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NETWORK APPROACHES FOR BUILDING NEW INSIGHTS FROM GENE

ANNOTATIONS

Michelle Girvan

University of Maryland, College Park

SIAM Workshop on Network Science 2016
July 15-16 · Boston

The Gene Ontology (GO) provides a controlled vocabulary of terms for describing gene functions and specifies

how these functional terms are related to one other. Biologists then submit annotations connecting individual

genes to appropriate functional terms. The resulting gene annotation databases are commonly used to

evaluate the functional properties of experimentally derived gene sets. Here we discuss novel methods to

analyze the network structure of gene annotations in order to (1) correct for biases in traditional functional

enrichment statistics by appropriately accounting for heterogeneities of connections across genes and functions

(2) establish an alternate natural grouping of biological functions that is very different from the conceptual

hierarchical structure that relates functional terms in the Gene Ontology. To correct for biases in standard

overlap statistics, we develop Annotation Enrichment Analysis (AEA), which accounts for heterogeneity of

connections across genes and functions in bipartite annotation networks. We show that AEA is able to identify

biologically meaningful functional enrichments that are obscured by numerous false-positive enrichment

scores in traditional methods, and we therefore suggest it be used to more accurately assess the biological

properties of gene sets. In order to identify relationships between biological functions, we use multi-scale

network community finding methods to identify groups of functions that are closely related through shared

connections to genes. Grouping terms by our alternate scheme provides a new framework with which to

describe and predict the functions of experimentally identified groups of genes.
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THROUGH THE LENS OF THE LAPLACIAN PARADIGM: BIG DATA AND SCALABLE

ALGORITHMS – A PRAGMATIC MATCH MADE ON EARTH

Shang-Hua Teng

University of Southern California

SIAM Workshop on Network Science 2016
July 15-16 · Boston

In the age of Big Data, efficient algorithms are in higher demand now more than ever before. While Big

Data takes us into the asymptotic world envisioned by our pioneers, the explosive growth of problem size

has also significantly challenged the classical notion of efficient algorithms: Algorithms that used to be

considered efficient, according to polynomial-time characterization, may no longer be adequate for solving

today’s problems. It is not just desirable, but essential, that efficient algorithms should be scalable. In

other words, their complexity should be nearly linear or sub-linear with respect to the problem size. Thus,

scalability, not just polynomial-time computability, should be elevated as the central complexity notion for

characterizing efficient computation. In this talk, I will discuss the emerging Laplacian Paradigm, which has

led to breakthroughs in scalable algorithms for several fundamental problems in network analysis, machine

learning, and scientific computing. I will focus on three recent applications: (1) PageRank Approximation

(and identification of network nodes with significant PageRanks). (2) Random-Walk Sparsification. (3)

Scalable Newton’s Method for Gaussian Sampling.
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RUFFLED FEATHERS: WHEN CAN GENDER BE INFERRED ON SOCIAL NETWORKS?

Kristen M. Altenburger, Johan Ugander

SIAM Workshop on Network Science 2016
July 15-16 · Boston

Summary

We perform a broad study of structural predictors of

gender in social networks, contributing a taxonomy of

frameworks to categorize and contrast subtly different

approaches based on various sociological perspectives. We

show these distinct approaches achieve dramatically differ-

ent performance when predicting gender that we attribute

to an empirical overdispersion of individual homophilic

tendencies relative to a gender-shuffled graph. These ex-

treme gender affinities introduce gender canaries in the

graph that reveal other’s gender, and we study their role

in diffusion-based gender inference. These findings pro-

vide a new perspective on social network trait inference in

general and gender in particular, complicating the already

difficult task of protecting anonymity in social networks,

and introducing new considerations for the study of social

network covariates.

Gender Inference on Social Networks

Given a graph that is partially labeled with male and

female labels, we propose and explore a taxonomy of three

basic frameworks for gender inference based on social struc-

ture: (1) label-independent inference covers methods that

employ structural features unrelated to the gender labels

on the graph, (2) label-dependent inference includes meth-

ods that utilize gender-labeled structure, and (3) relational

inference, which describes methods that harness relations

between an inference target and other specific nodes in

the dataset. We study label-independent/dependent infer-

ence as it is typically applied, employing a combination

of local structural features (graph invariants) of the 1-hop

neighborhood of an ego node as well as global features

such as centrality. While previous efforts have separately

evaluated label-independent/dependent [2] and relational

inference [6], our work unifies these literatures with a com-

prehensive evaluation of the relative performance within a

joint framework specifically aimed at understanding when

gender can be inferred in social networks.

For label-independent inference, many social theories

suggest gender is correlated with label-independent graph

measures such as centrality [3] or measures of structural

hole position [1]. We surprisingly find label-independent

based metrics are not practically useful for gender infer-

ence, at least within the friendship network of the college

population we study. For label-dependent inference, we

observe that gender-labeled features of the 1-hop neigh-

borhood are mildly predictive of an ego node’s gender.

We interpret this improvement in performance from label-

dependent features to suggest that while the network

positions of males and females are practically indistin-

guishable, the larger patterns of gendered connections is

comparatively predictive of gender.

Within relational inference, a critical assumption under-

lying diffusion-based approaches is homophily, a commonly

known phenomenon whereby “birds of a feather flock to-

gether”. A documented but underappreciated challenge

in predicting gender on social networks is the minimal

presence of general gender homophily [5]. Even though

there is only very slight gender homophily within the col-

lege network we study, the relational inference achieves

strikingly higher performance than the label-dependent

inference. We attribute the success of relational inference

in part to a strong overdispersion of gender friendship

affinities, which is plainly apparent when the distribution

of individual gender preferences in the observed network

is compared to the distribution of gender preferences in

a null model network where the gender labels of nodes

are randomly shuffled, see Figure 1(a). These extreme

gender affinities introduce gender canaries in the graph,

which reveal other’s gender and serve as useful features

for relational gender inference.

Analysis on a College Social Network

We focus our examination here on the performance of

each framework on one college from the Facebook100

dataset [4], Amherst, which contains n = 2, 235 users and

m = 90, 954 friendships. Based on self-reported gender

labels, there are 45.4% female (F), 45.5% male (M), and

9.1% missing labels in the college graph. For evaluating

gender inference performance, we restrict this dataset to

1
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Figure 1: a) Left - Overdispersion of single gender friends on graph. b) Right - Accuracy results on graph.

nodes with at least 3 friends and with reported F/M labels

(n∗ = 1999 users; 1000 F, 999 M) but use all nodes when

creating structural features.

We vary the percentage of initially labeled nodes from

1% to 95% by selecting a random sample of nodes to be

initially labeled. For cross-validation, multiple sets of the

label-dependent features are created as the features them-

selves depend on which set of nodes are initially labeled.

Only one set of the label-independent and relational in-

ference features are created as they do not depend on

which set of nodes are initially labeled. We employ a

standard arsenal of label-independent/dependent features

[2]. Incidentally, we observe that the performance of both

frameworks is comparable whether based on global struc-

tural features from the full network or based only on local

structural features from ego networks. Here we report

performances based on local features.

We train our models on the x% labeled individuals

(training dataset), and measure performance based on

the accuracy of each framework when classifying the re-

maining unlabeled nodes (testing dataset). We report our

accuracies with averages and standard deviations across

10 iterations for each x% of initially labeled nodes in the

cases of label-independent and relational inference, and

4 iterations for label-dependent inference (which necessi-

tated recomputing features for each iteration, requiring

considerably more computation).

Figure 1(b) shows the accuracy performance of label-

independent/dependent methods based on a logistic re-

gression model applied to each feature set where we define

accuracy to be the proportion of correct gender predic-

tions on the testing dataset. Beginning with the label-

independent features, we see poor accuracy results, which

is unexpected given earlier sociological work suggesting

structural gender differences in friendship networks. For

label-dependent features, we observe modest performance.

When we examined relational inference via the LINK ap-

proach [6] fitting both a logistic regression (LINK-LogReg)

and naive bayes model (LINK-NB), we see a drastic im-

provement over the previous two methods, across the

full range of percentages of labeled nodes. This perfor-

mance is particularly impressive in light of the fact that

relational inference models can only learn relationships

between traits (gender) and specific individuals, rather

than between traits and generic structural features.

This analysis highlights that homophily is a sufficient

but not necessary condition for gender inference, and that

overdispersion is a weaker but sufficient condition. Finally,

in order to isolate and generalize the consequences of

overdispersed gender affinities in friendship networks, we

introduce an overdispersed stochastic block model that can

independently capture affinities with either block structure,

overdispersion or both.

Conclusions

We pose three challenges to the network science com-

munity: First, our analysis provides no theoretical justi-

fication for limiting the predictive performance of label-

dependent gender inference relative to relational gender in-

ference, and it is possible that the “right” label-dependent

features enable predictions on par with relational infer-

ence. Secondly, it is also possible, albeit improbable, that

label-independent gender inference can perform better as

well. Third, the formation process of this overdispersion

property remains open for further investigation.
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COMMUNITY DETECTION IN TEMPORAL MULTILAYER NETWORKS

Marya Bazzi, Mason A. Porter, Sam D. Howison

SIAM Workshop on Network Science 2016
July 15-16 · Boston

Summary

We investigate a community-detection method known as

“multilayer modularity maximization” for time-dependent

networks represented as multilayer networks. We explore

some of its theoretical properties and discuss how one

can solve it in practice. We propose a benchmark for

community detection in time-dependent networks and use

it to compare the performance of community-detection

methods and algorithms.

Introduction

Given a network representation of a system, it can be use-

ful to apply a coarse-graining technique in order to investi-

gate features that lie between features at the “microscale”

and the “macroscale” An example of such structure is

“community structure”. Loosely speaking, a community

in a network is a set of nodes that are “more densely”

connected to each other than they are to nodes in the rest

of the network [8].

Most methods for detecting communities are designed

for static networks. However, in many applications, enti-

ties and/or interactions between entities evolve in time.

In such applications, one can use the formalism of tem-

poral networks, where nodes and/or their edge weights

vary in time [5]. Two main approaches have been adopted

to detect communities in time-dependent networks. The

first entails constructing a static network by aggregating

snapshots of the evolving network at different points in

time into a single network. One can then use standard

network techniques. The second approach entails using

static community-detection techniques on each element of

a time-ordered sequence of networks at different times or

on each element of a time-ordered sequence of network ag-

gregations over different time intervals and then tracking

the communities across the sequence.

A third approach consists of embedding a time-ordered

sequence of networks in a larger network. Each element

of the sequence is a network layer, and nodes at different

time points are joined by interlayer edges. This approach

was introduced in [7] and the resulting network is a type

of multilayer network [6]. The main difference between

this approach and the previous approach is that the pres-

ence of nonzero interlayer edges introduces a dependence

between communities identified in one layer and connec-

tivity patterns in other layers. We show an example of

a multilayer network with uniform, “diagonal” (i.e., they

exist only between copies of the same node), and “ordinal”

(i.e., they exist only between consecutive layers) interlayer

coupling edges in Fig 1.

The authors of [7] proposed a generalization of modular-

ity maximization, a popular clustering method for static

networks, to multilayer networks. Modularity is a qual-

ity function that compares edge weights in an observed

network to expected edge weights in a “null network” (gen-

erated from a “null model”), and modularity maximization

is a discrete optimization problem that consists of maxi-

mizing this quality function over the space of partitions.

To date, almost no theory has explained how a multilayer

partition obtained with zero interlayer coupling (which

reduces to single-layer modularity maximization on each

layer independently) differs from a multilayer partition

obtained with nonzero interlayer coupling. We prove sev-

eral theoretical properties of an optimal solution for the

multilayer maximization problem to better understand

how such partitions differ and how one can exploit this

difference in practice [2]. We also describe two computa-

tional issues that arise when using the popular Louvain

heuristic [3] to solve the multilayer maximization prob-

lem, and we suggest ways to mitigate them. Finally, we

propose a benchmark for community detection in time-

dependent networks and use it to compare the performance

of community-detection methods and algorithms [1].

Multilayer modularity maximization

We rewrite the multilayer modularity maximization prob-

lem in [7] as follows:

max
C∈C

[ |T |∑

s=1

N∑

i,j=1

Bijsδ(cis , cjs)

︸ ︷︷ ︸
intralayer modularity

+2ω

|T |−1∑

s=1

N∑

i=1

δ(cis , cis+1
)

︸ ︷︷ ︸
persistence

]
,

1
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Figure 1: Example of (left) a multilayer network with un-

weighted intralayer connections (solid lines) and uniformly

weighted interlayer connections (dashed curves) and (right) its

corresponding adjacency matrix.

where C is the set of all multilayer partitions, N is the

number of nodes in each layer, |T | is the number of layers,

Bijs is the modularity contribution between node i and

node j in layer s, is is the ith node in the sth layer, ω ≥ 0 is

the interlayer edge weight, and δ(cis , cjr ) is the Kronecker

delta function.

We define a measure that we call persistence and show

that an optimal partition in multilayer modularity max-

imization reflects a trade-off between time-independent

community structure within layers (i.e., “intralayer mod-

ularity”) and persistence of community structure across

layers. We prove several properties that describe the effect

of interlayer coupling on an optimal solution and illustrate

how one can exploit these in practice. Our multilayer

analysis only depends on the form of the maximization

problem and still holds if one uses a quality function other

than the modularity quality function, provided it has the

same form. Furthermore, we illustrate two issues that can

arise when one uses the popular locally-greedy “Louvain”

computational heuristic [3] to solve the multilayer max-

imization problem. We propose ways to try to mitigate

these issues and show numerical experiments on real data

as illustrations.

Temporal benchmark for community detection

While most would agree that a community should cor-

respond to a set of nodes that is “surprisingly well-

connected”, there is no agreed-upon definition of com-

munity that one can compare against. Different appli-

cations warrant different interpretations of “surprisingly

well-connected” and different methods were often devel-

oped with different definitions in mind [8]. Furthermore,

most community-detection methods cannot be solved in

polynomial time and popular scalable heuristics currently

have few or no theoretical guarantees on how closely an

identified partition resembles an optimal partition [4].

Benchmark networks with known structural properties are

thus an important tool for analysing and comparing the

performance of different community-detection methods

and algorithms.

We propose a benchmark for community detection in

temporal multilayer networks. In contrast to single-layer

community-detection benchmarks, which one can use to

generate a sequence of networks with uncorrelated planted

community structure, we incorporate a simple probabilis-

tic model for the persistence of community assignments

between successive layers to generate a sequence of single-

layer networks with correlated planted community struc-

ture. We take advantage of the analytic tractability of

our model to highlight some of its theoretical properties

and we comment on the effect of some of its parameters

on the resulting benchmark multilayer partitions. Finally,

we perform several numerical experiments using different

methods and computational heuristics on the proposed

benchmark.

References

[1] M. Bazzi*, L. G. S. Jeub*, A. Arenas, S. D. Howison, and
M. A. Porter. Multilayer benchmark networks for community
detection. In preparation.

[2] M. Bazzi, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn,
and S. D. Howison. Community detection in temporal multilayer
networks, with an application to correlation networks. Multiscale
Modeling and Simulation: A SIAM Interdisciplinary Journal,
14(1):1–41, 2016.

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre.
Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 10:P10008, 2008.

[4] U. Brandes, D. Delling, M. Gaertler, R. Göke, M. Hoefer,
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OPTIMAL CONTROL OF INTERDEPENDENT EPIDEMICS IN COMPLEX NETWORKS

Juntao Chen, Rui Zhang, Quanyan Zhu

SIAM Workshop on Network Science 2016
July 15-16 · Boston

Summary

Optimal control of interdependent epidemics spreading

over complex networks is a critical issue. We first establish

a framework to capture the coupling between two epi-

demics, and then analyze the system’s equilibrium states

by categorizing them into three classes, and deriving their

stability conditions. The designed control strategy glob-

ally optimizes the trade-off between the control cost and

the severity of epidemics in the network. A gradient de-

scent algorithm based on a fixed point iterative scheme is

proposed to find the optimal control strategy. In addition,

the control will lead to switching between equilibria of the

interdependent epidemics network. Case studies are used

to corroborate the theoretical results finally.

Introduction

Control of epidemics in complex networks is a prevailing

problem ranging from social science to engineering [1, 2].

A network containing two interdependent epidemics with

a control u := (u1, u2) ∈ R2
+ can be described by a mean-

field model similar to the one in [3]:

dI1,k(t)

dt
= −γ1I1,k(t) + ζ1k[1− I1,k(t)

− I2,k(t)]Θ1(t)− u1I1,k(t),

dI2,k(t)

dt
= −γ2I2,k(t) + ζ2k[1− I1,k(t)

− I2,k(t)]Θ2(t)− u2I2,k(t),

(1)

where I1,k(t) and I2,k(t) represent the densities of nodes at

time t with degree k infected by virus strain 1 and strain 2,

respectively; (γ1, γ2) and (ζ1, ζ2) are recovery and spread-

ing rates of two strains; Θ1(t) =
∑

k′ k
′P (k′)I1,k′ (t)
〈k〉 ,Θ2(t) =

∑
k′ k
′P (k′)I2,k′ (t)
〈k〉 , where P (k) is the probability distribu-

tion of a node with degree k, and 〈k〉 =
∑
k kP (k).

The network cost over a time period [0, T ] is captured

by two terms: the control cost c1(u) and the severity

of epidemics c2(Ī1(t) + Ī2(t)), where c1 and c2 are both

monotonically increasing functions. In addition, Ī1(t) :=∑
k P (k)I1,k(t) and Ī2(t) :=

∑
k P (k)I2,k(t), and they can

be interpreted as the severity of epidemics in the network.

The optimal control problem at network equilibrium can

be formulated as

(OP1) : min
u

c1(u) + c2
(
Ī∗1 (u1) + Ī∗2 (u2)

)

s.t. system dynamics (1),

where Ī∗1 (u1) and Ī∗2 (u2) denote the densities of the strains

at the steady state under the control u. Note that (OP1)

can also be interpreted as the average cost minimiza-

tion problem. At the steady state, dI1,k/dt = 0 and

dI2,k/dt = 0, and we obtain I1,k = ψ1kΘ1

1+ψ1kΘ1+ψ2kΘ2
and

I2,k = ψ1kΘ1

1+ψ1kΘ1+ψ2kΘ2
, where ψi = ζi/(γi + ui), i = 1, 2.

Then, the control problem (OP1) can be reformulated as

(OP2) : min
u

c1(u) + c2
(
Ī∗1 (u1) + Ī∗2 (u2)

)

s.t. I∗i,k(ui) =
ψikΘ∗i

1 + ψikΘ∗i + ψ−ikΘ∗−i
, i = 1, 2,

where −i = {1, 2} \ {i}, Θ∗i =
∑

k′ k
′P (k′)I∗

i,k′ (ui)

〈k〉 , and

Ī∗i (ui) =
∑
k P (k)I∗i,k(ui) is the total number of nodes

infected by strain i.

Our objective is to design a control strategy via solving

(OP2) which jointly optimizes the control cost and the

epidemics spreading level in the network.

Main Results

To solve (OP2), we first need to analyze the system’s

steady states. The equilibrium pair (Θ∗1,Θ
∗
2) needs to

satisfy the following self-consistency equations for i = 1, 2:

Θi =
ψi
〈k〉

∑

k′

k′2P (k′)Θi

1 + ψik′Θi + ψ−ik′Θ−i
. (2)

For equation (2), (Θ1,Θ2) = (0, 0) is an obvious solution

that results in Ī∗1 = Ī∗2 = 0 and leads to an epidemics-free

equilibrium. By a closer checking of (2), we conclude

that there exist no positive solutions, i.e., Θ1 > 0 and

Θ2 > 0. Hence, besides the epidemics-free one, the system

has another two exclusive equilibria, which lead to either

entire population infected by strain 1 or by strain 2. The

conditions that lead to different network equilibria are

essential. Let T1 := ψ1〈k2〉
〈k〉 , T2 := ψ2〈k2〉

〈k〉 , and then, three

possible equilibrium states can be summarized as follows:
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

spreading rate ζ

va
lu

e 
of

 th
e 

op
tim

al
 c

on
tr

ol
 u

2

 

 

u
2
 (γ

1
 = 0.5, γ

2
=0.3)

u
2
 (γ

1
 = 0.5, γ

2
=0.8)

(d) optimal control strain 2 (E2).
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Figure 1: Results of the optimal control for each equilibrium case, and the demonstration of switching of equilibrium.

(i): Epidemics-free equilibrium E1; (ii): Exclusive equilib-

rium of strain 1, E2, if and only if T1 > 1; (iii): Exclusive

equilibrium of strain 2, E3, if and only if T2 > 1.

Stability Analysis: Through an eigenvalue analysis of

the nonlinear dynamic system (1), we obtain the following

results. (i): E1 is asymptotically stable if and only if

T1 ≤ 1 and T2 ≤ 1. (ii): E2 is asymptotically stable if

and only if T1 > 1 and T1 > T2. (iii): E3 is asymptotically

stable if and only if T2 > 1 and T2 > T1.

Optimal Control: For each case, we can further ob-

tain its corresponding control bounds. Then, the optimiza-

tion problem (OP2) can be simplified by dividing it into

three stable equilibrium cases. For example, under E2, i.e.,

when Ī∗2,k = 0, (OP2) becomes minu c1(u) + c2
(
Ī∗1 (u1)

)

with constraints I∗1,k(u1) =
ψ1kΘ∗1

1+ψ1kΘ∗1
, u1 < ζ1〈k2〉

〈k〉 − γ1

and u2 > ζ2(γ1+u1)
ζ1

− γ2. By addressing the coupling

terms Ī∗1,k(u1) and Θ∗1, we obtain a fixed point equation as

Θ∗1 = 1
〈k〉
∑
k′
k′2P (k′)ψ1Θ∗1

1+ψ1k′Θ∗1
. We can show that there exists

a unique solution Θ∗1 to the fixed point equation, and also

the mapping u1 → Ī∗1 (u1) is continuous. The solution

Θ∗1 with respect to ψ1 can be obtained via a fixed point

iterative scheme of which the stability and convergence

are guaranteed due to the contraction mapping. With ob-

tained Θ∗1, the objective function is only related to u and

can be solved by the gradient descent method. Optimal

control is achieved until both Θ1 and u converge.

Another finding is that when the equilibrium state of

the network without control is not epidemics-free, then it

can switch to different states with the increase of control

effort. Depending on the parameters of the epidemics,

the control can lead to either single or double switching

between equilibrium points (see Figs. 1(g) and 1(h)).

Numerical Experiments: Case studies based on a

scale-free network are to validate the theoretical results.

Specifically, the cost functions are chosen as c1 = 15u1 +

10u2 and c2 = 50(Ī∗1 (u)+Ī∗2 (u)). Strain 1 and strain 2 have

the same spreading rate ζ1 = ζ2. For comparison, we have

two cases: (1) γ1 = 0.5, γ2 = 0.3 and (2) γ1 = 0.5, γ2 = 0.8.

For the epidemics-free case, the results are shown in Figs.

1(a) and 1(b). In addition, the results corresponding to the

exclusive equilibrium of strain 1 and strain 2 are shown in

Figs. 1(c) and 1(d) and Figs. 1(e) and 1(d), respectively.

To demonstrate the switching of equilibria through control,

we choose two cases: (1) ζ1 = 0.2, γ1 = 0.4, ζ2 = 0.15 and

γ2 = 0.4; (2) ζ1 = 0.1, γ1 = 0.1, ζ2 = 0.15, and γ2 = 0.2.

The obtained results are shown in Figs. 1(g) and 1(h).
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Summary

We discuss the problem of publishing network data such

that privacy requirements of the vertices can be satis-

fied by modifying the information in the network. We

show that this problem can be formalized and solved with

a b-Edge Cover or a b-Matching in a bipartite com-

patibility graph. Our algorithms can be implemented

efficiently on multithreaded shared memory architectures,

and are also space-efficient.

Introduction

We are given a network G = (V, F,E), where V is a set

of people, F is a set of features, and E ⊆ V × F is a set

of edges, that we wish to publish so that others could ex-

periment with the data (think about the infamous Netflix

competition!). Each vertex v represents an individual for

whom we have up to f feature values (binary for simplicity

here). The unique identifying information (such as name,

social security number, etc.) of v will be unpublished; v

expresses a preference b(v) for privacy, i.e., the remaining

data of v should be confused with the data of at least

b(v)− 1 other individuals in the result of any query. The

problem is to suppress or add the fewest feature values

while satisfying the privacy constraints.

Background

One of the most powerful techniques for privacy is differ-

ential privacy [3], which is a property of the algorithm, not

the dataset itself. Hence it requires the prior knowledge of

the algorithm that will be used on a dataset. However in

many applications the users would like to release the raw

data with some obfuscation for general exploration. There

exist many other methods as k-anonymity, k-concealment,

l-diversity and t-closeness [7] that are more suitable in

this scenario.

A release of data has the k-anonymity property if the

information for each person contained in the release cannot

be distinguished from the information of at least k−1 other

individuals. [6] showed that k-anonymity was NP-hard

and presented approximation methods.

Our model is as follows. Given a network G =

(V, F,E, b) (recall the earlier notation), we wish to publish

an anonymized network G′ = (X,F,E′, b) such that the

each vertex v ∈ V is replaced by a key x ∈ X, and the

edges in E′ are obtained from E by deleting or adding

edges as needed to satisfy the privacy constraints b. Given

these conditions, we wish to minimize the difference be-

tween the sets E′ and E.

We will say that vertex v ∈ V is compatible with a

key x ∈ X if v can be confused with x after modifying

(masking or adding) some edges incident on x. The utility

of the suppression model is the number of edges changed

from E to obtain E′. We can define a bipartite compati-

bility graph B = (V,X,E′′) in which an edge (v, x) ∈ E′′

joins v ∈ V with x ∈ X with weight equal to the number

of features in which they differ (dissimilarity). This rep-

resents the number of features that must be changed or

suppressed so that v could be confused with key x.

There are a few papers that have employed graph match-

ings to solve anonymity problems. [2] employs a matching

approach in which they compute a sequence of b per-

fect matchings in a complete bipartite graph, where the

edge weights in the algorithm change after each perfect

matching is computed. Their model considers both gener-

alization (for numerical values) and suppression (for binary

and categorical data), but the algorithms have high time

complexities, and do not scale to massive data sets.

One drawback shared by all these approaches is that

they assume a uniform desired privacy level k across all

the users. In real life applications this is never the case,

since there are conservative and liberal users who desire

different levels of privacy.

Algorithm

From the suppression model, in order to provide privacy

guarantees, each user v has to be in a group of b(v) users,

and we call this the Grouping step. This step is at the heart

of each iteration of a variational algorithm for the problem

(not described here), both in terms of solution quality and

performance; it typically takes > 90% of the run time.
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Our work shows that this step can be accomplished by

computing a b-Edge Cover of minimum weight in the

compatibility graph by choosing b(v) equal to the privacy

value desired by an individual v. The degree constraints

on the vertices in the graph are lower bounds in the

b-Edge Cover problem, and are satisfied exactly by the

edge covers computed by the approximation algorithms.

Given a graph G = (V,E) and a function b(.) on the

set of vertices, a b-Edge Cover is a subset of edges C

such that at least b(v) edges in C are incident on each

vertex v ∈ V . When there are weights on the edges, we

can compute a b-Edge Cover such that the sum of the

weights of the edges is minimized. This minimum weight

b-Edge Cover problem can be solved in O(nmB) time,

where n is the number of vertices, m is the number of edges,

and B is the sum of b(v) over all vertices v. However, here

we employ an approximation algorithm that computes

a b-Edge Cover whose weight is at most 3/2 that of

the minimum, because this algorithm has O(mβ) time

complexity, where β is the maximum value of b(v), so that

we can solve much larger problems. The approximation

in the b-Edge Cover translates into a guarantee on the

anonymity obtained by the algorithm.

We can also consider an approach to the Grouping

step that uses a b-Matching with similarity weights in

the compatibility graph. Since we seek to maximize the

similarity between instances that will be grouped together,

the problem is one of finding a b-Matching of maximum

weight. This approach was proposed earlier by [1], using

exact algorithms for b-Matching. We employ a 1/2-

approximation algorithm for computing an approximate

b-Matching to make the algorithm fast, but now the

privacy constraints might not be satisfied for all instances;

but often the number of violations are few, and we are able

to add edges to the matching to satisfy all constraints.

Our method achieves strong anonymity and diversity

properties, and is also robust when a few edges of the

ground truth matching between vertices and keys are

revealed to an adversary. To this end, we introduce a new

stability property that our method satisfies.

Implementation and Performance

The 1/2-approximation algorithm for b-Matching was

implemented in [4], and is called b-Suitor since it is an

adaptation of the Suitor algorithm for edge weighted

matching due to Manne and Halappanavar [5]. The

b-Suitor algorithm can be implemented on parallel com-

puters due to its high concurrency, and is also space-

efficient since we can work with a subset of the edges

bounded in size by a function linear in the number of

vertices.

The approximation algorithm for computing a

b-Edge Cover computes locally sub-dominant edges (an

edge (u, v) of minimum weight relative to other edges

incident on u and v) to add to the cover at each step. Our

current results show that it takes more time (about 11

times on a set of problems) and more space (we need to

store the entire graph here) than the b-Suitor algorithm.

We report results from seven problems from a Machine

Learning Repository at UC Irvine, comparing our algo-

rithm with earlier approaches for the anonymity problem.

We have worked with a larger network derived from a

Medicare-Medicaid data set, which has 1, 000, 000 indi-

viduals in it, with 512 feature values (binary) available

for each person. We randomly generated b values from

5 to 100 for each person. The information for this net-

work would require 4 TB of memory to store. We used

the space-efficient version of the b-Suitor algorithm on

a Xeon processor with 20 cores and 256 GB memory to

solve this problem. We are able to anonymize this data

and publish more than 81% of it in under 11 hours. As far

as we know, this is the largest problem on which similar

anonymity techniques have been applied.
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Summary

We identify a notion of structural sparseness that a) is

exhibited by important random graph models used in net-

work science, b) allows the design of efficient algorithms

for a huge class of problems, and c) is empirically present

in a large fraction of real-world networks. This demon-

strates, for the first time on this scale, that the theory

of structurally sparse graphs is applicable to networks

stemming from real-world applications.

Introduction

During the last three decades, the theory of structurally

sparse graphs has been revolutionised by Robertson and

Seymour’s graph minors programme. Many of the ‘by-

products’ of their work, like the notions of treewidth and

the decomposition theorem for graphs excluding a fixed

minor, have had a tremendous impact on the research

efficient graph algorithms.

Concurrently, the field of complex networks has seen

a steady growth in the last decade, fuelled by an ever-

growing collection of relational data that our life in the

information age generates. While several structural com-

monalities of complex networks have been observed—e.g.

low density, heavily skewed degree-distributions, or the

small world property [11]—so far no property has been dis-

covered that is algorithmically exploitable on a broad scale.

We work towards bringing the field of structural sparse

graphs and the field of complex networks closer together.

We identify two notions of structural sparseness based on

the density of shallow minors as keys for this endeavour:

classes of bounded expansion and nowhere dense classes

as introduced by Nešetřil and Ossona de Mendez in their

seminal work on a robust theory of sparseness [10]. We

demonstrate that these sparse classes admit efficient algo-

rithms for a huge number of problems, some of which have

applications in domain-specific areas of network science.

We further prove that several fundamental network models

exhibit these properties and demonstrate empirically that

this also holds true for a selection of real-world networks

from various domains.

Important concepts

Given a graph G and H, we say H is an r-shallow topo-

logical minor of G if we can turn H into a subgraph

of G by replacing the edges of H by paths of length at

most (2r+1).1 For integers r, we denote by G Õ r the col-

lection of all graphs that are r-shallow topological minors

of G. The topological grad now measures the density of

these minors as a function of the depth r:

∇̃r(G) = max
H∈G Õ r

‖H‖
|H| ,

where ‖H‖ and |H| denote the number of edges and ver-

tices of H, respectively. An infinite collection of graphs G
(a graph class) has bounded expansion if there exists a

function f such that

∇̃r(G) = sup
G∈G
∇̃r(G) 6 f(r).

That is: the maximum density of r-shallow minors is a

function of their depth r, and in particular independent

of the size of the graph they occur in.

The concept of nowhere dense graphs is defined simi-

larly, but instead of measuring the density of r-shallow

topological minors we measure their clique number. Every

bounded expansion class is in particular nowhere dense

and we will call classes with either property simply struc-

turally sparse. This is motivated by a dichotomy result

proved by Nešetřil and Ossona de Mendez [10] (based on

an important result by Dvořák [4]) that states that graph

classes can be categorised rigorously into somewhere dense

and nowhere dense classes.

Results

We prove that both the Chung–Lu [2] and the configura-

tion model [9] exhibit a phase-transition regarding their

structural density which crucially depends on the tail of

the input degree distribution. Formally:

1This somewhat arbitrary seeming term is a sensible choice in
the broader context of the theory since it provides comparability

with the related notion of r-shallow minors.
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Theorem 1. Let (Dn) be a sparse degree distribu-

tion sequence with tail h(d). Both the configuration

model GCF(Dn) and the Chung–Lu model GCL(Dn), with

high probability,

• have bounded expansion for h(d) = Ω(d3+ε),

• are nowhere dense (with unbounded expansion)

for h(d) = Θ(d3+o(1)),

• and are somewhere dense for h(d) = O(d3−ε).

Based on this, we show that perturbations of bounded

degree graphs, which can be seen as a baseline model

for percolation-type random graphs, exhibit structural

sparseness. Surprisingly, this does not hold for Kleinberg’s

model [8]—the geographic dependence of random edges

produces dense shallow structures with high probability.

To relate this result on network models to real-world

instances, Felix Reidl [12] showed that a large fraction of

our real-world network corpus a) follows degree distribu-

tions whose tail is best described as supercubic (vanishing

faster than d−3) and b) has a structural density that is

lower than predicted by a random graph sampled with the

same degree distribution. He established the former using

statistical tests developed to distinguish pure power-law

distributions from non-heavy-tailed distributions [3, 1]

and, in line with this previous work, found that most of

our networks present degree distributions which are better

described as function with quickly vanishing tails (e.g.

log-normal or power laws with exponential cutoff). To

demonstrate the second part, he engineered a known, the-

oretical algorithm to make it applicable in practice. The

algorithm measures a certain proxy-value (the indegree

of so-called dtf-augmentations) that equivalently captures

structural sparseness and turns out to be more efficiently

computable than proxy-values we considered previously.

The algorithmic usefulness of this result is established

theoretically by known algorithmic meta-theorems [5, 7, 6].

For more concrete applications, we design a linear-time

algorithm to count graph motifs with a superior running

time as well as a procedure to determine the sizes of local

neighbourhoods which enables fast centrality estimation.

