming A is normalized)

Approximate the product AAT (assuming that the spectral norm of A is one):

Let S by a dense matrix, the random sign matrix:

If

then, with high probability:

Using a dense S (instead of a sampling matrix…)
(and assuming A is normalized)

Approximate the product AAT (assuming that the spectral norm of A is one):

Let S by a dense matrix, the random sign matrix:

If

then, with high probability:

Similar structure with the
sparse S case; some

differences in the ln factor

Using a dense S (cont’d)

Other choices for dense matrices S?

Why bother with a sign matrix?
(Computing the product AS is somewhat slow, taking O(mnc) time.)

Similar bounds are known for better, i.e., computationally more efficient, choices of
“random projection” matrices S, most notably:

• When S is the so-called subsampled Hadamard Transform Matrix.
(much faster; avoids full matrix-matrix multiplication; see Sarlos FOCS 2006 and Drineas et al.
(2011) Num Math)

• When S is the input sparsity time projection matrix of Clarkson & Woodruff STOC
2013.

(the matrix multiplication result appears in Mahoney & Meng STOC 2013 and was improved by
Nelson and Huy FOCS 2013).

Recap: approximating matrix multiplication

We approximated the product AB as follows:

Let S be a sampling matrix (actual columns from A and rows from B are selected):

We need to carefully sample columns of A (rows of B) with probabilities that depend
on their norms in order to get “good” bounds of the following form:

Holds with probability at least 1-δ by setting

Randomized
Gram Matrix Multiplication

and
Least Squares

Outline

1 How to sample

2 Randomized matrix multiplication ATA, again
but now with uniform probabilities

3 Singular values of sampled orthonormal matrices

4 Randomized least squares

Assume: Exact arithmetic

How to Sample, Non-Uniformly

Given: Probabilities 0 ≤ p1 ≤ · · · ≤ pm with
∑m

i=1 pi = 1

Want: Sample index t = j from {1, . . . ,m} with probability pj

Inversion by sequential search [Devroye 1986]

1 Determine partial sums

Sk ≡
k∑

i=1

pi 1 ≤ k ≤ m

2 Pick uniform [0, 1] random variable U

3 Determine integer j with Sj−1 < U ≤ Sj
4 Sampled index: t = j with probability pj = Sj − Sj−1

How to Sample, Uniformly

Want: Sample c indices from {1, . . . ,m}
independently and identically, each with probability 1/m

Matlab

randi(m, [c, 1])

c × 1 vector of pseudo-random integers between 1 and m

Randomized Gram Matrix Multiplication

DKM Algorithm

[Drineas, Kannan & Mahoney 2006]

DKM Algorithm (special case)

Given: A =
(
a1 · · · am

)T ∈ Rm×n with rows aj ∈ Rn

Gram product = sum of outer products

ATA =
m∑
j=1

aj a
T
j ∈ Rn×n

DKM algorithm samples c rows of A, independently and identically,

with uniform probabilities pj = 1/m

S =
√

m
c

(
et1 · · · etc

)T ∈ Rc×m

et1 , . . ., etc not necessarily distinct

Output = sum of c scaled outer products

(SA)T (SA) = m
c

c∑
j=1

atj a
T
tj

DKM Algorithm (special case)

Given: A =
(
a1 · · · am

)T ∈ Rm×n with rows aj ∈ Rn

Gram product = sum of outer products

ATA =
m∑
j=1

aj a
T
j ∈ Rn×n

DKM algorithm samples c rows of A, independently and identically,

with uniform probabilities pj = 1/m

S =
√

m
c

(
et1 · · · etc

)T ∈ Rc×m

et1 , . . ., etc not necessarily distinct

Output = sum of c scaled outer products

(SA)T (SA) = m
c

c∑
j=1

atj a
T
tj

DKM Algorithm (special case)

Given: A =
(
a1 · · · am

)T ∈ Rm×n with rows aj ∈ Rn

Gram product = sum of outer products

ATA =
m∑
j=1

aj a
T
j ∈ Rn×n

DKM algorithm samples c rows of A, independently and identically,

with uniform probabilities pj = 1/m

S =
√

m
c

(
et1 · · · etc

)T ∈ Rc×m

et1 , . . ., etc not necessarily distinct

Output = sum of c scaled outer products

(SA)T (SA) = m
c

c∑
j=1

atj a
T
tj

Expected Value of Output

Output from DKM algorithm

X = (SA)T (SA) = X1 + · · ·+ Xc

Sum of matrix-valued random variables Xj = m
c atj a

T
tj

Expected value

E[Xj] =
m∑
i=1

1
m

m
c aia

T
i = 1

c A
TA

Output is unbiased estimator

E[X] = c E[Xj] = ATA

Idea for Probabilistic Bounds

Output from DKM algorithm

X = (SA)T (SA) = X1 + · · ·+ Xc

Independent matrix-valued random variables

Xj = m
c atj a

T
tj

with E[Xj] = 1
c A

TA

Change of variable to zero-mean

Yj = Xj − 1
c A

TA with E[Yj] = 0

Sum

Y = Y1 + · · ·+ Yc with E[Y] = 0

= X− ATA

Deviation of Y from mean zero , Absolute error in X

Idea for Probabilistic Bounds, ctd

Apply matrix Bernstein concentration inequality to Y

Pr [‖Y‖2 ≥ ε̂] ≤ δ(ε̂, . . .)

{Deviation of Y from mean since E[Y] = 0}

Retrieve original random variables

Y = X− E[X] = X− ATA

Relative error due to randomization for X

Pr
[
‖X− ATA‖2 ≤ ε̂

]
≥ 1− δ(ε̂, . . .)

with ε̂ = ‖ATA‖2 ε

Matrix Bernstein Concentration Inequality [Tropp 2011]

1 Independent random symmetric Yj ∈ Rn×n

2 E[Yj] = 0 {zero mean}
3 ‖Yj‖2 ≤ β {bounded}

4

∥∥∥∑j E[Y2
j]
∥∥∥

2
≤ ν {”variance”}

Failure probability: For any ε̂ > 0

Pr

∥∥∥∑
j

Yj

∥∥∥
2
≥ ε̂

 ≤ n exp

(
− ε̂2/2

ν + β ε̂/3

)

{Deviation from mean}

Check Assumptions for Concentration Inequality

1 Independent symmetric n × n random variables

Yj = Xj − 1
c A

TA = 1
c

(
m atj a

T
tj
− ATA

)
2 Zero mean E[Yj] = 0

3 Bounded

‖Yj‖2 ≤ 1
c max

1≤i≤m

{
m ‖ai‖2

2, ‖A‖2
2

}
= m

c max
1≤i≤m

‖ai‖2
2︸ ︷︷ ︸

β

4 Variance ∥∥∥∥∥∥
c∑

j=1

E[Y2
j]

∥∥∥∥∥∥
2

≤ β ‖A‖2
2︸ ︷︷ ︸

ν

Apply Concentration Inequality

Failure probability

δ = n exp

(
− ε̂2/2

ν + β ε̂/3

)
Insert ν = β ‖A‖2

2 and ε̂ = ε ‖A‖2
2

δ = n exp

(
− ε2 ‖A‖2

2

2β (1 + ε/3)

)

