Forward Looking Panel Discussion

12th SIAM International Conference on Numerical Combustion

Arnaud Trouvé

Department of Fire Protection Engineering 3106 J.M. Patterson Building University of Maryland, College Park, MD 20742 (USA)

Background

Moore's law

- Development of a **cyber-infrastructure** (Information Technologies for computation, storage, communication, and data processing services) driven by:
 - Fast development of computer and network technologies
 - > Dissemination of these technologies on a global scale
 - Rapid decrease in cost (< \$1/MFlops)</p>

Number of transistors on an integrated circuit Year Slide 2

Background

- Current status of cyber-infrastructure technologies:
 - ➤ High-performance computing (HPC) facilities (Government Research Laboratories, Universities)

- Massively **parallel computing** systems (super-computers) with computational rates between 1 Tera- (10^{12}) and 1 Peta- (10^{15}) Flops
- Storage capacity up to 1 Peta-bytes
- Network bandwidth up to 1 Tera-bits per second
- > Small-to-mid-scale computing facilities (large, medium, small Businesses)
 - Medium-scale parallel computing systems (clusters)

- ➤ **Grid** infrastructure (coupling of distributed and heterogeneous computational resources and data stores via high-speed networks)
 - Application to: real-time simulations of complex systems, and coupling of sensor technologies with HPC resources

Background

- Changes brought by the cyber-infrastructure:
 - ➤ Development of **computational research** as a new scientific approach (DNS, fine-grained LES, MD, KMC, *etc*)
 - ➤ Development of computational research as a new engineering approach (ANSYS-CFX, FLUENT, STAR-CD, *etc*)
 - ➤ Development of open-source data and software digital libraries (CHEMKIN, GRI-Mech, TNF Workshop, Cantera, PRIME, etc)
 - Development of distance collaborations and the formation of new **cyber-based communities** (community-wide projects/vision)

Challenges

- Goal: achieve quantitative (predictive) capabilities for engineering-level simulations of combustion systems
- Needs: HPC, theory/modeling, self-organization
 - Establish DNS as the computational companion of detailed experimental studies of laboratory-scale flames requires adapting high-end numerical combustion solvers to **Peta-scale computing**

Challenges

- Goal: achieve quantitative (predictive) capabilities for engineering-level simulations of combustion systems
- Needs: HPC, theory/modeling, self-organization
 - Extend knowledge base of soot physical/chemical processes requires nano- and continuum-scale tools and a multi-scale modeling approach

Challenges

- Goal: achieve quantitative (predictive) capabilities for engineering-level simulations of combustion systems
- Needs: HPC, theory/modeling, self-organization
 - Integrate into a common framework different areas of combustion expertise (from nano-scales to engineering device scales), skill sets (theoretical, experimental or computational), and research interests (from fundamental sciences to practical applications) requires further development of collaborative science infrastructure