In conclusion, we can state that the theory of struc-

turally sparse graphs is applicable to complex networks

and, as a corollary, so is the rich algorithmic toolkit it

provides. This connection offers researchers from both the

field of algorithmic graph theory and network science new

approaches, insights, and productive questions.

References

[1] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: A

python package for analysis of heavy-tailed distribu-

tions. PLoS ONE, 9(1):e85777, 01 2014.

[2] F. Chung and L. Lu. The average distances in ran-

dom graphs with given expected degrees. Proceedings

of the National Academy of Sciences, 99(25):15879–

15882, 2002.

[3] A. Clauset, C. Shalizi, and M. Newman. Power-

law distributions in empirical data. SIAM review,

51(4):661–703, 2009.

[4] Z. Dvořák. Asymptotical Structure of Combinatorial

Objects. PhD thesis, Charles University, Faculty of

Mathematics and Physics, 2007.
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Abstract

Spectral partitioning (clustering) algorithms use eigenvectors
to understand structure in networks. We study spectral par-
titioning using sweep cuts of approximate eigenvectors of the
normalized graph Laplacian. We introduce a novel, theoret-
ically sound, parameter free stopping criterion for iterative
eigensolvers designed for graph partitioning and experimen-
tally validate it on real world networks.

Introduction and Related Work

Large graphs are found in many domains and finding good

partitions for these graphs is a challenging data mining

task. Spectral partitioning using approximate eigenvectors

fits into a larger framework of studying how knowledge

of the network analysis task can shape our choice of nu-

merical procedure. Iterative methods need good stopping

criteria to ensure a high quality solution is found in as lit-

tle time as possible. In Theorem 1, we analyze eigenvalue

accuracy in the context of spectral partitioning to derive

a condition on approximate eigenvectors that provides the

same theoretical guarantees as sweep cuts of the exact

eigenvectors. This new stopping criterion based on conver-

gence is the first that does not require the implementation

to specify an error or residual tolerance. Unlike prior meth-

ods, the user need not choose an acceptable amount of

error, which simplifies practical application of this method.

Experiments show that our stopping criterion reduces the

number of iterations compared to traditional stopping

criteria on real world networks with only a small increase

in the final conductance.

In spectral partitioning, vectors approximating some

eigenvectors of a graph matrix are computed then used

to cut the graph. The runtime/accuracy trade-off in the

eigensolver step is rarely considered [3]. Iterative methods

for solving the eigenvector problem Ax = λx such as the

implicitly restarted Arnoldi method (IRAM) can generate

solutions to arbitrary approximation factors by increasing

the number of iterations [5]. Power method approxima-

tions to the eigenvectors of a kernel matrix approximate

the k-means objective function well [1].

Definitions and Notation

Notation for linear algebra terms are presented Table 1.

Name Symbol Definition

Adjacency Matrix A aij = i ∼ j ? 1 : 0

Degree Matrix D dii = (A1)i
Normalized Adjacency Â D−1/2AD−1/2

Laplacian Matrix L D −A

Normalized Laplacian L̂ I − Â

Eigendecomposition Q,Λ L̂ = QT ΛQ

Eigenpairs q, λi L̂q = λiq

Rayleigh Quotient µ xT L̂x
xT x

Residual r
∥∥∥L̂x− µx

∥∥∥

Table 1: Linear algebra notation.

Since general eigenproblems cannot be solved exactly,

the residual, which is related to error [4], evaluates the

quality of a solution. Iterations are taken until r is less

than a prescribed, user-chosen tolerance. A cut is rep-

resented by a subset of the vertices S and S̄ = V \ S
the complement. Define vol(S) =

∑
i,j∈S ai,j as the total

weight of the edges within S. We measure the quality of

a cut of the graph using conductance φ (S) defined as [2]:

φ (S) =

∑
i∈Sj /∈S ai,j

min(vol(S), vol(S̄))

Sweep cuts of a vector x have the form Stx = {i | xi >
xt}. The conductance of a vector is the conductance

of the minimal sweep cut of that vector, i.e. φ (x) =

mint φ (Stx). This work studies algorithms using sweep

cuts of an approximate eigenvector to partition the graph.

Eigenvalue accuracy and Cheeger’s inequality

The minimum conductance cut problem can be relaxed to

minx⊥1 xTLx
xTDx

, which is solved by solutions to the gener-

alized eigenvalue problem Lx = λDx. A pair λ,y solves

the generalized eigenequation Ly = λDy, if and only if

the pair λ,x = D−
1
2y solves the eigenequation L̂x = λx.

Computational tools for symmetric eigenvalue problems

can solve L̂x = λx. Cheeger’s inequality [2] guarantees

that exact eigenvectors provide a sweep cut with conduc-

tance less than
√

2λ2.

Our main contribution follows from observing that any

partition with conductance less than
√

2λ2 satisfies the

same guarantee provided by an exact eigenvector. When

running the solver, the true value of λ2 is unavailable for

use in a stopping criterion. Theorem 1 provides a stopping

1
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criterion that satisfies the same guarantee as the exact

solution.

Theorem 1. Let L̂,x,y, µ, r be as above. If µ−λ2 < |µ−
λ| for all other eigenvalues λ, then φ (y) <

√
2(µ− r) =

ψ(x) guarantees φ (y) <
√

2λ2.

Proof. For any ε > 0, µ − ε < λ2 implies
√

2(µ− ε) <√
2λ2. Using the eigendecomposition of L = QΛQT , let

z = QTx. Since x ⊥ q1, z1 = 0. From the hypothesis

that |µ− λ2| is minimal, one sees

r2 = ‖(Λ− µI)z‖2 > (λ2 − µ)
2
∑

i

zi
2 = (λ2 − µ)

2
.

So r > |λ2 − µ|, and µ − r < λ2. Thus under these

conditions φ (y) ≤
√

2(µ− r) <
√

2λ2.

Experiments

We compare the criterion in Theorem 1 to the residual

based stopping criterion with a tolerance of r < 10−6, or a

maximum of 800 iterations. The IRAM restart parameter

of 15 and maximum number of iterations are chosen to

balance time and memory constraints. We exploit the

fact that eigenvalues of L̂ are one minus the eigenvalues

of A with the same eigenvectors to iterate with M =

Â− q1q
T
1 . Experiments are conducted on matrices from

the Newman [7] and the SNAP [6] collections1. These

problems range from the small, well conditioned N/lesmis

to the large, ill conditioned S/web-Google.

For each iterate φ, µ, and r are computed to evaluate

φ (y) < ψ(x) and r < 10−6 Let IF , IC denote the number

of eigensolver iterations according to the residual and con-

ductance tolerances respectively2. We compare for each

graph the conductance of the sweep cut when stopping at

IC , denoted φC , to the conductance at IF , denoted φF .

The iteration ration IF /IC quantifies the improvement in

iteration count due to our method. The distribution of

iteration ratios is shown in Figure 1. For most graphs this

ratio is at least 2 and for at least 2 graphs this ratio is

greater than 12.

For each graph, stopping at IC results in a conductance

less than five times the final conductance. On average

across all graphs the conductance resulting from our ap-

proach is only 1.24 times greater. Our method reduces

1Adjacency matrices are made symmetric by taking A+AT and
restricted to the largest connected component of each graph.

2For 34 of the graphs, the first time φ (x) < ψ(x), the hypothesis

of Theorem 1 is not satisfied, but by taking one more step this
number drops to 17, decreasing the average conductance we find.

We use the iteration after φ (x) < ψ(x) as IC .
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Figure 1: Distribution of relative iteration counts.

the iteration count by a factor of 4.15 and typically yields

partitions outperforming the guarantee by at least a factor

of λ/5.

Conclusions

We show that analysis of both numerical accuracy and the

network analysis application leads to an improved param-

eter free stopping criterion. On real world networks, this

leads to a large reduction in the number of iterations used

to solve this data mining problem with a small increase

in conductance. For some graphs our method results in

a smaller conductance. Since these problems take hours

to solve, this reduction in running time is meaningful.

Furthermore, the theory deepens our understanding of the

relationship between accuracy of numerical solutions and

quality of network analysis.
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Summary

Social networks are widely used to understand complex

social phenomena. In this work we consider inference on

regression coefficients in network regression models, where

the strength of a connection between each pair of individu-

als is modeled as a linear function of observable node and

edge covariates and structured, network dependent, error.

We leverage a joint exchangeability assumption, nearly

ubiquitous in the statistics literature on networks but

not previously considered in the estimating equations for-

mulation for network regressions, to derive parsimonious

estimators of the covariance between relations. These

estimates are shown to dramatically improve inference for

the regression coefficients.

Introduction to network regression

Many social science questions are focused on the relation-

ship between covariates of the actors, or nodes, and the

relations. Contrary to the case for traditional network

tools, here we assume the network relations are continuous

measures of the strength of the relationship between indi-

viduals, e.g. amount of time school children play together,

trade flow between countries. Researchers often build

regression models to quantify the amount of variability

that can be explained by the node and edge covariates. A

network regression model can be expressed

yij = xTijβ + ξij , (1)

where yij denotes the directed, continuous relationship

from individual i to individual j. The p×1 vector xij con-

tains covariates of the pair (i, j), ξij represents unknown

random error, and β is a vector of unknown coefficients.

A core statistical challenge for inference is accounting for

the complex dependencies among the error terms ξij .

Existing approaches to capturing such dependencies

can be characterized into two broad classes. The first

approach, common in the statistics literature, attempts to

model network dependence explicitly using, for example,

latent variables models. The second approach, common

in the economics literature, stems from estimating equa-

tions/moment conditions. These methods define a system

of equations, known as estimating equations, that relate

the parameters to data. The estimators, known as m-

estimators, are the zeros of these estimating equations.

An estimating equation g(·) is defined such that for all

(i, j), E (g(yij , β)) = 0. The estimator β̂ is then that

which satisfies ∑

i,j

g(yij , β̂) = 0. (2)

Consider the model defined in (1) for continuous relations.

A common g(·) is

g(yij , β) = xij(yij − xTijβ). (3)

This corresponds to the score function of the multivariate

normal likelihood with homoskedastic, independent errors

and gives rise to the ordinary least squares estimate of β.

Under regularity conditions (e.g. [5]) and independence

between directed pairs, the estimator satisfying (2) is

consistent (β̂ →p β) and asymptotically normal

√
n(β̂n − β)→d N

(
0, A−1B(AT )−1

)
, (4)

where A = E
[

∂
∂βT G(Y, β)

]
and B = E[G(Y, β)G(Y, β)T ]

such that G(Y, β) is the p × (n2 − n) matrix of estimat-

ing equations. This asymptotic covariance estimator is

commonly referred to as a “sandwich” estimator [6]. For

g(·) as in (3), the A and B matrices are estimated by

Â = XTX and B̂ = XT Ω̂X where Ω = Cov[Yv] is the co-

variance matrix of relations. In contrast to the statistical

approaches, which exert substantial effort in modeling the

dependence among the errors explicitly using parametric

latent structures, this second approach is model agnostic

relying on empirical estimates of the dependence from the

residuals eij = yij − xTij β̂ to estimate Ω.

Dyadic clustering standard error estimators

Consider a directed pair (i, j) and define Θij as the set

consisting of all other directed pairs that contain an over-

lapping member with the pair (i, j). Generalizing the stan-

dard estimating equation framework, [3] and [2] propose

and describe a standard error estimator which assumes

1
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Figure 1: Five configurations of edge directed pairs involv-
ing the shaded node.

relations for directed pairs (i, j) and (k, l) are indepen-

dent, i.e. Cov[yij, ykl] = 0, if (i, j) and (k, l) only if they

do not share a member (i.e. (k, l) 6∈ Θij). For continuous

relations, the asymptotic variance estimator has the form

of that in (4) where Ω is estimated by

Ω̂DC = {eeT ◦ 1[{i,j}∩{k,l}6=∅]}, (5)

where e = {eij : i 6= j} is the vector of residuals,

1[{i,j}∩{k,l}6=∅] is a matrix of indicators, and ◦ denotes

the Hadamard product. The indicator matrix systemati-

cally introduces zeros to enforce the non-overlapping pair

independence assumption. Note that the DC estimator

estimates O(n3) covariance parameters from only O(n2)

observed residuals. Furthermore, each non-zero covariance

element independently with a single residual product.

Exchangeable Standard Error Estimator

A foundational property in the statistical literature on

networks is exchangeability. Intuitively, exchangeability

means the ordering of the network row and column labeling

is uninformative. More formally, a probability distribution

P(·) on the network Y = {yij} is jointly exchangeable if

P(Y ) = P(Π(Y )), where Π(Y ) = {yπ(i)π(j)} is the net-

work Y with its rows and columns reordered according to

permutation operator π [1].

Figure 1 shows the five distinguishable configurations

of edge pairs under exchangeability involving a single

node. (Not shown is the variance, meaning the covariance

structure has six types of relations.) Exchangeability

implies that the covariance between all edge pairs that

have the same configuration in Figure 1 are equal. Thus,

rather than estimating each non-zero covariance term in

Ω separately, we propose averaging the residual products

over the six equivalence classes given by the configurations.

For example, we estimate
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Figure 2: Probability regression coefficient is in 95% con-

fidence interval.

• V̂ar[ξij ] = 1
n(n−1)

∑
i

∑
j e

2
ij

• Ĉov[ξij , ξji] = 1
n(n−1)

∑
i

∑
j eijeji

Estimators for the other four terms follow analogously.

Simulation results

Figure 2 shows the confidence interval coverage probability

for a regression coefficient when data are generated from

the following (exchangeable) network model [4]:

yij = β0 + β1xij + ξij , ξij = ai + bj + zTi zj + eij

where zTi = (z
(1)
i , z

(2)
i ), {ai, bj , z(1)i , z

(2)
i , eij} are indepen-

dent standard normal random variables, and xij is a binary

covariate. We see that our proposed estimator based on

the exchangeability assumption vastly outperforms both

the dyadic clustering estimators and heteroskedasticity-

consistent estimators.
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Summary

When a contagious disease spreads in a population, infor-

mation about the presence of this disease begins to spread

in the population, and it is known that having access to

this information (being aware of the disease) often leads

to individuals changing habits and taking measures to

prevent infection. In this work we study the interplay

between the spreading of awareness and the spreading of a

contagious disease. To represent these two competing pro-

cesses we make use of a multiplex network, an appropriate

representation for dynamics that take place in different

topologies but that interact with each other. We wish to

discover to what extent the awareness dynamics are able

to change the outcome of the disease spreading process,

assuming that an aware individual is able to reduce its

chances to get infected. We also assess the effect of mass

media awareness campaigns on the final outcome of the

epidemics.

The generalized UAU-SIS model

In a recent work, the authors investigated the interplay

between awareness and epidemic spreading in multiplex

networks [2]. This scenario is represented by means of a

two-layer multiplex network, where a layer represents the

network of physical contacts and the other accounts for

the network of information exchange. On the first, we as-

similate a Susceptible-Infected-Susceptible (SIS) process,

accounting for the contagious disease spreading dynam-

ics. In this process, when an infected individual meets a

susceptible one, the latter becomes infected according to

the infectivity probability β. Also, infected individuals

recover spontaneously at a rate µ. On the second layer,

we incorporate what we call an Unaware-Aware-Unaware

(UAU) process, the equivalent version of an SIS for the

case of awareness spreading dynamics, where the aware-

ness spreading rate and the recovery rate are λ and δ,

respectively. In this first model we are making two as-

sumptions: infection of the epidemics implies immediate

awareness and awareness implies total immunization of

the epidemics.

The generalized model proposed in this work (see Fig. 1)

relaxes these two strong assumptions. The two parameters,

self-awareness and degree of immunization, are regulated

by probabilities κ and γ respectively. Now, this model

also takes into account the effect of massive awareness

information flowing through the network, the mass media

effect. In our model, an external node representing the

mass media (TV, radio, newspapers, etc.) is connected

to all nodes in the information layer, regularly converting

new aware individuals at a rate m.

κ

m

Information layer

Epidemics layer

Mass media

γ

Self-aw
areness

Im
m

un
iz

at
io

n

Figure 1: Sketch of the UAU-SIS model. Nodes in the awareness
layer (top) may be Aware or Unaware, while nodes in the epidemic

spreading layer (bottom) may be Susceptible or Infected. The self-

awareness and immunization parameters regulate the interaction
between the two dynamic processes. Mass media is connected to all

nodes in top layer.

Results

It is possible to discover and solve the dynamical equations

governing the previous system. We use the Microscopic

Markov Chain Approach (MMCA) equations [1], which

express the probability of a node being in each state at the

current time as a function of its state in the previous time

step (equations are omitted in this text because of spatial

constraints, but we encourage the reader to check them in

1

SIAM Workshop on Network Science 2016 Abstracts: Talks

21



[3]). Solving iteratively the previous system of equations

we can track the time evolution of the awareness and the

epidemics for any initial condition. Moreover, interestingly,

we can solve the stationary state of the full system, and

determine the onset of the epidemics as a function of the

rest of the parameters of the model (see [3]).

Interestingly, we show that the onset of the epidemics

does not always depend on the awareness spreading prob-

ability λ. Instead, there is a sort of metacritical point

defined by the awareness dynamics and the topology of

the information network, from which the onset increases

and the epidemics incidence decreases (see Fig. 2).

Additionally, the results of the analysis reveal that,

while the self-awareness parameter does not change the

epidemic threshold nor does it significantly change the

final fraction of infected nodes, the other two parameters

are crucial. The immunization parameter γ is a key factor

on delaying the onset of the epidemics as well as lowering

the final fraction of infected nodes. Also the mass media

parameter has a crucial effect: when the mass media is

active (m > 0), the metacritical point vanishes (see Fig. 3).
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Figure 2: Full phase diagram λ-β for the multiplex setup proposed

in this model, solved using MMCA equations. The multiplex network
we use is the following: the bottom layer corresponding to the

physical contacts network is a power-law degree distribution network

generated with the configurational model with an exponent of 2.5
and a size of 1000 nodes. The top layer representing the information

contacts is the same network with 400 additional (non overlapping
with previous) links. Cooler colors represent a low fraction of infected

individuals while warmer colors represent the opposite. The red line

denotes the line of critical points where βc depends on the awareness
spreading probability λ, while the discontinuous cyan line denotes

the values of βc independent of λ. The junction between the two

lines denotes the meta-critical point.
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Figure 3: Representation of the line of critical points βc as a

function of λ, for different values of the mass media. We observe

that for m > 0 the metacritical point vanishes. The multiplex
structure is the same as described in Fig. 2, with δ = 0.6, µ = 0.4

and parameters κ = 1.0 and γ = 0.0 which imply maximum coupling

between layers.

Discussion

We have presented an extended analysis of a generalization

of a model of competing spreading processes on multiplex

networks. The results show that the coexistence of differ-

ent topologies spreading antagonistic effects raises inter-

esting physical phenomena, as for example the emergence

of a metacritical point, where the diffusion of awareness

is able to control the onset of the epidemics. Given the

specific nature of the awareness spreading proposed here,

which is equivalent to a SIS process, the results are also

valid to describe two competing infectious strains coexist-

ing in a multiplex structure, the only difference being if

the strains reinforce or weaken each other. Results reveal

that while the self-awareness has almost no effect on the

dynamics, the other two factors, namely the degree of

immunization of aware individuals and the mass media,

do change the critical aspects of the epidemics spreading.
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Summary

We derive new, exact expressions for network centrality

vectors associated with classical Watts-Strogatz style “ring

plus shortcut” networks. We also derive easy-to-interpret

approximations that are accurate in the large network

limit. The analysis helps us to understand the role of the

Katz parameter, to compare linear system and eigenvalue

based centrality measures, and to predict the behavior of

centrality measures on more complicated networks.

Centrality

Algorithms that quantify the importance of nodes in a

network have proved extremely useful in a range of ap-

plications [2]. For example, Katz centrality [3] assigns

the value xi ≥ 0 to node i, with a larger value indicating

greater centrality, according to

(I − αA)x = 1. (1)

Here, A ∈ RN×N denotes the adjacency matrix of the

network, which we assume to be unweighted and connected,

1 ∈ RN×N denotes the vector of ones, and α > 0 is a

free parameter. Typically, α is assigned a value below the

reciprocal of the spectral radius, ρ(A), and several authors

have suggested particular choices [1].

A Ring plus a Shortcut

Our work treats deterministic versions of the types of

network introduced in the seminal small-world paper of

Watts and Strogatz [5]. Because of space considerations,

we describe here the simplest case of a nearest neighbor

undirected periodic ring plus a single directed shortcut.

Without loss of generality we assume that the extra short-

cut edge points from node 1 to node L. Hence our adja-

cency matrix A in (1) has the form A = C +E, where the

circulant matrix C has ones above and below the diagonal

and in its upper right and lower left corners, and E is zero

except for E(1, L) = 1. Liu, Strang and Ott [4] describe

this as a modification of C, to emphasize that we have

an O(1) change in a matrix entry, rather than the type

of small change studied in classical matrix perturbation

theory. These authors studied the eigenvector associated

with the dominant eigenvalue of A, and related matrices,

and constructed accurate approximations to this vector.

Our work is strongly motivated by [4] but differs from

it in four respects.

• Rather than deriving small residual approximations

and then using stability arguments to bound the

forward error, we construct exact solutions that can

be expanded asymptotically. This more direct route

leads to shorter proofs and sharper bounds.

• We consider Katz centrality (as well as the eigenvalue

problem).

• We analyze more general lattice structures and modi-

fications.

• We interpret the results from a network science per-

spective and use them to get new insights about

behavior on more complicated networks.

Computational Illustration

In the upper picture of Figure 1, the asterisks show Katz

centrality values; that is, components of x from (1). We

chose a small network size in order to make the key effects

visible. More precisely, we used an N = 20 node ring

with a shortcut from node 1 to node L = 8, and with

α = 0.3. Because node 1 owns the extra, long-range edge,

it attains the highest centrality score, at around 3.5. The

most distant node, periodically, that is, node 10, is deemed

the least central. Insight from [4], or from eyeballing the

solution, suggests that components of xi, when suitably

shifted, might be varying geometrically as the index i

moves periodically around the ring. Inserting an ansatz

of this form leads us to the circles in the upper picture

of Figure 1. The agreement is close—below 2 × 10−5 in

Euclidean norm.

The lower picture in Figure 1 shows, on a log scale,

the discrepancy between those asterisks (true solution)

and circles (geometric decay ansatz). We see a very small

contribution that, in contrast to the overall solution, grows

geometrically as we move periodically away from node 1.
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An Example Theorem

We now state a theorem that fully explains Figure 1. We

can assume without loss of generality that the receiving

node L is not beyond the half way, or “six o’clock”, posi-

tion on the ring. Letting b·c denote the integer part, for

some fixed proportion 0 < θ ≤ 1 we set L = bθ(N/2 + 1)c
when N is even and L = bθ(N + 1)/2c when N is odd.

We assume that a fixed Katz parameter α is used, with

0 < α < 1/2. (The spectral radius for the underlying ring

is 2.)

For convenience, we let p(i) for any 1 ≤ i ≤ N denote

the periodic distance from node i to node 1, that is, p(i) =

min (i− 1, N − i+ 1). We may then state the following

result concerning the asymptotic limit where N → ∞
(and hence L→∞) with α, θ fixed.

Theorem 1 For the “undirected ring plus directed short-

cut” network relating to Figure 1, the Katz system (1) has

a unique solution of the form

xi = C + h1t
p(i)
1 + h2t

p(i)
2 . (2)

Here, C, t1, t2, h1, h2 are constants, i.e., independent of i.

In particular, C = 1/(1− 2α) and t1, t2 are the roots of

the quadratic αt2 − t+ α, so that

t1 =
1−
√

1− 4α2

2α
, t2 =

1 +
√

1− 4α2

2α
.

Hence, t2 = 1/t1 and 0 < t1 < 1 < t2. Moreover, the final

term in (2) is exponentially small asymptotically, in the

sense that for all 1 ≤ i ≤ N ,

xi = C + h1t
p(i)
1 +O(t

N/2
1 ), (3)

with h1 = O(1).

Extensions and Implications

In the example considered here it is intuitively obvious

that node 1 will be assigned the highest centrality value,

and that centrality will decay as we move periodically

away. However, the type of analytical result in Theorem 1

allows us to see precisely how the measure depends on the

Katz parameter, α. Moreover, we will show that the same

analytical techniques apply to other, related networks,

including cases where the conclusions are not straightfor-

ward: rewiring instead of adding shortcuts, undirected

rather than directed modifications, paths rather than rings,

k-neighbor connectivity, multiple long-range edges, and
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Figure 1: Upper picture: asterisks show components of

Katz vector from (1) and circles show the approximation

C + h1t
p(i)
1 from (2). Lower picture: the discrepancy

|xi −C − h1tp(i)1 |. From Theorem 1, this quantity has the

form |h2tp(i)2 |, and hence grows geometrically away from

the shortcut node. However, it is of O(t
N/2
1 ) for a fixed

0 < t1 < 1, and hence rapidly becomes negligible as the

network size N increases.

various types of surgically constructed combinations of

these. In particular, we can devise and rigorously ana-

lyze networks where several nodes compete for the best

centrality values and their overall ranking changes as α

varies. We will also show that analogous results may be

obtained when centrality is quantified in an alternative

eigenvector-based sense [2]. In this way, by varying α

between 0 and 1/ρ(A) we may compare degree, Katz and

eigenvector centralities, shedding light on how these three

widely used measures differ.
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Summary

Community detection is a fundamental task of network

science that seeks to describe the large-scale structure of

a network by dividing the network’s vertices into com-

munities, blocks, or groups, based only on the pattern

of edges. It is common to evaluate the performance of

community detection algorithms by their ability to find

so-called ground truth communities. This works well in

synthetic networks with planted partitions because such

networks’ links are formed explicitly based on the planted

partition. However, there are no planted communities

in real world networks, so in their place, it is common

to use discrete-valued node attributes, or metadata, to

define a partition to act as ground truth. In this work,

we first argue that metadata are not the same as ground

truth, and that to treat them as such raises theoretical

and practical concerns. Nevertheless, understanding the

relationship between metadata and community structure

is important, so we subsequently introduce two new tech-

niques to rigorously explore this relationship.

Metadata labels are not ground truth communities

The merit of using metadata labels as ground truth com-

munities is that if there is correspondence between commu-

nities and metadata, it tells us that there is a relationship

between the network structure and the metadata, while

at the same time implying that the community detection

algorithm is identifying useful communities. However, net-

works can have many plausibly “good” partitions [4], so

when communities and metadata do not match it is not

necessarily because the community detection algorithm

does not perform well. In fact, when analyzing real-world

networks, there are four possible reasons for mismatch

between metadata and communities: (i) metadata do not

relate to network structure, (ii) communities and meta-

data capture different aspects of network structure, as

shown in Fig 1, (iii) the network contains no real struc-

ture, or (iv) the algorithm performed poorly. Despite

these possibilities, typically the assumption is that (iv) is

the only possible cause. This is indicative of a potentially
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Figure 1: Zachary’s Karate Club [7] is an example of

a real-world network whose metadata are often treated

as ground truth. But even in this simple network there

are multiple alternative partitions [2, 5, 3]. Above, we

show the stochastic blockmodel likelihood surface for a

two-dimensional embedding of partitions. As indicated,

the lower peak corresponds to the two-faction metadata

partition, while the higher peak corresponds to a high/low-

degree partition.

substantial selection bias in the published literature: we,

as a community, have developed methods that hit only a

certain kind of target.

Methods to explore metadata-community relationships

While metadata labels should not serve as ground truth to

calibrate community detection algorithms, the relationship

between network structure and metadata can be mean-

ingful. In many cases, metadata may enable us to learn

about the processes responsible for link formation or disso-

lution. To better diagnose the actual relationship between

metadata and structure, we briefly describe two methods

below. First, we introduce a statistical test that measures

the ability of the metadata to describe the network struc-

ture under a given model. It compares the metadata to a

distribution of random partitions based on the likelihood

of generating the network, and can be used with a vari-
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ety of likelihood-based generative network models. This

test addresses case (i) above. We then introduce a new

stochastic blockmodel which incrementally relaxes its use

of metadata, exploring the transition through partitions

between metadata and best-fit communities. This method

addresses case (ii) above. We validate both methods on

synthetic and real-world examples.

The blockmodel entropy significance test

We introduce the blockmodel entropy significance test

to determine whether or not the metadata and network

structure are related. In this test we calculate the entropy

of the network given the metadata, by fitting a stochastic

blockmodel using the partition given by the metadata la-

bels. We compare this entropy against a null distribution

of entropies calculated by randomized metadata labels.

Using this test we can determine the probability that the

observed metadata labels were assigned at random rela-

tive to the network. The test is not limited to a specific

model and in theory any likelihood-based model could be

used to test for different types of relationships between

metadata and network structure. Here we demonstrate

it using different variants of the blockmodel, including

degree-corrected [5], bipartite [6] and mixed-membership

SBMs [1]. We identify relationships between metadata

and network structure in real data and demonstrate cases

where there exists a significant relationship between mul-

tiple sets of metadata and the network structure.

The neoSBM

We can use the test described above to determine if a

significant relationship between metadata and network

structure exists. However, if these metadata do not match

the communities we detect, then we should diagnose why

they differ. To do so, we introduce a new stochastic block-

model called the neoSBM to determine if the communities

and metadata capture the same or different aspects of the

network structure.

The neoSBM extends the SBM by finding community

structure, yet allowing metadata to exert an influence

over the inferred communities. Specifically, the neoSBM

chooses whether or not each node is assigned to its meta-

data community or if it is free to choose its own community

at a cost. By varying this cost, the neoSBM effectively

explores the space of partitions to find a path between

the metadata and community partitions. The type of

path tells us about how the two partitions are related. A

smooth path between the two indicates that the metadata

is close to the global optimum and suggests that they

represent the same aspect of the network structure. On

the other hand, the presence of a sharp phase transition

in the path suggests that the metadata is at (or close to)

a different local optimum, which we can interpret as a

different aspect of the network structure. Figure 1 shows

the partition space and likelihood under the SBM for the

karate club network [7]. Here we see that the metadata

corresponds to a local optima representing the assortative

group structure of the network, while the global optimum

captures a core-periphery structure. Both are relevant and

interesting aspects of the network. As with the blockmodel

entropy significance test, the neoSBM can be adapted to

the broad class of stochastic blockmodels.
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Summary

Many popular data clustering and classification techniques

from the social sciences lack a rigorous foundation in graph

theory and mathematical optimization even though they

are often based on graph and network models of interaction

and affinity (or proximity). We show that a clustering

method based on the fundamental graph-theoretic concept

of density (i.e., sparse cuts separating dense clusters) and

implemented via a duality to network flows can produce

more comprehensive and meaningful results in appropriate

problem domains.

Extended Abstract

The maximum concurrent flow problem (MCFP) is a

peer-to-peer network flow problem defined on an edge-

capacitated graph where the objective is to maximize

the minimum throughput, i.e., the ratio of the flow de-

livered between a peer-to-peer pair in comparison to the

corresponding demand for that pair [4, 5, 6, 7, 9, 10, 20].

The MCFP has applications in congested networks such

as determining fair routing [1, 2] and modeling peer-to-

peer traffic flow. Due to its relationship to the spars-

est cut problem [13, 19, 20], it also has applications to

VLSI circuit design [8], biological taxonomy [11, 16, 18],

and hierarchical cluster analysis [15]. When the optimal

throughput saturates only the set of critical edges and

all others have slack, the hierarchical MCFP (HMCFP)

then further maximizes the throughput in the slack edges

determining a second throughput level and a second set of

critical edges; and iterating further, a series of throughput

levels is determined until all edges are critical, yielding a

stratification portrayed in classification theory as a den-

drogram [21]. The duality between sparsest cuts and MCF

provides a natural characterization and foundation for

the often stated, somewhat vague expression that objects

in the same cluster have more affinity (connectivity) to

each other and objects in different clusters are less similar

(sparsely connected).

We discuss the MCFP and sparse cuts with applications

to hierarchical cluster analysis and outline three key fail-

ings of a widely used class of data clustering algorithms

that the HMCFP is designed to overcome. We propose a

new community structure algorithm based on the HMCFP

and its duality relation to the sequence of sparsest cuts,

and discuss several theoretical properties which make it

more accurate and often more robust than many non-

deterministic algorithms in the clustering literature. Our

algorithm is inspired by the idea of graph partitioning by

sparsest cuts, which is appealing theoretically but difficult

in practice as the sparsest cut problem is NP-hard [12, 19].

The MCF, which can be found efficiently, provides a good

approximation since the value of the optimal throughput

is bounded above by the capacity of a sparest cut (weak

duality). Even in cases where the MCFP has multiple

solutions, there is a set of critical edges that are satu-

rated by every optimal flow. The HMCFP extends the

MCFP by fixing the throughput for demand pairs that

would otherwise be cut off by removing the critical edges

and re-solving iteratively over the whole graph until all

edges are critical at some level (i.e., throughput is fixed

for all demand pairs). The successive MCFP solutions

determine a series of sparse cuts or multipartite parti-

tions. When the MCF solution identifies a partition into

two to four parts, a sparsest cut can be identified [17].

Furthermore, it can be shown that the two to four parts

are precisely the components obtained by removing the

edges of all sparsest cuts. The sparsest cut can also be

approximated using spectral techniques [3]; and so there

is a connection between our approach and hierarchical

spectral clustering. Partitioning via critical edges of the

MCF generalizes the popular technique of removing edges

with high betweenness centrality (e.g., [11]).

We summarize here a number of observations obtained

either directly from analysis of the structure of the HM-

CFP or from examination of solutions of the HMCFP’s in

our lab.

Observation 1: Continuity: Small changes in capac-

ities and/or demands in the HMCFP result in only small

changes in the throughput levels of the demand pairs, even

when the topology of the hierarchy (dendrogram) passes
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through a transition point.

Observation 2: Hierarchical Independence: Suf-

ficiently small changes in demands/capacities on the de-

mand pairs/edges at certain throughput levels affect only

the throughput levels on edges of the same or higher

throughput (i.e., on those edges that are critical or have

slack at that level). That is, these changes do not change

the solutions of the MCFP’s solved previously in the se-

quence at lower throughput levels.

Observation 3: Absorbing Backbone: There are

absorbing edges at every throughput level. The absorbing

edges induce a connected graph of the super nodes corre-

sponding to the remaining components having slack at a

given level.