Row mass µ = max1≤i≤m ‖ai‖2
2/‖A‖2

2

Insert β = m
c ‖A‖

2
2 µ

δ = n exp

(
− c ε2

2m µ (1 + ε/3)

)

Relative Error due to Randomization [Holodnak & Ipsen 2015]

Success probability

Pr
[
‖(SA)T (SA)− ATA‖2 ≤ ε ‖ATA‖2

]
≥ 1− δ

where

δ = n exp

(
− c ε2

2m µ (1 + ε/3)

)
Row mass µ = max1≤i≤m ‖ai‖2

2/‖A‖2
2

Sampling amount: If

c ≥ 8
3 m µ

ln (n/δ)

ε2

then with probability ≥ 1− δ

‖(SA)T (SA)− ATA‖2 ≤ ε ‖ATA‖2

Relative Error due to Randomization [Holodnak & Ipsen 2015]

Success probability

Pr
[
‖(SA)T (SA)− ATA‖2 ≤ ε ‖ATA‖2

]
≥ 1− δ

where

δ = n exp

(
− c ε2

2m µ (1 + ε/3)

)
Row mass µ = max1≤i≤m ‖ai‖2

2/‖A‖2
2

Sampling amount: If

c ≥ 8
3 m µ

ln (n/δ)

ε2

then with probability ≥ 1− δ

‖(SA)T (SA)− ATA‖2 ≤ ε ‖ATA‖2

Conclusion for DKM Algorithm

A =
(
a1 · · · am

)T ∈ Rm×n µ = max1≤i≤m
‖ai‖2

2

‖A‖2
2

Failure probability 0 < δ ≤ 1

Relative error bound 0 < ε < 1

Uniform probabilities pj = 1/m, 1 ≤ j ≤ m

Sampling amount

c ≥ 8
3 m µ

ln (n/δ)

ε2

With probability ≥ 1− δ
DKM algorithm samples c rows SA with

‖(SA)T (SA)− ATA‖2 ≤ ε ‖ATA‖2

Matrices with Orthonormal Columns

Q =
(
q1 · · · qm

)T ∈ Rm×n with QTQ = In

Coherence

µ = max
1≤i≤m

‖qi‖2
2

n
m ≤ µ ≤ 1

Singular values of sampled matrix

σ1(SQ) ≥ · · · ≥ σn(SQ)

Well conditioning of singular values

‖(SQ)T (SQ)− In‖2 ≤ ε ⇐⇒

√
1− ε ≤ σj(SQ) ≤

√
1 + ε 1 ≤ j ≤ n

Coherence [Donoho & Huo 2001]

Q =
(
q1 · · · qm

)T ∈ Rm×n with QTQ = In

Coherence µ = max1≤i≤m ‖qi‖2
2

n
m ≤ µ ≤ 1

Maximal coherence: µ = 1
At least one row qTj is a canonical vector

Minimal coherence: µ = n
m

Columns of Q are columns of a m ×m Hadamard matrix

Property of the column space S = range(Q)
Independent of particular orthonormal basis for S

Coherence measures
Correlation with canonical basis
Difficulty of recovering matrix from sampling

Matrices with Orthonormal Columns

Q =
(
q1 · · · qm

)T ∈ Rm×n with QTQ = In

Coherence

µ = max
1≤i≤m

‖qi‖2
2

n
m ≤ µ ≤ 1

Singular values of sampled matrix

σ1(SQ) ≥ · · · ≥ σn(SQ)

Well conditioning of singular values

‖(SQ)T (SQ)− In‖2 ≤ ε ⇐⇒

√
1− ε ≤ σj(SQ) ≤

√
1 + ε 1 ≤ j ≤ n

Matrices with Orthonormal Columns

Q =
(
q1 · · · qm

)T ∈ Rm×n with QTQ = In

Coherence

µ = max
1≤i≤m

‖qi‖2
2

n
m ≤ µ ≤ 1

Singular values of sampled matrix

σ1(SQ) ≥ · · · ≥ σn(SQ)

Well conditioning of singular values

‖(SQ)T (SQ)− In‖2 ≤ ε ⇐⇒

√
1− ε ≤ σj(SQ) ≤

√
1 + ε 1 ≤ j ≤ n

Singular Values of Sampled Orthonormal Matrices
[Holodnak & Ipsen 2015]

Failure probability 0 < δ ≤ 1

Relative error bound 0 < ε < 1

Sampling amount c ≥ 8
3 m µ ln (n/δ)

ε2

With probability ≥ 1− δ
Simultaneous bound for all singular values

√
1− ε ≤ σj(SQ) ≤

√
1 + ε 1 ≤ j ≤ n

Extreme singular values

0 <
√

1− ε ≤ σn(SQ) = 1/‖(SQ)†‖2

‖SQ‖2 = σ1(SQ) ≤
√

1 + ε

Full rank: rank(SQ) = n

Singular Values of Sampled Orthonormal Matrices
[Holodnak & Ipsen 2015]

Failure probability 0 < δ ≤ 1

Relative error bound 0 < ε < 1

Sampling amount c ≥ 8
3 m µ ln (n/δ)

ε2

With probability ≥ 1− δ
Simultaneous bound for all singular values

√
1− ε ≤ σj(SQ) ≤

√
1 + ε 1 ≤ j ≤ n

Extreme singular values

0 <
√

1− ε ≤ σn(SQ) = 1/‖(SQ)†‖2

‖SQ‖2 = σ1(SQ) ≤
√

1 + ε

Full rank: rank(SQ) = n

Singular Values of Sampled Orthonormal Matrices
[Holodnak & Ipsen 2015]

Failure probability 0 < δ ≤ 1

Relative error bound 0 < ε < 1

Sampling amount c ≥ 8
3 m µ ln (n/δ)

ε2

With probability ≥ 1− δ
Simultaneous bound for all singular values

√
1− ε ≤ σj(SQ) ≤

√
1 + ε 1 ≤ j ≤ n

Extreme singular values

0 <
√

1− ε ≤ σn(SQ) = 1/‖(SQ)†‖2

‖SQ‖2 = σ1(SQ) ≤
√

1 + ε

Full rank: rank(SQ) = n

Conditioning of Sampled Matrices

Q =
(
q1 · · · qm

)T ∈ Rm×n µ = max1≤i≤m ‖qi‖2
2

Failure probability 0 < δ ≤ 1

Relative error bound 0 < ε < 1

Sampling amount c ≥ 8
3 m µ ln (n/δ)

ε2

DKM algorithm samples c rows SQ with uniform probabilities pj = 1/m

With probability ≥ 1− δ

rank(SQ) = n and κ(SQ) = ‖SQ‖2 ‖(SQ)†‖2 ≤
√

1 + ε

1− ε

Strategy for DKM Algorithm

1 Choose sampling matrix S to produce unbiased estimator

E[(SA)T (SA)] = ATA

2 Absolute error equals deviation from the mean

(SA)T (SA)− ATA = (SA)T (SA)− E[(SA)T (SA)]