Observation 4: Node Centrality: The HMCFP

output produces a canonical node-centrality measure that

is comprehensive and stable in the sense that small per-

turbations in capacity and/or demand result in only small

changes in the centrality of any node. To see this consider

that the HMCFP determines an absorbing edge backbone

and concurrent flow levels for edges of every cut and mul-

tipartite cut. Even though the flows on particular paths

are not necessarily unique there are many properties of

the HMCFP solution that are unique; in particular, the

HMCFP determines uniquely the amount of concurrent

flow between each pair. Thus, the total terminal flow at

a node is uniquely determined, with the balance of flow

saturating the capacities of edges incident to the node

being flow passing in and out through the node. The

flowthrough centrality is the portion comprising the in-

and-out flow, rather than the terminating flow, and those

nodes of highest flowthrough centrality are important for

many applications. The flowthrough centrality measure is

more comprehensive and robust than simplistic measures

based on degree and/or distance [14].
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Abstract

Nature has optimized complex biostructures over bil-

lions of years to have remarkable resiliency, strength, and

lightweight composition. This work will present a novel

integrated approach that employs computational mechan-

ics and complex network strategy to gain fundamental

insights into the failure mechanisms of high performance,

lightweight, structured composites by examining struc-

tural and material properties of the rostrum of the paddle-

fish (Figure 1 ). Results of the computational mechanics

simulations and complex network analysis on the rostrum

of the paddlefish will be presented with emphasis on early

detection of failure mechanisms.

Introduction

Complex networks have been used to examine interactions

within various systems such as traffic flow, energy flow

through food webs in an ecosystem, fluid flow through

pipelines, communication networks, electrical networks,

community structure of company ownership, patrol rout-

ing problem, air-transportation, failure of quasi-brittle

materials, and force transmission in dense granular me-

dia [1, 2]; however, this technique has never been used to

study the complex hierarchical geometry of living speci-

mens. Swimming enhancement induced by the rostrum

has been studied by Riveros et. al. [3, 4, 5]. Recent com-

putational efforts have revealed that the rostrum has far

greater energy dissipation and impact resistance charac-

teristics when compared to man-made engineered systems

[6]. The rostrums lattice structure is a major contribu-

tor to its superior performance. However, the lattice is

considered an indeterminate, non-linear structure with

varying material types, and properties, with non-uniform

stiffness and irregular shaped. Knowledge is lacking on

how the structure is geometrically assembled to possess

high-performance strength/toughness characteristics. A

combinatorial approach that takes advantage of computa-

tional mechanics and complex network theories will assist

in understanding the role redundant hierarchical lattice

Figure 1: (a) Paddlefish (b) Paddlefish rostrum cartilage

skeleton

members have in achieving structural resiliency.

Methodology

Biological systems use hierarchical geometrical arrange-

ments and are comprised of heterogeneous constituents

causing uncertainty as what dictates material response.

Towards this end, the surface topology obtained from

micro CT imagery and a weighting function based on

strain and flow measurement, which are thought to be the

most reliable data that can be measured, will be used to

identify the patterns as force chains are short circuited.

The pattern recognition will be used to correlate for the

Early Detection of Failure Mechanisms in Resilient Bio-

Structures. This study will use a novel mathematical

technique to formulate the rostrum as a network flow

problem [7, 8]. To achieve this, a flow network graph

G= (V, E) must be developed from the computational

mechanics model of the rostrum such that,

� V Represents the nodes obtained from the finite ele-

ment model of the rostrum

� E Represents the edges, connecting the nodes in G,

indicating the connectivity between the nodes

� Each edge (u,v) in E, has a cost C associated with

it which is representative of the cost associated with

sending one unit of flow (stress/strain or deformation

1
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that is used to quantify the cost/constraint of the

flow) through the edge

� Each edge (u,v) in E, has a capacity U associated with

it which is representative of the maximum amount of

flow that could be transmitted through the edge

� We identify two nodes in the network to represent

the source s and target t, such that the flow can be

transmitted from the source node s to the target node

t. The selection of these nodes will be dependent on

the force boundary conditions to which the rostrum

will be subjected.

The problem of transmitting the maximum amount of

flow through the network at the minimum cost can be

approached using a state of the art mathematical algo-

rithm. For example, the flow network shown in figure 2 is

constructed from a small part of the rostrum subjected

to an impulse loading. The flow network is constructed

from the output obtained from a computational mechanics

simulation on the rostrum. Normalized Von-Mises stresses

are used for computing the cost in this demonstration

model. The possible cuts are [(0-1), (0-5)], [(9-8), (6-8),

(8-12)], [(5-6)] etc. The minimum source-target cut is (5-6)

which has a capacity of 26 (highlighted in red in figure 2).

Based on the flow patterns (governed by stresses, strains,

or deformations) established at the onset of load appli-

cations, complex network approach can aid in detecting

the failure site much earlier than any computational or

analytical methodologies. The capacity and constraints

of the network will be extracted from the dynamically

evolving numerical simulation results.

Results and Discussion

Results obtained from the temporally and spatially evolv-

ing network graphs will be discussed. A one on one compar-

ison will be shown to demonstrate how the mathematical

flow network approach can aid in early detection of failure

mechanisms in bio-structures.

Future Work

Future work will involve novel strain measurements on

living biological specimens to validate the computational

mechanics and mathematical models. Also, a state of

the art parallel algorithm will be developed to tackle the

dynamically evolving temporal/spatial data encountered

in these analyses.

Figure 2: A demonstration model constructed from a

small part of the rostrum to illustrate the modus operandi

of complex network algorithm
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Introduction

I will present on overview of ongoing research being done

by the NODE1 research group (https://node.math.ksu.

edu/) at Kansas State University. The NODE group is

an interdisciplinary team of researchers from the depart-

ment of Mathematics and the department of Electrical and

Computer Engineering, working principally in Network

Science. My colleague, Nathan Albin (Math) will address

the numerical aspects of the theory of p-modulus. More-

over, my Ph.D. student in Math, Nethali Fernando will

report on p-modulus metrics, while my Ph.D. student, He-

man Shakeri, co-advised with Professor Caterina Scoglio

in ECE, will adress various applications and centrality

measures derived from p-modulus.

The theory of conformal modulus was originally devel-

oped in complex analysis, see [1, p. 81]. The more general

theory of p-modulus grew out of the study of quasiconfor-

mal maps, which generalize the notion of conformal maps

to higher dimensional real Euclidean spaces and, in fact,

to abstract metric measure spaces.

Intuitively, p-modulus provides a method for quantifying

the richness of a family of curves, in the sense that a family

with many short curves will have a larger modulus than

a family with fewer and longer curves. The parameter p

tends to favor the “many curves” aspect when p is close

to 1 and the “short curves” aspect as p becomes large.

This phenomenon was explored more precisely in [2] in

the context of networks.

The concept of discrete modulus on networks is not new,

see for instance [7, 10, 9]. However, our goal is to develop

the theory of p-modulus as a graph-theoretic quantity

[6, 2], with an eye to finding applications, for instance to

the study of epidemics [11, 8].

p-Modulus

For simplicity, I will only discuss the case 1 ≤ p < ∞,

however it also makes sense to send p to ∞ in various

ways. Assume G = (V,E, σ) is a simple finite undirected

graph with an assignment of edge-weights σ : E → (0,∞).

1NODE is supported by NSF grant n. 1515810

In the most general case we can measure the modulus of

a collection Γ of functions γ : E → [0,∞), which can also

be viewed as a family of vectors Γ ⊂ R|E|+ . In practice,

we often assume these functions to be indicator functions,

with values in {0, 1}, hence representing families of subsets

of E. For instance, we have studied the modulus of the

family Γspt of all spanning trees of the graph G, as well

as the family Γloop of all simple cycles, or the family

Γcut of all cuts. When studying families of walks, it is

more convenient to think of the corresponding integer-

valued multiplicity functions γ(e) = N (e) that record

the number of times a walk traverses a given edge e.

Examples of families of walks are the connecting walks

Γ(a, b), consisting of all walks that start at node a and

end at node b; the via walks Γ(a, b; c), walks from a to b

that must visit c along the way; the long walks, Γlong(L),

walks that take at least L hops.

One of the major strengths of modulus is that it can

quantify the richness of all of these different families of

objects. Such flexibility is useful in practice when studying

specific applications, see for instance [11].

Given a (possibly infinite) family Γ ⊂ R|E|+ its p-modulus

is defined as:

Modp,σ(Γ) := inf
ρ∈Adm(Γ)

Ep,σ(ρ).

In other words, we minimize the energy

Ep,σ(ρ) :=
∑

e∈E
σ(e)ρ(e)p

over all admissible densities ρ : E → [0,+∞]. A density

is admissible if it penalizes every element in Γ at least 1,

meaning that

`ρ(γ) :=
∑

e∈E
γ(e)ρ(e) ≥ 1.

When 1 < p < ∞ there is a unique extremal density

which we denote by ρ∗ [2]. Moreover, in all the examples

mentioned above, even if families of walks are usually

infinite, one can always find a finite subfamily Γ∗ with the

same admissible densities and hence the same modulus [6].
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As a consequence, modulus becomes an ordinary convex

program, and the standard tools of Lagrangian duality

can be deployed [2, 5]. Moreover, we have also studied

the notion of blocking duality pioneered by Fulkerson. For

instance, we establish a formula relating the modulus of a

family with the modulus of its blocker [4].

In the special case of connecting families Γ(a, b) we re-

cover some classical quantities. For instance, 2-modulus

coincides with effective conductance, when viewing the

graph as an electrical network with edge-conductances

equal to σ. Also, 1-modulus is equal to Min Cut. And let-

ting p tend to infinity, the p-th root of p-modulus tends to

the reciprocal of shortest-path [2]. In general, p-modulus

continuously interpolates between these classical measures.

In fact, it is well-known that shortest-path and effective

resistance are metrics on the set of nodes V , i.e., they

satisfy the triangle inequality. We have shown that the

reciprocal of Min Cut is also a metric and more generally

Modp(Γ(a, b))−1/p is a metric for all p’s [3].

Algorithms

We have developed algorithms to compute modulus effi-

ciently on large networks. This will be the topic of Nathan

Albin’s presentation. Currently, we have been able to han-

dle networks with hundreds of thousands of edges, but we

hope to improve our algorithms further. In [5] we showed

that in theory one only needs at most |E| elements of the

family Γ to be able to compute p-modulus, and in some

cases (depending on the specific family) even less. We

call these subfamilies Γ̃ such that Modp(Γ̃) = Modp(Γ̃),

minimal subfamilies. Our current algorithm builds a se-

quence of growing subfamilies whose modulus converges to

the actual modulus [6], and in experiments it seems that

these approximating subfamilies tend to want to become

minimal.

Applications

Our current application have focused on using modulus

to study epidemic spreading on a network. In [11], we de-

velop some centrality measures using modulus and tested

them by comparing them to other classical centralities.

The comparison was done numerically by running many

simulated epidemics on the graph and computing the effi-

ciency of a mitigation strategy consisting of vaccinating

a percentage of the nodes with highest centrality. The

results were very favorable to centralities defined in terms

of modulus. One other advantage of modulus defined

centralities is the great flexibility of the concept of modu-

lus, which for instance can be computed perfectly well on

direct graphs as well.

In order to try to explain why modulus based centrality

work so well with respect to epidemics, in [8], we intro-

duced and studied the notion of Epidemic Hitting Time.

This is the expected time it takes for an epidemic infec-

tion originating at node a to infect node b. We show that

epidemic hitting time is also a metric on V and that it

is always bounded below by effective resistance, namely

the reciprocal of 2-modulus. So this bound gives at least

a partial explanation for the effectiveness of modulus in

the context of epidemic spreading.

Conclusion

The notion of p-modulus is a fundamental tool in complex

analysis and geometric function theory more generally.

Our main goal, is to study and apply the corresponding

notion of p-modulus on networks. We have already ob-

tained several results in this direction and there are still

many open areas of exploration.
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Summary

The k-Co-Path Set problem asks, given a graph G and a

positive integer k, whether one can delete k edges from G

so that the remainder is a collection of disjoint paths.

We give a linear-time fpt algorithm with complexity1

O∗(1.838k) for deciding k-Co-Path Set, significantly

improving the previously best known O∗(2.17k) of Feng

et al. [5]. We also present a O∗(4tw(G)) algorithm for

Co-Path Set using the Cut&Count technique. In gen-

eral graphs, we combine this with a branching algorithm

which refines the previously-known 6k-kernel into bounded-

treewidth reduced instances.

Introduction

Co-Path Set [1] is an NP-complete problem asking for

the minimum number of edges whose deletion from a graph

results in a collection of disjoint paths (such a set of edges

is a co-path set).

Figure 1: Two co-path sets (dashed edges) of a graph,

including a solution to Co-Path Set (right).

Co-Path Set is naturally motivated by a special case of

finding radiation hybrid mappings in genetics. These map-

pings are constructed by researchers working to determine

the ordering of genetic markers on chromosomes using

data collected from DNA fragments (formed by breaking

chromosomes with gamma radiation) [2, 7, 8]. In general,

given a set of known markers M = {m1, . . . ,mn}, each

DNA fragment will contain a subset of M . A radiation

hybrid mapping is a linear ordering of M which is consis-

tent with the constraints implied by the fragments (e.g. if

m1 and m3 co-occur alone in some fragment, then the or-

dering m1,m2,m3, . . . ,mn is inconsistent since m2 would

1we use the notation O∗(f(k)) for O(f(k)nO(1)) when denoting

the complexity of fixed parameter tractable algorithms

have necessarily appeared in every fragment containing

both m1 and m3). If no consistent ordering exists (likely

due to errors in the data), one attempts to find a mapping

which is consistent with as many fragments as possible.

Restricting to the setting in which fragments always

contain a pair of markers is equivalent to Co-Path Set —

each fragment gives an edge in a graph where the vertices

correspond to markers, and we wish to remove the mini-

mum number of edges so the resulting graph is a collection

of disjoint paths (naturally giving linear orderings), as

shown in Figure 2.

Parameterization Tools

Parameterized complexity [4] is a fine-graining of the com-

plexity hierarchy, where the running time of parameterized

algorithms can depend on both the original input and an

additional parameter k. Fixed-parameter tractable vari-

ants of NP-hard problems can be solved in time that is

some function in terms of k and polynomial in the size

of the problem. More formally, FPT problems can be

solved in time f(k) · |n|O(1). A problem is linear-fpt if the

complexity with respect to the size of n is linear.

We use kernelization, a polynomial time pre-processing

technique, in our algorithm. This is a commonly used

method in parameterized complexity, where the easy por-

tions of the given instance are handled leaving the difficult

components (the kernel) which need computationally com-

plex (and expensive) techniques to solve. The size of the

kernel is bounded in terms of the parameter.

We study k-Co-Path Set, the version of Co-Path

Set using the natural parameter of edges deleted:

k-Co-Path Set

Input: A graph G = (V,E) and k ∈ Z+

Parameter: k

Problem: Does there exist F ⊆ E with |F | =
k such that G[E \ F ] is a set of disjoint paths?

In the context of radiation hybrid mappings k is the

number of errors in the data, and since this parameter

should be small, our algorithms will be fast.
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Figure 2: In genetic material (a), known genetic markers occur in some linear order (b). Fragments of DNA created

using gamma radiation (c) are analyzed and labelled with the markers they contain (potentially with observational

errors, as in the third fragment). When all fragments have exactly two markers, we can represent this as a graph (d),

where a minimum co-path sets corresponds to a maximally informative linear ordering.

Our first algorithm studies Co-Path Set parameter-

ized by treewidth using the Cut&Count framework of [3]

to k-Co-Path Set, a technique which might be of in-

dependent interest to the community. We use this adap-

tation as a subroutine in our main algorithm for solving

k-Co-Path Set on general graphs. The Cut&Count

framework enables O(ctwnO(1)) one-sided Monte Carlo

algorithms which solve connectivity-type problems with

constant probability of a false negative. It uses dynamic

programming over a nice tree decomposition [6], in ad-

dition to utilizing modulo-2 counting and parity tricks

to provide fast parameterized algorithms. It is crucial to

obtain tree decompositions of bounded size in order to use

Cut&Count due to its run time dependence on treewidth.

Fastest Algorithm

Our major result is a linear-fpt algorithm which decides

k-Co-Path Set in time O∗(1.838k), and is the fastest

known algorithm for this problem. The algorithm uses a

kernelization process [5] to find a kernel of size at most 6k.

We take this kernel and bound its degree using a branching

algorithm which considers all possible subgraphs of the

kernel with maximum degree of 6. This enables us to

form tree decompositions which are compatible with the

Cut&Count algorithm, which decides whether or not the

given instance has a co-path set of size k.

Open Problems

One natural question is whether similar techniques extend

to the generalization of Co-Path Set to k-uniform hy-

pergraphs (as treated in Zhang et al. [9]). It is also open

whether the dual parameterization asking for a co-path

set of size k resulting in ` disjoint paths is solvable in

sub-exponential fpt time.
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Summary

We prove a direct connection between the Diffusion State

Distance (DSD) introduced by Cao et al [4, 3] and a certain

class of mixing random walks from singleton nodes. This

allows us to construct a closely related distance measure

within the framework of Exit Frequency Distances (EFDs)

We show empirically that the EFD distance matrix, where

the underlying target distribution is the stationary dis-

tribution, is very close to the DSD distance matrix for

the protein-protein interaction network for S. cerevisiae,

and show that we can substitute the EFD matrix for the

DSD matrix in classical function prediction algorithms

with hardly any performance degradation.

This is significant because the EFD framework gives

a natural mathematical way to generalize the distance

measure to incorporate biological notions of important

nodes or important subnetworks into the distance metric.

We propose two natural alternative ways to do this. We

apply this to improve our ability to extract the impor-

tant genes related to human disease phenotypes from the

known available network of protein-protein associations

in humans.

Introduction

One of the best-studied classical problems on biological net-

works involves using proteins of known function, together

with the structure of the network of known protein-protein

interactions (PPI), to make predictions of functions of

unlabeled protein nodes. This is an important problem

because, even in the best-studied model organisms, such as

S. cerevisiae (Baker’s yeast), these networks contain many

proteins whose function is still completely uncharacterized.

In the classical PPI network, one places an edge between

two proteins only if there is experimental evidence that

the two proteins physically bind in the cell. Recently, high-

throughput techniques have generated additional types of

information about the interaction or association of genes

or proteins in a cell that can be encoded in a graph, or

network context. This can include information such as

genetic interaction data, which represents epistasis events

from double knockouts, co-expression data for genes that

are active under similar conditions, or even, for the human

PPI network, disease phenotypes.

In their earlier work, Cao et al. [4, 3] introduced a novel

diffusion-based graph metric that they called the Diffusion

State Distance, or DSD, and showed that when DSD was

substituted in a straightforward way for ordinary shortest-

path distance in several popular classical methods for

predicting functional labels in yeast, prediction improved

across the board. Let Hek(vi, vj) denote the expected

number of times that a random walk starting at node vi

visits node vj in timestep 0 to k. Fixing vi, we can collect

these values into a vector

Hek(vi) = (Hek(vi, v1), Hek(vi, v2), . . . Hek(vi, vn)).

Then we define

DSD(u, v) = lim
k→∞

||Hek(u)−Hek(v)||1

where Cao et al [4] showed that DSD is a metric and

converges as k → ∞. While Cao et al. specifically con-

sidered the L1 norm, a generalization to the Lq norm is

equally natural. The connection between DSD, the dis-

crete Green’s function and heat kernels on graphs, has

been a topic of recent study [2]. We also consider the

cDSD measure from [3], which generalizes DSD to graphs

with weighted confidence values on the edges in a natural

way.

Exit Frequency Distance

The exit frequency distance comes from the theory of

exact stoping rules for random walks on graphs studied

by Beveridge and Lovász [1]. Given an initial vertex

vi and a target distribution τ , a stopping rule Γ(vi, τ)

halts a random walk started at vertex vi so that the final

state is governed by τ . A stopping rule is optimal if it

minimizes the expected number of total steps, among all

(vi, τ)-stopping rules. The exit frequencies xk(Γ) of the

stopping rule are the total number of expected exits of

vertex vk during a walk governed by the rule, which can

be shown to be the same for every optimal stopping rule
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from vi to τ . Thus a stopping rule is optimal if it achieves

minΓ:vi→τ

∑
k∈V xk(Γ). We denote the optimal exit fre-

quency for vertex vk by xk(vi, τ). Collecting the optimal

exit frequencies from each vertex to the distribution τ into

a matrix, we define

Xτ (i, j) = xj(vi, τ).

Setting τ = π, the stationary distribution, we define

EFDq(u, v) = ||(1u − 1v)Xπ||q.

Yeast Function Prediction Experiment

The Network

We use the physical protein-protein interaction dataset for

S. cerevisiae S288c from BioGRID, version 3.4.128 (down-

load date: Sept 17th, 2015). With the same preprocessing

as in [4], we obtain a simple graph with 5074 nodes and

74351 confidence-weighted edges. The graph is connected

and has diameter 6. Figure 1 shows the distribution of

the DSD and EFD distance values for this network.
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Node annotation

We use the functional annotation dataset consisting of the

first three levels from MIPS FunCat version 2.1. MIPS

FunCat is a shallow, levelled hierarchical classication

scheme of nested protein functional catagories of increas-

ing specificity. There are 17/74/154 unique functional

catagory levels in the first/second/third level of the MIPS

FunCat hierarchy that are used to annotate the nodes on

our network. There are 4468/4452/4078 nodes that are

annotated with at least one label in the first/second/third

level of MIPS FunCat annotations in our network. We

perform 10 runs of 2-fold cross validation on this network,

and report the mean accuracy and F1 scores for each

method.

Table 1: Protein function prediction of MIPS annotations

Method
1st Level 2nd Level 3rd Level

Accur. F1 Accur. F1 Accur. F1

MV 0.5065 0.4211 0.3977 0.3064 0.3677 0.2919

wMV 0.5445 0.4451 0.4475 0.3411 0.4208 0.3308

EFDπ 0.6664 0.4943 0.5420 0.3901 0.4912 0.3634

cDSD 0.6689 0.4917 0.5528 0.3999 0.5015 0.3716

Results

We compare the following four methods for assigning labels

to nodes. Table 1 gives a subset of our function prediction

results across all 3 levels of the MIPS hierarchy. The first

two methods are the baseline methods Majority Vote, and

Weighted Majority Vote which have all direct neighbors

vote for their labels (with equal weight, or in proportion

to the confidence edge weights, respectively), and assigns

each unlabeled node the label which receives the greatest

number of votes. The other methods, rank all the nodes in

a network in order of that node’s cDSD or EFD distance,

respectively, and have the closest r = 10 nodes1 vote for

their labels. As can be seen, EFDπ does nearly as well

as cDSD in predicting the labels.

Generalization to other EFD Distances

In the full paper, we fully develop the connection between

the EFD and the DSD, explaining why it is not surpris-

ing that they behave so similarly. We then generalize

the EFD by replacing the stationary distribution with

other interesting target distributions. In particular, we

present EFD distances that can represent a subnetwork

S of nodes as more important, with applications to the

human diseasome.

References

[1] A. Beveridge and L. Lovasz. Exit frequency matrices for finite
Markov chains. Combinatorics, Probability and Computing,
19(4):541–560, 2010.

[2] E. Boehnlein, P. Chin, A. Sinha, and L. Lu. Computing diffusion
state distance using Green’s function and heat kernel on graphs.
In Algorithms and Models for the Web Graph, pages 79–95.
Springer, 2014.

[3] M. Cao, C. M. Pietras, X. Feng, K. J. Doroschak, T. S. ffner,
J. Park, H. Zhang, L. J. Cowen, and B. Hescott. New directions
for diffusion-based prediction of protein function: incorporating
pathways with confidence. Bioinformatics, 30:i219–i227, 2014.

[4] M. Cao, H. Zhang, J. Park, N. M. Daniels, M. E. Crovella, L. J.
Cowen, and B. Hescott. Going the distance for protein function
prediction. PLOS One, 8:e76339, 2013.

1We vary r in the full paper.

2

SIAM Workshop on Network Science 2016 Abstracts: IGNITE Talks

36



A MULTI-NETWORK ANALYSIS OF SCIENTISTS ON SOCIAL MEDIA AND THEIR SCIENTIFIC

CO-AUTHORSHIP GRAPHS

Patrick Mackey, Jennifer B. Webster

SIAM Workshop on Network Science 2016
July 15-16 · Boston

Summary

A promising area for network science research is the topic

of multilayer networks, in which two or more distinct

graphs are interconnected in some manner [5]. In our

research, we have collected data for two different, but

interrelated networks: one based on the interactions of

well-known scientists on Twitter, the other based on their

co-authorship of scientific publications on arXiv [1]. Each

graph represents a distinct social environment that these

researchers belong to. We have gathered a number of

metrics on these networks which show relevant correla-

tions and differences between them. By examining these

networks in conjunction, we believe we can gain insights

that may not have occurred when looking at either one in

isolation. We will discuss these insights in this talk with

the goal of promoting research on multilayer networks.

Data

To create our multilayer network, we first looked for well-

known researchers who were also active Twitter users. A

number of websites list such people [7] [8] which we used in

our initial search. Our second requirement was the ability

to get their co-authorship network. Currently, we have

been limited to using the open access site arXiv for this

information. We also initially restricted our research to

scientists working in three domains: astrophysics, mathe-

matics and computer science. Given these requirements,

we began with an initial set of 23 researchers to build our

network from.

Co-authorship graphs A1 and A2 were created using a

breadth-first-search from our initials seeds 1 and 2 hops

away, respectively. Any researcher who had co-authored a

paper with one of our seeds was given an edge between

them and all other co-authors of the paper, regardless of

whether or not the other authors had Twitter accounts.

A Twitter graph TM was created by adding edges from

our seeds to any other user they had mentioned in a tweet.

By using mentions instead of follower information we were

able to make use of temporal, weighted edges.

Figure 1: Co-authorship network of the initial 23 re-

searchers, A1. Color represents research field.

After creating these initial graphs, we examined the

users being mentioned on Twitter by our initial 23 scien-

tists. Interestingly, of these 9,385 users, we discovered 853

of them appeared to have publications on arXiv as well.

This was determined using an exact name match between

their real name as listed on Twitter and the name used

for publication. While this method likely resulted in both

false positives and false negatives, a manual examination

of a number of these users seemed to show that most

were in fact matched correctly. Using this information,

we expanded our initial list of seeds to 876 people, cre-

ating significantly larger data sets to explore. A′
1 had

30,807 nodes and 1,316,156 links. T ′
M had 236,051 nodes

and 1,815,743 links. By using the publication categories

in arXiv, we were also able to make educated guesses

towards the research discipline of each the new Twitter

users based on what the majority of their publications

were categorized as.

Analysis

While containing many of the same people, there were

many significant differences between the Twitter and co-

1
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Figure 2: Network of Twitter mentions between the ex-

panded set of 876 researchers.

authorship networks of these scientists. This included the

directed nature of Twitter mentions, as well as the natural

cliques that formed from publication co-authorship. An

additional difference was the time scales of the interac-

tions. Twitter mentions tended to be fast paced, while

publications could be much further apart in time, repre-

senting a longer period of involvement among individuals

for each edge.

Several analytics were performed on the networks, in-

cluding a comparison of centrality [2], geodesic distances

[6], and Jaccard vertex similarity [3]. Our calculations

showed some correlations between the two networks for

these metrics, although in some cases not as strong as

initially expected.

One area with a strong correlation was between the

research topics of a scientist’s Twitter neighborhood and

that of his own research. For example, a user had a 78%

chance of being a mathematician if the majority of his

neighbors in T ′
M were also mathematicians (compared to

an 18% chance over all). Similar percentages held for

computer scientists (75%) and astronomers (79%) as well.

Another interesting correlation was that between co-

authorship on arXiv and mentions on Twitter. Only a

small percentage of our researchers directly co-authored a

publication together on arXiv. There was a 0.1% chance

that any two of our 876 authors were co-authors. However,

if one of the authors had mentioned the other on Twitter,

that probability increased to 2.0%. The likelihood of

mentioning someone if you had co-authored a paper with

them was also highly correlated. There was only a 3.8%

chance of any two of our authors having a mention between

them, but this rose to 51.9% if they had co-authored a

paper together.

A fascinating reverse correlation related to the out-

degree of scientists on Twitter compared to their number

of publications on arXiv. While slight, it seems to indicate

that activity on Twitter does not necessarily lend itself to

increased publications for researchers. On the other hand

there was a positive correlation between in-degree in T ′
M

and number of publications on arXiv. This may relate to

the generally accepted notion that in-degree represents

the importance of a person in a social network [4].

These metrics represent just a small sample of what

could be said about this multilayer network. In our talk

we will discuss these and other findings. We hope the

information presented will be useful to others interested

in this kind of multilayered social network analysis, and

perhaps become a springboard for future research.
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Summary

Many systems are naturally represented by a multilayer

network in which edges exist in multiple layers that en-

code different, but often correlated, types of interactions.

Using random matrix theory, we analyze the effect of layer

aggregation on the detectability of community structure

in networks in which the layers are drawn from a com-

mon stochastic block model. Our analysis provides insight

into the common – but not well understood – practice

of thresholding data matrices to obtain sparse network

representations.

Layer Aggregation in Multilayer Networks

Multilayer networks [1] are ubiquitous in biological, social

and technological systems, wherein different layers can

encode different classes of categorical social ties, types of

critical infrastructure, or a temporal network at different

instances in time. In some applications network layers

are correlated with one another and encode redundant

information, and in such situations it is beneficial to seek a

more concise representation in which certain layers are ag-

gregated [2]. Identifying sets of repetitive layers (referred

to as “strata” [3]) amounts to a clustering problem, and

it is closely related to the topic of clustering networks in

an ensemble of networks [4]. Much remains to be studied

regarding when layer aggregation is appropriate and how

it should be implemented.

In this research [5], we study the effect of layer aggre-

gation on community structure in multilayer networks [6].

Community detection is a central pursuit for understand-

ing the structure and function networks, and it is impor-

tant to study fundamental limitations on detectability.

That is, if the community structure is too weak, it cannot

be found upon inspection of the network [7, 8, 9]. In Fig. 1,

we depict in panels (A)–(D) the adjacency matrices of

networks that have an increasing prevalence of commu-

nity structure; the communities are undetectable in panel

(A), whereas they are detectable (and have an increasing

accuracy of inference) in the subsequent panels.
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Figure 1: Phase transition in detectability for a two-community

stochastic block model (SBM). Network adjacency matrices are

shown for a single-layer network with N = 100 nodes, which

are allocated into two equal-sized communities. Community

structure is implemented by creating edges with probability pin

(pout) for nodes in the same (different) communities. Tuning

∆ = pin − pout > 0 controls the prevalence of community

structure. Panels (A)–(D) reflect networks with increasing

values of ∆ at a fixed mean edge probability, ρ = (pin +

pout)/2 = 0.5.

Multilayer Stochastic Block Modeling (MLSBM)

We analyze detectability limitations for a network model

in which each layer l ∈ {1, . . . , L} is generated from a com-

mon stochastic block model (SBM). SBMs are a paradig-

matic model for complex structure in networks and are

particularly useful for studying limitations on detectabil-

ity [7, 8, 9]. Despite growing interest in multilayer SBMs

[3, 10, 11] – which we note focus on multiplex networks

in which nodes are identical in every layer and edges are

restricted to connecting nodes in the same layer [1] – the

effect of layer aggregation on detectability has yet to be

explored outside the infinite-layer, L→∞, limit [12].

We study detectability limitations for multiplex net-

works with finitely many layers. We develop analysis for

networks layers that follow an SBM with equal-sized com-

munities in which the probability of an edge (i, j) is given

by pin if nodes i and j are in the same community and pout
if they are in different communities. It is also convenient

to study the mean edge probability ρ = (pin + pout)/2

and the probability difference ∆ = pin − pout > 0. The

adjacency matrices of several example SBMs are shown

in Fig. 1.
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Random Matrix Theory for Aggregated Layers

Following previous research [8, 9], we study detectabil-

ity limits by developing random matrix theory for the

modularity matrix B. One benefit of this approach is

that the community labels of nodes can be inferred using

spectral bi-partitioning based on the dominant eigenvector

v (i.e., Bv = λ1v, where λ1 is the largest eigenvalue). In

particular, provided that the community structure is suffi-

ciently strong, the eigenvector entries {vi} are correlated

with the community assignments: vi > 0 for nodes {i}
in one community and vi < 0 for nodes {i} in the other

community. By solving how v depends on SBM param-

eters ρ, and ∆, and on the number of layers L (which

amounts to studying a spectral gap between the largest

and second-largest eigenvalues of B), we analyze how the

detectability limit ∆∗ is affected by the aggregation of

layers. We focus on two methods of layer aggregation –

(i) summing the layers’ adjacency matrices that encode

the network layers and (ii) thresholding this summation at

some value L̃ – and find that the method of aggregation

significantly influences detectability.

Scaling Behavior for Many Layers

Our main contribution is our analysis of the scaling behav-

ior for how ∆∗ behaves as the number of layers increases,

L → ∞. When the aggregate network corresponds to

summing the layers’ adjacency matrices, aggregation al-

ways improves detectability. In particular, the detectabil-

ity limit ∆∗ vanishes with increasing L and decays as

O(L−1/2). Because the summation of L adjacency matri-

ces can often yield a weighted and dense network – which

increases the computational complexity of community de-

tection [13] – we also study binary adjacency matrices

obtained by thresholding this summation at some value L̃.

We find that the detectability limit ∆∗ is very sensitive to

the choice of threshold L̃; however, we also find that there

exist thresholds (e.g., the mean edge probability ρ for the

case of two homogeneous communities) that are optimal

in that the detectability limit also decays as O(L−1/2).

We illustrate this scaling behavior in Fig. 2 by plotting a

scale-invariant (that is, it becomes invariant for large N

and L) variable ∆∗√NL for various values of ρ. Results

are shown for an SBM with N = 1000 nodes.
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Summary

We introduce a graph-theoretic virtual hardware frame-

work for embedding optimization problems into adiabatic

quantum computers. We utilize biclique virtual hardware

to emulate the existing TRIAD “native clique” embedding,

while providing an additional mechanism for reducing hard-

ware footprint based on program connectivity. Finally, we

exploit bipartite structure in program graphs to obtain a

novel algorithm that embeds larger programs while using

less hardware resources than previous approaches.

Introduction

Modern advances in production-level quantum hardware

have sparked significant interest in using quantum anneal-

ing to solve difficult combinatorial optimization problems;

recent reports indicate that D-Wave System’s 1152-qubit

2X hardware can solve problems 108 times faster than

classical heuristics such as simulated annealing [3]. Unfor-

tunately, compiling an input optimization problem into

the hardware is itself computationally difficult, bottle-

necked by the NP-hard GraphMinorEmbedding prob-

lem. While specific applications in computational chem-

istry [4], machine learning [7] and computer vision [6] have

been run by hand-embedding the problems into the hard-

ware, developing more generalized embedding algorithms

is essential for accessibility and widespread adoption.
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Figure 1: (Left) Embedding a dense, 8-vertex program graph using TRIAD-Embed and Native-Expand schemes. (Right)

Embedding the same program using OCT-Embed and 2Ex-Expand schemes yields a 17% smaller embedding.

Embedding algorithms for cliques and sparse program

graphs are well-studied. Early embedding algorithms from

Choi [2] and Klymko et al. [5] embedded cliques into the D-

Wave hardware, but these embeddings require a quadratic

number of qubits to achieve the connectivity required for

a clique. Cai et al. [1] took a fundamentally different

approach, providing stochastic heuristics for incrementally

constructing embeddings. While the core heuristic suc-

ceeded in reducing hardware footprint for sparse graphs,

it also introduced the possibility of false negatives at a

rate proportional to the program’s edge density.

Unfortunately, between the two extremes of small

cliques and large sparse graphs is a significant class of

dense graphs not covered by prior methods. Additionally,

previous hardware footprint reduction routines cannot

be applied to these dense graphs. To address both is-

sues, we introduce a virtual hardware layer that provides

a simplified hardware interface, a framework for addi-

tional footprint reduction post-processing, and facilitates

new embedding methods for specific graph classes such as

nearly-bipartite program graphs.

Virtual Hardware

Generally, a virtual hardware graph will represent an

allocation of qubits from the physical hardware into virtual

qubits; we define this allocation as a minor embedding.

1
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Definition 1 Given two graphs G and H, a mapping φ

is a minor embedding of H in G if:

1. φ(u) ∩ φ(v) = ∅ for u, v ∈ V (H) and u 6= v,

2. φ(v) induces a connected subgraph for v ∈ V (H), and

3. The graph Gφ, formed by contracting every set φ(v) for

v ∈ V (H), contains a subgraph isomorphic to H.

We then embed programs into the physical hardware

by (1) embedding the program into the virtual hardware

graph, and (2) expanding this embedding by replacing

each logical qubit with an appropriate subset of its allo-

cated physical qubits. We compute these two steps with

embedding and expansion functions, respectively. This dis-

tinction is particularly useful for addressing the problems

of embeddability and footprint reduction independently,

enabling modular and specialized subroutines.

We apply this framework to identify a complete bipartite

(biclique) virtual hardware in Chimera(L, M , N) – a gen-

eralization of D-Wave hardware defined as an M ×N grid

of biclique KL,L cells. This grid is composed of vertical

and horizontal edges, and allocating vertices along these

edges gives a KLM,LN biclique virtual hardware. Figure 1

shows Chimera(4, 2, 2) with a K8,8 virtual hardware.

New Embedding Algorithms

We evaluate against Choi’s TRIAD embedding [2], the

best algorithm for dense graphs in fault-free hardware,

which we can also emulate with schemes TRIAD-Embed and

Native-Expand. Additionally, we reduce TRIAD’s hardware

footprint by reordering the virtual hardware embedding

with a pair-exchange local search 2Ex-Expand scheme.

The largest improvement, however, comes from our

scheme for efficiently embedding “bipartite-like” graphs

into the biclique virtual hardware. We start by computing

an odd cycle transversal decomposition of the program:

Definition 2 An odd cycle transversal (OCT) for a graph

G is a set of vertices whose deletion makes G bipartite.

Computing an OCT set decomposes the program into a

directly-embeddable bipartite graph and a “tangled” OCT

set that is easily handled with TRIAD-Embed. This OCT-

Embed scheme also benefits from allocating less qubits

per bipartite vertex, enabling a more effective 2Ex-Expand

footprint reduction. In total, coupling OCT-Embed with

2Ex-Expand leads to a new algorithm capable of embedding

programs with up to L(M +N) vertices (double the limit

of complete graphs [2]), while experimentally constructing

smaller embeddings than existing algorithms (Figure 2).
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Figure 2: Embedding Erdős–Rényi(n, p = 0.25) graphs

in Chimera(4, 8, 8); averaging over 10 trials per n. OCT-

Embed with 2Ex-Expand embeds 30% more graphs and

has up to a 50% smaller footprint than TRIAD.

Future Work

Virtual hardware is amenable to two major extensions.

First, physical implementations of the Chimera graph

typically contain hard faults (i.e. defective qubits), invali-

dating standard embeddings. Biclique virtual hardware

proves resilient to this change and models it with missing

edges, facilitating the development of appropriate embed-

ding and expansion functions. Second, identifying optimal

virtual hardware for a given program remains open beyond

the “bipartite-like” case. The Chimera graph contains

several other interesting virtual hardwares such as grids,

dense cores, etc., and utilizing these structures could lead

to improvements for other program classes.
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Summary

To assess the impact of a drug on a biological system,

network pharmacology uses impact measures that describe

the effect of perturbations on networks. The plausibility of

different impact measures depends on their ability to cap-

ture the robustness of biological systems. The literature

has highlighted links between redundancy, degeneracy, and

robustness. We investigate how to quantify the biological

notions of redundancy and degeneracy with analysis of

cellular networks by adapting an information-theoretic

approach that was previously applied in theoretical neu-

roanatomy.

Introduction

Network pharmacologists model complex biological sys-

tems as networks and use tools from network analysis

to gain insights into biological problems. This approach

can facilitate multi-target drug discovery [12]. For ex-

ample, one can associate biological systems with protein-

interaction networks (PINs) and chemical compounds af-

fecting these systems with network perturbations. By

analysing structural changes induced by a perturbation

on a PIN, it is possible to elucidate the systemic impact

of a chemical compound on a biological system.

It is unclear how biological function relates to structural

properties of the corresponding PINs. A better under-

standing of this relationship is needed to define suitable

measures for the above perturbations. Theoretical and

computational work should guide and assist experimental

research in this endeavour. Purely experimental investi-

gation of the relationship between structure and function

of PINs is prohibitively expensive and difficult, because

uncertainty in data on protein interactions, individual dif-

ferences between cells, and a wide range of environmental

factors for which one needs to control make it difficult to

identify correlations between structural properties of PINs

and biological function in experiments.

In collaboration with e-Therapeutics, we aim to develop

computational methods for identifying structural prop-

erties that may be linked to the integrity of biological

functions in a cell. To that end, we identify links be-

tween biological and structural robustness of PINs and

combine insights from evolutionary biology on the robust-

ness of complex biological systems with findings on the

percolation properties of PINs and random-graph models

thereof.

Impact Measures and their Plausibility

Consider the impact IS of a perturbation as the relative

change in a structural property S of the network,

IS =
|S(N ∗)− S(N )|

S(N )
, (1)

where N denotes the network before perturbation and N ∗

denotes the network after perturbation. It is not clear

which structural properties S lead to meaningful impact

measures IS . One can require an impact measure to align

with the notion that biological networks are generally

robust to random failures but vulnerable to targeted at-

tacks [10, 11]. This implies that one expects to observe

a large impact when the set of nodes to be removed is

chosen according to some ranking of the importance of

the nodes and a small impact when the set of nodes is

chosen uniformly at random.

Robustness of Random-Graph Models for Protein-

Interaction Networks

When investigating a network’s robustness, researchers

often consider to the robustness of the network’s mean

shortest path length to removal of the highest-degree nodes

[1, 6]. However, it is unclear if this robustness property

is the best choice for characterising the robustness of bi-

ological functions. Using impact measures (see Eq. (1)),

we analysed the robustness of five structural properties

(fragmentation, mean shortest path length, global and

mean local clustering, and communicability [3]) to target-

ing nodes by degree, node betweenness, eigenvector, and

subgraph centrality [4].

We tested several random-graph models [7, 8, 10] for

their ability to capture the robustness properties of PINs.

We found that the configuration model [7] — a commonly

1
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used null model — describes impacts of perturbations in

PINs better than two variants of the vertex-duplication

model [8, 10], which are popular for modelling PINs. How-

ever, none of the models captured the consistently low

impact of attacks when targeting nodes by subgraph cen-

trality as opposed to when targeting by other centrality

measures. This suggests that cyclic graphlets — a struc-

tural property highlighted by subgraph centrality — can

affect a PIN’s robustness in a way that the above graph

models do not take into account.

Robustness of Biological Networks

Researchers have suggested that cycles in a network’s

structure play an important role for key characteristics

of biological systems in the context of other network ap-

plications [2, 5]. The biological literature has highlighted

links between redundancy, degeneracy, and robustness [11].

Here, we refer to redundancy as the existence of struc-

turally similar parts of a network that perform the same

function. Degeneracy indicates the existence of parts that

are structurally different but can perform the same func-

tion [9]. In early work on structural robustness, network

scientists demonstrated that redundancy can lead to ro-

bustness in networks with power-law degree-distributions

[1, 6].

As indicated in Refs. [5, 11], mechanisms that lead to

robustness in biological networks likely differ from the

one proposed in the early works [1, 6] and rather rely on

degeneracy of a network’s structure than its redundancy.

Quantifying Degeneracy

We use information-theoretic measures for quantifying

biological redundancy and degeneracy that were proposed

by Tononi et al. [9] for linking the structure of cortical

networks to biological characteristics. We assume linear

noisy dynamics of the form

x dt+ dx = Ax dt+ dw , (2)

with state vector x, PIN adjacency matrix A (with

weighted elements), and Wiener process w. If Eq. (2)

has a stationary state, one can derive expressions for en-

tropy and mutual information from the state’s stationary

covariance matrix [2, 9]. The functional overlap indicates

the existence of parts of a network — either structurally

similar or structurally dissimilar — that can perform the

same function. Defining a subset of the network as the

output or observable set o, we can calculate the functional

overlap

FO(x,o) =

n−1∑

j=1

[MI(xj ,o)]−MI(x,o) , (3)

where xj is the j-th element of x and MI is the mutual

information. The system’s degeneracy is

D(x,o) =
n−1∑

k=1

[
k

n
FO(x,o)− 〈FO(xk,o)〉k

]
, (4)

where xk is a subset of x of size k and 〈·〉k is the mean

over all xk.

In analogy to an approach presented in Ref. [2], we

investigate the relationship between small-scale structures

in A and D to link D to graphlet frequencies in the

network.
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Massive datasets of human activity are now available,

revolutionizing research on human dynamics and computa-

tional social science. We study the complete text streams

of thousands of Twitter users and their online followers.

Twitter is an online microblogging platform where users

interact with one another and post short messages called

tweets. Information flows across the social network by

means of these tweets. But how much information flows,

how much influence do users have on one another, and

can we accurately measure these effects?

Treating each Twitter user’s text stream as a symbolic

(word) time series, the entropy rate measures how much

information about a future word choice is available in the

past history (Fig 1A). However, the basic Shannon entropy

underestimates the information in, e.g., natural language

because it only considers the frequencies of words and

not correlations in their occurrence. We apply theorems

from data compression to compute an estimated correlated

entropy that accounts for both temporal ordering and long-

range correlations in the data [1]. The correlated entropy

rate estimates the inherent uncertainty about someone’s

future word choice. We then relate this uncertainty to

the predictability Π [2, 3], a bound on how well a perfect

prediction algorithm can guess, in this case, the next word

a user will post.

Crucially, this technique can also measure the infor-

mation transfer between pairs of users (denoted egos and

alters) [4]. To do this we instead compute the cross-entropy

to estimate how much information about the ego’s future

word choice is present in the alter’s past words1 (Fig. 1B).

We find that most online users have a predictability of

over 50% (Fig. 1C, red distribution). The cross-entropy

is not sharply peaked however, meaning there is a range

of information flow between egos and alters (Fig. 1C,

blue distribution). Some alters contain nearly as much

1We exclude retweets, where one user directly quotes the exact

text of another user, and consider only original, primary source text.

information about the ego as the ego itself, but other ego-

alter pairs show little information flux. For comparison,

random pairs of users (Fig. 1C, grey distribution) tend to

have lower predictability, Π < 0.3, for many pairs.

Figure 1 is limited to a single pair of users, but in

principle more information may be available about the ego

from the set of alters. In Fig. 2 we study the cross-entropy

(Fig. 2A) and predictability (Fig. 2B) as we increase the

number of alters examined. Incorporating the text of

multiple alters greatly increases the potential information

and predictability had from the ego. Random controls,

where either ego-alter pairs were shuffled or messages were

shuffled between users, do not show this effect.

Figure 2 indicates that the social neighborhood of a

social media user contains distinct and potentially action-

able information about the user, even when that user is

completely excluded.

Taken together, these results provide new quantitative

bounds on information transfer in social networks, useful

for better understanding the spread of ideas and influence

in human populations.
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Figure 1: (A) We measure the correlated entropy rate

and predictability to understand how much information

about a user’s future activity is present in her historical

activity. (B) To measure information flux and influence

we extend this measure to the cross-entropy, capturing

how much information about an ego’s (green) future is

present in an alter’s (blue) past. (C) These correlated

entropies can be related to the predictability Π, an upper

bound on the maximum predictive accuracy of a perfect

prediction algorithm (Π = 1 indicates perfect accuracy

and no mistakes, Π = 0 indicates a complete absence of

predictive potential). The distribution of Π for the ego

(red) is sharply peaked around 0.55; a perfect algorithm

has the potential to predict a user’s activity with over

50% accuracy. Considerable information on the activ-

ity of many (but not all) egos is available in the alter’s

past (blue), while a random alter generally provides little

information (grey; Π < 0.3 for most pairs).

Figure 2: Estimating the information about the ego not

within a single alter but from multiple alters simulta-

neously. (A) We rank alters by contact frequency on

Twitter (number of mentions). The cross-entropy between

the alter(s) and the ego drops quickly as more alter text

data is used. Random controls, computed by randomizing

ego-alter pairs or by randomly shuffling tweet messages

between users, have far larger cross-entropies (less infor-

mation) and do not display the steep decrease in entropy

(increase in information) that real tweets and real alters

show. (B) Computing the predictability from the cross-

entropy shows that, while self-predictability can exceed

50%, the alters of an ego by themselves provide nearly as

much information, with over 40% predictability.
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The stochastic block model (SBM) [3] is a probabilis-

tic model for community structure in which nodes in a

community are connected to nodes within and between

communities in a characteristic way. Typically, fitting an

SBM to a network only considers the connectivity patterns

between nodes encoded in the adjacency matrix. However,

recently, there have been advancements in the incorpora-

tion of node attributes, or metadata, in SBM inference

[7, 1, 4]. These existing approaches are applicable for

dealing with binary attributes [7], modularity-based com-

munity detection [1], and for incorporating a single piece

of categorical or continuous metadata [4]. In this work,

we seek to extend the classic inference procedure required

in fitting the SBM to take into account multiple measured

continuous attributes. This can be particularly useful in

cases where either the connectivity or attribute informa-

tion is noisy and uninformative and hence complicates the

identification of meaningful communities.

We consider the case where each node in the network

has an associated vector of continuous attributes that

is dependent on its community membership. Using this

information, we have developed a model to incorporate

attribute information (X) and network connectivity (A)

to fit an SBM. To do this, we assume that node i in

community c has an associated p-dimensional vector of

attribute data, xi, that is drawn from a multivariate

Gaussian distribution, parameterized by Ψc = {µc,Σc},
where µc and Σc specify mean and covariance parameters,

respectively.

Figure 1 shows the associated graphical model, with

a notable foundational model assumption that X and A

are assumed to be conditionally independent, given the

node-to-community assignment labels, Z. Further, X is

specified by the appropriate multivariate Gaussian param-

eters, generically given by Ψ, and hence for a network

with K communities, K multivariate Gaussians are fit to

the data in X. The adjacency matrix A can be generated

according to θ, the K × K matrix of stochastic block

model parameters. To learn the most appropriate model

✓ X A

z

Figure 1: Graphical model for our approach. Ulti-

mately, we seek Z that gives node-to-community assign-

ments. We assume that given Z, connectivity patterns

encoded through the adjacency matrix A and attribute

information, X can be inferred, and these two sources are

conditionally independent given the node-to-community

assignments. The adjacency matrix, A, is parameterized

by a matrix of SBM edge probability parameters, θ, while

attributes for nodes within a community are parameterized

by Ψ = {µ,Σ}, giving the mean and covariance matrix

for a multivariate gaussian, respectively.

parameters maximizing the model likelihood, we apply

expectation maximization (EM) [2], and we can compute

the probability that node i belongs to community c,

p(zic = 1 | xi,ai) =
p(xi | zic = 1)p(ai | zic = 1)πc∑K
c=1 p(xi | zic = 1)p(ai | zic = 1)πc

.

(1)

Note that here πc gives the probability of belonging to

community c, while ai gives the connectivity pattern (i.e.

row in the adjacency matrix) for node i.

We can show that this approach performs well on syn-

thetic networks in regimes where the attribute and ad-

jacency matrices are both noisy. These circumstances

correspond to conditions where community structure is

not detectable from the graph alone, and clusters are

undiscernable according to the attribute information. In

experiments shown in figure 2, networks were generated

from a stochastic block model with within-community

edge probability, pin = .25 and between community proba-

bility, pout = .1. An example network is shown in figure 2a.

1
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Figure 2: Synthetic Experiments. 25 network + at-

tribute datasets were created. Networks have N = 200

nodes, K = 4 communities pin = .25, pout = .1. Each

network, attribute pair corresponds to one synthetic ex-

periment. a. Visualization of the network generated for

one synthetic experiment. b. PCA plot of the attribute

vectors associated with the nodes from the network in the

example synthetic experiment shown in a. c. Distribution

of NMIs over the 25 different synthetic experiments. The

performance of our method “us”(gold) in comparison to

several baselines (purple).

Similarly, for each community, we generated its attributes

according to a random mean vector, µc and a covariance

matrix, Σ with Σ = diag(.25). The 2-dimensional PCA

plot for nodes according to these attributes is shown in

figure 2b, where there is an obvious mixing of classes.

Figure 2c. shows the distribution of normalized mutual

information (NMI) obtained from running this experiment

on 25 network+attribute pairs through our approach (gold,

labeled “us”) in comparison to several baselines (purple).

As an application for this model, we can apply it for

image segmentation tasks, where the objective is to label

pixels according to the object in the image to which they

belong. Graph-based segmentation has shown to be useful

[6], but generative models for segmentation are lacking.

Applying our model to segmentation tasks allows us to

incorporate spatial regularization between pixels through

the adjacency matrix and features of the image, such as

color and texture, through the attribute matrix. Figure

3 gives an example of an image of an elephant from the

dataset in [5] segmented according to our approach.

Figure 3: Example segmentation result under our

model. We apply our model to segmentation tasks, where

the adjacency matrix encodes spatial proximity between

image pixels and the attribute information reflects color

and texture information.

The methods and applications discussed in this work

make important contributions to the networks and image

analysis communities. First, specifying a probabilistic

model for networks with node attributes is important for

dealing with the increasing amount of annotated network

data across fields. Finally, the well established methods

within the image analysis community for techniques such

as parameter inference and regularization could advance

the network science field in novel ways.
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Summary

We implement semi-external memory (SEM) spectral clus-

tering for massive graphs by utilizing solid-state drives

(SSDs). We extend the Anasazi eigensolvers [2] in the Trili-

nos Project [10] to use SSDs for computing eigenvalues

of a massive graph. We further perform SEM K-Means

on the eigenvectors to cluster vertices. Our SEM spectral

clustering implementation takes less than 4 hours to clus-

ter a graph with 3.5 billion vertices and 129 billion edges

in a single machine. To our knowledge, this is the first im-

plementation that can scale to billion-node graphs and the

code is released in https://github.com/zheng-da/FlashX.

Background

Spectral clustering is a very useful technique for clustering

vertices in a graph. There are variants of spectral cluster-

ing algorithm in the literature [19, 15] and each of them

computes eigenvectors of a graph and performs K-Means

on the eigenvectors. Spectral clustering has relatively low

computation complexity when compared to other graph

clustering algorithms [11, 8, 14], but it is still computa-

tionally challenging to apply this technique to massive

graphs such as Facebook’s social network and today’s web

graph, that have billions of vertices.

One of the challenges is to compute eigenvalues and

eigenvectors of a large matrix. The computation com-

plexity of computing all eigenvalues of a square matrix is

O(n3) [16], where n is the number of rows and columns of

the matrix. Numerous algorithms [12, 4, 18, 3] have been

developed to compute a small number of eigenpairs of a

large matrix. We can apply these algorithms to a large

graph to compute its eigenvalues. However, when com-

puting eigenpairs of a graph at the billion scale, neither

the sparse matrix that represents a graph nor the vector

subspace fits in the RAM of a single machine. Large-scale

eigenvalue problems are generally solved in a supercom-

puter [2, 9], where the aggregate memory is sufficient to

store the sparse matrix and the vector subspace. Sparse

matrix multiplication on graphs in distributed memory

leads to significant network communication and is usually

bottlenecked by the network. As such, this operation

requires a fast network to achieve performance. However,

a supercomputer with fast network communication is not

accessible to many people.

Even though K-Means is less computationally intensive

than computing eigenvalues, it can easily become the

bottleneck to scaling spectral clustering. K-Means is an

iterative algorithm, where when given a matrix, Rnd, to

be clustered into k clusters, the computation complexity

of each iteration is O(ndk). In many cases, we need to

try different k values and run K-Means many times to

find the right number of clusters. As such, performing

K-Means on the eigenvectors of a billion-node graph can

become as expensive as computing eigenvalues.

Semi-external memory Eigensolver

We develop an SSD-based eigensolver framework called

FlashEigen, which extends Anasazi eigensolvers to SSDs,

to compute eigenvalues of a graph with hundreds of mil-

lions or even billions of vertices in a single machine. When

computing the eigenvalues of a graph, the most compu-

tationally expensive operation in an eigensolver is sparse

matrix multiplication. FlashEigen performs sparse matrix

multiplication in a semi-external memory fashion, i.e., it

keeps the sparse matrix on SSDs and the dense matrix in

memory. Besides sparse matrix multiplication, Anasazi

eigensolvers require a set of dense matrix operations on

the vectors in the subspace. FlashEigen provides both

in-memory and external-memory implementations for the

dense matrix operations. As such, when computing eigen-

values, FlashEigen keeps a specified number of vectors

in the subspace in memory and the remaining vectors on
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Graph datasets # Vertices # Edges Directed

Friendster [21] 65M 1.7B No

RMAT-40 [6] 100M 3.7B No

RMAT-160 [6] 100M 14B No

Page [20] 3.4B 129B Yes

Table 1: Graph data sets.

SSDs. The number of vectors in memory is determined

by the memory size available to the eigensolver. The

implementation details of FlashEigen is described in [22].

Semi-external memory K-Means (SEM-kmeans)

When run in-memory the best memory bound achievable

is O(nd+kd). When n is in the billions it quickly becomes

unfeasible to compute without distributed computing. We

provide an SEM implementation, SEM-kmeans, to over-

come this scalability challenge. We extend the original

definition of the semi-external memory model [1, 17], defin-

ing it in this setting to be an in-memory state of O(n)

during computation. SEM-kmeans has a memory bound

of O(n + Tkd), where T is the number of threads and

Tkd << nd.

SEM-kmeans achieves high performance by mostly merg-

ing the 2-phases of Llyod’s algorithm [13], via unshared

per-thread data structures. SEM-kmeans is optimized

by minimizing remote memory reads in NUMA multipro-

cessor architectures and maximally utilizing vectorized

CPU instructions. Furthermore, we modify the triangle in-

equality computation pruning technique [7] and reduce it’s

memory requirements from O(n+Tkd+nd) to O(2n+Tkd)

by eliminating the lower bound matrix that we empirically

determined to only prune less than 5% of computation in

real world graphs [5]. We further add support for matrix-

like computations within the FlashGraph [23] engine and

develop a per-matrix-partition row cache to reduce the

effect of I/O latency by an order of magnitude compared

to FlashGraph’s page cache.

Performance evaluation

We conduct all experiments on a non-uniform memory

architecture machine with four Intel Xeon E7-4860 proces-

sors, clocked at 2.6 GHz, and 1TB memory of DDR3-1600.

Each processor has 12 cores. The machine installs 24 OCZ

Intrepid 3000 SSDs whose aggregate capacity is around

10TB. The machine runs Ubuntu Linux 14.04. We use 48

threads for the experiments.

We use the real-world graphs in Table 1 for evaluation.
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Figure 1: The runtime of the Trilinos KrylovSchur,

FlashEigen-SEM and FlashEigen-IM KrylovSchur eigen-

solvers on smaller graphs in Table 1 when computing

eight eigenvalues. The Page graph is too large for Trilinos

KrylovSchur and FlashEigen-IM KrylovSchur.

Stage Runtime Memory

Eigen-decomposition 3.7 hours 120 GB

K-Means 3 min 44 GB

Table 2: Preliminary results of runtime and memory con-

sumption of spectral clustering on the Page graph.

The smallest graph is the Friendster graph with 65 million

vertices and 1.7 billion edges and the largest graph is the

Page graph with 3.4 billion vertices and 129 billion edges,

almost two order of magnitude larger than the Friendster

graph. We use RMAT [6] to generate two synthetic graphs

to fill the gap between the smallest graph and the largest

graph.

FlashEigen in semi-external memory (FlashEigen-SEM)

is able to at least achieve 40%-60% performance of its

in-memory implementation (FlashEigen-IM) and has per-

formance comparable to the Anasazi eigensolvers (Figure

1). In this experiment, FlashEigen-SEM only keeps the

dense matrices involved in sparse matrix multiplication

in memory and all the vectors in the subspace and the

sparse matrix on SSDs, which results in minimal memory

consumption.

We further demonstrate the efficiency and scalability

of FlashEigen and SEM-KMeans on the Page graph with

3.4 billion vertices and 129 billion edges. It takes about

four hours to compute eight eigenvalues of the billion-node

graph using 120 GB memory.
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Summary

The topology and scale-free characteristics of the internet

have been extensively characterized on the basis of the

distribution of directed links between web domains [1].

Due to the inherent di�culties in the analysis and inter-

pretation of complex networks on multiple scales, dynamic

online referral tra�c networks, reflecting the functional

connectivity of the web through inter-domain user move-

ment over time, have not been widely explored. In this

report we demonstrate a method for computing persis-

tent homology of referral networks based on inter-domain

tra�c patterns over time. Quantifying the persistence of

n-dimensional simplical complexes arising from these net-

works as they evolve is of significant value for marketers

aiming to maximize user exposure to advertising content

across a minimal number of sites.

Background

Like information transfer between neurons and regions of

the brain, the flow of user tra�c between web domains

often exhibits significant temporal variation due to mar-

keting e↵orts, seasonality, and countless other exogenous

influences [2]. These temporal e↵ects introduce significant

topological complexity at multiple scales by introducing

transient paths and clusters [3].

To measure the stability of inter-domain connections

over time while accounting for periodic and asymmetric

tra�c profiles, we computed the entropy rate of the con-

nections modeled as a binary renewal process, a method

having been previously applied to quantify information

transfer between neurons [4].

In recent years, persistent homology, a method of com-

putational topology, has proven to be a highly e�cient

mechanism for computing topological features of weighted

directed networks at multiple scales that are not accessi-

ble by conventional combinitorial or spectral techniques

[5, 2, 3, 6]. We used persistent homology to identify topo-

logical features of referral networks, with those features

which persist across maximal range of entropy rates being

the most significant.

Methods

A year of monthly estimated inter-domain tra�c volume

data was obtained for a network of 27753 web domains

comprising the known referral ecosystem of five competi-

tive e-retailers using SimilarWeb, a commercial data ser-

vice providing competitive intelligence data aimed at mar-

keters. Referrals reflect the flow of users from one web

domain to another via hyperlinks and paid advertisements.

From this data, we formed a directed graph weighted

by the entropy rate of a binary sequence Xi,j 2 {0, 1}n

denoting the transfer of tra�c from domain i to j within

each measurement interval t. Assuming the sequences fol-

low a renewal process, a generalized Poisson process based

on the distribution of arrival intervals between transfers,

the entropy rate of each binary string was estimated as

H(X) = E(X)H(Y) = �E(X)
X

j

qj log qj (1)

where Y denotes a i.i.d geometric sequence of inter arrival

times of X such that {Yi = ti+1 � ti} for Xt = 1 and qj

the empirical distribution of unique arrival times [4].

We parameterized a simplical complex over binary net-

works B(V, ✏) by a filtration parameter ✏ such that i, j 2 V

are adjacent if !(i, j) < ✏, where ⌘ is the maximum trans-

fer entropy in the network and

!(i, j) =

(
1� ⌘�1H(Xi,j) : (

P
t Xi,j

t ) > 1

1 : (
P

t Xi,j
t ) = 1

The Vietoris-Rips construction [7, 2] was used to com-

pute the persistent homology of sampled subnetworks

from this parameterized complex on the filtration interval

✏ 2 [0, 1].

Results

Figure 1 reflects the global filtration parameter distribu-

tion for the referral network based on the inter-domain

renewal entropy, grouped by the total number of intervals

Xt > 0. The progressively overlapped distributions are

indicative of the ability of the renewal entropy estimator
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Figure 1: Edge filtration parameter density by total con-

nections measured across referral network

to meaningfully distinguish between equal rank sequences

with varying stability (e.g. 1001001001 vs 1011000010).

Figures 3 and 2 show the persistent homology (rep-

resented by a barcode diagram [6]) and corresponding

sequence of filtrations for a randomly sampled subnetwork.

Although not shown for the sake of brevity, the majority

of sampled networks displayed similar topological features

and infrequent higher dimensional persistent structures.
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Figure 2: Barcode homology representation for example

subnetwork, filtration ✏ 2 [0, 1]

Conclusions

We have briefly outlined the procedure for computing

persistent homology of referral networks based on the

renewal entropy of inter-domain tra�c sequences. Iden-

tifying persistent n-dimensional simplical complexes of

referral networks will allow marketers to identify sets

of domains with stable referral tra�c behavior and can

be used to optimize marketing strategy. Extensions of

this work will focus on extensions to larger networks and

datasets with greater temporal granularity.
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Summary

Null models are established tools used in network anal-

ysis for hypothesis testing [2]. Despite the prevalence of

weighted directed networks, we lack established methods

to construct weighted, directed degree-preserving random

networks that are suited for null models. Here, we propose

such a method that is inspired by the configuration model.

It can be approximated by a closed formula thus, making

our approach scalable to massive networks. We apply this

method to obtain the null model distribution of weights in

the crowdfinancing network Kiva [1] and use it to analyze

the observed lending patterns in the network.

Generating random weighted networks

Degree-preserving network randomization is a powerful

technique for assessing the statistical significance of ob-

served structural properties of networks [3, 7]. One of

the most widely used models for generating random net-

works with a given degree sequence is the configuration

model [4]. The idea is that all edges are broken into two

stubs and then reconnected uniformly at random. In di-

rected networks, this mechanism preserves both the in-

and out-degrees of nodes. The configuration model is the

fastest and most convenient network sampling method

when multi-edges and self loops are admitted. A straight-

forward extension of this method to networks with discrete

weights considers an edge with weight x, as separate edges

between the same two nodes (similar to [8]). The analyti-

cal formulation for exactly calculating the moments of the

weights as they would be expected at random is challeng-

ing. Further, even though the permutation of the stubs

under the Configuration Model scales linearly with number

of (multi)edges, multiple realizations of those permuta-

tions have to be executed for the weights to asymptotically

converge to the exact value. However, by preserving the

degree of a node on an average as opposed to preserv-

ing the exact degree sequence, the model turns from a

microcanonical to canonical ensemble [6].

The proposed model allows us to estimate weights for

all node pairs of a given weighted network, as expected

by this randomization process in the canonical ensemble.

A comparison between the actual network and its ran-

domized counterpart can be used for example to identify

node pairs which exhibit significantly different weights

than expected by chance [3, 5].

Approximating weights with a closed formula

Let kouti denote the out-degree of node i. Similarly, kinj
is the in-degree of node j. Assuming that the probability

of observing a link is independent of all other links, the

probability of appearance of an edge from node i to j is

independent of the connectivity of the rest of the edges,

and it is given by

pij =
kouti kinj
N2
E

, (1)

where NE corresponds to the total number of edges in the

network. Using this probability, the expected number of

links from i to j is:

Eij = NEpij =
kouti kinj
NE

(2)

with standard deviation

σij =
√
NEpij(1− pij) (3)

The knowledge of the expected weight and its standard

deviation allows us to compare the observed weight Oij
with the expected weight Eij and identify non-random

features in the network.

For a sufficiently large count, the binomial distribution

is well approximated by the normal distribution. In that

case, one can use Eij and σij to obtain the z-score defined

as

zij =
Oij − Eij

σij
(4)

and its corresponding p-value for a given observation.

However, for different distributions, knowledge of the prob-

ability distribution is required in order to compute the

p-value. The probability of observing t links from node i

to node j is obtained by the binomial distribution with

1
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success probability pij .

P (X = t) =

(
NE
t

)
ptij(1− pij)NE−t (5)

The sum of probability of observing more than t links is

P (X > t) =
∞∑

X=t+1

(
NE
X

)
pXij (1− pij)NE−X (6)

and

P (X ≤ t) =
t∑

X=0

(
NE
X

)
pXij (1− pij)NE−X (7)

The left- and right-tailed p-values for the observed num-

ber of links Oij are

pl = P (x ≤ (Eij − δ)) (8)

pr = P (x > (Eij + δ)) (9)

where δ = |Oij−Eij |. The values of pl and pr are obtained

numerically using Equations 6 and 7.

Experimental results on a global crowdfinancing net-

work

To assess the quality of the approximation, we compare

the adapted configuration model with the analytical ap-

proximation on the example of the Kiva crowdfinancing

network between 220 countries in 2012 [1]. Every edge in

this country-to-country network is weighted by the num-

ber of lending contributions from a certain country to

another one. The out-degree distribution of the network

is highly skewed with United States accounting for more

than half of the loans. We compute the expected weight

and its standard deviation for all possible country pairs

by equations 2 and 3. Then we compare these values

with the values found in the degree-preserving randomized

networks. Since the expected values are independent of

the ensemble, the expected weights obtained from the two

methods are in very good agreement (not shown here).

However, the two methods produce different standard devi-

ations, especially when the source country is United States

(as shown in Figure 1). The analytical approximation of

σ is systematically higher than in the sampled networks

because of the variance associated with the node degree.

The discrepancy is greater for United States because of

its extremely high out-degree. Finally, we apply this null

model to detect non-random lending patterns in the Kiva

network. We compare the null model distribution with

the observed weights to identify the country-pairs with

significantly higher (or lower) than expected weights.
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Figure 1: Comparison between the standard deviation of

the number of links between two nodes as obtained by the

degree-preserving randomization and by our analytical

approximation, which preserves the degrees of the nodes

on an average. The dashed line is the line of equality.