3 Express deviation from mean as
sum of matrix-valued (zero-mean) random variables

(SA)T (SA)− E[(SA)T (SA)] = Y1 + · · ·+ Yc

4 Apply matrix concentration inequality to Y1 + · · ·+ Yc

For relative error use ε̂ = ‖ATA‖2 ε

Analysis of DKM Algorithm

Relative error bound

‖(SA)T (SA)− ATA‖2 ≤ ε ‖ATA‖2

Sampling with uniform probabilities pj = 1/m

Number of samples c = Ω
(
m µ ln n

ε2

)
depends on

Large dimension m
Row mass µ = maxj ‖aj‖2

2/‖A‖2
2

Orthonormal matrices Q with QTQ = In

‖(SQ)T (SQ)−In‖2 ≤ ε ⇐⇒
√

1− ε ≤ σj(SQ) ≤
√

1 + ε

Probability that SQ has full rank, bounds on condition number

Randomized Least Squares

DMMS Algorithm

[Drineas, Mahoney, Muthukrishnan & Sarlós 2011]

DMMS Algorithm (most basic version)

Given: A ∈ Rm×n with rank(A) = n and b ∈ Rm

min
x
‖Ax− b‖2

Unique solution xo ≡ A†b with residual r ≡ Axo − b

DMMS algorithm samples c rows of
(
A b

)
independently and identically, with uniform probabilities pj = 1/m

S =
√

m
c

(
et1 · · · etc

)T ∈ Rc×m

et1 , . . ., etc not necessarily distinct

Output = minimal norm solution of

min
x̃
‖S (Ax̃− b)‖2

DMMS Algorithm (most basic version)

Given: A ∈ Rm×n with rank(A) = n and b ∈ Rm

min
x
‖Ax− b‖2

Unique solution xo ≡ A†b with residual r ≡ Axo − b

DMMS algorithm samples c rows of
(
A b

)
independently and identically, with uniform probabilities pj = 1/m

S =
√

m
c

(
et1 · · · etc

)T ∈ Rc×m

et1 , . . ., etc not necessarily distinct

Output = minimal norm solution of

min
x̃
‖S (Ax̃− b)‖2

Bounding the Error with regard to Randomization

Perturbed solution x̃o = (SA)† (Sb)

Residual r̃ = Ax̃o − b with regard to exact problem

Want: Bounds for relative errors

‖x̃o − xo‖2/‖xo‖2 and ‖r̃ − r‖2/‖r‖2

Two-part analysis

1 Structural part
Multiplicative perturbation bounds for least squares
{Push deterministic perturbation analysis as far as possible}

2 Probabilistic part
Apply concentration inequality

Bounding the Error with regard to Randomization

Perturbed solution x̃o = (SA)† (Sb)

Residual r̃ = Ax̃o − b with regard to exact problem

Want: Bounds for relative errors

‖x̃o − xo‖2/‖xo‖2 and ‖r̃ − r‖2/‖r‖2

Two-part analysis

1 Structural part
Multiplicative perturbation bounds for least squares
{Push deterministic perturbation analysis as far as possible}

2 Probabilistic part
Apply concentration inequality

Preparing for the Structural Part

Full and thin QR decompositions

A =
(
Q1 Q2

) (R
0

)
= Q1 R

where

QT
1 Q1 = In QT

2 Q2 = Im−n QT
1 Q2 = 0

Exact solution and residual

xo = R−1 QT
1 b r = −Q2 Q

T
2 b

Angle θ between b and range(A)

tan θ =
‖QT

2 b‖2

‖QT
1 b‖2

=
‖r‖2

‖Axo‖2

Preparing for the Structural Part

Full and thin QR decompositions

A =
(
Q1 Q2

) (R
0

)
= Q1 R

where

QT
1 Q1 = In QT

2 Q2 = Im−n QT
1 Q2 = 0

Exact solution and residual

xo = R−1 QT
1 b r = −Q2 Q

T
2 b

Angle θ between b and range(A)

tan θ =
‖QT

2 b‖2

‖QT
1 b‖2

=
‖r‖2

‖Axo‖2

Preparing for the Structural Part

Full and thin QR decompositions

A =
(
Q1 Q2

) (R
0

)
= Q1 R

where

QT
1 Q1 = In QT

2 Q2 = Im−n QT
1 Q2 = 0

Exact solution and residual

xo = R−1 QT
1 b r = −Q2 Q

T
2 b

Angle θ between b and range(A)

tan θ =
‖QT

2 b‖2

‖QT
1 b‖2

=
‖r‖2

‖Axo‖2

Structural Part: Multiplicative Perturbation Bounds

If rank(SA) = n then

‖x̃o − xo‖2 ≤ η ‖A†‖2 ‖r‖2

‖r̃ − r‖2 ≤ η ‖r‖2

where
η =

∥∥∥(SQ1)† (SQ2)
∥∥∥

2

If also ATb 6= 0 then

‖x̃o − xo‖2

‖xo‖2
≤ η κ2(A) tan θ

Proof Idea: Change of Variable [DMMS 2011]

Shift x̃o to absolute error zo = x̃o − xo

Apply to perturbed problem

min
x̃
‖S (Ax̃− b)‖2 = min

z
‖S (Az + r)‖2

Unique solution

zo = −(SA)† (S r) = R−1 (SQ1)† (SQ2)︸ ︷︷ ︸ (QT
2 b)

Absolute error bound

‖x̃o − xo‖2 = ‖zo‖2 ≤ ‖A†‖2

∥∥∥(SQ1)† (SQ2)
∥∥∥

2︸ ︷︷ ︸
η

‖r‖2

Residual

r̃ − r = Azo = Q1 (SQ1)† (SQ2)︸ ︷︷ ︸ (QT
2 b)

Proof Idea: Change of Variable [DMMS 2011]

Shift x̃o to absolute error zo = x̃o − xo

Apply to perturbed problem

min
x̃
‖S (Ax̃− b)‖2 = min

z
‖S (Az + r)‖2

Unique solution

zo = −(SA)† (S r) = R−1 (SQ1)† (SQ2)︸ ︷︷ ︸ (QT
2 b)

Absolute error bound

‖x̃o − xo‖2 = ‖zo‖2 ≤ ‖A†‖2

∥∥∥(SQ1)† (SQ2)
∥∥∥

2︸ ︷︷ ︸
η

‖r‖2

Residual

r̃ − r = Azo = Q1 (SQ1)† (SQ2)︸ ︷︷ ︸ (QT
2 b)

Interpretation of η

Effect of randomization confined to

η =
∥∥∥X̃o

∥∥∥
2

X̃o = (SQ1)† (SQ2)

X̃o is solution of multiple rhs LS problem

min
X̃
‖S (Q1 X̃−Q2)‖F

Corresponding exact LS problem is

min
X
‖Q1 X−Q2‖F

with solution Xo = 0

η quantifies effect of S on range(A) and null(AT)

Interpretation of Multiplicative Perturbation Bounds

If rank(SA) = n then

‖x̃o − xo‖2

‖xo‖2
≤ η κ2(A) tan θ

‖r̃ − r‖2 ≤ η ‖r‖2

No amplification by [κ2(A)]2

Perfect conditioning of residual

Non-asymptotic bounds

LS problems less sensitive to multiplicative perturbations S
than to general additive perturbations

From Structural to Probabilistic

What to do about η =
∥∥(SQ1)† (SQ2)

∥∥
2

?