Conclusion

The proposed method can be used to construct a null

model for directed networks with discrete weights. It al-

lows us to obtain expected weights along with their prob-

ability distributions. The estimates for expected weights

agree with those obtained by degree-preserving random-

ization (extended configuration model) hence making this

approach viable alternative specially for large networks.
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Introduction

Self-organization of network-coupled dynamical units is

a universal phenomenon that is vital to the functional-

ity of systems ranging from the power grid to cardiac

excitation [1]. In many cases, the robust and efficient func-

tionality of such systems depends not only on the ability

to synchronize, but also the nature of the dynamics of

the synchronized state. For instance, a power grid needs

not only to be synchronized to avoid power failures, but

functions most efficiently near a reference frequency of

∼ 50-60 Hz [3]. In the majority of studies of network syn-

chronization, it is assumed that this eventual frequency,

i.e., the collective frequency, of the synchronized state is

equal to the average of the frequencies of the individual

units, i.e., natural frequencies. In this work [2] we calcu-

late the collective frequency of a generic directed network

explicitly and show that in fact it can vary significantly

from the mean of the natural frequencies.

Collective Frequency Variation

The collective frequency of a network of size N whose

oscillators have natural frequencies {ωi}Ni=1 is denoted

Ω, and thus the collective frequency variation is given by

Ω−〈ω〉, where 〈·〉 represents the mean over the network. In

particular, we show that the collective frequency variation

is given explicitly by

Ω− 〈ω〉 =
〈u1,ω − 〈ω〉1〉
〈u1,1〉 , (1)

where u1 is the first left singular vector (corresponding to

the singular value σ1 = 0) of the network Laplacian matrix,

and 〈·, ·〉 represents the inner-product. Thus, Eq. (1) gives

the collective frequency variation as a weighted average

of the natural frequency vector, where the weights are

determined by the entries of the first left singular vector.

Applying this formulation to general networks, we find

that in generic directed networks the collective frequency

variation is almost always nonzero, and in fact can be

quite large. The only networks for which the collective

frequency variation is zero in general is when the in- and

out- degrees are balanced at each node, i.e., kini = kouti

for all i. Whenever this balance is broken, a non-zero

collective frequency variation should be expected. We

demonstrate this effect for small, simple networks in Fig. 1,

where we show the distribution of collective frequency

variations for a generic directed network and a degree-

balanced network.

Connection with Google’s PageRank

Given the formulation of the collective frequency variation,

the weights induced by the first left singular vector of

the network Laplacian play a central role. Upon further

inspection, we find that this weighting in fact induces

a centrality measure on the network that is precisely a

reverse analogue of PageRank centrality [4]. In particular,

while PageRank favors nodes with a large in-flow, the

left singular vector centrality favors nodes with large out-

flow. Thus, the collective frequency variation highlights

a surprising connection between network synchronization

and Markovian random walks on networks, which define

the PageRank centrality.

Collective Frequency Variation in Power Grids

Furthermore, we study collective frequency variation in

an important real-world context: power grids. While

power grids tend to be structurally undirected (and thus

degree-balanced), the presence of heterogeneous damping

coefficients in the equations of motion for the power gener-

ators and consumers result in an effective directed network

structure [5]. Specifically, we consider a commonly-used

power grid model on coarse-grain versions of the UK and

Scandinavian power grid networks, and present the re-

sult in Fig. 2. In particular, we find that the analytical

prediction given by Eq. (1) reproduces almost perfectly

the observed collective frequency, and the moreover the

collective frequency variation can be significant. Thus,

the collective frequency variation can play a role in the

dynamics of vital real-world networks.
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Figure 1: Collective frequency variation. (a),(b) Two networks of size N = 8 with 16 links: in (b), the in- and

out-degrees match at each node (kini = kouti = 2), but in (a) this balance is broken (kini 6= kouti at several nodes). Each
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observed in networks (a) and (b) (solid blue and dashed red, respectively) for different permutations of a normally

distributed frequency vector ω with zero mean and unit variance.
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Figure 2: Collective frequency variation in power grid networks. (a),(b) Course-grain representations of the UK and

Scandinavian power grids. (c) Collective frequency variation Ω− 〈ω〉 as observed in direct simulations of the power

grid model in Ref. [5] vs the theoretical prediction on the UK and Scandinavian power grid networks. (d) Distribution

of collective frequency variations on each network.

Outlook

Collective frequency variation in self-organizing networks

can have a significant on systems that must synchronize

in a particular range of reference frequencies. While we

have demonstrated its effect in the case of real power-grid

networks, we emphasize that this is a general result that

applies to network science more broadly. The collective

frequency variation itself is a result of both the heterogene-

ity of the directed-ness and heterogeneity of the network

structure as well as the heterogeneity in the local dynamics

of each individual dynamical unit in the network. More-

over, the formulation of the collective frequency variation

uncovers a surprising link between synchronization dy-

namics and Markovian random-walk dynamics that define

a network’s PageRank. Given the reverse relationship be-

tween PageRank centrality and the first left singular vector

centrality that defines collective frequency variation, we

hypothesize that well-studied problems such as PageRank

optimization can be readily applied to networks synchro-

nization, for instance in order to mitigate the collective

frequency variation in various networks.
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Summary

The concept of p-modulus on a network provides a general

tool for quantifying the “richness” of a set of objects de-

fined on the network. Depending on the particular choice

of object, p-modulus provides various types of information

about the overall network structure. Examples include

the modulus of all walks connecting two particular nodes

(generalizing several graph-theoretic concepts of distance),

the modulus of simple cycles (providing information about

clusters within the network), and the modulus of spanning

trees (related to link criticality). One of the challenges in

applying modulus to applications is the need for efficient

algorithms for computing it. We present a simple, general

algorithm for modulus, along with several specializations

for modulus computations of particular importance. We

also discuss open problems and interesting directions of

research.

Introduction

The concept of conformal modulus was first developed as

a tool in complex analysis [1,4] and metric spaces [7]. The

concept also generalizes naturally to network structures

and was explored in special cases (though not using the

“modulus” vocabulary) as early as 60 years ago [5,6]. More

recently, the discrete version of modulus has been put to

use as an analytical tool with interesting applications [9,

10]. But the careful analysis of p-modulus as an object

of interest in its own right has only begun in the past

few years, and is one of the goals of the NODE1 research

group at Kansas State University.

In its most basic form, p-modulus is defined on a family

of walks, Γ. Examples of such Γ include all walks con-

necting two distinct nodes, all simple cycles, all walks of

a prescribed length, etc. In order to define p-modulus,

we first define an admissible set, Adm(Γ), of densities

(non-negative functions on the edges). Each density gives

rise to a ρ-length, `ρ(γ), defined for a walk γ as the sum

of ρ(e) over all edges e traversed by γ. Then, Adm(Γ) is

defined to be the set of all densities such that `ρ(γ) ≥ 1

1https://node.math.ksu.edu/

for every γ ∈ Γ. The p-modulus is defined as

Modp(Γ) := min
ρ∈Adm(Γ)

∑

e∈E
ρ(e)p,

for some choice of p ∈ [1,∞). (There is also an∞-modulus,

not defined here.)

There are a number of immediate extensions of this

idea, e.g., to weighted and/or directed graphs and to

multigraphs. Moreover, there is no need to restrict Γ to

a family of walks; one can allow, e.g., Γ to be any family

of multisets, with the ρ-length of such a set determined

by the densities and multiplicities of the edges included.

For example, one can define the modulus of the set of

spanning trees: Γ is the set of all spanning trees, and `ρ(γ)

is the total weight of the tree γ, given edge weights ρ(e).

The idea of modulus has several important connections

to graph-theoretic concepts (max-flow/min-cut, effective

resistance, and shortest path) [2,3] and has been shown

to have applications in understanding epidemic dynamics

in contact networks. [8, 11]

Algorithms for p-modulus

Modulus can be formulated as a convex optimization

problem, so there are many existing algorithms that can,

in principle, compute its value. The primary difficulty

lies in the size of the constraint set, which can be large

or even infinite. In most cases, it is simply not feasible to

enumerate all constraints, thus rendering standard interior

point methods unusable.

However, it is often possible to obtain rapid conver-

gence using exterior point methods and a good choice

of violated constraint search. For example, consider the

network shown in Figure 1(a) with Γ the family of simple

paths connecting two marked nodes s and t. The number

of simple paths connecting the two nodes—although diffi-

cult to count—is very large. However, the algorithm can

find Mod2(Γ) ≈ 2.67 to three digits of accuracy in 1106

iterations and with a final active constraint set of only

637 important paths.

If the family Γ is changed to the family of all walks

beginning at s, terminating at t, and visiting a particular

1
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(a) Γ = walks from s to t (b) Γ = walks from s to t via u

Figure 1: The larger solid dots represent the nodes s and t,

the starting and terminating points of the walks considered.

The larger open dot represents the intermediate node, u,

in the case of via walks. The blue walk in each case shows

the most important walk, identified by the constraint with

largest dual variable in the convex optimization.

node u along the way, a minor modification to the modulus

code allows the numerical approximation of Mod2(Γ) (see

Figure 1(b)). Again, the number of constraints is difficult

to count, but very large. However, the code is able to

compute the value Mod2(Γ) ≈ 1.14 to three digits in 1064

iterations, identifying only 567 active constraints.

As a final example of the efficiency and flexibility of

this class of algorithm, we consider the family Γ of span-

ning trees, as described earlier. In this case, we may use

Kirchoff’s matrix tree theorem to count the number of

constraints. The network from the previous two examples

contains approximately 4.85 × 10301 spanning trees, far

too many constraints to enumerate. But, the modulus

code computes the value of Mod2(Γ) ≈ 0.0187043 to six

digits of accuracy in 815 iterations, identifying 595 active

constraints (see Figure 2(a)).

Each of the three examples discussed thus far were

computed on a laptop computer with a 1.9GHz Intel

Core i3 processor using a Python implementation of the

algorithm. All three computations were completed in 60

seconds or less. The algorithm also scales well to larger

networks. For example, the spanning tree modulus on

the network in Figure 2(b), with 3000 nodes and over

34K edges, was computed in approximately 16 minutes

on a desktop workstation with a 1.6 GHz Intel Xeon

processor running a more optimized Cython version of

the code. Further increases in efficiency as well as parallel

implementations are part of the ongoing research.

(a) (b)

Figure 2: The networks used in the spanning tree modulus

examples. The optimal density ρ takes relatively few

distinct values. Edges with identical ρ values share the

same color in each figure. The resulting clusters of like

edges have interesting interpretations in the context of

random spanning trees.
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Abstract

All networks created from real world datasets contain some

noise, manifested in the form of missing or additional edges.

A network is said to be stable if the analysis results, such

as the top-k centrality metrics do not alter significantly

under small amounts of noise. Here we discuss the three

main factors that the affect the stability of the network

and posit that examining these factors on a case by case

basis will help us determine whether a network is stable.

Introduction

All real word datasets inherently contain some noise, and

the models based on the data also inherit these inaccura-

cies. Networks, which are used to model complex systems

of interacting entities, are no exception. In networks, the

noise is often manifested as missing or additional edges.

Network analysis has become a very important tool for

analyzing properties of complex systems. For example,

high centrality vertices, indicate lethal genes in a gene cor-

relation network. However, if networks inherently contain

some amount of noise, then it is important to know how

much we can rely on the results.

One approach to answering this question is to perturb

the network using noise models that determine how many

and which edges are selected for addition or deletion. The

analysis results (e.g. the top-k vertices with high degree)

from the original network are compared with the results

from the perturbed network. If the analysis results do

not change significantly, then for that particular analysis

objective, and that noise model, the network produces

accurate results. Networks that produce accurate results

are deemed to be stable.

There have been several studies on network stability

using different noise models [1, 3, 2, 4]. However, the

findings from the different experiments often contradict

each other. For example, the main results in [2] is that the

accuracy of the centrality measures decreases with increas-

ing error while in [3] it is shown that degree, closeness,

and eigenvector are stable while betweenness is not.

These differing claims arise because there is yet no

standard noise model. Indeed, given the variations in real

life data and analysis objectives creating a standard model

would be limiting the scope of the problem. We therefore

posit that instead of trying to develop a uniform model,

a more effective method would be to identify factors that

determine whether a network is stable given a noise model.

Here we present our preliminary results on identifying

these factors 1.

Factors Affecting Network Stability

Consider the following noise model proposed in [1]. Given

a network G = (V,E), and a parameter ε, 0 ≤ ε ≤ |V | an

edge not part of the original network has a probability of
ε

|V | of being added. The edges to be added are selected

in random. We compute the Jaccard Index (JI) of top-k

centrality vertices between the original and the perturbed

networks. Because the graphs are sparse, the percentage

of edges being deleted is much lower and does not make a

significant impact on the network structure.

Given a specific noise model, the network stability is

based on the following three factors:

• The Centrality Metric Based on the noise model we

aim to determine how the centrality metric and the

relative ranking of the top-k vertices will change.

Adding edges can increase (or keep constant) the degree

and closeness centrality (CC) of a vertex. The change

in betweenness centrality (BC) is more complicated. If

two low degree nodes get connected then they create a

shorter path across themselves, and therefore reduce the

BC value of a high degree node. On the other hand, if a

high degree node gets connected to another node, then

the BC of the high degree vertex can increase.

When the edges are added randomly, then the rank of

high degree vertices are unlikely to change. However, it

is difficult to determine for this model whether adding

edges will alter the ranking of the high CC or BC vertices.

• The Value of k The stability also depends on how

1A longer version of this paper is in submission to a conference.

1

SIAM Workshop on Network Science 2016 Abstracts: Posters

60



many of the top centrality vertices are considered. We

have observed that there are some consecutively ranked

vertices whose values are relatively close to each other,

and there are other sets of consecutively ranked vertices

that have a high difference in the centrality value.

We posit that it is more difficult to change the relative

ranking between two vertices if they have a huge differ-

ence in their values. We can therefore use the relative

difference between consecutively ranked vertices to group

similarly valued vertices into clusters. Within a cluster

the ranks change under small perturbations, therefore if

the value of k falls within the cluster the Jaccard Index

is likely to change. If the value of k falls at the end of

the cluster, then the ranking becomes more stable as it

is harder for other vertices to move to the next k values

due to the large relative difference.

• Local Topology of the Network The stability of the

high ranked vertices also depend on their local connec-

tions. In particular, for CC and BC, if the high ranked

vertices are tightly connected then they show more stable

ranking. This is because having a high centrality vertex

is more likely to increase the centrality of the vertex.

The first factor serves as a filter to determine which

metrics are least likely to get affected by the noise model.

For example, here it is degree centrality. The last two

factors determine which specific nodes are more likely

to change rank. These two factors can be tested on the

original network itself without even applying noise levels.

Results

Figure shows the effect of noise with ε of values

.5, 1, 1.5, 2, 2.5 on three networks, C. Elegans(V=453,

E=2025), Karate (34,78) and GrQc(5242,14496). For

each network, we created a set of 10 perturbed networks

per epsilon value. The JI given is the average over these

10 networks. C. Elegant is most stable, followed by Karate

and GrQc is the least stable. Table 1 shows the density

of the subgraphs of the top-10 high ranked vertices for

different centrality metrics. Note that the networks with

more stable results have higher density subgraphs.
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(b) Stability of Betweenness Centrality
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(c) Stability of Closeness Centrality

Figure 1: Stability of Centrality Metrics. X-axis: Values

of k Y-axis: Jaccard Index for different noise levels. Left:

C. Elegans; Middle: Karate; Right: GrQc

Table 1: Density of Subgraphs Induced by Top 10 High

Ranked Vertices

.

Network Degree Betweenness Closeness

C. Elegans .8 .66 .82

Karate .48 .44 .51

GrQc 1 .11 .26
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Underlying the usual story of forces and energy ex-

change in the natural world, there is the dual story of

encoding of the precise measurements one may make of

the corresponding states, and the exchange of this informa-

tion between the elements of a complex system that may

interact. This modern perspective has been developing

for quite some time in physics [1, 4], and has recently

started to gain increasing recognition with theoretical

break-throughs that lie at the intersection of complex

systems, dynamical systems, ergodic theory, statistical

mechanics, stochastic processes, and information theory.

The reason for the resurgence of this perspective are sev-

eral fold. A great deal of theoretical progress has been

made in all of these areas. They are now coming to-

gether with new relevance thanks to the advent of modern

computers which makes it possible process tremendous

volumes of data. These underpinnings of information flow-

ing between coupled processes in the natural world not

only have theoretical attractiveness, but are on the verge

of leading to a new and extremely applicable computa-

tional venue for inference, control, and exploring scientific,

social and engineering problems from practically any area

for which big data are collected. However, this has not

been just a computer boon of data mining, it has encour-

aged a parallel resurgence and greater perspective in the

underlying theoretical developments. A natural question

in measurable dynamical systems is to ask which parts

of a partitioned dynamical system influence other parts.

Detecting dependencies between variables is a general sta-

tistical question, and in a dynamical systems context, this

relates to questions of causality. There are many ways one

may interpret and computationally address dependency.

The concept of transfer entropy (TE) was recently devel-

oped by Schreiber [2] (see [3] for an equivalent formalism)

to be a statistical measure of information flow, with re-

spect to time, between states of a partitioned phase space

in a dynamical system. Unlike other methods that sim-

ply consider common histories, transfer entropy explicitly

computes the directional and asymmetric information flow

from one part of the partitioned phase space to another

in a dynamical system. By design, transfer entropy is

suitable specifically for the detection of complex informa-

tion flow between pairs of stochastic processes. However,

we have recently shown that the application of transfer

entropy to the problem of causal inference in a complex

coupled process with many components can systematically

result in many false positives [4]. This intrinsic limita-

tion was previously not fully appreciated by the general

community that continues to apply TE to this purpose.

We have developed a generalized analysis called Causa-

tion Entropy (CSE) together with a construction that

we call optimal Causation Entropy (oCSE) (a minimax

discovery principle [5]-[8]), that we prove generally avoids

the false positives issue, while correctly inferring causal

links in the system in a data-efficient manner. This was

shown rigorously and explicitly in [5], summarized as the

optimal Causation Entropy (oCSE) principle which states

that the direct causal influences of a given component in

a system is the unique minimal set of components that

maximizes the (unconditional) CSE to that component.

This allows the development of efficient algorithms to infer

cause-and-effect relationships without running into the

common issue of systematically biased false positives. Val-

idation in terms of analytical and numerical results for

Gaussian processes on large random networks highlights

that inference by our algorithm outperforms previous lead-

ing methods, including conditional Granger causality and

transfer entropy. Interestingly, our numerical results sug-

gest that the number of samples required for accurate

inference depends strongly on network characteristics such

as the density of links and information diffusion rate and

not necessarily on the number of nodes. With this tool

it begets the basis for several applications directions in

both fundamental theoretical descriptions as well as ap-

plications in many engineering and scientific fields. Here

we will discuss and present, 1) Brain functional inference

based on information flow in a human brain as sensed by

fMRI, for mapping of information flow, functional group-
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ings, beyond the usual anatomical groupings. 2) Insects

warming motions as sensed by PIV like methods for infer-

ence of communications channels between animals as they

intermittently dance in different pairings and groupings.

3) Identification of Boolean networks, and as related to

gene regulatory networks.
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Summary

We show that the Hirsch conjecture holds for two-way

M×N transportation polytopes. Thus, their diameter is

bounded above by M+N−1.

Introduction

Network flow problems are fundamental problems in opti-

mization. The special case of min-cost flow problems on

bipartite networks are called a transportation problems.

They model the minimum-cost of transporting goods from

M suppliers to N demand locations, where each of these

M+N locations sends, respectively receives, a specified

quantity of a product (we call these quantities u ∈ RM

and v ∈ RN the margins). The transportation polytope

is the convex polytope of all feasible solutions defined by

the constraints

TP (u, v) =

{
y ∈ RM×N

≥0 :
N∑

j=1

yij = ui ∀i,
M∑
i=1

yij = vj ∀j
}

,

where yij is the flow from supplier i to demand location j.

The combinatorial diameter of a polyhedron is the max-

imum number of edges (or 1-faces) needed to connect any

two of its vertices. Alternatively, it can be defined as the

diameter of the skeleton (or 1-skeleton) of the polyhedron.

Motivated by the study of the worst-case performance of

the simplex algorithm to solve linear optimization prob-

lems, researchers have considered the geometric problem

of deciding what is the largest possible (combinatorial)

diameter of convex polytopes with given number of facets

and dimension. The famous Hirsch conjecture claimed an

upper bound of f−d on the diameter any d-dimensional

polyhedron with f facets [3]. It is known to be true for

several special classes of polyhedra, but the Hirsch bound

does not hold in general [5, 6].

Even though network flow problems and transportation

problems are among the simplest possible linear opti-

mization problems, their exact diameter has until now

remained open. For M×N transportation polytopes, the

Hirsch conjecture claims an upper bound of M+N−1−µ,

where µ is the number of so-called critical pairs of a sup-

ply and a demand node. These are the variables that are

strictly positive in every feasible solution to our trans-

portation problem. The Hirsch bound was shown to hold

for 2×N and 3×N transportation polytopes [1, 4]. The

best published general upper bound on their diameter is

8(M+N−2) in [2]. We finally prove the Hirsch conjecture

is true for all M×N transportation polytopes.

Theorem 1 The diameter of an M×N transportation

polytope is bounded above by M+N−1−µ, where µ is the

number of critical pairs of the transportation polytope.

Therefore, the Hirsch conjecture is true for all M×N
transportation polytopes.

Note that for all M≥3, N≥4 there are M×N trans-

portation polytopes that attain that bound. To prove

Theorem 1, we give an algorithm that connects any two

vertices of a transportation polytope by a walk on the

skeleton that has length at most M+N−1−µ. We remark

that this is not necessarily a walk of minimum length

between the two vertices. However, the walk stays in the

minimal face containing both vertices. Therefore, we get

the following corollary.

Corollary 1 All faces of two-way transportation poly-

topes satisfy the Hirsch conjecture.

The vertices and 1-faces of transportation polytopes

To study the diameter of transportation polytopes, we

need a characterization of the vertices that are connected

by a 1-face. We think of the supply and demand points

as nodes in the complete bipartite graph KM,N . For a

solution y to the transportation problem, we consider the

subgraph of KM,N , that contains the edges of non-zero

flow. Then y is a vertex of a non-degenerate transportation

polytope if and only if this subgraph is a spanning tree

[7]. Therefore, we refer to the vertices of a transportation

polytope simply as ‘trees’. (See also Figure 1.)

Further, two trees (vertices) C and C ′ are connected by

a 1-face if they differ by exactly one edge [7]. In particular,

a step along the skeleton is described by an edge that is

inserted into the current tree C. The margins of the
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transportation polytope then determine an edge that is

deleted from C, giving the neighboring tree C ′.

The algorithm

We present an algorithm that takes two trees O and F ,

corresponding to vertices of a transportation polytope

TP (u, v), as input. It constructs a sequence of trees

that corresponds to a walk from O to F on the skeleton

of TP (u, v). The walk has length at most M+N−1−µ,

where µ is the number of critical pairs of TP (u, v). This

proves Theorem 1. The Hirsch conjecture is true for all

M×N transportation polytopes.

Observe that the µ edges corresponding to the critical

pairs of TP (u, v) exist in every tree, and thus any two

trees differ in at most M+N−1−µ edges. This suggest

the following principle as the basic idea for our algorithm:

Construct a sequence of trees from a tree O to a tree F

by successively inserting edges contained in F such that

no previously inserted edge is ever deleted.

To keep track of the edges that may not be deleted, we

shade them. We shade every edge we insert, but we may

also shade an edge that already exists in the current tree

of the sequence. When refering to both situations at the

same time, we say we “(insert and) shade an edge”.

The most important aspect of our algorithm is the order

in which edges are (inserted and) shaded. The order of

insertion is determined by a +/−labeling of the edges in

the final tree F (recall that these are precisely the edges

that have to be inserted). These labels do not change

during the algorithm and are preprocessed:

� Choose an arbitrary demand node δ∗ and consider all

paths in F starting at δ∗. Label the edges on these

paths alternatingly + and −, beginning with a +.

Observe that each supply node is incident to exactly one

+edge. Among the edges incident to a supply node, this

+edge will be the last edge to be (inserted and) shaded;

the −edges may be (inserted and) shaded in arbitrary

order. Figure 1 gives an example for such a labeling.

tree O

δ∗ −++ −

tree F

demand nodes

supply nodes

Figure 1: Tree O unshaded; tree F with edge labels.

The algorithm starts with the initial tree O with all edges

unshaded. Then the edges that are contained in the final

tree F are successively (inserted and) shaded. We proceed

like this until we reach F with all edges shaded.

In each iteration of the algorithm, we consider the cur-

rent tree C of the walk. A subset of the edges of C might

already be shaded and these edges must not be deleted

in this step. We choose a supply node σ that satisfies a

special property and (insert and) shade an edge incident

to σ. The decision of which particular edge to (insert and)

shade is based on the above labeling: The unique +edge is

chosen only if all −edges incident to σ are already shaded.

Figure 2 depicts the iterations of the algorithm for

the input from Figure 1; dashed edges are (inserted and)

shaded in the respective iteration, bold edges are already

shaded and thus may not be deleted. Note that for each

supply node, the +edge is the last edges to be shaded.

After iteration 4 we arrive at F with all edges shaded.

σ

iteration 1
(insertion)

σ

iteration 2
(shading only)

σ

iteration 3
(insertion)

σ

iteration 4
(insertion)

Figure 2: Iterations for O and F as in Figure 1.

The key aspect of the correctness proof of this algorithm

is to show that we avoid deletion of a shaded edge. In

fact, this is ensured by the careful selection of the supply

node σ with the special property and the order of shading

edges, based on the edge labels we fix in the beginning.
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Introduction

The betweenness centrality [8] of a vertex v in a network is

defined as the number of pairwise shortest paths that go

through v. This measure of the importance of the vertices

has been extensively used in the analysis of a variety of

networks ranging from social networks to protein/protein

interaction networks. As larger and larger networks be-

come available, finding efficient methods to compute the

betweenness centrality becomes increasingly crucial for

network analyses.

Considering a directed graph G(V,E) with a set of

vertices V and a set of edges between them E with

positive weights wt, we denote n = |V | and m = |E|.
The betweenness centrality of a vertex v is defined as

BC(v) =
∑

s6=v 6=t∈V

σ(s,t|v)
σ(s,t) , where σ(s, t) is the total num-

ber of shortest paths between s and t and σ(s, t|v) is

the number of shortest paths between s and t that go

through v. The dependency δ of s and t on v is defined

as δ(s, t|v) = σ(s,t|v)
σ(s,t) and can be seen as the contribution

of the pair (s, t) to the betweenness centrality of v.

Betweenness centrality can be naively computed for all

vertices in O(n3) time and O(n2) space using a modified

Floyd-Warshall algorithm [6]. In [2], Brandes proposes a

modified Dijkstra algorithm [3] to compute betweenness

centrality in O(n2 log(n)) time and O(n+m) space. The

key to the effectiveness of that algorithm is the intro-

duction of the notion of dependency of a vertex s on a

vertex v defined as δ(s|v) =
∑
t∈V

δ(s, t|v) and a recursive

formula that allows computing δ(s|v) in O(m) time. If

Ps(v) = {w ∈ v | (w, v) ∈ E, d(s, w) +wt(w, v) = d(s, v)},
then Brandes formula is δ(s|v) =

∑
Ps(w)3v

σ(s,v)
σ(s,w) (1+δ(s|w)).

Other previous work on the subject includes computing

different measures of centrality, approximation algorithms,

and parallel implementation (see [5] for relevant refer-

ences).

In this paper we describe an algorithm for computing

betweenness centrality of planar graphs that is based on

graph partitioning. The algorithm is applicable to other

classes of graphs that have good partitions such as some

graphs with good community structure, but we focus the

discussion on planar graphs so that we can evaluate the

running time complexity. The advantage of our algorithm

is that it allows the parallel use of many processors, which

reduces the running time and allows data to be stored

distributedly, thereby making it applicable to very large

graphs. In [5], a sequential algorithm based in similar

ideas is proposed, which uses divide and conquer for better

performance in a version of the problem where betweenness

centrality is computed with respect only to paths between

a substantially small set of vertices S ⊂ V . Our algorithm

is also related to [4], where an all-pairs shortest paths

algorithm for planar graphs and its implementation on a

GPU cluster is described.

Algorithm description

Our algorithm takes as an input a planar network with

weights wt on its edges represented as a graph G and

outputs the dependencies δ(s|v) of its vertices, which can

be then summed appropriately to get the betweenness

centralities of all vertices. The idea is to compute and

store shortest path information associated with a small

number of vertices found using graph partitioning and

then use it for computing the dependencies of the vertices

in a distributed manner. The algorithm consists of four

phases.

In the first phase, G is divided into k parts, where k is a

parameter that can be used to fine-tune the performance

of the algorithm, such that no part has more than dn/ke
vertices and there are no more than O(

√
n/k) vertices in

each part that are adjacent to vertices in other parts, called

boundary vertices. Such a partition can be constructed

in O(n) time [1, 7]. We denote the subgraphs induced by

these parts by G1, . . . , Gk and call them components of

the partition. We denote by Bi the set of the boundary

vertices of Gi.

The second phase of the algorithm computes preliminary

1

SIAM Workshop on Network Science 2016 Abstracts: Posters

66



values for d and σ for eachGi independently and in parallel.

At this phase, we only need to compute distances and path

counts between vertices of Bi. For this purpose, we run,

for all i, Dijkstra’s algorithm in Gi from each vertex of Bi.

In order to avoid counting some shortest paths multiple

times in subsequent steps, we stop recording shortest path

once another boundary vertex is reached. We denote the

computed values as dGi and σGi .

In the third phase, we construct a graph BG called

boundary graph that has as vertices ∪iBi and whose edges

are of the following two types: (i) edges between all pairs

of vertices v and w from the same set Bi, with weight

wtBG(v, w) = dGi(v, w) and initial value σBG(v, w) =

σGi
(v, w), and (ii) edges in G between vertices v and w

from components Bi 6= Bj with wtBG(v, w) = wt(v, w)

and σBG(v, w) = 1. By running Dijkstra’s algorithm from

all vertices of BG, we compute values for dBG and σBG
that can be shown to be the correct distances in G.

The fourth phase of the algorithm uses the d and σ val-

ues found for BG to compute correct values for d, σ and δ

for the entire graph. First, we construct ∀i a graph Ḡi that

consists of Gi and edges between those pairs of vertices

from Bi for which there is a shortest path πext between

them that does not cross another vertex from Bi and con-

tains at least one vertex from another component. For each

such edge, the corresponding value for d is the one com-

puted in phase 3 and the value for σ that we compute is the

number of such paths πext. Dijkstra is then run from each

vertex s of Gi to recompute the values dGi
and σGi

, but un-

like in the first step, these values are now correct for G due

to the edges from BG. We then extend the computation

of d and σ for vertices of different components. For a given

pair v ∈ I, w ∈ J , this is done using the following formu-

las: d(v, w) = min{d(v, bi) + d(bi, bj) + d(bj , w) | (bi, bj) ∈
Bi × Bj}; σ(v, w) =

∑
Xvw

(σ(v, bi) ∗ σ(bi, bj) ∗ σ(bj , w)),

where Xvw = {(bi, bj) ∈ Bi × Bj | d(v, w) = d(v, bi) +

d(bi, bj) + d(bj , w)}. The values used for σ at this step

only take into account paths that do not cross either

boundary. We now have correct values for d and σ for

all pairs of vertices in G. Finally, for each source vertex

s ∈ G, we compute δ(s|t) ∀t ∈ G in three steps. In the

first step, we compute potentially incorrect but required

values for δ(s|v) for v ∈ VBG by running the δ-computing

part of Brandes’ algorithm (referred to as Brδ) and for-

mulas modified as in [5] on Gi, for each i. In a second

step, we compute accurate δ(s|v) for v ∈ VBG by running

Brδ on the boundary graph using the potentially incorrect

values from step 1 as initial values. In the third step,

we compute δ(s|t) for t ∈ V by running Brδ in Gi ∀i
using values from step 2 as initial values for boundary

vertices. The space and time complexity of our algorithm

can easily be evaluated given the bounds |Vi| = O(n/k)

and |Bi| = O(
√
n/k) valid for planar graphs of bounded

degree. We assume that we have p processors and that

p = k so that each processor can be assigned to exactly one

component of the input graph after partitioning. Under

these assumptions, our approach computes betweenness

centrality in O
(
n2 logdn/pe

p

)
time and O(n+(n/p)2) space

for p = k < n.

Conclusion

We propose a new algorithm to compute betweenness

centrality in large planar graphs, suitable for balanced dis-

tributed computations over a cluster of processors. While

we haven’t yet implemented the algorithm, in a previous

work [4] our implementation computes all-pairs shortest

paths on a graph with a million vertices and average degree

6 on a cluster of 256 GPU nodes in under 6 minutes. Given

that both algorithms have similar structure, we expect the

proposed new algorithm to have a similar performance.

Our algorithm can also be generalized to compute other

centrality measures.
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Summary

We investigate the problem of verification and computa-

tion all determination of a partition of a random geometric

graph (RGG) into k disjoint subgraphs satisfying the fol-

lowing conditions.

All but one of the subgraphs are connected (1 − ε)

dominant bipartite (planar) subgraphs of similar size and

structure termed “backbones”, the other of comparably

small size composed of the “noise” in the random distri-

bution.

The verification that such backbone partitions exist

employing relatively few dense backbones with little loss

to random distribution noise is of interest to the rapidly

growing field of wireless sensor networks (WSN’s)[6, 5, 1,

4].

WSN’s employ spatially distributed autonomous sensors

to monitor physical conditions like sound, temperature,

humidity and so on[2, 3, 9]. We use a random geometric

graph concept in computer science to model WSNs by

placing a random set of points either in a planar region

or over the surface of the globe. Our goal is to determine

disjoint subsets of the sensors that each can serve as a

backbone for monitoring the whole region.

Our algorithm contains two-phase sequential coloring

procedures (smallest-last coloring based on smallest-last

ordering[7] and relay coloring based on an adaptive relay

ordering) which are efficiently used to determine well-

connected backbones to achieve the goal.

Extended Abstract

Given numerous randomly placed wireless sensors, how

can we organize them into multiple communicating net-

work grids (backbones) each covering the region[8]?

The bipartite planar Cartesian lattice grid with regular

degree four and bipartite planar hexagonal (honeycomb)

lattice grid with triangular lattice independent sets of

regular degree three, see Figure 1 provides idealized place-

ment that can be offset and replicated k times to form k

backbones using all vertices. Here the face sizes are four

and six.

(a) Cartesian Lattice Grid (b) Hexagonal Lattice Grid

Figure 1: Two lattice grids with face size 4 and 6

Figure 2: Bi-regular 3,4 Lattice Grid

Our question becomes if points are distributed randomly,

can we select at least some minimally distributed grids

with similar domination and patterns of face size primarily

between four and six (like Figure 2 shows the bi-regular

degree 3 and 4 lattice)?

Let a random geometric graph (RGG) denote a graph

G(N, r) with vertex set formed by choosing n points in a

uniform random manner on the unit square, and introduc-

ing an edge between every vertex pair whose Euclidian

distance is less than r. Our problem is to partition ver-

tices into k disjoint sets {V1, V2, ..., Vk} whose induced sub-

graphs 〈V1〉, 〈V2〉, ..., 〈Vk−1〉 are connected bipartite sub-

graphs with each part an independent set that dominates

all or nearly all N vertices of G(N, r). Let V1, V2, ..., Vk−1

be a partition of a majority of the vertices of G(N, r)

into disjoint sets where each set Vi induces a connected

bipartite subgraph of G(N, r). Specifically, we shall term

V1, V2, ..., Vk−1 a bipartite component partition BCP (δ, ε)

of the random geometric graph G(N, r) if the union of

the vertex sets Vi comprise (1− δ)N of the vertices and

if the induced subgraphs 〈Vi〉 on average each dominate
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(1 − ε)N of the vertices. Our goal is to determine such

partitions BCP (δ, ε) for δ and ε suitably small, practically

for example, with δ ≈ 1/k and ε < 0.01.

Our primary result is a linear time algorithm that for

sufficiently large N and k ≈ 15 constructively verifies the

existance of a k-part partition with (k−1) subgraphs each

forming connected (1 − ε) dominant bipartite (planar)

subgraphs of similar structure and size ≈ N/k. More

generally, our algorithm provides a tool to analyze and

display these bipartite “backbones” both for uniform dis-

tributions on the square and on the surface of the sphere.

The latter is applicable to WSN’s spanning the globe.

Sample Results

Table 1 shows data of RGG’s employing the Square

Topology and Table 2 shows data of RGG’s employing

the Sphere Topology. We tested the RGG benchmarks of

vertex sizes 8000, 16000, 32000, 64000 and 128000 and all

of the graphs are of around average degree 60. “Surplus”

denotes the portion of the vertices not partitioning in the

backones and is given by |Vk|. “Two-core” denotes the

connected bipartite subgraph without “tails” (which is

the vertices of degree 1), then each vertex in the “two-

core” subgraph will have degree larger or equal to 2. The

“two-core” subgraph will generate a more well-connected

network backbone and further details will be discussed in

the following paper of this abstract.

Figure 3 shows some screenshots of benchmarks on both

square and sphere topology with G(16000, 0, 045) vertices

which indicates the ability of our developed tool. We also

believe it is a great method for research via graphical

implementation to identify new patterns or features.
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Summary

Stochastic Kronecker Graphs give rise to a family of ran-

dom graph models widely used in creating synthetic net-

work data. We analyze these models through the lens

of structural graph theory and prove that minor differ-

ences in the generating algorithm can significantly alter

the properties of the resulting networks. Our results give

further insight into the extent to which these synthetic

networks capture the behavior of real-world data.

Introduction

The rapidly increasing availability of large relational data

sets has consequently brought network science to the fore-

front of a diverse set of fields like business, social sciences,

natural sciences, and engineering. Due to privacy restric-

tions or the desire to have testing data at larger scales,

generating synthetic data from random graph models to

evaluate new algorithms or techniques has become a com-

mon practice. A significant amount of research has focused

on creating random graph models that produce networks

whose properties mimic those of real data sets.

One popular family of random graph models are based

on Stochastic Kronecker Graphs (SKG). This family in-

cludes the R-MAT model [1], and has been claimed to

also include the Chung-Lu model [6]. The SKG family

relies on a recursive partitioning of the adjacency matrix

to determine the placement of edges. Its output can accu-

rately replicate the degree distribution, eigenvalue distri-

bution, diameter, and density of real data [4]. While these

statistics are classically important from a network science

perspective, they fail to capture structural properties that

can be exploited algorithmically. Such properties—like the

treewidth, degeneracy, or expansion of a network—have so

far received little attention even though they are critically

important in the design of efficient algorithms (particularly

for solving problems that are NP-hard in general).

We expand upon previous work on the structural density

of simpler network models [2, 3] and analyze the structural

density of the SKG family to further map out which models

can be used as predictors for algorithmic performance.

Figure 1: Recursively partitioning to reach a single entry.

Model definition

All graph generators in the SKG family base the likeli-

hood of an edge occurring on the position of that edge in

the adjacency matrix and four parameters a, b, c, d. More

specifically, the adjacency matrix can be recursively par-

titioned into four (equal) quadrants1 until the resulting

partitions contain single elements. To reach a particular

entry in this manner, one must choose a specific sequence

of quadrants (i.e. upper/lower right/left) into which to

recurse, as shown in Figure 1. In this way, each edge has

a unique “address” and the edge probability is dependent

on the number of times each quadrant, and hence which of

the four factors, was chosen. The address is also encoded

in the binary representation of its two endpoints.

In its original formulation [4], SKG generates each edge

independently by flipping a coin with probability deter-

mined by the address. This requires n2 operations, which

can be prohibitive for generating large networks. The

R-MAT generator provides a more efficient alternative2.

In one iteration of R-MAT, a single edge is “thrown” into

the matrix by recursing into a quadrant at random until

it “lands” on a single entry (requiring log n steps). This

procedure is repeated m times, where m is the expected

1The model allows partitioning into more subsections, but we
restrict our attention to the simplest and most common method.

2R-MAT additionally imposes the condition a+ b+ c+ d = 1.
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number of edges. Since these models are often treated

as equivalent in the literature we set out to study their

asymptotic properties.

We consider three variants of R-MAT: the edge deletion,

edge rethrow, and the binomial sampling model. With

the edge deletion model, an element of the adjacency

matrix is set to one if at least one thrown edge lands at its

address; the number of edges in G may then be less than

the number thrown. With edge rethrow, any throw that

lands on an existing edge is rethrown until it lands on an

unoccupied address. The binomial algorithm differs by

running m rounds in which a coin is independently flipped

for each address in the adjacency matrix. Our first result

is the following equivalence between the three models:

Theorem. All three R-MAT models are asymptotically

equivalent for m = O(n).

This justifies treating them as exchangeable: all reasonable

network statistics over these models will converge with

increasing network size. What about SKG? As it turns out,

the SKG model can be seen as a first-order approximation

of the binomial R-MAT model. If puv is the probability

assigned by R-MAT to the edge uv, then the binomial

R-MAT model with m edges will contain this edge with

probability 1− (1− puv)m. We can apply the first-order

approximation

1− (1− puv)m ≈ mpuv,

which matches the probability that the edge will appear

in SKG under the same parameters.

A first observation is that this approximation only works

if the largest entry in the generator matrix is less than 1/2.

Otherwise SKG will generate a sublinear number of edges

and we cannot properly convert between the models. The

R-MAT models, on the other hand, provably generate

graphs of unbounded degeneracy, contrary to a conjec-

ture by Seshadhri et al. [7] that SKG families struggle to

generate graphs of unbounded degeneracy.

Even when the largest entry is less than 1/2, the quality

of the above approximation crucially depends on how puv

scales with n. For puv ∼ 1/n the relative approximation

error converges to roughly 2/3 whereas for puv ∼ 1/n2 it

quickly converges to 1. Both cases will appear within the

same graph for most generator matrices and while most

edge-probabilities are essentially the same, a non-vanishing

fraction will be different. Our analysis provides us with the
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Figure 2: The density of the f(k) vertices of highest degree

is consistently different between SKG and R-MATH for

sizes from 215 to 217. Parameters used were a = .45, b =

c = .22, d = .11 and m = 4n.

means to identify statistics that will disagree because of his

inherent difference. For example, we identify a function f

such that the density between the f(k) vertices of highest

degree differ between the two models (cf. Figure 2).

Significance and Application

Our results both affirm and refute previous claims about

the SKG family. Moreno et al. [5] showed that the three

R-MAT algorithms do not sample from the same statisti-

cal distribution as SKG; we prove that these differences

extend to the structure of the graphs too. Taken together,

this provides strong evidence that SKG and R-MAT al-

gorithms cannot be used interchangeably as was initially

presumed [4].
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Summary

We study the role of information and confidence in the

contagion of financial shocks in interbank markets. In

this project we add realism to a model of interbank mar-

kets by introducing uncertainty into what banks know

about other banks. In contrast to previous work, which

assumes complete information, we show that the asym-

metric distribution of information has a striking impact

on the confidence dynamics and market outcomes.

Introduction

It is only recently that psychological effects, such as confi-

dence of financial agents, have been introduced in compu-

tational models studying the stability of financial networks.

However, so far it has been assumed that all agents have

complete information about the system. We add realism

to a model of interbank markets by introducing uncer-

tainty into what banks know about other banks. In our

model, information spreads through the lending network

and the quality of information depends on the proximity of

the information source. Instead of having complete infor-

mation, banks receive information that is delayed, noisy,

or local. We show that introducing uncertainty leads to

a substantial increase in the probability of whole-system

collapse after an idiosyncratic bank failure. In contrast,

when a shock is distributed among multiple smaller banks,

uncertainty mitigates the impact of the shock. To sum

up, we demonstrated that the asymmetric distribution

of information has a significant impact on the confidence

dynamics and market outcomes.

Confidence and information in banking networks

While many models of financial networks treat contagion

as being directly transmitted between institutions, it is

also widely appreciated that psychological effects, such

as market panics, also play a critical role in financial

crises [2]. Previous work by Arinaminpathy, Kapadia, and

May [1] (AKM) combined such “confidence effects” with

network models in a simple way, presenting a framework

where system distress affected how individual institutions

responded to their counterparties, and vice versa. For

simplicity, this work assumed that institutions have com-

plete information (CI) about the rest of the system. In

reality, however, uncertainty can play a powerful role in

confidence effects. In particular, reporting is not done in

real time, the reports are not always fully reliable (e.g., as

in the case of Lehman Brothers), all relevant indicators

are not included in the reports, and informal channels of

communication facilitate further information asymmetries.

Therefore, we introduced uncertainty in the AKM model

to test how confidence dynamics are affected by a more

realistic information flow and what are the corresponding

consequences for the stability of the system.

Nodes, edges, and network

Nodes or banks in the network can be small and large, and

are represented as simplified balance sheets, paremetrized

by empirical data [1]. Banks are connected by borrowing

and lending relationships established at the interbank mar-

ket. Interbank lending of a bank corresponds to outgoing

loans to other banks in the system, thus giving rise to a

lending network. The network is a directed random graph

with N = 120 banks in which the in-degree and out-degree

of banks are determined by a Poisson distribution with

parameter z = 5 for small banks and q · z = 50 for large

banks. Each edge in the network is a loan with direction

from lender to borrower. A bank can withdraw its loans

condition on its confidence, its health, and the health

of its borrower. The confidence of a bank corresponds

to its assessment of the remaining assets and interbank

loans in the system. Given that information flow affects

this assessment it also affects confidence dynamics and

thus market outcomes. The model considers three mecha-

nism of contagion: liquidity hoarding, counterparty-credit

default, and asset price contagion.

Modeling uncertainty

We consider three uncertainty scenarios: local information

(LI), delayed information (DI), and noisy information (NI).

In the LI scenario, information is available only up to a

certain “interbank” distance. That is, a bank determines
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its confidence based on the information about itself and all

banks placed within the fixed value of distance dmax. In

the DI scenario, we model information delay as a function

of distance–the further the information source the longer

the delay. In the NI scenario, noise in information increases

with distance.

Results

We applied various kinds of shocks to the system, but here

we present a result obtained by randomly picking a large

bank and forcing it to fail (Figure 1).
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Figure 1: Probability distributions of number of failed

banks after a large-bank shock in (a) the CI scenario

and (b) LI1 scenario. In the CI scenario, banks form

their confidence based on complete information about the

system. In the LI1 scenario, banks form their confidence

based on their local neighborhood within distance dmax =

1. CI = complete information; LI = local information.

The result is expressed as the probability of systemic

failure–that all banks in the system fail as a result of the

applied shock. We obtained the most striking result for

the scenario LI1 for which a bank determines its confi-

dence based on information only from its closest neighbors.

The results show that introducing uncertainty leads to

a sticking increase in the probability of systemic failure

when compared to the CI scenario.

In contrast to the CI scenario, in which confidence is

assessed over the extent of the whole system, in the LI1

scenario we have introduced the notion of “locally per-

ceived” confidence that can vary with the neighborhood

of different banks. The local impact of an initiating shock

is therefore more intense than in a CI scenario but lim-

ited to the neighborhood, leaving the confidence of the

remaining system initially intact. Yet, this local impact is

subsequently transmitted through the system (analogous

to the dynamics of crack propagation in a solid medium),

resulting overall in a higher risk of system collapse than

in the CI scenario.

We conducted a series of further analysis and demon-

strated that the variability and the slope of the timecourse

of confidence can account for the obtained results.

Discussion

This study demonstrates that the flow of information in

a banking system is highly relevant for the dynamics of

market behavior and resulting outcomes. While it is clear

that both the CI and LI1 scenarios are oversimplifications

of reality, our exercise shows how departing from the CI

assumption can have a striking impact on the results of

the model. Our main insights are that after uncertainty

is introduced, the system becomes far more vulnerable

to large-bank failures, as well as that the impact of the

large failures becomes less predictable. The overall results

clearly indicate that it is high time to recalculate the price

of having large banks in the system and adjust regulation

practices accordingly.
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Summary

This talk presents a new generative model for multigraphs

(graphs that permit multiple edges between nodes) based

on the Random Dot Product Model for simple networks.

This model is used to analyze a scientific collaboration

network.

Background

The random dot product network (RDPN) is a particular

type of latent space model, where each node in the graph

process is associated to a vector in Rd and the probabil-

ity of an edge occurring between node i and node j is

given by 〈Xi, Xj〉 [6]. These models are a generalization

of the traditional stochastic block model, where the block

parameters/associations are controlled by the vector dot

products. Because each node is associated to a vector, geo-

metric techniques are used to study networks with RDPN

models [10, 11]. The RDPN process also motivates a par-

ticular adjacency spectral embedding that has proved to

be useful for proving consistency results about stochastic

block model derived graphs, including a hypothesis testing

procedure over the distribution of original latent positions

[8, 9].

Multiplex and multilayer network models are important

tools for describing all types of complex systems [2]. One

of the main tasks of this research area is constructing

relevant generalizations of techniques for simple networks

that respect the novel properties of multiplex structures.

Recently, both [5] and [7] have presented generative mod-

els that construct a multigraph directly, instead of as an

aggregate of simple networks, as has been previously con-

sidered in the literature. Our model has the same property

and we will show that the Poisson model presented in [5]

is a one–dimensional, restricted version of our model.

Generative Model

We propose the following construction: select the vectors

{Wi} ⊂ Rd according to a fixed distribution W . Then,

place k edges between nodes i and j, where k is drawn

from a Poisson distribution with parameter 〈Wi,Wj〉. We

note that our formulation does not arise as a fixed, finite

sum of independent, simple RDPNs since the entrywise

distributions are distinct.

Restrictions of this model provide natural generaliza-

tions of other commonly studied simple network generative

processes. For example, restricting the distribution to a

finite set of vectors defines a multigraph block model, with

community structure, while further restricting W to a sin-

gle vector gives a single Poisson parameter for the entire

multigraph as a generalized Erdös–Renyi model.

Two further, lower–dimensional simplifications in the

choice of W reflect the interpretations of this model in

the social network context described in [10]. First, we

can restrict W to the unit sphere in Rd so that only the

angle between the vectors is relevant to the dot product.

Alternatively, we can realize the one–dimensional Poisson

model considered in [5], where each node is associated to

a positive real number, as a special case of our model by

fixing an arbitrary W0 6= 0 and choosing a distribution

over R+W0.

Results

One of the interesting features of the simple RDPN model

is that for a broad class of distributions, W , the expected

networks exhibit desirable properties, such as local clus-

tering and small diameter, that are associated with small–

world behavior in social networks. When computing the

expected properties of a mutigraph model we distinguish

between properties that rely only on the binary topolog-

ical connectivity, like average path length or diameter,

and properties that depend on the existence of multiple

edges such as the degree or flow volumes. In order to

extend results that rely solely on connectivity we can use

1− e−〈Wi,Wj〉 as an edge existence probability, as in the

standard dot product model. This allows us to generalize

the diameter bounds for RDPN given in [10] using a conti-

nuity argument. Generalizing the other expected metrics

presented in that paper is currently ongoing research.

The matrix factorization algorithm given in [6] gener-

alizes naturally to the multigraph setting, allowing us to
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estimate the vectors {Wi}, up to an orthogonal transfor-

mation, given a particular network of interest. This allows

us to use geometric techniques to study data–generated

multigraphs. The interpretations, described in [6, 11] of

the vector directions, representing similarity in link for-

mation patterns between the nodes, and the magnitude

of the vectors, representing propensity to communicate,

are still present in this model. In particular, the angu-

lar k–means algorithm presented in [6] can be applied to

vectors learned from our model.

Collaboration Networks

Scientific collaboration networks are often studied as

a proxy for the professional interaction networks of re-

searchers (see [3] as an example). In the most common

formulation of these networks, the nodes are scientists

and two scientists are connected by an edge if they have

written a paper together. However, these interactions also

have a natural multigraph structure, where the number of

edges between two scientists is computed as a (weighted)

sum of the papers coauthored by them [4].

For these networks, we can interpret the two attributes

of the vectors, direction and magnitude, in the context

of our model. Two researchers are more likely to have a

higher number of coauthored papers together if they share

similar interests or connectivity patters, i.e., their vectors

point in similar directions, or if one or both of them is

particularly prolific, represented by large magnitude. Here

we consider the large connected component of a collabo-

ration network from the field of computational geometry

[1], with 7,343 authors and 11,898 publications, where the

edges are weighted by the number of co–publications.

Using the iterative algorithm presented in [6] we con-

struct a low–dimensional representation of the multigraph

adjacency matrix. Comparing the embedding of the multi-

graph (Figure 1(a)) to the embedding of the underlying

unweighted simple graph (Figure 1(b)), which is much

more uniformly distributed, shows that the clustering into

“nearly orthogonal” components, centered on particularly

prolific scientists/subfields, is much stronger in the multi-

graph setting than for the simple network. Only the two

dimensional embedding is shown here, but this behav-

ior extends to higher dimensions, allowing us to readily

determine the community structure of the collaboration

network from the multigraph analysis. This is consistent

with other collaboration network examples that we have

computed.

(a) Multigraph (b) Simple Graph

Figure 1: Two–dimensional vector embeddings of the

computational geometry collaboration network.

Future Work

In addition to exploring further applications to collabo-

ration networks, we plan to extend the statistical work

of [8] and [9] to our model, proving a consistent spectral

embedding and constructing a hypothesis test compari-

son method. Also, we intend to generalize the expected

network statistics for RDPN as computed in [10] to our

multigraph model. Finally, we will investigate extensions

of this model to arbitrarily weighted networks, by replac-

ing the Poisson distribution in the generative process.
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What is a metric?

A metric is an ordered pair (M ,d) where M is a set and d

is a function d : M×M → R such that for any x, y, z ∈M ,

the following hold:

1. d(x, y) ≥ 0

2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

Next we give some examples of metrics on graphs.

Let G = (V,E, σ) be a finite, simple, undirected, weighted

graph, with edge-weights given by σ : E → (0,∞).

Shortest-path distance

The shortest-path distance ds(a, b) between two vertices

in an unweighted graph is the minimal number of edges

in a path connecting a and b. Dijkstra’s algorithm can

be used to compute the shortest-path distance and the

shortest path between any two nodes. There maybe more

than one shortest path between two nodes and if there are

no connecting paths then the distance is set to be infinity.

Effective resistance

The effective resistance effR(a, b) between two nodes a and

b of a weighted graph is the electrical effective resistance

of a resistor network with edge-conductances given by

the edge weights. Namely, it equals the voltage potential

drop needed to pass a unit current flow from a to b. It is

well-known that effR(a, b) is a metric on V .

p-Modulus

The p-energy of a density ρ : E → [0,∞] is

Ep(ρ) :=

{ ∑
e∈E σ(e)|ρ(e)|p if 1 ≤ p <∞

maxe∈E |ρ(e)| if p =∞

The definition for E∞ is consistent in the sense that

∀ρ : E → R lim
p→∞

Ep(ρ)1/p = E∞(ρ).

Consider a given family of walks Γ. We say that a density

ρ : E → [0,∞) is admissible for Γ (and write ρ ∈ Adm(Γ))

if

`ρ(γ) :=
∑

e∈E
N (γ, e)ρ(e) ≥ 1 ∀γ ∈ Γ,

where N (γ, e) is the number of times the walk γ crosses

the edge e.

For 1 ≤ p ≤ ∞, the p-modulus of Γ is defined as

Modp(Γ) := inf
ρ∈Adm(Γ)

Ep(ρ).

(The modulus of an empty family Modp(∅) is defined to

be zero, since the choice ρ ≡ 0 is trivially admissible.)

A particularly useful class of walk family is the connect-

ing family, denoted Γ(a, b), of walks originating at a vertex

a ∈ V and terminating at a distinct vertex b ∈ V \ {a}.
Connection to classical quantities

Here we summarize some results from [1]. In the spe-

cial case of connecting families Γ(a, b) we recover some

classical quantities. For instance, 2-modulus coincides

with effective conductance, when viewing the graph as an

electrical network with edge-conductances equal to σ, i.e.,

Mod2(Γ(a, b))−1 = effR(a, b).

Also, 1-modulus is equal to the classical notion of Min

Cut where the weight of a cut is measured by adding the

edge-weights.

Moreover, letting p tend to infinity, the p-th root of

p-modulus tends to the reciprocal of shortest-path, i.e.,

Mod∞(Γ(a, b))−1 = ds(a, b).

In general, p-modulus continuously interpolates between

these classical measures. Since, as we have seen,

Modp(Γ(a, b))−1 is a metric for p = 2 and p = ∞, it

is natural to ask what happens for other values of p.

Main theorem

We can show that the reciprocal of Min Cut,

Mod1(Γ(a, b))−1 is also a metric and more generally

Modp(Γ(a, b))−1/p is a metric for all p’s [2].
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We actually have two different proofs for this result.

When p tends to infinity we recover shortest-path, but

when p = 2 we get that the square-root of effective resis-

tance is a metric. However, whenever d is a metric, then dε

is always a metric for 0 < ε < 1 (this is sometimes known

as “snowflaking”). Therefore, it is natural to ask what

is the optimal function ψ
(
Modp(Γ(a, b))−1

)
that yields a

metric for each value of p.

Numerical experiments

We intend to explore this question numerically and will

be presenting our findings in the poster.
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Summary

For network synchronization a question of key importance

is that of stability. Until recently, the focus of research

was that of global stability [1,2,5-9], that is determining

network structures which allowed the basin of synchroniza-

tion to occupy the entire state space. For large complex

networks, however, the dynamics often exhibit multistabil-

ity, where multiple stable synchronous states coexist with

one another (see Figure 1 below for illustration). This

leads to the concept of sustainable perturbations which

are best understood with the question, how large of a

perturbation can the synchronous network sustain and

still return to a stable synchronous state? We classify sus-

tainable perturbations through the introduction of what

we call master synchronization basins (MSB).

nonlocal 

stability region 1

nonlocal 

stability region 2
global stability region

(a) globally stable locally stable(b)

Figure 1: Comparison of (a) a globally stable state and

(b) a multistable state which has locally stable regions but

no globally stable state.

Synchronization of Oscillators Coupled Over a Network

The often adopted model for network synchronization can

be given in the following form [6]:

ẋ = f(xi) + σ

n∑

j=1

Aijh(xi, xj), i = 1, 2, ...n. (1)

Here xi(t) is the state of node i at time t, f represents the

dynamics of each isolated oscillator, h(x, y) is the coupling

function, σ > 0 is the coupling strength, and Aij is the

adjacency matrix of the network. The network is said

to synchronize if x1(t) = x2(t) = x3(t) = ... = xn(t) as

t→∞

Basin of Synchronization

We characterize the synchronization attractor as:

M = {~x = (x1, ..., xn)|x1 = x2 = ... = xn ∈ A} (2)

where A is an attractor of the isolated system. We thus

define the basin of synchronization

Ω(M) = {~x(0)|~x(t)→M, t→∞} (3)

Single and Multinode Basins

In order to investigate the effects on the network of per-

turbing a single node we define a single node basin to

be

Ω(i)(s) = {xi(0)|xj(0) = s∀j 6= i, ~x(0) ∈ Ω(M)} (4)

where s ∈ A is an existing synchronous state. This is

the set of all perturbations that can be sustained by node

i before the network is knocked out of synchronization.

Similarly the multinode basin is approximated as the direct

product of the single node basins

Ω(I)(s) ≈ {(xi1 , xi2 , ..., xim)|xik ∈ Ω(ik)(s)} (5)

where I = {i1, i2, ..., im} is the set of multiple nodes which

are being perturbed from the synchronous state

Basin Stability

The single and multinode basins in general are difficult

to estimate for networks larger than a few nodes because

of the high dimensionality and poor scaling which results.

This complicates the estimation of the basin of synchro-

nization for large networks since the basin is frequently

non-convex. Menck et. al. [3,4] were able to work around

finding the full basin of synchronization by introducing

the a scalar quantity that is referred to as the basin sta-

bility. Using a subset of the state space Q basin stability

is defined as:

B(Q) = |Ω(M) ∩Q|/|Q| (6)

with | · | representing the measure of a set. Basin stability

is thus the fraction of initial conditions drawn from Q

which are in the basin of synchronization.

1

SIAM Workshop on Network Science 2016 Abstracts: Posters

78



Low Dimensional Approximation

In our approach we begin by considering a low-dimensional

prototype system as demonstrated in Figure 2. The pro-

totype system of two coupled oscillators is given by:

ẋ = f(x) + αh(x, y)

ẏ = f(y) + βh(y, x)
(7)

Integration of the low dimensional prototype equation

allows us to estimate the single node or multinode basins,

which we refer to as the master synchronization basins

(MSB). Note that by using this system we bypass the

usual need for integrating over an entire network, thus

drastically reducing the effort necessary to estimate the

single node basin. To match the prototype system to an

arbitrary network we allow αi = σdi where di is the degree

of the perturbed node i and βj = σAji. In the typical

situation of weak coupling we can see that βj � 1, in

those situations we typically replace βj with 0. To validate

α

β

Figure 2: Low Dimensional Prototype system. The α and

β terms are the coupling between the nodes, note that β

is often much smaller than α and thus can typically be

ignored and thus often is set to 0

the MSB approach we begin with a network of coupled

one dimensional cubic equations. In this example the

isolated dynamics of oscillators obey the cubic equation

f(x) = x(x− 1)2 which has a stable fixed point at x = 0.

The basin of attraction for th isolated oscillators is (−1, 1).

We chose the coupling function h(x, y) = f(y) − f(x).

The results of network simulations were then compared

with the analytical solution for the basin of attraction we

obtained with the MSB (see Figure 3). Finally we moved

on to the more complicated case of chaotic oscillators.

For this we chose the isolated dynamics to be Rössler

oscillators and coupled the oscillators through the first

component. We have obtained results for the Rössler

system which also match quite well over a range of coupling

strengths.
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Figure 3: The solid blue line represents the analytical

approximation of the basin boundary with β = 0 for the

cubic oscillator system. Any initial condition starting

outside the boundary will not lead to a synchronous state.

The red ”x” markers represent a Watts-Strogatz network

and the green ”o” markers represent and Erdös-Rényi

network. Each marker pair represents a different degree

and thus a different effective α value. As can be seen the

analytical boundary and the boundary calculated from

network simulations match quite well.
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Summary

We construct random temporal graph models using

Markov chains that conserve the random graph structure

at each step and have tunable dynamic properties. We

analyze these models to determine the time it takes when

starting from a random vertex to reach a large fraction

of the other vertices by traversing temporal edges. The

models we study are chosen for their simplicity and ability

to be generalized for more complex models of threats in

cybersecurity authentication systems.

Introduction

Dynamic network processes appear in many contexts such

as spreading of infectious disease [10], synchronization of

electric power generators [5], learning in the brain [2], and

computer communication systems [1]. The most commonly

studied case is when the network itself is not changing,

or only changing slowly in time so that a static network

topology is a good approximation. However, in many

applications of interest the network topology is itself dy-

namic. When the dynamics of the network structure occur

on roughly the same time scales as the dynamic process on

the network, the former cannot be satisfactorily ignored.

Motivated by the study of centralized computer authen-

tication systems [6], we construct and analyze temporal

network models. For those models we compute how the

time to reach a large fraction of the vertices by traversing

temporal edges changes with the structure and rate of

change of the networks.

Models

We used publicly available data collected in the Los Alamos

National Laboratory centralized authentication system [8]

as a motivation in building dynamic graph models. In

particular, by binning the data, we found that while ap-

proximately 25% of the edges change from day to day,

many graph properties such as vertex degrees; edge counts;

and small motif counts were quite stable [6]. Thus we are

interested in temporal random graph models, i.e. distri-

butions on the space {Gt}t≥0, whose graph properties are

independent of time. We used Markov chains, specifically

a generalization of the edge-Markovian random graphs

introduced by Clementi et al. [4].

Definition 1 (Edge Markovian). A random temporal

graph {Gt} on n vertices is called edge Markovian if there

exist maps P,Q : E(Kn) → [0, 1] such that for all t ≥ 0,

each edge e of Gt+1 is determined independently with

probability

P[e ∈ Gt+1] =




P (e) if e 6∈ Gt ,
1−Q(e) if e ∈ Gt .

(1)

Such models create a natural Markov chain, which we

call the induced Markov chain, defined on the space of

graphs on n vertices where the transition probability of

moving from Ga to Gb is given by P[Gt+1 = Gb|Gt = Ga].

Let P be the matrix of transition probabilities between

graphs on n vertices. A distribution π on all such graphs

is called stationary if π = πP. Note that if G0 is picked

according to the stationary distribution, then each subse-

quent Gt, t > 0, will also be distributed according to the

stationary distribution.

For our application the most important non-trivial

statistic to capture in the dyanmic model is the degree dis-

tribution so we consider a temporal version of the expected

degree (Chung-Lu) model [3].

Definition 2 (Chung-Lu random temporal graph). A

Chung-Lu random temporal graph G(n,W,α) on n ver-

tices is defined by a distribution W on the positive re-

als and a function α : R → (0, 1). Let W1,W2, . . . ,Wn

be i.i.d. sampled from the distribution W . Let pij =

WiWj/(nE[W ]) and αi = α(Wi). Then the temporal

Chung-Lu model is defined as an edge-Markovian model

with

• P (vi, vj) =
√
αiαjpij ,

• Q(vi, vj) =
√
αiαj(1− pij), and

• G0 is distributed as CL(n, {Wi}), the static Chung-

Lu model on n vertices with each edge (vi, vj) present

independently with probability pij .
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We assume W is bounded to ensure the pij ’s are prob-

abilities for large enough n. The resulting graphs have

expected degrees distributed according to {Wi}.

Given the model, we now consider the problem of de-

termining the expected time necessary to reach a linear

fraction δn vertices from a random starting vertex v in a

Chung-Lu temporal graph.

Definition 3 (Reachability). The vertices v1, v2, . . . , vk
form a temporal path in G = {Gt} if there exist times

t1, t2, . . . , tk−1 such that for each i, ti ≤ ti+1 and

(vi, vi+1) ∈ Gti . If such a path exists, we say vk is reach-

able from v1 within time tk−1.

Note that more than one edge can be traversed at each

time step so this definition allows reaching the entire

connected component at time t containing a vertex visited

at time t.

Results

As a measure for the vulnerability of a network, we esti-

mate how long it would take to traverse a large fraction of

the network starting from a given vertex. We give asymp-

totic results for the reachability time for the Chung-Lu

random temporal graph model. The reachability measure

in Definition 3 allows traversal to the entire connected

component of the graph at a given time so the analy-

sis hinges on the sizes of the connected components in

the graph. In the static Chung-Lu model there are two

regimes for the connected component sizes which depend

on the model parameters. We find these regimes in the

temporal setting as well. In the “subcritical case” for each

time-step the components are all small; the reachability in

the graph is controlled by connecting pathways between

the components over time. In the “supercritical case” the

graphs at each time step have a component of size O(n)

and the reachability time is fast, o(log n). The proofs of

these results can be found in [7].

Theorem 1 (Subcritical case). Let G = G(n,W,α) be

a Chung-Lu random temporal graph with E[W 2] < E[W ].

Let v be a vertex of G. Then there exists a constant ρ

such that for each ε > 0, asymptotically almost surely

T1−ε ≥ ρ log n+ o(log n), (2)

where T1−ε is the time required to reach (1− ε)n vertices

from v and

ρ =


1 +

E
[
α(W )W 2

]

E[W ]
+

E
[√

α(W )W 2
]2

E[W ]2(1− E[W 2]/E[W ])




−1

.

We conjecture that equality holds in Equation (2).

Theorem 2 (Supercritical case). Let G = G(n,W,α) be

a Chung-Lu random temporal graph with E[W 2] > E[W ].

Suppose that the support of W and α(W ) do not contain

0. Let v be a vertex of G. Then asymptotically almost

surely

T1−ε = o(log n),

where T1−ε is the time required to reach (1− ε)n vertices

from v.
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Summary. We give an upper bound for the unique-

ness transition on an arbitrary locally finite graph G in

terms of the limit of the spectral radii ρ [H(Gt)] of the

non-backtracking (Hashimoto) matrices for an increas-

ing sequence of subgraphs Gt ⊂ Gt+1 which converge to

G. With the added assumption of strong local connectiv-

ity for the oriented line graph (OLG) of G, connectivity

on any finite subgraph G′ ⊂ G decays exponentially for

p < (ρ [H(G′)])−1.

Introduction. Percolation is widely used in network

theory applications, yet formation of an infinite cluster is

not sufficient to ensure high likelihood that an arbitrary

pair of selected sites are connected, since the percolation

cluster may not be unique. In this work we give upper

bounds on the connectivity in site percolation on finite

and infinite graphs in terms of the corresponding non-

backtracking (Hashimoto) matrices, and related bounds

for the uniqueness transition.