Options

1 η ≤ ‖(SQ1)†‖2 ‖SQ2‖2

Have: Singular value bound for SQ1 X
But: Need to know coherence of Q2

2 η ≤
∥∥∥((SQ1)T (SQ1)

)−1
∥∥∥

2
‖(SQ1)T (SQ2)‖2

Have: Singular value bound for SQ1 X
But: Need general matrix multiplication bound

Here {see also [DMMS 2011]}

η ≤ ‖(SQ1)†‖2 ‖SQ2‖2 and assume ‖SQ2‖2 ≤
√
ε

From Structural to Probabilistic

What to do about η =
∥∥(SQ1)† (SQ2)

∥∥
2

?

Options

1 η ≤ ‖(SQ1)†‖2 ‖SQ2‖2

Have: Singular value bound for SQ1 X
But: Need to know coherence of Q2

2 η ≤
∥∥∥((SQ1)T (SQ1)

)−1
∥∥∥

2
‖(SQ1)T (SQ2)‖2

Have: Singular value bound for SQ1 X
But: Need general matrix multiplication bound

Here {see also [DMMS 2011]}

η ≤ ‖(SQ1)†‖2 ‖SQ2‖2 and assume ‖SQ2‖2 ≤
√
ε

From Structural to Probabilistic

What to do about η =
∥∥(SQ1)† (SQ2)

∥∥
2

?

Options

1 η ≤ ‖(SQ1)†‖2 ‖SQ2‖2

Have: Singular value bound for SQ1 X
But: Need to know coherence of Q2

2 η ≤
∥∥∥((SQ1)T (SQ1)

)−1
∥∥∥

2
‖(SQ1)T (SQ2)‖2

Have: Singular value bound for SQ1 X
But: Need general matrix multiplication bound

Here {see also [DMMS 2011]}

η ≤ ‖(SQ1)†‖2 ‖SQ2‖2 and assume ‖SQ2‖2 ≤
√
ε

Probabilistic Part: Singular Value Bound for SQ1

Q1 ∈ Rm×n with QT
1 Q1 = In and µ1 = max1≤j≤m ‖eTj Q1‖2

2

Failure probability 0 < δ ≤ 1

Relative tolerance 0 < ε < 1

Sampling amount c ≥ 8
3 m µ1

ln (n/δ)
ε2

DKM algorithm samples c rows SQ1 with uniform probabilities pj = 1/m

With probability ≥ 1− δ

rank(SQ1) = n and ‖(SQ1)†‖2 ≤
1√

1− ε

Recall the Ingredients for Least Squares

A ∈ Rm×n with rank(A) = n and b ∈ Rm

minx ‖Ax− b‖2 has solution xo ≡ A†b with r ≡ Axo − b

QR decompositions: A =
(
Q1 Q2

) (R
0

)
= Q1R

Coherence of Q1: µ1 = max1≤i≤m ‖eTi Q1‖2
2

DMMS algorithm

1 Samples c rows S
(
A b

)
with uniform probabilities pj = 1/m

2 Solves minx̃ ‖S (Ax̃− b)‖2

Minimal norm solution x̃o = (SA)† (Sb)
Residual r̃ = Ax̃o − b with regard to exact problem

Conclusion for DMMS Algorithm

Failure probability 0 < δ ≤ 1

Relative tolerance 0 < ε < 1

Assumption ‖SQ2‖2 ≤
√
ε

Sampling amount c ≥ 8
3 m µ1

ln (n/δ)
ε2

With probability ≥ 1− δ
DMMS algorithm computes rank(SA) = n

‖x̃o − xo‖2

‖xo‖2
≤ κ2(A) tan θ

√
ε

1− ε

‖r̃ − r‖2 ≤
√

ε

1− ε
‖r‖2

Analysis of DMMS Algorithm

Relative error bounds for x̃o and r̃ = Ax̃o − b

Sampling with uniform probabilities pj = 1/m

Number of samples c = Ω
(
m µ1

ln n
ε2

)
depends on

Large dimension m
Coherence µ1 = maxi ‖eTi Q1‖2

2

LS problems less sensitive to randomization
than to general, additive perturbations

Important Points

Two-part analysis of error due to randomization

1 Structural: Push linear algebra as far as possible

2 Probabilistic: Apply concentration inequality

Requirement of matrix concentration inequalities

Output of randomized algorithm
= sum of matrix-valued random variables

Rule of thumb for uniform sampling:

Number of required samples depends on

Large matrix dimension
Coherence of column space

Implementations of RLA algorithms
at small, medium, and large-scale

Michael W. Mahoney

ICSI and Dept of Statistics, UC Berkeley

(For more info, see:
http: // www. stat. berkeley. edu/ ~ mmahoney

or Google on “Michael Mahoney”)

ALA 2015

October 2015

Mahoney (UC Berkeley) Implementations October 2015 1 / 45

http://www.stat.berkeley.edu/~mmahoney

Some recent observations
http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

Jack Dongarra, in HPC wire. Randomized algorithms for exascale computing:

“... the other seismic force that’s shaking the road to exascale computing ... is the
rise of large-scale data analytics as fundamental for a wide range of application
domains.”

“... one of the most interesting developments in HPC math libraries is taking place
at the intersection of numerical linear algebra and data analytics, where a new
class of randomized algorithms is emerging ...”

“... powerful tools for solving both least squares and low-rank approximation
problems, which are ubiquitous in large-scale data analytics and scientific
computing”

“... these algorithms are playing a major role in the processing of the information
that has previously lain fallow, or even been discarded, because meaningful analysis
of it was simply infeasible—this is the so called “Dark Data phenomenon.”

“The advent of tools capable of usefully processing such vast amounts of data has
brought new light to these previously darkened regions of the scientific data
ecosystem.”

Mahoney (UC Berkeley) Implementations October 2015 2 / 45

http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

Some recent observations
http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

Jack Dongarra, in HPC wire. Randomized algorithms for exascale computing:

“... randomized algorithms should be expected to play a major role in future
convergence of HPC and data analytics”

“Randomized algorithms are not only fast, they are, as compared to traditional
algorithms, easier to code, easier to map to modern computer architectures, and
display higher levels of parallelism.”

“... they often introduce implicit regularization, which makes them more
numerically robust.

“... they may produce results that are easier to interpret and analyze in
downstream applications.”

“While not a silver bullet for large-scale data analysis problems, random sampling
and random projection algorithms may dramatically improve our ability to solve a
wide range of large matrix problems, especially when they are coupled with domain
expertise.”

Mahoney (UC Berkeley) Implementations October 2015 3 / 45

http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-libraries-at-exascale/

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

Lots of implementations

Numerical linear algebra and scientific computing:
I high-quality implementations, control over conditioning, precision, etc.,
I often developed/parameterized for relatively “nice” input

Machine learning and data analysis:
I lower-quality implementations, applicable to much less “nice” input
I conditioning, precision, etc. versus regularization or downstream

objectives

Tygert, Rokhlin, Martinsson, Halko, etc.
I PCA, LS in (general or specialized) scientific computing applications

Avron, Maymounkov, Toldeo, Meng, Mahoney, Saunders etc.
I Blendenpik, LSRN

Yang, Meng, Mahoney, Gittens, Avron, Bekas, etc.
I L1 and then L2 regression in parallel/distributed environments
I Skylark
I PCA on ≥ terabyte sized problems

Lots more ...

Mahoney (UC Berkeley) Implementations October 2015 5 / 45

Low-precision versus high-precision issues

Who cares about 10 digits of precision?

SC/NLA: all this RLA stuff is just to get a good starting point for iterations.