Definitions. For a graph G with the vertex set V ≡ V(G)

and edge set E , we also consider the set of arcs (directed

edges) A(G). The Hashimoto[6] matrix H ≡ H(G) is the

adjacency matrix of the oriented line graph of G. For

any pair of arcs {a, b} ⊂ A, Ha,b = 1 iff {a, b} form a

non-backtracking walk of length two, i.e., the head of a

coincides with the tail of b, but b is not the reverse of a.

In site percolation on a connected undirected graph G,

each vertex is chosen to be open with the fixed probability

p, independent from other vertices. We focus on a sub-

graph G′ ⊆ G induced by all open vertices on G. For each

vertex v on G′, let C(v) ⊆ G′ be the connected component

of G′ which contains the vertex v, otherwise C(v) = ∅.
Denote[9] by

θv ≡ θv(G, p) = P(|C(v)| =∞), (1)

the probability that C(v) is infinite. If C(v) is infinite, for

some v, we say that percolation occurs. The percolation

transition occurs at the critical probability pc = supp{p :

θv = 0}. Similarly, introduce the local susceptibility,

χv ≡ χv(G, p) = E(|C(v)|), (2)

the expected cluster size connected to v, and the asso-

ciated critical value pT = inf{p : χv = ∞}. Generally,

pc ≤ pT ; on quasitransitive graphs the two thresholds

coincide[8]. A third critical value, pu, corresponds to a

transition associated with the number of infinite clusters.

For p > pu there can be only one infinite cluster and in

general pu ≥ pc. This inequality is strict on non-amenable

graphs[2]. The uniqueness phase can be characterized by

the connectivity,

τu,v ≡ τu,v(G, p) = P
(
u ∈ C(v)

)
, (3)

the probability that vertices u and v are in the same cluster.

Indeed, if the percolating cluster is unique, for p > pu, the

connectivity is bounded from below, τu,v ≥ θuθv.
For any non-negative matrix H (finite or infinite) we

define p-norm growth,

grpH ≡ sup
v

{
λ > 0 : lim inf

m→∞
‖eTvHm‖p

λm
= 0
}
, (4)

and a similarly defined grpH using limit superior. Here ev
is a vector with the only non-zero element at v equal to one.

We note that for any finite graph, grpH = grpH = ρ(H).

Moreover, if H is the Hashimoto matrix associated with

a tree T , ‖Hmev‖1 is the number of sites reachable in

m non-backtracking steps from the arc v ∈ A(T ). Then,

gr1H is exactly the growth of the tree[7], and gr1H is

the uniformly limited growth[1]. Furthermore, on a tree,

gr2H = (gr1H)1/2 is the point spectral radius[7]. More

generally, for any graph G, gr2H gives an upper bound

for the spectral radius ρl2(H) of H treated as an operator

on l2(A); it satisfies the following inequalities

(gr1H)1/2 ≤ ρl2(H) ≤ gr2H ≤ gr1H, (5)

where the rightmost inequality is strict if G is non-

amenable.

Results. We prove the following bounds:

Theorem 1. Consider site percolation on a locally finite

graph G characterized by the Hashimoto matrix H. Then

pT ≥ 1/ gr1H, pc ≥ 1/ gr1H.
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The first inequality is obtained by evaluating a union

bound for χv over all non-backtracking walks starting

with v [5, 4]; the second by using the bound on the

percolation transition on a graph in terms of the transi-

tion on the universal cover[3]. The following connectivity

bound follows directly from the alternative definition of

ρl2(H) = limm→∞ ‖Hm‖1/m2 :

Theorem 2. Consider site percolation on an infinite

graph G with maximum degree dmax, characterized by the

Hashimoto matrix H with ρ ≡ ρl2(H). Then, if p < 1/ρ,

connectivity between any pair of sites decays exponentially

with the distance, i.e., there exists a base ρ′ < 1 and a

constant C ≥ dmax(1− pρ)−1 such that

∀{u, v} ⊂ V(G), τu,v ≤ C(ρ′)d(u,v). (6)

We say that an OLG of a connected graph G is strongly

`-connected, if for any arc a ∈ A(G), there is a non-

backtracking walk of length at most ` from a to its reverse,

ā. When such a graph is finite, the ratios of the compo-

nents of the Perron-Frobenius vector ofH corresponding to

any pair of mutually reverted arcs are uniformly bounded

(up to a constant). This gives

Theorem 3. Consider site percolation on a finite graph

G whose OLG is locally strongly `-connected. Let H be

the Hashimoto matrix of G. Then, if λ ≡ pρ(H) < 1, the

connectivity between any pair of vertices satisfies

τi,j ≤ max(deg i,deg j)
1 + [ρ(H)]`

1− λ λd(i,j). (7)

Moreover, for any locally-finite graph G whose OLG is

locally strongly `-connected, we have:

Theorem 4. Consider an increasing sequence of sub-

graphs Gt ⊂ Gt+1 ⊂ G convergent to a locally-finite graph

G. The following limit exists

ρ0 ≡ lim
t→∞

ρ(Ht) ≤ ρl2(H). (8)

The upper bound is saturated, ρ0 = ρl2(H), if the OLG of

G is locally strongly `-connected.

The same parameter ρ0 also defines a lower bound on

the uniqueness transition:

Theorem 5. For a locally finite graph G, the uniqueness

transition satisfies pu ≥ 1/ρ0.

This follows from a bound on the expected number of

self-avoiding cycles passing through a given arc, and the

related analysis of cluster stability[4].

Example 1. A degree-d infinite tree Td can be obtained

as a limit of an increasing sequence of its subgraphs, t-

generation trees Gt = T (t)
d . We have ρ(Ht) = 0 for any t,

thus ρ0 = 0, consistent with the known fact that there is

no uniqueness phase for percolation on Td.

Conclusions. We give lower bounds for all three transi-

tions usually associated with site percolation on infinite

graphs. We also identify a region of p where connectivity

decays exponentially with the distance. For certain graphs

with many short cycles, we give an improved upper bound

on connectivity’s exponential falloff with the distance,

with explicitly specified parameters.
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Abstract

We discuss a model of a self-controlling adaptive network

capable of effectively responding to exogenously imposed

stresses. This model helps a network to control itself in

a distributed way through adaptive link weight adjust-

ment using a second-order control approach. Effectiveness

and robustness of the proposed model are studied via

numerical simulations. Results show that the proposed

model behaves significantly better than a model with the

traditional first-order control approach as it converges to

the desired pre-defined final state much faster with less

oscillatory behaviors.

Introduction

Complex networked systems, characterized by the presence

of adaptive mechanisms, abound in nature and technology.

In modeling all these real-world networks, it is often realis-

tic to consider that the strength of the interactions between

nodes is non-homogeneous and dynamically changing in

response to different environmental conditions.

From a control viewpoint, it is required that a network

has to reach a pre-defined desirable final state in finite

time. Eq. (1) states the canonical linear control problem

[1]:
dx

dt
= Ax+Bu (1)

where x represents the state vector of the system, A is the

system matrix, defining how nodes interact with each other

and the strength of the interactions among them, B the

input matrix, and u the control input. By manipulating

u, the controller intends to navigate the system state x to

the desired final state xd.

In this paper, however, we focus on a different scenario:

self-control of networks. Specifically, we discuss how to

design a networked system that can stay close to its own

desired state by adjusting link weights (A) adaptively

[2, 3] when external stress Bu is applied from the outside.

Eq. (2) shows a traditional first-order adaptive control

approach based on the difference between the current state

of the system x and the desired state xd [4]:

dA

dt
= c(xd − x)xT (2)

Here, in this paper, we propose Eq. (3) as a new second-

order control model for adaptive link weight adjustment:

dA

dt
= c[c′(xd − x)− dx

dt
]xT (3)

This model, similar to the traditional first-order model,

describes the main driving force by measuring the differ-

ence between the system’s current state and its desired

final state (xd − x). However, by also measuring another

level of difference between (xd − x) and dx
dt , the suggested

second-order model attempts to navigate the direction of

movement of the system’s state toward a desired direction,

not directly controlling its position in the state space. Our

expectation is that this second-order approach may realize

a smoother, faster convergence toward the desired state.

Results and Discussion

To evaluate the robustness of the proposed second-order

adaptive control model, a series of numerical simulations

were performed. Initial state of the system x, system

matrix A, and final desired state xd were selected randomly.

The coefficients of c and c′ were assumed as 1. External

stress Bu was assumed to be time-invariant and randomly

selected. Figures 1 and 2 show typical behaviors of the

traditional first-order and suggested second-order models

for networks with different number of nodes. While the

first-order control model converges to the desired state in

most cases, the second-order control model reaches the
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desired state in less time and in a smoother way with

significantly less oscillations.

Figure 1: Typical behaviors of the first order model.

Figure 2: Typical behaviors of the second order model.

To quantitatively compare the stability of the two models,

the distance of the system state from the desired state was

calculated as distance function D(t) (Eq. (4)) for each

simulation run.

D(t) = ‖x(t)− xd(t)‖ (4)

The stability of the behavior was quantified by fitting the

following model equation to the distance function D(t):

D(t) ∼ aebt (5)

The parameter b indicates the estimated stability of the be-

havior. The stability was measured for various simulation

runs while the number of nodes (N) and the connection

density (p) were systematically varied. The results are

shown in Figs. 3 and 4.

Figure 3: Stability (b) of the first-order control model.

Figure 4: Stability (b) of the second-order control model.

These results support the previous observation that the

second-order control model is consistently stable (b < 0),

while the stability of the first-order model (Figure 3) is

achieved only in a limited parameter regime.

Conclusion

We have proposed a model for self-controlling networked

systems. The main idea is to take into consideration the

second-order change in the state of network, in addition

to the first-order difference between the current and fi-

nal desired states. Numerical simulation results support

robustness of the suggested model. Our next step will

include mathematical stability analysis of the proposed

model and its applications to real-world networks with

non-trivial topologies.
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Summary

While topological methods are gaining prominence in

other areas of data analytics [1], there is only sporadic

attention to the topological roles played by specific graph

structures, including vertices, edges, and cliques [3, 4].

We describe a class of measures on the clique (flag) com-

plex of a network based on the local topological structure

surrounding the multidimensional faces, and the role they

play within the the overall graph structure. This repre-

sentation of a graph as a topological complex admits an

Alexandroff topology, and the dimensions of the local ho-

mology groups of neighborhoods of faces are computable

as measures on nodes, edges, or any other higher-order

cliques. Their propertries are considered and compared

to other network measures both on the corresponding con-

tracted neighborhoods in the graph, and in consideration

of the planarity of the underlying graph. Examples are

provided for both standard test and random graphs. We

conclude with a couple of analytical results.

Local Homology on Flag Complexes of Graphs

For an undirected graph G = 〈V, E〉 on a finite set of

vertices V with edge set E ⊆ V 2, its flag complex X is a

collection of nonempty subsets F ⊆ V where F ∈ X if and

only if F is a clique in G. Each F ∈ X is a k-dimensional

simplex or face in X , where k = |F | − 1. X has the

Alexandroff topology, whose open sets are arbitrary unions

of “stars” ?(F ) = {G ∈ X : F ⊆ G} for F ∈ X . We also

have the closure cl(F ) = {G ∈ X : G ⊆ F }. In general for

any set of faces, Y ⊆ X , the star, ?(Y ), is the subset of

X containing Y and the star of each of its elements. We

similarly define the closure of any set of faces. For each

set of faces Y ⊆ X , define the 0-neighborhood of Y as

N0(Y ) = ?(Y ) and for each k > 0, the k-neighborhood as

Nk(Y ) = ?(cl(Nk−1(Y )). For every open subset, Y ⊆ X ,

we introduce the measure LHj(Y ) : = dim(Hj(X ,X\Y )).

For j ≥ 0 LHj(Y ) is the j’th local Betti number of the

space (a cell complex) produced by taking the quotient

of X by X \ Y , collapsing everything outside of Y to a

single point.

Fig. 1 shows an example, where on the left a graph

on 7 nodes has the flag complex X shown with a

tetrahedron, two triangles, and an edge as maximal

faces. N0(cl({A, K})) is shown in green (the red

points and edges are excluded), and the quotient space,

X / (X \ N0(cl({A, K}))) is on the right. Here we have

LH1(N0(cl({A, K}))) = 1: focusing on N0(cl({A, K}))

yields a single loop (shown), in that the points E and C

are separated from V, T1, and T2. This is not the case, for

example, with LH1(N0({A, V })) = 0, since it sits on the

boundary and does not divide the space.

Figure 1: Example (left) flag complex of a graph and (right)

the cell complex produced by focusing on the 0-neighborhood

of the cl({A, K}).

Fig. 2 shows an example over a graph of USA borders:

two states are connected when they have an adjoining

border. As a flag complex, there is one maximal tetra-

hedron and one maximal edge, otherwise maximal trian-

gles. The top and bottom show LH1 and LH2 of the

0-neighborhoods of all faces, as identified. We observe

that LH1 serves to identify cut faces and cuttable regions;

while LH2 serves to identify the border, including the four

corners, which is measured as part of the border due to

its high internal connectivity.

Observational Comparison With Network Measures

While comparing LH with vertex and edge measures used

in network science is straightforward, to do so for higher

dimensional faces we build a new face contracted graph,
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Figure 2: LHk measures over the 0-neighborhoods of an

example flag complex. (Top) LH1 = 0 (magenta), LH1 = 1

(blue); (Bottom) LH2 = 0 (magenta), LH2 = 1 (blue).

GF , in which vertices of F ∈ X are replaced by a single

vertex, vF , which will be adjacent to the union of the sets

of neighbors of vertices in F that remain in GF . For any

graph measure g (e.g. centrality), we let g(F ) := g(vF )

as computed in GF , noting that this will not alter the

computation of any network measures on vertices.

We used NetworkX [2] and wrote a Python library

[5] to calculate LH1(N0(cl(F )) on all faces, F , of (1)

the Zachary Karate Club social network (34 vertices, 78

edges); (2) a synthetic Erdős-Rényi (ER) graph (40 ver-

tices, 146 edges); and (3) a synthetic Barabási-Albert

(BA) preferential attachment graph (40 vertices, 144

edges). Fig. 3 shows select scatter plots comparing LH1

with centrality measures and clustering coefficient (CC)

for the Karate club. We observed strong positive correla-

tion between LH1 and a number of centrality measures,

and strong negative correlation with the local CC.

Analytical Results

We also have some analytical results which bolster our

observations above. First, we have proved [4, Thm. 12]

that when X is an abstract simplicial complex (as all

flag complexes are), and connected, then for a face with

N0(F ) ⊆ X , LH1(N0(F )) + 1 is an upper bound on the

number of connected components of X \N0(F ); and when

H1(X ) is trivial (the usual, global homology), that upper

bound is attained. Thus we have LH1(N0({v})) = C −

1, where C is the number of connected components in

the subgraph of G induced by the neighbors of v (not

including v itself). This is visible in Fig. 2 for the NY and

NH vertices and the NH-ME edge: with LH1(N0(F )) =

1, their removal splits the local vicinity into 1 + 1 = 2

connected components; and these reach the upper bound

since the (global) H1 = 0.
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Figure 3: Scatter plots comparing network measures with

LH1 for the Karate network.

We have also found a functional relationship between

CC and LH1(N0({v})). If G is planar, then the number

of triangles incident to v is bounded by a linear function

of the number of neighbors of v. This allows us to prove

dv − 1 −
dv(dv−1)CC(v)

2 ≤ LH1(N0({v}))

≤ dv − 1 − dv(dv−1)CC(v)
6 ,

where dv is the degree of v and CC(v) is its clustering

coefficient. The lower bound is true for any simple graph

(i.e., not necessarily planar), but a similar upper bound

cannot be shown for all simple graphs. This tells us that

LH1(N0({v})) is bounded above by the pointwise max-

imum of a set of negatively sloped linear functions in

CC(v) sweeping out an “L” shaped curve. This is re-

flected in our experiments depicted in Figure 3 in which

the data points are following the predicted upper bound.

Though our graphs are not planar, the neighborhoods

generally are which is sufficient for this result to hold.
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THE CO-EVOLUTION OF INNOVATION NETWORKS: THE COLLABORATION BETWEEN
EAST AND WEST GERMANY FROM 1972 TO 2014
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Summary

This study aims to describe the co-evolution of German
innovation networks, in which East and West German
networks started to coevolve after German reunification in
1990, by analyzing German publication data that covers
from 1972 to 2014. We firstly figures out that the quanti-
tative structural change of East-West network happened
in the early 2000. Second, network figures using energy
model and list of top ranked regions in terms of degree
centrality explain the qualitative aspect of the structural
change. Third, the degree distribution and power law
show that regions with a few collaborators rather than
those with a large number of collaborators have domi-
nated the properties of the German innovation networks.
Last, the change in cliquishness and path length compared
to four different types of benchmark models provide the
network property that East and West German regions has
been likely to connect new regions that locate in their
community or in their surrounding, instead to jump into
the new regions. Our finding supports the German gov-
ernment’s effort for building network between East and
West German regions.

Data

This paper defines a co-authorship network that reflects
the regional collaboration links through research projects.
In this network, the nodes are the German regions in
NUTS 3 level for authors in Germany, and the name of
countries for authors in outside of Germany. Two nodes
are linked if scientist located in these regions write a paper
together. Our dataset was collected from Web Of Science,
mainly from SCI web version DB, regardless the types of
article, including journal article, proceeding paper, review,
letter, news item, and book review from 1972 to 2014.

The databases contain address of author; the number
of co-author; the field of study; and the institution that
author belongs to of all relevant journals in the all research
fields categorized by Web of Science. The number of
published paper we consider is 2,897,322 as a raw data,

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0 entire links

East−West links

Figure 1: The number of links over time with structural
break points

and 1,371,639 after removing single authored papers. From
the papers with more than two authors, we can get the
nodes and edges. The minimum number of nodes is 95 in
1972 and the maximum value is 545 in 2014. Given NUTS
of Germany, which is Nomenclature of Territorial Units
for Statistics, consists of 429 districts in its level 3, the
average value 379 is relevant value of nodes. Regarding
edges of dataset, the number of edges is 255 in 1972 as
a minimum value, and it reaches 22,456 in 2014 after
continuous growing over time.

Results

By using Chow test in ARIMA model, as shown in Figure 1
we figured out that the quantitative structural changes of
networks happen in the early 1990s for the entire network
and the early 2000s for East-West network.

Second, to examine how the structural change has been
proceeded, we pick 5 time points, which are 1974, 1984,
1994, 2004, and 2014, and draw networks. By analyzing
the network figures, we can argue that the East-West
regions were separated before the reunification and started
to co-evolving over time, reaching very blended moment
among German regions and other countries around 2004,
and finishing to restructure in 2014 in the way that East-
West ties became tighter repelling the bridge provided by
other countries.

Figure 2 shows the change in the top 10 regions in terms
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Figure 2: Top 10 nodes over time

  1974 1984 1994 2004 2014 
a 792.889 1189 2472 5173 8554 
Std.Error 4.6989*** 4.576*** 5.375*** 5.623*** 13.95*** 

 -1.7255 -1.625 -1.598 -1.517 -1.425 
Std.Error 0.01786*** 0.01021*** 0.005561*** 0.002494*** 0.003284*** 

	

P(z)= az−τ

τ

Figure 3: Power Law
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Figure 4: Cliquishness

of degree centrality. Before the reunification, Munich had
been ranked top and East Berlin was the only Eastern
regions within the top 10 regions. However, East Berlin
ranked the top just before the reunification, which means
that the innovation system of East Germany was more
centralized than that of West. After the reunification,
taking more than 10 years, Dresden and Leipzig joined
the top 10 cities in 2004 and 2014, respectively. We can
insist that Berlin region got more dominant role in the
reunified Germany and it took more than 10 years for
the innovation system of East regions to recover from the

unprepared reunification and to be on the way of catch
up that of West regions.

According to [4], the distribution that τ is equal to 2
is a dividing line, which locates between two fundamental
different networks’ behavior. If τ is less than 2, the few
individuals with a large number of collaborator play a
dominant role in deciding the average properties of net-
work, while the networks’ properties are dominated by
individuals with a few collaborators when τ is greater than
2. The slope, τ of innovation network in Germany has not
been greater than 2 and decreasing over time. Therefore,
we can state that the properties of German innovation
networks have not been dominated by a few cities with a
large number of collaborators, and the trend also heads
this direction.

Last, this study analyzes the change in cliquishness and
path length compared to four different types of benchmark
models, which are Erdos and Renyi model [2], the Watts
and Strogatz model [5], the Barabási and Albert model
[1] and a so called evolutionary model [3]. The change in
cliquishness and path length over time provide the part
of answer why German government has needed to make
an effort to build a network or why still we cannot say
the reunified Germany has already achieved the real inte-
gration. As the clustering coefficient increases over time
compared to the benchmark networks, we can conclude
that the new links and nodes haven been attached in very
close cliques, which means that East and West German
regions has been likely to connect new regions that locate
their surrounding, instead to jump into the new regions.
Considering these properties of the German innovation
networks, we can conclude that innovation policy boosting
networking between two German regions is effective and
necessary to achieve the real unification.
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Summary

We have reached a point where more than half of the

world’s population lives in cities, and thus understanding

cities’ growth and behavior has become crucial to their

future efficiency and sustainability. While there are many

studies that point to universal mathematical laws relat-

ing socioeconomic activities and city growth [1], here we

explore the application of those laws to airline networks,

which are also becoming ever important as our world glob-

alizes. Our goal is to understand the interplay between the

two evolving processes of a time-varying airline network

and population growth.

Introduction

The airline network is vast, servicing many thousands of

flights around the world each day, thus playing a critical

role in our society, from mobility patterns to epidemic

spreading. However, it is also a highly dynamic system

which is affected by frequent changes. Each time a route

is cancelled, an airport closes, or a new one is opened

the structure of the network must once more adapt. This

dynamic nature of the flight network makes it complicated

to understand and to predict how it will behave locally or

even as a system over time. In this work, we use network

analysis as a tool to examine these systems in a case study

of the Brazilian airline and population networks. Doing

so will allow us to see both how the overlying structures

of the networks and each individual city behave over time.

Datasets

Our analysis is based upon three data sets: population,

gross domestic product (GDP), and airline flights. Each

data set provides information on approximately 350 Brazil-

ian cities over time. We use population data from 1970,

1980, 1991, 2000, and 2010, while GDP is given per city

yearly from 2006 to 2010. The airline data spans 1995 to

2006, providing information in each year of which routes

existed between airports, along with the number of pas-

sengers, flights, and cargo on each route [3]. Further, we

use data of geographical coordinates of cities to embed

the network in physical space, allowing for calculations of

flight distances. From this data, we created yearly undi-

rected networks in which cities (airports) are nodes, and

those nodes are connected by an edge if a flight between

two cities exists in that year. Edges can then be weighted,

such as by total number of passengers along that edge.

Finally, since the population grows with time, we linearly

interpolated the logarithms of the data to estimate the

populations for each year from 1995 to 2006.

Analysis

The first step towards understanding the relationship be-

tween population and airport growth lies in understanding

each system individually. Much work has been done exam-

ining the properties of population dynamics, along with

its relationship to economic growth, pointing towards a

“superlinear scaling” phenomenon where various metrics

including crime, total housing and GDP, increase con-

sistently at a nonlinear rate with population [1]. Our

data of Brazilian cities agrees with this finding, with a

corresponding rate of 1.11± 0.02 in 2010. This agreement

is an indicator of the robustness of our population and

GDP data sets, and also is a measure of the relative im-

portance of each city. This only provides snapshot views

of the system, though. Figure 1(a) shows the cumulative

distribution function (CDF) of population in each given

year on a log-log scale, serving as a measure of global

distribution and growth trends. It tells us that the pop-

ulation growth is heavy-tail distributed and governed by

a power-law. Though the tail-end slope is constant, the

distribution moves to the right over time, indicating that

the population is growing steadily over time. However,

something entirely different is happening on a city-level

scale. Inspired by Batty’s rank clocks of cities [2], Figure

1(b) shows the rank of each city over time, sorted on the

x − axis by rank in 1995. The great variance from the

x = y axis shows that although the population is growing
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Figure 1: Macro-stability vs. Micro volatility

(a) Cumulative distribution function of populations of

cities in Brazil over time. (b) Ranking (largest = 1) of

population over time, sorted on the x-axis by ranking in

1970. (c) CDF of degree weighted by number of passen-

gers flying through the airport. (d) Ranking over time of

degree weighted by passengers. Rank = 0 indicates the

airport did not service any flights that year.

steadily on the global scale, the population ranking of

each city is changing significantly, particularly in smaller

(lower ranked) cities. This conflicting behavior between

micro and macro dynamics is an indication that popula-

tion behavior is more complex and dynamic than it would

initially seem from the CDF alone.

Remarkably, the airline network behaves in a very sim-

ilar manner to the population in both global and local

analyses of temporal dynamics. Figure 1(d) displays that

each airport changes in rank over time, so the airline net-

work fluctuates on the local scale just like the population.

It is noticeable though that the largest degree airports

are significantly more stable in ranking than smaller ones,

indicating that this network favors the hubs. Correspond-

ingly, in figure 1(c) we note that the CDF of the degree

(weighted by passengers) of airports is also heavy-tail dis-

tributed and growing with time. Unlike the population,

though, the slope is decreasing, so the airports are be-

coming more heterogeneous. In fact, even over the course

of these twelve years it is evident that there are fewer

airports and routes over time, in contrast to the simul-

Figure 2: GDP vs Population (a) GDP vs degree

weighted by passengers in 2006, colored by ratio of
log(GDP )
log(pop.) . (b) The geographical layout of the correspond-

ing airline node network, colored by the same ratio.

taneous increase in number of passengers and weight of

cargo [3]. As such, the latter part of our analysis aims

to classify the cities by their behavior in a way that can

predict an airport’s success based upon factors such as the

city’s corresponding population and geographic location

relative to other cities in the network.

Discussion

A preliminary analysis of the relationship between these

two dynamic systems indicates that despite all of the

similarities between their micro and macro scale dynamics,

they do not correlate with one another as consistently as

population and GDP do. In figure 2 (a) we see that the

high end of population and degree are described by a

strong linear correlation, yet the lower portion of airports

display no correlation. The observation that large and

small cities appear to be governed by completely different

underlying mechanics motivates a deeper analysis of what

characterizes the division between these groups and of

what other factors (such as geographical location, as in

figure 2 (b)) might serve as a better predictor of behavior

for those small airports.
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Summary

We review some of our recent work in graph-based sig-

nal processing. We propose conjugate gradient-like and

Nesterov iterative acceleration of repeated application of

graph-based edge-preserving denoising filters: bilateral,

guided, and total variation. Edge-enhancing graph-based

denoising, using negative graph weights, is demonstrated.

Guided and consistent signal reconstructions are combined

into a reconstruction set, e.g., for image magnification.

Introduction to graph-based signal processing

Graph-based signal processing deals with signals defined

on graphs, as their domain. It can be viewed as a natural

extension of traditional signal processing of discrete signals

from linear to general graphs. Graph-based processing

can be applied to traditional signals as well as, e.g., in

Figure 1 for temporal signal denoising.

Acceleration of repeated application of graph-based

edge-preserving denoising filters

Graph-based spectral denoising is low-pass filtering of

noisy signals based on eigendecompositions of a graph

Laplacian matrix, as a generalization of a discrete cosine

transform (DCT) for the traditional signals. While basis

functions of DCT are explicitly known, computing the full

eigendecomposition of the graph Laplacian is numerically

expensive. Polynomial filtering avoids costly computations

by projecting on Krylov subspaces.

Initial publications [2, 7, 12] start with repeatedly ap-

plying a fixed smoothing filter, whose coefficients are de-

termined by a guiding signal defining the corresponding

graph. The authors of [2] propose to accelerate filtering

using Chebyshev polynomials. In [12], we additionally

propose constructing the polynomials by the conjugate

gradient method. In [7], we formulate a special variant

of the conjugate method, which accelerates denoising of

signals on graphs, and demonstrate that similar acceler-

ation can be achieved with the Locally Optimal Block

Preconditioned Conjugate Gradient (LOBPCG) method

from [4]. LOBPCG has been earlier used, e.g., for image

segmentation in [9] and for multi-billion size matrices from

material sciences by two Gordon Bell Prize finalists at

ACM/IEEE Conferences on Supercomputing in 2005 [14]

and 2006 [13] implemented on Japan’s Earth Simulator.

LOBPCG is publicly available in open source parallel

software BLOPEX [10].

Our subsequent work [8] introduces a nonlinear iterative

application of smoothing filters, where the filter at each

iteration is determined by the currently processed signal.

The resulting transform yields a nonlinear smoothing fil-

ter in contrast to the linear smoothing filter given by the

repeated application the fixed filter at each iteration. The

paper [8] presents a special variant of a nonlinear pre-

conditioned conjugate gradient method and numerically

demonstrates its high efficiency for accelerated denoising

of one-dimensional signals.

In addition to the bilateral and guided image filters,

we consider total variation denoising, formulate it in a

filter form, and test all three filters for image denoising in

[6]. We also numerically compare the conjugate gradient

acceleration of nonlinear iterative smoothing filters and

Nesterov’s acceleration—the latter commonly used in a

very different context of convex minimization.

Edge-enhancing using negative graph weights

In [6], the graph-based denoising is performed by project-

ing the noisy image to the Krylov subspace of the graph

Laplacian, constructed using nonnegative weights deter-

mined by distances between image data corresponding to

image pixels, serving as graph vertices. We extend in [5]

the construction of the original graph Laplacian to a case,

where some graph weights can be negative, in contrast

to defining a signed Laplacian. Removing the positivity

constraint provides a more accurate inference of a graph

model behind the data, and thus can improve quality of

filters for graph-based signal processing, e.g., denoising,

compared to the standard construction, without affecting

the costs. The use of the graph Laplacian in [5], where

some weights can be negative, enhances the edges in the

demoised signal as shown in Figure 1; also see, e.g., [3, 11].
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Consistent and guided signal reconstructions

In [1], we investigate reconstructing a signal from its pro-

jection on a subspace, utilizing a guiding subspace that

represents desired properties of reconstructed signals. Op-

timal reconstructed signals form a compact convex hull

of consistent and generalized reconstructions, called the

reconstruction set, as shown in Figure 2. We develop

iterative conjugate gradient methods to approximate opti-

mal reconstructions with low memory and computational

costs. The effectiveness of the proposed approach is demon-

strated for image magnification, where the reconstructed

image quality is shown to exceed that of both consistent

and generalized reconstruction schemes for noisy sampling.
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Summary

A canonical identification of Diagonally Dominant Stieltjes

(DDS) matrices with resistive electrical networks, yields

graphs, graph Laplacians, and canonically associated zeta-

functions and interrelationships. Finite Element discretiza-

tions of Boundary Value Problems for Laplace’s equation

yield DDS matrices. Under h-refinement and as a function

of the dimension of the underlying domain, we obtain fam-

ilies of zeta-functions encoding spectral asymptotics, and

outline a connection between certain classes of graphs with

excluded minors, and their zeta-functions, in a manner

relatively insensitive to overall graph size.

Preliminaries: From Networks to DD Stieltjes

A Stieltjes matrix S is a symmetric positive definite (SPD)

with non-positive off-diagonal entries. As such,

S = kI−B (1)

where B is symmetric with non-negative entries, and k

is positive. A geometric series argument shows that the

inverse of S is SPD with non-negative entries. A symmetric

matrix is diagonally dominant (DD) if any diagonal entry

is greater or equal to the sum of the absolute values of

the off-diagonal entries in the corresponding row. We will

focus on DD Stieltjes (DDS) matrices.

Consider an electrical network with underlying graph

G, adjacency matrix Aadj,0, edge-node incidence matrix

A0 and diagonal branch conductance matrix GB , so the

nodal analysis matrix becomes:

G0 = AT
0 GBA0 (2)

The graph Laplacian, 4G , of G is just G0 when GB = I,

4G 4= AT
0 A0 (3)

Since any column of A0 has a ±1 pair as nonzero entries,

Aadj,0 and 4G are related by[1]:

4G = D0 −Aadj,0, (4)

where D0 is the diagonal matrix of node degrees. For

regular graphs each node has degree d, D0 is a multiple of

I, and the spectrum of 4G is that of Aadj,0, shifted by d.

G0 is singular; the dimension of its null space equals the

number of connected components of G, and null vectors

correspond to floating potentiasl on connected components

of the network. In particular, it is not Stieltjes. Engineers

sidestep this ambiguity by grounding one node in each

connected component of the network. That is, they delete

a row in the incidence matrix corresponding to a node in

each connected component. The matrix is DDS:

G = ATGBA (5)

A special case of G, the grounded graph Laplacian,

4gG 4= ATA = D−Aadj (6)

is also DDS. Here, the columns of A no longer have two

nonzero entries if a branch ends up on a grounded node,

D is the diagonal matrix of degrees of nongrounded nodes,

and Aadj is the adjacency matrix with rows and columns

corresponding to grounded nodes deleted. Since G and

4gG are connected by a homotopy in the space of DDS

matrices, their spectra are connected by an induced ho-

motopy. Furthermore, for regular graphs, the spectrum of

4gG is again that of Aadj, shifted by the nodal degree d.

From DDS to Networks and on to Zeta Functions

An (n− 1) by (n− 1) DDS matrix, S, can be identified

with an n by n conductance matrix, G0 of a network as

follows. Let S be the upper left (n− 1) by (n− 1) block

of G0 and then complete the remaining row and column

of G0 to obtain an n by n conductance matrix, any row

or column of which sums to zero; off-diagonal elements in

the last row and column of G0 represent the conductance

from the nodes to ground. Identifying the ground node,

and constructing a network in this manner, G is just S.

Defining zeta functions via characteristic polynomials

makes their elementary properties are transparent. First,
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the zeta function of a resistive network by

ζG(t)
4
= det((I− tG)−1). (7)

It specializes to our grounded graph zeta function,

ζgG(t)
4
= det((I− t4gG)−1) (8)

This is distinct from the generating function for counting

nonself-intersecting loops of given lengths.

ζAadj
(t)
4
= det((I− tAadj)

−1) (9)

The latter two zeta functions are distinct from

graph zeta functions or Ihara zeta functions[8], but their

spectra are related in the case of regular graphs.

This canonical identification between DDS matrices and

resistive electrical networks yields graphs, graph Lapla-

cians, canonically associated zeta-functions, and connec-

tions between all these objects. This identification also

relieves us from making parallel definitions for DDS ma-

trices. We will now produce classes and families of DDS

matrices which are useful for characterizing classes of

networks spectrally.

Finte Elements, h-adaption and families of networks

We introduce the finite element method (FEM), and asso-

ciated mesh refinement techniques, in order connect, the

spectral asymptotics of elliptic boundary value problems

and spectral graph theory. The starting point is the ob-

servation that 1st order FE discretizations of the Dirichlet

integral subject to suitable boundary conditions not only

yields a DSS matrix, but a network model where one has

explicit fromulae for the branch conductances.