Everyone else: low-precision is usually enough, otherwise iterate with some
method.

Low versus high precision.

Low precision (ε = 0.1): get a sketch (typically subspace-preserving) and
solve the subproblem with a black box

High precision (ε = 10−10): get a sketch (downsampled more aggressively)
and construct a preconditioner for the original problem.

Looking forward.

Many tradeoffs: data-aware versus data-oblivious; communication versus
computation; one machine versus distributed AEC2 versus supercomputer
HPC; coupling with downstream objectives, etc.

Lots of theory-practice-gap questions to be answered

Mahoney (UC Berkeley) Implementations October 2015 6 / 45

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

Metrics for NLA and RLA implementations

Lots of metrics for implementations:

Flops (dense versus sparse, etc.)

Communication (single machine or many machines, HPC vs AEC2,
for problem or for algorithm, etc.)

Numerical stability (forward versus backward stability, etc.)

Accuracy (objective vs certificate, ε = 10−1 vs ε = 10−10, etc.)

“Communication” means moving data—either between levels of memory
hierarchy or between parallel processors over a network

Flops is a good metric for small problems that fit in cache.

Motivation for RLA is “massive data” problems.

Communication costs orders of magnitude more per operation than
a flop.

Mahoney (UC Berkeley) Implementations October 2015 8 / 45

Communication in NLA
(Ballard, Demmel, Holtz, and Schwartz, 2011.)

Performance model for sending one “message” of n contiguous words is

α + nβ = latency + n/bandwidth

where a “message” could be a cache line in a shared memory system, an
actual message in a distributed memory system or a disk access.

Overall performance model (along critical path of an algorithm) is then

γF + βW + αM = γ ∗#Flops + β ∗#Words.sent + α ∗#Messages

where γ << β << α, with gaps growing over time (technological trends).

Communication-avoiding LA: identify lower bounds (typically for dense
input), and design algorithms that achieve lower bounds.

Mahoney (UC Berkeley) Implementations October 2015 9 / 45

Communication in RLA

So far: follow same high-level RLA theory as for RAM implementations but
worry more about communication

For very large problems: number of iterations is proxy for communication
(Mapreduce versus Spark)

Important difference: distributed data center (e.g., AEC2) versus parallel
shared-memory (e.g., HPC)

Fun fact: only communication-optimal algorithm for the non symmetric
eigenvalue problem is a randomized algorithm

Caveat: streaming model (developed in TCS for networking applications) is
not a particularly good idealization for matrix problems

Mahoney (UC Berkeley) Implementations October 2015 10 / 45

Large-scale environments and how they scale
Shared memory

I cores: [10, 103]∗

I memory: [100GB, 100TB]
Message passing

I cores: [200, 105]†

I memory: [1TB, 1000TB]
I CUDA cores: [5× 104, 3× 106]‡

I GPU memory: [500GB, 20TB]
MapReduce

I cores: [40, 105]§

I memory: [240GB, 100TB]
I storage: [100TB, 100PB]¶

Distributed computing
I cores: [−, 3× 105]‖.

∗
http://www.sgi.com/pdfs/4358.pdf
†
http://www.top500.org/list/2011/11/100
‡
http://i.top500.org/site/50310
§
http://www.cloudera.com/blog/2010/04/pushing-the-limits-of-distributed-processing/
¶
http://hortonworks.com/blog/an-introduction-to-hdfs-federation/
‖
http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Mahoney (UC Berkeley) Implementations October 2015 11 / 45

http://www.sgi.com/pdfs/4358.pdf
http://www.top500.org/list/2011/11/100
http://i.top500.org/site/50310
http://www.cloudera.com/blog/2010/04/pushing-the-limits-of-distributed-processing/
http://hortonworks.com/blog/an-introduction-to-hdfs-federation/
http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

Least-squares and low-rank approximation via RLA

Low-rank approximation

Tygert, Rokhlin, Martinsson, Halko, etc.

high-quality numerical implementations

Gaussian projections for structured matrices in scientific computing
applications.

Least-squares approximation

Tygert, Rokhlin: initial preconditioning iterative algorithm with O(log(1/ε))
non-worst-case complexity

Avron, Maymounkov, and Toledo: Blendenpik (beats LAPACK clock time)

Meng, Saunders, and Mahoney: LSRN (for parallel environments)

Yang, Meng, and Mahoney: terabyte-sized (to low, medium, and high
precision on nice and not nice data) in Spark

Many other problems, e.g., `1 regression, Nystrom/SPSD low-rank
approximation, etc.

Mahoney (UC Berkeley) Implementations October 2015 13 / 45

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

A theoretical aside: low-rank (1 of 2)
(Halko, Martinsson, and Tropp, 2011.)

In scientific computing, goal is to find a good basis for the span of A ...

Input: m × n matrix A, target rank k and over-sampling parameter p
Output: Rank-(k + p) factors U, Σ, and V s.t. A ≈ UΣV T .

1 Draw a n × (k + p) Gaussian random matrix Ω.

2 Form the n × (k + p) sample matrix Y = AΩ.

3 Compute an orthonormal matrix Q s.t. Y = QQTY .

4 Form the small matrix B = QTA.

5 Factor the small matrix B = ÛΣV T .

6 Form U = QÛ.

Prove bounds of the form

‖A− QQTA‖F ≤
(

1 +
k

p − 1

)1/2
min{m,n}∑

j=k+1

σ2
j

1/2

‖A− QQTA‖2 ≤

(
1 +

√
k

p − 1

)
σk+1 +

e
√
k + p

p

min{m,n}∑
j=k+1

σ2
j

1/2

Question: how does one prove bounds of this form?
Mahoney (UC Berkeley) Implementations October 2015 15 / 45

A theoretical aside: low-rank (2 of 2)
(Boutsidis, Mahoney, Drineas, 2009.)

Answer: Basic structural result for RLA low-rank matrix approximation.

Lemma

Given A ∈ Rm×n, let Vk ∈ Rn×k be the matrix of the top k right singular vectors
of A. Let Ω ∈ Rn×r (r ≥ k) be any matrix such that Y TΩ has full rank. Then,
for any unitarily invariant norm ξ,

‖A− PAΩA‖ξ ≤ ‖A− Ak‖ξ + ‖Σk,⊥
(
V T
k,⊥Ω

) (
V T
k Ω
)+ ‖ξ.

Given this structural result, we obtain results for

the Column Subset Selection Problem (BMD09)

using random projections to approximate low-rank matrix approximations
(RT10,HMT11,etc.)

developing improved Nyström-based low-rank matrix approximations of
SPSD matrices (GM13)

developing improved feature selection methods (many)

other low-rank matrix approximation methods
Mahoney (UC Berkeley) Implementations October 2015 16 / 45

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

Two important notions: leverage and condition
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Statistical leverage. (Think: eigenvectors. Important for low-precision.)
I The statistical leverage scores of A (assume m� n) are the diagonal

elements of the projection matrix onto the column span of A.
I They equal the `2-norm-squared of any orthogonal basis spanning A.
I They measure:

F how well-correlated the singular vectors are with the canonical basis
F which constraints have largest “influence” on the LS fit
F a notion of “coherence” or “outlierness”

I Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues. Important for high-precision.)
I The `2-norm condition number of A is κ(A) = σmax(A)/σ+

min(A).
I κ(A) bounds the number of iterations; for ill-conditioned problems

(e.g., κ(A) ≈ 106 � 1), the convergence speed is very slow.
I Computing κ(A) is generally as hard as solving the LS problem.

These are for the `2-norm. Generalizations exist for the `1-norm.
Mahoney (UC Berkeley) Implementations October 2015 18 / 45

Meta-algorithm for `2-norm regression (1 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

1: Using the `2 statistical leverage scores of A, construct an importance
sampling distribution {pi}mi=1.

2: Randomly sample a small number of constraints according to {pi}mi=1

to construct a subproblem.

3: Solve the `2-regression problem on the subproblem.

A näıve version of this meta-algorithm gives a 1 + ε relative-error
approximation in roughly O(mn2/ε) time (DMM 2006, 2008). (Ugh.)

Mahoney (UC Berkeley) Implementations October 2015 19 / 45

Meta-algorithm for `2-norm regression (2 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Randomly sample high-leverage
constraints

Solve the subproblem

(In many moderately large-scale

applications, one uses “`2 objectives,”

not since they are “right,” but since

other things are even more expensive.)

Mahoney (UC Berkeley) Implementations October 2015 20 / 45

Meta-algorithm for `2-norm regression (2 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Randomly sample high-leverage
constraints

Solve the subproblem

(In many moderately large-scale

applications, one uses “`2 objectives,”

not since they are “right,” but since

other things are even more expensive.)

Mahoney (UC Berkeley) Implementations October 2015 21 / 45

Meta-algorithm for `2-norm regression (2 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.)

Randomly sample high-leverage
constraints

Solve the subproblem

(In many moderately large-scale

applications, one uses “`2 objectives,”

not since they are “right,” but since

other things are even more expensive.)

Mahoney (UC Berkeley) Implementations October 2015 22 / 45

Meta-algorithm for `2-norm regression (3 of 3)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.‡‡)

We can make this meta-algorithm “fast” in RAM:∗∗

This meta-algorithm runs in O(mn log n/ε) time in RAM if:
I we perform a Hadamard-based random projection and sample uniformly

in a randomly rotated basis, or
I we quickly computing approximations to the statistical leverage scores

and using those as an importance sampling distribution.

We can make this meta-algorithm “high precision” in RAM:††

This meta-algorithm runs in O(mn log n log(1/ε)) time in RAM if:
I we use the random projection/sampling basis to construct a

preconditioner and couple with a traditional iterative method.

∗∗
(Sarlós 2006; Drineas, Mahoney, Muthu, Sarlós 2010; Drineas, Magdon-Ismail, Mahoney, Woodruff 2011.)

††
(Rokhlin & Tygert 2008; Avron, Maymounkov, & Toledo 2010; Meng, Saunders, & Mahoney 2011.)

‡‡
(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Mahoney (UC Berkeley) Implementations October 2015 23 / 45

Randomized regression in RAM: Implementations
Avron, Maymounkov, and Toledo, SISC, 32, 1217–1236, 2010.

Conclusions:

Randomized algorithms “beats Lapack’s direct dense least-squares
solver by a large margin on essentially any dense tall matrix.”

These results “suggest that random projection algorithms should be
incorporated into future versions of Lapack.”

Mahoney (UC Berkeley) Implementations October 2015 24 / 45

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

Algorithm LSRN (for strongly over-determined systems)

(Meng, Saunders, and Mahoney 2011)

1: Perform a Gaussian random projection
2: Construct a preconditioner from the subsample
3: Iterate with a “traditional” iterative algorithm

Why a Gaussian random projection? Since it

provides the strongest results for conditioning,

uses level 3 BLAS on dense matrices and can be generated super fast,

speeds up automatically on sparse matrices and fast operators,

still works (with an extra “allreduce” operation) when A is partitioned
along its bigger dimension.

Although it is “slow” (compared with “fast” Hadamard-based projections
i.t.o. FLOPS), it allows for better communication properties.

Mahoney (UC Berkeley) Implementations October 2015 26 / 45

Implementation of LSRN
(Meng, Saunders, and Mahoney 2011)

Shared memory (C++ with MATLAB interface)
I Multi-threaded ziggurat random number generator (Marsaglia and Tsang

2000), generating 109 numbers in less than 2 seconds on 12 CPU cores.
I A näıve implementation of multi-threaded dense-sparse matrix

multiplications.

Message passing (Python)
I Single-threaded BLAS for matrix-matrix and matrix-vector products.
I Multi-threaded BLAS/LAPACK for SVD.
I Using the Chebyshev semi-iterative method (Golub and Varga 1961)

instead of LSQR.

Mahoney (UC Berkeley) Implementations October 2015 27 / 45

Solving real-world problems

matrix m n nnz rank cond DGELSD A\b Blendenpik LSRN
landmark 71952 2704 1.15e6 2671 1.0e8 29.54 0.6498∗ - 17.55
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 1.203∗ OOM 136.0
tnimg 1 951 1e6 2.1e7 925 - 630.6 1067∗ - 36.02
tnimg 2 1000 2e6 4.2e7 981 - 1291 > 3600∗ - 72.05
tnimg 3 1018 3e6 6.3e7 1016 - 2084 > 3600∗ - 111.1
tnimg 4 1019 4e6 8.4e7 1018 - 2945 > 3600∗ - 147.1
tnimg 5 1023 5e6 1.1e8 full - > 3600 > 3600∗ OOM 188.5

Table: Real-world problems and corresponding running times. DGELSD doesn’t
take advantage of sparsity. Though MATLAB’s backslash may not give the
min-length solutions to rank-deficient or under-determined problems, we still
report its running times. Blendenpik either doesn’t apply to rank-deficient
problems or runs out of memory (OOM). LSRN’s running time is mainly
determined by the problem size and the sparsity.

Mahoney (UC Berkeley) Implementations October 2015 28 / 45

Iterating with LSQR
(Paige and Saunders 1982)

Code snippet (Python):

u = A . matvec (v) − a l p h a ∗u
be ta = s q r t (comm . a l l r e d u c e (np . dot (u , u)))
. . .
v = comm . a l l r e d u c e (A . rmatvec (u)) − be ta ∗v

Cost per iteration:

two matrix-vector multiplications

two cluster-wide synchronizations

Mahoney (UC Berkeley) Implementations October 2015 29 / 45

Iterating with Chebyshev semi-iterative (CS) method
(Golub and Varga 1961)

The strong concentration results on σmax(AN) and σmin(AN) enable use
of the CS method, which requires an accurate bound on the extreme
singular values to work efficiently.

Code snippet (Python):

v = comm . a l l r e d u c e (A . rmatvec (r)) − be ta ∗v
x += a l p h a ∗v
r −= a l p h a ∗A . matvec (v)

Cost per iteration:

two matrix-vector multiplications

one cluster-wide synchronization

Mahoney (UC Berkeley) Implementations October 2015 30 / 45

LSQR vs. CS on an Amazon EC2 cluster
(Meng, Saunders, and Mahoney 2011)

solver Nnodes Nprocesses m n nnz Niter Titer Ttotal

LSRN w/ CS
2 4 1024 4e6 8.4e7

106 34.03 170.4
LSRN w/ LSQR 84 41.14 178.6

LSRN w/ CS
5 10 1024 1e7 2.1e8

106 50.37 193.3
LSRN w/ LSQR 84 68.72 211.6

LSRN w/ CS
10 20 1024 2e7 4.2e8

106 73.73 220.9
LSRN w/ LSQR 84 102.3 249.0

LSRN w/ CS
20 40 1024 4e7 8.4e8

106 102.5 255.6
LSRN w/ LSQR 84 137.2 290.2

Table: Test problems on an Amazon EC2 cluster and corresponding running times
in seconds. Though the CS method takes more iterations, it actually runs faster
than LSQR by making only one cluster-wide synchronization per iteration.

Mahoney (UC Berkeley) Implementations October 2015 31 / 45

Outline

1 Overview of implementation issues

2 Communication issues in LA and RLA

3 High-quality implementations in RAM

4 A theoretical aside: low-rank methods

5 Solving `2 regression in RAM

6 Solving `2 regression using MPI

7 Solving `2 regression in Spark

Distributed setting

“Apache Spark is a fast and general engine for large-scale data processing.”

Here, we assume that dataset is partitioned along the high dimension and stored
in a distributed fashion.

The costs of computing in distributed settings:

floating point operations

bandwidth costs: ∝ total bits transferred

latency costs: ∝ rounds of communication

FLOPS−1 � bandwidth−1 � latency.

We want to make as few passes over the dataset as possible.

Mahoney (UC Berkeley) Implementations October 2015 33 / 45

Solvers for `2 regression

Low-precision solvers: compute a sketch (MapReduce, 1-pass)
+ solve the subproblem (local SVD)

High-precision solvers: compute a sketch (MapReduce, 1-pass)
+ preconditioning (local QR)

+ invoke an iterative solver (only matrix-vector products
are involved which can be well handled by Spark, # pass is proportional to
iteration)

Notes

Methods for computing sketches are embarrassingly parallel and can be
implemented under the MapReduce framework.

Since the sketch is small, operations like SVD or QR can be performed
exactly locally.

Preconditioning is crucial because we want to reduce the number of
iterations in the iterative solver.

Mahoney (UC Berkeley) Implementations October 2015 34 / 45

Gaussian Transform

Here, ΦA = GA where G ∈ Rr×n consisting of i.i.d. Gaussian random variables:

GA =
(
G1 · · · Gp

)A1

...
Ap

 =

p∑
i=1

GiAi .

Mapper:

1: For a block of A, Ai ∈ Rc×d , generate Gi ∈ Rr×c consisting of independent
Gaussian random variables.

2: Compute B = GiAi ∈ Rr×d .
3: For j = 1, . . . r , emit (j ,Bj).

Reducer:

1: Reduce vectors associated with key k to vk with addition operation.
2: Return vk .

Other sketches are similar; but lots of work to do to figure out the best in general.

Mahoney (UC Berkeley) Implementations October 2015 35 / 45

Experimental setup

Sketches

PROJ CW — Random projection with the input-sparsity time CW method
(sparse)

PROJ GAUSSIAN — Random projection with Gaussian transform (dense)

PROJ RADEMACHER — Random projection with Rademacher transform
(dense)

PROJ SRDHT — Random projection with Subsampled randomized discrete
Hartley transform (dense, no longer fast)

SAMP APPR — Random sampling based on approximate leverage scores (fast
approximate leverage scores)

SAMP UNIF — Random sampling with uniform distribution (for
completeness)

Mahoney (UC Berkeley) Implementations October 2015 36 / 45

Experimental setup (cont.)

Datasets

We used synthetic datasets with uniform or nonuniform leverage scores, low
or high condition number, and coherent or incoherent.

Recall that leverage scores can be viewed as a measurement of the
importance of the rows in the LS fit.

Coherence is the largest leverage score.

These properties of the matrix have a strong influence on the solution
quality.

Resources

The experiments were performed in a cluster with 16 nodes (1 master and 15
slaves), each of which has 4 CPU cores at clock rate 2.5GHz with 25GB RAM.

Mahoney (UC Berkeley) Implementations October 2015 37 / 45

Low-precision solvers: overall evaluation

103 104

sketch size

10-2

10-1

100

101

102

103

(a) ‖x − x∗‖2/‖x∗‖2

103 104

sketch size

10-3

10-2

10-1

100

101

PROJ CW

PROJ GAUSSIAN

PROJ RADEMACHER

PROJ SRDHT

SAMP APPR

SAMP UNIF

(b) |f − f ∗|/f ∗
103 104

sketch size

102

103

104

(c) Running time(sec)

1e7× 1000 matrix with uniform leverage scores

103 104 105

sketch size

10-2

10-1

100

101

102

103

(d) ‖x − x∗‖2/‖x∗‖2

103 104 105

sketch size

10-3

10-2

10-1

100

101

(e) |f − f ∗|/f ∗
103 104 105

sketch size

102

103

104

(f) Running time(sec)

1e7× 1000 matrix with nonuniform leverage scores
Figure: Evaluation of all 6 of the algorithms on matrices with uniform and
nonuniform leverage scores.

Mahoney (UC Berkeley) Implementations October 2015 38 / 45

Low-precision solvers: on matrices with increasing n

106 107 108

n

10-4
10-3
10-2
10-1
100
101
102
103

(a) ‖x − x∗‖2/‖x∗‖2

106 107 108

n

10-3

10-2

10-1

100

101

(b) |f − f ∗|/f ∗
106 107 108

n

101

102

103

104

(c) Running time(sec)

sketch size s = 5e3

106 107 108

n

10-4
10-3
10-2
10-1
100
101
102
103

(d) ‖x − x∗‖2/‖x∗‖2

106 107 108

n

10-3

10-2

10-1

100

101
PROJ CW

PROJ GAUSSIAN

PROJ RADEMACHER

PROJ SRDHT

SAMP APPR

(e) |f − f ∗|/f ∗
106 107 108

n

101

102

103

104

(f) Running time(sec)

sketch size s = 5e4
Figure: Performance of all the algorithms on matrices with nonuniform leverage
scores, high condition number, varying n from 2.5e5 to 1e8 and fixed d = 1000.

Mahoney (UC Berkeley) Implementations October 2015 39 / 45

Low-precision solvers: on matrices with increasing d

101 102 103

d

10-3
10-2
10-1
100
101
102

(a) ‖x − x∗‖2/‖x∗‖2

101 102 103

d

10-5

10-3

10-1

101

103

(b) |f − f ∗|/f ∗
101 102 103

d

101

102

103

104

(c) Running time(sec)

sketch size s = 2e3

101 102 103

d

10-3
10-2
10-1
100
101
102

(d) ‖x − x∗‖2/‖x∗‖2

101 102 103

d

10-5

10-3

10-1

101

103
PROJ CW

PROJ GAUSSIAN

PROJ RADEMACHER

PROJ SRDHT

SAMP APPR

(e) |f − f ∗|/f ∗
101 102 103

d

101

102

103

104

(f) Running time(sec)

sketch size s = 5e4
Figure: Performance of all the algorithms on matrices with nonuniform leverage
scores, high condition number, varying d from 10 to 2000 and fixed n = 1e7.

Mahoney (UC Berkeley) Implementations October 2015 40 / 45

High-precision solvers: preconditioning quality

r PROJ CW PROJ GAUSSIAN SAMP APPR
5e2 1.08e8 2.17e3 1.21e2
1e3 1.1e6 5.7366 75.0290
5e3 5.5e5 1.9059 25.8725
1e4 5.1e5 1.5733 17.0679
5e4 1.8e5 1.2214 6.9109
1e5 1.1376 1.1505 4.7573

Table: Quality of preconditioning, i.e., κ(AR−1), on a matrix with size 1e6 by
500 and condition number 1e6 using several kinds of sketch.

Mahoney (UC Berkeley) Implementations October 2015 41 / 45

High-precision solvers: on badly conditioned matrix

1 2 3 4 5 6 7 8
number of iteration

10-4
10-3
10-2
10-1
100
101
102
103

(a) ‖x − x∗‖2/‖x∗‖2

1 2 3 4 5 6 7 8
number of iteration

10-1

10-4

10-7

10-10

10-13

(b) |f − f ∗|/f ∗
1 2 3 4 5 6 7 8

number of iteration

0

40000

80000

120000

NOCO

PROJ CW

PROJ GAUSSIAN

SAMP APPR

(c) Running time(sec)

sketch size s = 5e3

1 2 3 4 5 6 7 8
number of iteration

10-4
10-3
10-2
10-1
100
101
102
103

(d) ‖x − x∗‖2/‖x∗‖2

1 2 3 4 5 6 7 8
number of iteration

10-1

10-4

10-7

10-10

10-13

(e) |f − f ∗|/f ∗
1 2 3 4 5 6 7 8

number of iteration

0

40000

80000

120000

NOCO

PROJ CW

PROJ GAUSSIAN

SAMP APPR

(f) Running time(sec)

sketch size s = 5e4

Figure: LSQR with randomized preconditioner on a matrix with size 1e8 by 1000
and condition number 1e6. (Running time is artificially slow and not accurate.)

Mahoney (UC Berkeley) Implementations October 2015 42 / 45

High-precision solvers: on well conditioned matrix

1 2 3 4 5 6 7 8 9 10
number of iteration

10-5
10-4
10-3
10-2
10-1
100
101
102

(a) ‖x − x∗‖2/‖x∗‖2

1 2 3 4 5 6 7 8 9 10
number of iteration

10-1

10-4

10-7

10-10

10-13

(b) |f − f ∗|/f ∗
1 2 3 4 5 6 7 8 9 10

number of iteration

0

4000

8000

12000
NOCO

PROJ CW

PROJ GAUSSIAN

SAMP APPR

(c) Running time(sec)

small sketch size

1 2 3 4 5 6 7 8 9 10
number of iteration

10-5
10-4
10-3
10-2
10-1
100
101
102

(d) ‖x − x∗‖2/‖x∗‖2

1 2 3 4 5 6 7 8 9 10
number of iteration

10-1

10-4

10-7

10-10

10-13

(e) |f − f ∗|/f ∗
1 2 3 4 5 6 7 8 9 10

number of iteration

0

4000

8000

12000
NOCO

PROJ CW

PROJ GAUSSIAN

SAMP APPR

(f) Running time(sec)

large sketch size

Figure: LSQR with randomized preconditioner on a matrix with size 1e7 by 1000
and condition number 5.

Mahoney (UC Berkeley) Implementations October 2015 43 / 45

Conclusions and Future Directions
Conclusions

Short answer: take the basic RLA theory and couple with traditional
NLA methods and you get high-quality implementations

I “beat” LAPACK in terms of clock time
I better (more robust, better communication, faster, etc.) in SC apps
I least-squares approximation, low-rank approximation, etc. on terabyte

(soon hundreds of terabytes) sized data in AEC2/HPC environments

Long answer: is much longer ...

Future Directions.

Communication-computation tradeoffs

Numerical precision versus statistical precision tradeoffs

Interacting in nontrivial ways with large-scale data analysis objectives

Interacting in nontrivial with traditional/nontraditional continuous
optimization

Developing more relevant theory

...
Mahoney (UC Berkeley) Implementations October 2015 44 / 45

More readings ...

Drineas, Kannan and Mahoney (2006) “Fast Monte Carlo Algorithms for
Matrices I: Approximating Matrix Multiplication,” SIAM J. Comput., vol.
36, no. 1, pp 132-157

Drineas, Mahoney, Muthukrishnan and Sarlos (2011) “Faster Least Squares
Approximation,” Numer. Math., vol. 117, pp 219-249

Mahoney (2011) Randomized Algorithms for Matrices and Data, Found.
Trends Mach. Learning, vol. 3, no. 2, pp 123-224

Tropp (2015) An Introduction to Matrix Concentration Inequalities, Found.
Trends Mach. Learning, vol. 8, no 1-2, pp 1-230

Holodnak and Ipsen (2015) “Randomized Approximation of the Gram
Matrix: Exact Computation and Probabilistic Bounds,” SIAM J. Matrix
Anal. Appl., vol. 36, no. 1, pp 110-137

Mahoney (UC Berkeley) Implementations October 2015 45 / 45

	RandNLA_ALA2015
	Drineas_RandNLA_ALA_Tutorial
	�RandNLA:�Randomization in Numerical Linear Algebra:�Theory and Practice
	Why RandNLA?
	RandNLA in a slide
	Interplay
	 Tutorial roadmap
	Intro to discrete probability theory
	Random or probabilistic experiment
	Probability
	Discrete vs. continuous probability
	Properties of events
	Union bound
	Disjoint and independent events
	Random variables
	Random variables
	Example
	PMF and CDF
	Independent random variables
	Expectation
	Properties of expectation
	Variance
	Properties of variance
	Markov’s inequality
	Markov’s inequality: equivalent formulas
	Markov’s inequality: proof hint
	Chebyshev’s inequality
	Bernstein-type inequalities
	Bernstein-type inequalities
	Bernstein-type inequalities
	Bernstein-type inequalities
	Bernstein-type inequalities
	Approximating Matrix Multiplication�(Drineas, Kannan, Mahoney SICOMP 2006)
	A sampling approach�(DKM SICOMP 2006)
	Sampling (cont’d)�(DKM SICOMP 2006)
	The algorithm (matrix notation)
	The algorithm (matrix notation, cont’d)
	The algorithm (matrix notation, cont’d)
	The algorithm (matrix notation, cont’d)
	Simple Lemmas
	Simple Lemmas
	A bound for the Frobenius norm
	Special case: B = AT
	Special case: B = AT (cont’d)�(Drineas et al. Num Math 2011, Theorem 4)
	An inequality by Oliveira�(Oliveira 2010, Lemma 1)
	Proof outline�(Drineas et al. Num Math 2011, Theorem 4)
	Proof outline�(Drineas et al. Num Math 2011, Theorem 4)
	Using a dense S (instead of a sampling matrix…)
	Using a dense S (instead of a sampling matrix…)�(and assuming A is normalized)
	Using a dense S (instead of a sampling matrix…)�(and assuming A is normalized)
	Using a dense S (cont’d)
	Recap: approximating matrix multiplication

	slides_ALA15

	ala_oct15
	Overview of implementation issues
	Communication issues in LA and RLA
	High-quality implementations in RAM
	A theoretical aside: low-rank methods
	Solving 2 regression in RAM
	Solving 2 regression using MPI
	Solving 2 regression in Spark