On a compact orientable manifold with boundary, the

Dirichlet BVP involves a self-adjoint Fredholm operator

and a spectral zeta function given by a Dirichlet series:

ζBV P (s) =
∑

i=1

λ−si (10)

There is also an analogous spectral expression for the zeta

function of a network which is a result of Newton’s identi-

ties being applied to the characteristic polynomial. The

work of Dodziuk[2] shows that, under h-refinement, the

network zeta functions converge as meromorphic functions

to the continuum limit. Furthermore, in the continuum,

one has formulae due to Weyl, for the asymptotic distri-

bution of the eigenvalues. Hence one can make precise

statements about the spectral asymptotics of the BVP as

a function of the underlying domain. In this way, the zeta

function is a meromorphic function which encoded the

entire spectrum and this is the basis of spectral geometry.

This is in contrast to problems like graph partitioning

where only the lowest few eigenvalues are exploited.

Excluded minors[5] enter the graph partitioning lit-

erature only in the context of planar and low genus

graphs[7],[3],[4]. However, combinatorial Hodge theory

and its widespread use in finite element theory show that

there is no problem defining and setting up a convergence

theory for zeta functions of higher dimensional Dirichlet

problems[2],[6]. From the identification of FE discretiza-

tions of Dirichlet boundary value problems (BVPs) with

DDS matrices and network models, one concludes that,

to the extent that the 1-skeleta of the finite element mesh

are characterized as graphs with excluded minors, the

Weyl asymptotics associated with the convergence un-

der h-refinement is a statement about families of graphs

with excuded minors. These 1-skeleta of d-dimensional

simplicial FE meshes have no (d+2)-cliques, but further

constraints involving excluded minors depend on d.

The simpest nontrivial conjecture asserts that once one

has an analog of Kuratowski ’s theorem for a d-dimensional

FE mesh then, under h-refinement, there is a spectral

characterization of 1-skeleton of the finite element mesh

via the spectral zeta function. In low dimensions results

like Kuratowski’s characterization of planar graphs or

others characterizations of linkless graphs are tied to Weyl

asymptotics via the zeta function. However, in higer

dimensions one has to exploit information beyond the

1-skeleton. This ensures that the conjecture is nontrivial.
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Summary

Investigations have taken place on different evolutionary

games played on random graphs and social networks. In-

dividuals could play a prisoner dilemma game on a graph

with various strategies and the option to switch partners,

hence, this game could be put into a framework of coe-

volving networks. We follow the node-based dynamics,

which means each node can use only one strategy (coop-

erate or defect) towards all his or her neighbors. In it, we

improve the existing pair approximation (PA) by using

approximate master equations (AMEs), and we explore

the parameter spaces and get accurate approximations of

the dynamics and the degree distribution of the station-

ary states. Then we extend this node-based model to a

link-based model, which means each node will not have to

cooperate or defect with all of his or her neighbors. We

also give different levels of analytical approximation to

study the evolution. This paper is the first evolutionary

games on networks based on link properties, and it gives

us a more realistic scenario of the real world dynamics

corresponding to decision making. We study the evolution,

predict the stationary states of the networks, and compare

the total utilities and other qualitative differences between

these two models.

Node based Dynamics

On a coevolving network with a game, the vertices repre-

sent players and the edges denote the pairwise partnership

between individuals. We want to study how players play a

Prisoner’s Dilemma (PD) game with the ability to change

strategies on each individual links they have and switch

partners. We start with an Erdős-Rényi network with N

nodes and and M edges. Each node has an equal proba-

bility to be a cooperator (C, denoted by two-dimensional

unit vector s = [1, 0]T ) or defector (D, s = [0, 1]T ) on one

end of each link and engages in pairwise interactions with

his immediate neighbors defined by the partner network.

That is, individual i plays a PD game with all his social

partners and obtains an income as

Pi =
∑

j∈Ni

sTi Psj ,

where Ni represents the neighborhood set of i and the 2

by 2 payoff matrix P would be

C D( )
C 1 0

D 1 + u u

where a single parameter cost-to-benefit ratio u ∈ (0, 1) is

used to rescale the payoff matrix.

Follow [1], in each time step, we first randomly pick

an edge that connects a pair of players with different

strategies on all of their links, i.e., a CD link denoted

by Eij to update. Later on we will extend the model to

allow all individuals to switch their defective partners,

that is, both CC and DD links can be rewired. With a

given probability w, node i and node j connected by the

edge Eij update their strategies; otherwise, Eij is rewired

(with probability 1 − w). When one node updates its

strategy, the node has a probability φ given by the Fermi

function to change its state [3]. When link Eij is rewired,

the player with end state C unilaterally gets rid of the

partnership with its neighbor with end state D on the edge

Eij . Suppose node i has the end with state C, then it will

randomly pick a player k from the remainder population as

its new partner. We will investigate the trade-off between

strategy dynamics (controlled by the parameter u) and

partner network adaptation (controlled by the parameter

w) throughout the coevolution of network topologies and

the dynamics on it.

We study this generalized coevolving network model

with a combination of simulations and approximate ana-

lytic models. The frameworks of Mean Field Theory (MF),

Pair Approximation (PA) and Approximate Master Equa-

tions (AME) have all been used effectively as analytical

tools in similar settings. Among these approximations,

AME can be used to achieve greater accuracy [2] [4]. The

PA estimation was obtained by [1], and here we provide
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the AME approximation. Let Ckl(t) and Dkl(t) be the

fraction of cooperative and defective sites of total degree

k which have number of defective neighbors l. We have

the following ODE governing the time evolution of the

Ckl compartment:

dCkl
dt

= w

{
φDk,l(k − l)Dk,l − φCk,llCk,l

+ φCk,l+1γ
S(l + 1)Ck,l+1 − φCk,lγSlCk,l

+ φCk,l−1β
S(k − l + 1)Ck,l−1 − φCk,lβS(k − l)Ck,l

}

+ (1− w)

{
NC
N

[
(l + 1)Ck,l+1 − lCk,l

]

+
NCD
N

[
Ck−1,l − Ck,l

]}

Similarly the ODE governing the time evolution of the

Dkl compartment is:

dDkl

dt
= w

{
− φDk,l(k − l)Dk,l + φCk,llCk,l

+ φDk,l+1γ
I(l + 1)Dk,l+1 − φDk,lγI lDk,l

+ φDk,l−1γ
I(k − l + 1)Dk,l−1 − φDk,lγI(k − l)Dk,l

}

+ (1− w)

{[
(k − l + 1)Dk+1,l − (k − l)Dk,l

]

+
NCD
N

[
Dk−1,l −Dk,l

]}

• For a Dk,l (Ck,l similarly):

PD = l ·u+ (k− l) · (1 +u), PC = 1 · 2NCC

NC
+ 0 · NCD

NC
,

and

φDk,l(D ← C) =
1

1 + exp[β(PD − PC)]
.

Link based Dynamics

We use a very similar setting with the node-based dynam-

ics. The utility matrix is still controlled by the parameter

u, and the individual still has probability 1− w to switch

a partner. Different from the node-based dynamics, note

that a node here doesn’t have its own state, instead, it has

different states on its side of its edges. Figure 2 shows dif-

ferent levels of analytical approximation of the link based

dynamics. Let Nk,mC
denote the quantity of node with

degree k and mC of C-stubs and Nk,mCC ,mCD,mDC ,mDD

denote the quantity of node with degree k, mCC of CC

links and so on. There are corresponding Nk,mC
and

Nk,mCC ,mCD,mDC ,mDD
differential equations to MF and
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Figure 1: Fraction of cooperators versus cost-to-benefit

ratio u with different w values (left) and fraction of cooper-

ators versus w with different u values (right) in stationary

states. Dots are the averages of 100 of simulation re-

sults, dotted lines are the pair approximation (PA), and

the dashed lines are the results of approximate master

equations (AME).

PA. In NS16, we will present these analytical estimations,

and more importantly, give an overall comparison of the

behaviors of node and link based dynamics.

Figure 2: Different levels of analytical approximations,

mean field (MF), pair approximation (PA), and approxi-

mate master equation (AME), respectively, in link-based

dynamical evolutionary games in a network setting.
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Summary

In this work, we present an application of DMNetwork

[1], a software library for scalable network simulation

included in the scientific computing library PETSc[2], on

transient analysis of water distribution system. We use

DMNetwork for the development of WASH, a scalable

simulator for water distribution systems that includes

high-fidelity physical model couplings.

Introduction

Developing scalable numerical software for large-scale net-

work applications is challenging due to its underlying

unstructured geometry and the lack of abstractions to

encapsulate general networks. The common thread in

all network simulations is that computations are done

on nodes and edges of a graph with the components

(physics) describing the nature of the problem to be solved.

With this simplistic design emanating from nodes, edges,

and components, we have developed a software library,

DMNetwork[1], that provides the capability of rapidly

developing network simulations and access to a variety

of high-performance linear, nonlinear, and time-stepping

solvers through PETSc. In this work, we use DMNetwork

for the development of WASH, a simulator for hydraulic

distribution systems. As opposed to previous DMNetwork

applications on power grid and radio networks, WASH

is unique because the edges represent water pipes mod-

eled by partial differential equations, which is a typical

characteristic of commodity-supply networks.

DMNetwork

DMNetwork is a class recently developed in PETSc to

provide abstractions for representing general unstructured

networks, such as communication networks, power grid,

and graphs. It is general and flexible in such a way that,

the nodes can be used to present various physical mod-

els, the edges build the connections between the models.

New nodes and edges can be easily inserted, and the ex-

isting ones can be removed or updated with minimum

local changes. On multiple processors, DMNetwork can

partition the network using the available graph partition-

ing packages (ParMetis and Chaco) and move the user

data describing the physics to the appropriate proces-

sor. DMNetwork being an in-built object in PETSc can

take advantage of its myriad of linear, nonlinear, and

time-stepping solvers available. Moreover, the choice of

creating a overarching solver comprising solvers (for e.g.

Schur-complement) for each individual system or using a

monolithic solver (for e.g. LU factorization) can be done

at run-time.

WASH

The WASH software package is built on top of DMNet-

work. Its goal is the simulation of a highly complex water

network where models of different physical nature interact.

We strive to build a platform where scientist of differ-

ent areas of expertise can collaborate and include their

models without the need of understanding the mechanics

of the couplings. The equations governing WASH repre-

sent transient analysis to determine maximum pressures

and flows along a network for a given disturbance after

some disturbance has occurred. This disturbance can be

the closure of a valve, the change of water demand, the

failure of a pump, or other events of interest. A sudden

surge in pressure can lead to the burst of a pipe or the

mis-functioning of a pump.

The physical model of the water network from [3, Chap.

3] can be described with the following set of partial differ-

ential equations for each pipe:

BQ
Bt ` gA

BH
Bx `RQ |Q| “ 0 (1)

a2
BQ
Bx ` gA

BH
Bt “ 0 (2)

which are the momentum and continuity equations for

the flow Qpx, tq and pressure Hpx, tq, with f being the

friction coefficient, D and A the diameter and area of the

pipe, and R “ f{p2DAq.
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In order to have a stable computation for the finite-

difference scheme, we have to take into account the

Courant-Friedrichs-Lewy (CFL) condition in the dis-

cretization scheme. In this case, for the unidimensional

flow in pipes:

CN “ a
∆t

∆x
ď 1 (3)

where a is related to the speed of sound in the fluid.

Since the time step must be the same for all pipes, the

discretization in space needs to be the same too. This

introduces difficulty when the network contains pipes of

acute different length since the shorter pipe will determine

the discretization of the whole network. Traditionally, this

has been addressed though interpolation or simplification

[3] of the overall model. The whole set of pipes in the

network is coupled by the continuity of flows at each node.

In the following figures, we show preliminary results

obtained on the WASH code on contiguously linked pipes.

The figures show the pressure of the wave (head, in meters),

the period and how it dissipates over time. The overall

length of the network increases as more pipes are added.

The pressure wave period will change depending on the

overall length of the transmission network. We can see

this, by comparing the period of Figure 1 and Figure 2.

Figure 1: Network with 5 contiguous pipes.

Moreover, as the wave travels more distance between

both ends, the friction losses are more acute. This phe-

nomenon can be observed in the referenced plots. A mod-

ified version of the 5 pipes network where all the pipes

have different diameter and friction, and one of the pipes

has a very high friction coefficient is shown in Figure 3.

Figure 2: Network with 40 contiguous pipes.

Figure 3: Pressure wave in a complex network.
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Summary

The random Delannoy graph is a square lattice with ran-
domly inserted diagonal edges. Expected geodesic dis-
tances are calculated exactly for some finite cases, and
upper and lower bounds are shown for lattices of arbi-
trary size. This is an instance of the longest monotone
subsequence problem in which repeated values are allowed.

Introduction

Graphs can abstract features of networks which are phys-
ically instantiated in Euclidean space. Frequently the
graph properties, such as the well-known small world
property, have no particular relation to the physical and
geometric characteristics. In that situation, the graph and
geometry give very different views of the same structure.
However, in this paper we focus on the complementary
circumstance, where the graph structure and geometric
structure are very similar. In such cases, physics-based
models are well motivated models for data flow.
A tractable, but non-trivial example, the random De-

lannoy lattice [7], is discussed. For this case two metrics,
the geodesic distance (minimal number of links between
two nodes) and the geometric distance (L2 norm), may be
quantitatively close, but not asymptotically proportional.
Note that the Delannoy lattice is a probabilistic construc-
tion, so when we refer to the geodesic distance, the mean
value is intended.

We show that geodesics for the random Delannoy lattice
are closely related to the problem of the longest mono-
tone subsequence in a sequence of integers that my have
repeated values. A calculational approach is outlined, sim-
ilar to that used for the extensively studied non-repeating
problem [1]. We present solutions for special cases.

In earlier work [4], we discussed how geodesic distances
in a network may approximate Euclidean distances. We
demonstrated [4] that for certain graphs, a close correspon-
dence exists between geodesic and Euclidean distances,
such that geodesic distance can serve as an accurate proxy
for the Euclidean distance. Graphs in the beta-skeleton
family [5] including the Gabriel graph [3] were studied

numerically.

Here we study a particularly interesting network consist-
ing of the two-dimensional infinite square lattice Z2 with
added diagonal edges. This lattice has 4 rectilinear edges
at each node. To these, next-nearest-neighbor diagonals
are added in a probabilistic manner, with +45◦ and −45◦
diagonals equally likely, but independently chosen. Owing
to the simple geometry, this lattice, which we call the
random Delannoy lattice Lλ, is more amenable to analysis
than networks having random node locations. A Bernoulli
parameter λ, with 0 ≤ λ ≤ 1, controls the density of
diagonal linkages.

In this study, the quantity of interest is the geodesic
distance [6] d between any two nodes. For quantities aver-
aged over an ensemble of lattices with a fixed value of λ,
one can take the two nodes, with no loss of generality, to
be the origin and the node at p, q (in the northeast sector,
p ≥ q > 0). For a particular instantiation, the geodesic
distance between these two nodes is d(p, q); ensemble aver-
aging over the positions of the diagonals gives E(d(p, q); λ).
Note that if all the diagonals were present, the number of
possible lattice paths would be counted by the Delannoy
number [7]. Provided λ < 1, typically only a subset of
those paths are accessible in any particular instantiation
of the random lattice. Trivially, d(p, q) = max(p, q) for
L1 while d(p, q) = p + q for L0, and it is apparent that
max(p, q) ≤ d(p, q) ≤ p+ q for Lλ.

Geodesic distances on the lattice clearly differ from Eu-
clidean distances in the extremal cases corresponding to no
diagonals or all diagonals being present. Euclidean behav-
ior would require d(p, q)→

√
p2 + q2 as p, q →∞. Based

on numerical evidence, near λ ∼ 0.3, for
√
p2 + q2 ∼ 10,

geodesic distances in Lλ are nearly isotropic, and approxi-
mately proportional to the Euclidean distance. However,
simple analysis will demonstrate that actual isotropy does
not occur in this model.

Geodesic Distance on the Delannoy Lattice

To compute the geodesic distance between the origin and
(p, q), note that only +45◦ diagonals play a role. Travers-
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ing an opposite diagonal will never lead to a shorter path
than moving along the perpendiculars. Further inspec-
tion shows that it is also not advantageous to traverse
positive diagonals outside the bounding rectangle formed
by the origin and (p, q). The shortest path always moves
up and/or to the right at each step and, subject to that
constraint, includes as many positive diagonals as possible.
Therefore for any instantiation d(p, q) is the same for the fi-
nite rectangular patch of lattice bounded by the origin and
(p, q), as for the infinite lattice. Henceforth we will focus
on d(p, q) and its ensemble average; the +45◦ diagonals
will be referred to as the “elements” of the lattice.

Computing d(p, q) is therefore reduced to considering
all potential shortest paths and determining the maximum
number of elements. Those paths move from the origin up,
right, or diagonally northeast. Let k denote the maximum
number of elements in any shortest path; then d(p, q) =

p+ q − k. Consider m elements on the finite lattice patch,
the northeast corner of the diagonals being located at m
distinct nodes {(pi, qi)}, with 0 < pi ≤ p and 0 < qi ≤ q.
The expected value for m is λpq. Values for both pi, qi
may repeat, and for large p (or q), typically there will
be multiple elements in a row (or column). We want to
know the expected value for the geodesic distance E (d) =

p+q−E(k). It suffices to search all permutations σ having
lengths k, with 1 ≤ k ≤ min(p, q), checking that both
pσ(1) < pσ(2) < ... < pσ(k) and qσ(1) < qσ(2) < ... < qσ(k).
If the inequalities are satisfied, there is a path including
at least k elements. These elements form a poset chain.

We concentrate the rest of our efforts on determining
the expected chain length E(k), which in turn gives us
the expected geodesic distance as p+ q − E(k).

The binomial distribution gives the probability of in-
serting exactly m elements into the lattice. We define
Np,q(m, k) as the number of ways to form a path of length
k in a p× q lattice having m elements. Then the expected
chain length is given by weighting k by {probability of
m elements} × {probability of finding a length k chain
given m elements}. One way of counting all possible ways
of inserting m elements is to ask how long a chain they
form, thus

∑min(p,q,m)
k=1 Np,q(m, k) =

(
pq
m

)
. There must be

one row, column, and element for each ordered element in
the path, so Np,q(m, k) > 0 only when k ≤ min(p, q,m).
Each element in a path lies on a unique row and column
and there are Np,q(k, k) =

(
p
k

)(
q
k

)
different ways to choose

k distinct rows and columns (as in the Delannoy num-

ber). Though we have the same lattice as for Delannoy’s
problem, here we wish to iterate through the randomly
placed elements in the path, and ignore the multiplicity
arising from various choices of the rectilinear paths. Unlike
the problem of finding the longest monotone subsequence
of a random permutation, here there are typically many
repeated entries in each row and column.

A well-known problem is that of determining the longest
monotone subsequence [1][2] in a random sequence of m
distinct integers, or a random permutation of m elements.
Each permutation has a length k, defined as the number
of elements in the longest monotone subsequence, and it
is known that for large m, the (mean of k) → 2

√
m, see

[1]. In the Delannoy lattice, given p, q,m, the probability
distribution for k is Pp,q(m, k) := Np,q(m, k)/

(
pq
m

)
. As-

suming that p, q are very large compared to the number
of elements, the node locations can be considered real
valued rather than integer valued. Denote the number of
monotone subsequences of length k for permutations of
m elements as M(m, k). One expects lim

p,q→∞
Pp,q(m, k) =

M(m, k)/m! . Both expressions give the chain length prob-
ability; the right-hand expression does this over all permu-
tations, while the left side does this for random, possibly
repeating, orderings, but repetition disappears in the limit
λ = m

pq → 0. (The infinite lattice limit could be called the
“dilute” limit, as the concentration of diagonals λ → 0.)
Thus the longest monotone subsequence should provide a
bounding case for the random Delannoy lattice.

In the full version of the paper, an efficient algorithm for
Np,q(m, k) is outlined. Additionally, we develop exact and
Monte Carlo calculations for the mean geodesic length,
and derive analytic bounds.
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Summary

Exploiting the structure of a sparse network can yield effi-

cient algorithms for NP-hard problems like motif counting.

We introduce CONCUSS, the first implementation of an

algorithmic pipeline for bounded expansion graph classes.

Based on empirical evaluation and testing of CONCUSS,

we discuss new theoretical advances targeted to improve

the experimentally-identified weaknesses.

Introduction

Scalable graph algorithms are a key component of deriving

observations from relations in large data sets. For exam-

ple, counting the number of occurrences of a particular

subgraph, often called motif counting, has proven useful

in comparing brains between species [1] and detecting cy-

berattacks [7]. Unfortunately, polynomial time algorithms

for counting arbitrary motifs are unlikely to exist [8]. This

has led to heuristic and sampling approaches that vary

significantly across domains and whose reasons for success

are not well understood.

The mathematics and theoretical computer science com-

munities have a rich history of algorithmic research that

circumvents these scalability issues by exploiting the struc-

tural sparsity of graphs [3, 5, 10, 12]. These algorithms

are designed to efficiently operate on graphs with certain

underlying structural features. An approach of this sort is

attractive because real-world data sets are not arbitrarily

structured. For example, it has been observed that graphs

in multiple, unrelated domains are sparse, exhibit cluster-

ing [14], and have heavy-tailed degree distributions [2].

However, employing sparse graph algorithms in large-

scale data analytics is a non-trivial task. The primary

objective of the algorithms community has historically

been to design efficient algorithms for a given problem,

measured by the worst-case asymptotic computational

complexity. As a result, algorithms exploiting structural

sparsity often have massive constants hidden in big-O

notation and/or non-trivial implementation details left

unaddressed. Simply put, the existing literature is ripe

with efficient algorithms but not necessarily practical ones.

Structural Sparsity

Information about the structure of a graph can allow some

NP-hard problems to be solved efficiently. For example,

if the graph is a tree we can use dynamic programming

to count the number of motifs in polynomial time [9]. In

this way, there is an efficient algorithm for motif counting

on an entire class of graphs (trees). Though data sets like

social networks are unlikely to be trees, the sparse graph

hierarchy identifies a number of other graph classes, each

of which has associated algorithms that operate efficiently

on graphs in that class. These classes are organized in

a nested fashion, e.g. trees are a subset of graphs with

bounded treewidth. As a result, moving up the hierarchy

implies a tradeoff: including more diverse graphs gives

less structure to exploit algorithmically.

Color

Decompose

Combine 42

Compute

Figure 1: The workflow for counting motifs efficiently in

bounded expansion classes.

Recent work has identified that classes of bounded ex-

pansion may occupy a “sweet spot” in the sparse graph

hierarchy: high enough to capture the structure of many

real-world data sets but low enough to provide useful al-

gorithmic tools [6]. Bounded expansion graphs can be

characterized as globally sparse, but having pockets of lo-

calized density. This corresponds to the previously known

existence of communities in data from multiple domains.
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The main algorithmic tools for bounded expansion

classes are p-centered colorings [4], which guarantee each

set of fewer than p colors can be decomposed into sub-

graphs belonging to a lower class on the hierarchy known

as bounded treedepth. Appropriate efficient algorithms for

bounded treedepth classes can be run on the subgraphs,

and then their subsolutions can be combined to create

a solution for the entire graph (Figure 1). Though this

approach requires enumerating all subsets of p− 1 colors,

graphs in classes of bounded expansion admit p-centered

colorings with a bounded number of colors, which decou-

ples the number of color subsets from the graph size.

CONCUSS

The algorithmic framework in Figure 1 had previously only

been described theoretically [10, 6] and it is unclear to

what extent the asymptotic analysis glosses over practical

performance problems. For this reason, we pursue an

algorithm engineering methodology [13]: experimentally

evaluate an algorithm, determine its weaknesses, address

them with new theory, and repeat. To accomplish the first

goal, we created CONCUSS [11], an open-source software

tool written in Python and the first implementation of

any bounded expansion algorithmic pipeline. Many of

the non-trivial details of CONCUSS were implemented

multiple ways. We designed experiments to test how the

different choices of these details affect the performance on

graphs of different sizes and to determine how the different

stages contributed to the total run time.

Alternative Colorings

These experiments identified the Color stage as the

portion of CONCUSS in most need of improvement. The

current state-of-the-art algorithms for finding p-centered

colorings iteratively add constraints to the vertices until a

greedy coloring becomes p-centered. The number of added

constraints increases with each iteration, which in turn

cause the algorithm to be time- and memory-consuming.

The number of colors assigned in the Color stage also

has ramifications on downstream computation because

the Decompose, Compute, and Combine stages are

each executed once per subset of p− 1 colors. While the

aforementioned approach does give bounds on the number

of colors used, it may use far more than the minimum

number of colors required. The existence of this gap was

verified empirically; adding simple heuristics in CONCUSS

often significantly reduced the number of colors.

To mitigate these problems, we introduce p-linear color-

ings as an alternative to p-centered colorings. We created

algorithms for finding p-linear colorings, bounded the num-

ber of colors required in a bounded expansion class, and

proved algorithmically useful properties of the subsequent

decomposed subgraphs. They can be found using similar

methods to p-centered colorings, but with fewer iterations

and using fewer colors in total. Like p-centered colorings,

p-linear colorings also allow decomposition into bounded

treedepth subgraphs. As a tradeoff, these decompositions

may have larger treedepth than those from the p-centered

colorings. In future work, we look to implement p-linear

colorings in CONCUSS and evaluate whether the tradeoff

results in a lower running time.
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Computer Network Data Challenges

There are many important aspects of network analysis

and cyber security, and two key tasks are intrusion and

anomaly detection. For example, many anti-virus tools

are based on “signatures” of known viruses, worms, and

Trojan horses. Here, a “signature” usually means a certain

sequence of bits in executable code, TCP/UDP packets,

or events (e.g., network ports accessed in a certain order).

If any of the signatures are detected during a scan, the

anomalies or attacks will be flagged. Clearly, the availabil-

ity of appropriate features and signatures plays a pivotal

role in the accuracy and effectiveness of such detection

systems [1].

One of the main limitations of such “supervised” de-

tection approaches is that they can not detect new forms

of anomalous or malicious behaviors that do not match

existing signatures. In addition, many classes of aberrant

behavior can be embedded in large swaths of legitimate

activity. Accordingly, it is our goal to build systems that

extend the classes of features that are available to such

systems. To this end, we have deployed two methods, ro-

bust principal component analysis applied to second order

data and robust deep auto-encoders, to uncover latent

features in network data. Both of these methods mitigate

the fact that outliers in sensor networks can skew the

approximated low-dimension representation arbitrarily far

away from the true low-dimension representation [6]. The

robust principal component analysis (RPCA) we propose

assumes that multiple-sensor activities throughout a net-

work are linearly correlated, and it represents the whole

network’s activity using a linear combination of fewer fea-

tures. Both outliers and the low-rank latent structure of

the data can be captured simultaneously by such second

order analysis. On the other hand, the deep auto-encoder

we propose tries to recover the whole network activity

through a non-linear combination of features. The two

approaches are tightly coupled since the auto-encoder we

propose leverages the same type of sparse technique for

detecting sparse outliers as do the RPCA techniques. One

promising part of such deep auto-encoders is that, by

extending the number of layers, deep auto-encoders can

capture highly non-linearity aspects of the network data

[3].

Latent Feature with Robust PCA

Robust principal component analysis (RPCA) refines prin-

cipal component analysis (PCA) by making PCA robust

to outliers. RPCA allows for the careful teasing apart of

sparse outliers so that the remaining low-rank approxima-

tion is faithful to the true low-rank subspace describing

the raw data [2][8][9][10]. We argue that our input data

M , for which we classically use second order covariance

information, can be decomposed into three parts

M = L0 + S0 + ε,

where L0 is a low-rank matrix which can be linearly re-

covered by factors Y through L0 = Y Y T , S0 is a sparse

matrix which can not be captured by the low-rank features

and ε is point-wise error. This matrix decomposition can

created by way of the following optimization problem [2]:

argmin
L0,S0

||L0||∗ + λ||S0||1

s.t. |M − L0 − S0| � ε
where the || · ||∗ is nuclear norm, and || · ||1 is one norm.

Through this model, the low-rank matrix L0 can be inter-

preted as the background network features which widely

influence the network sensors, and the sparse matrix S0 are

anomalies which can not be captured by low-dimensional

features. Anomalies in S0 do not necessarily imply mali-

cious intent, but such sparsely correlated phenomena often

bear closer examination in real-world network problems.

Latent Feature Discovery with Deep Models

In RPCA, the low-rank structure of L0 implies it is a linear

combination of latent features. However, non-linear com-

binations could capture more complicated sensor activities

throughout the network. We assume that the majority of

the network activities could be represented by non-linear

combinations of a few latent features, and the rest of

the activities are outliers. Our target is to learn these
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latent features by non-linearly projecting and combining

the observations of sensor activities. The outliers will also

emerge as the unrepresentable parts from the non-linear

combination of the latent features. We deploy deep models

to discover non-linear latent features. In particular, deep

auto-encoders are often used for learning a representation

or effective encoding of the original data, in the form of

parameters in the hidden layers [3]. One promise of deep

learning is to replace handcrafted features with efficient

algorithms for unsupervised or semi-supervised feature

learning and hierarchical feature extraction[5].

An auto-encoder is a feed forward multi-layer neural

network which the output target is the input itself. This

process perhaps seems trivial, but the meaningful part is

the dimension-reduced hidden layers which are trained to

be as lossless as possible representations of the input. A

typical auto-encoder with one hidden layer consists of an

encoder E(·) and a decoder D(·). The low-dimensional rep-

resentation h = E(X) is computed after the cost function

||X −D(E(X))||2 minimized. The desired non-linearity

comes from non-linear encoders E(·) and decoders D(·).
However, some classic types of auto-encoders could suffer

heavy losses in the presence of outliers. In particular,

outliers may mislead the direction or skew the curvature

of the manifold. Eliminating the influences of outlying

observations promises to improve the robustness of deep

models and makes them more applicable to the real-world

network data.

Accordingly, in our work, we propose an improved model

that is a novel combination of deep auto-encoders and

RPCA. Similar to the previous section, we decompose

our input data into X = L+ S where the L is a matrix

that can be represented by a non-linear manifold and the

S contains the outliers which will corrupt and skew the

non-linear manifold. Our loss function for a given layer is

a summation of the sparseness of S and the reconstruction

error of L, namely

argmin
W,b,S

||L−DW,b(EW,b(L))||2 + λ||S||1

s.t. X − L− S = 0

where E(·) denotes an encoder, D(·) denotes a decoder,

S captures the outlying observations, and L is a low-

dimension manifold. We used L as input data to a stan-

dard deep auto-encoder model to learn a low-dimensional

representation on a non-linear manifold. After training

the whole model, L should retain a good representation

of X inside the hidden layer.

Network Applications

The effectiveness of such robust methods have already

been demonstrated in the literature [2], and in this poster,

we propose to underscore their applicability to network

problems. In particular, we will show how PCAP captures

of computer networks can be processed using these ideas

to provide more efficient features for the detection of

anomalies. In particular, such ideas have been used in

other domains, such as image processing, where the raw

features (e.g., pixel values) are used to generate high-

level features (e.g., parts of faces), and facial recognition

is performed on these high-level features. Similarly, in

our work, raw packet captures are processed to create

high-level features which are better for anomaly detection.
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Summary

The graph matching problem (GMP), finding a map be-

tween the vertices of one graph and the vertices of another

graph which minimizes the number of edge disagreements

between the two graphs, has been of much continuing

interest in the past several decades. We are interested in

a sub-problem of graph matching in which, given a vertex

of interest (VOI) in one network, we seek to identify corre-

sponding vertices in a second network. We propose the use

of seeded graph matching on local neighborhoods near the

VOI in order to generate a soft nomination list of vertices

in the second network that are likely to correspond to the

VOI in the first network.

Background - Setting the Stage

The GMP has a wide range of applications in fields such as

pattern recognition, machine learning, and object recogni-

tion (see [2], [4], [6], and [1] for a few of these applications).

In the GMP, the goal is to provide a bijective map across

multiple networks that minimizes edge discrepencies us-

ing no additional information. As it is plausible that a

portion of the bijective map is known, in [3] the authors

propose a method of graph matching that utilizes these

known correpsondences, called seeds, in order to improve

accuracy.

In the work described above, the goal is to match two

graphs entirely; however, what should be done if we are

interested in only identifying the bijective map for a select

few vertices? For example, consider the scenario in which

we have a friend whose profile is known in one network and

we wish to find which profile belongs to that same friend in

a second network. Or perhaps there is a group of neurons

in one connectome whose corresponding neurons we would

like to locate in a second connectome. In both of these

cases, we would expect the structure around the vertices of

interest to be similar in both of the corresponding networks.

Given a vertex of interest in one graph, we propose a vertex

nomination scheme based on local neighborhood seeded

graph matching in order to identify the corresponding

vertex in a second graph.

Vertex Nomination Via Local Neighborhood Matching

Given a vertex of interest in a network, we seek the corre-

sponding vertex in a second network. We present a prin-

cipled methodology appropriate for situations in which

the networks are too large for brute-force graph match-

ing. Our methodology identifies vertices adjacent to the

vertex of interest in the first network that have verifi-

able corresponding vertices (seeds) in the second network.

Leveraging these known correspondences, we match the

induced subgraphs in each network generated by the neigh-

borhoods of these verified seeds using a modified version

of the seeded graph matching algorithm presented in [3].

We then rank the vertices of the second network in terms

of the most likely matches to the original vertex of inter-

est. Letting v∗ be the VOI, this ordered list of vertices is

referred to as the nomination list for v∗. We demonstrate

the applicability of our methodology through simulations

and real data examples.

Simulation and Real Data Results

Let Gi = (Vi, Ei) for i = 1, 2 be two graphs generated

from the same marginal distribution, such that for vertices

j and l in Vi, an edge present between j and l in the first

graph is correlated with an edge present between nodes j

and l in the second graph, and edge presence is otherwise

independent across the two graphs. In this section, we

demonstrate how our methodology is affected by changes

in the number of seeds used and differences in the sizes of

the graphs to be matched. After exploring these effects, we

demonstrate how the number of seeds affects our algorithm

using two network examples.

Simulations: Exploring the Effects of seeds, and differ-

ences in graph size

In order to explore how the number of seeds changes the

location of the VOI in the nomination list, we vary the

number of seeds, s, from 1 to 10, run our algorithm to

match 100 pairs of graphs, each a 300 vertex stochastic

block model, and record the average location of the VOI

in the nomination list, along with a confidence interval
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Figure 1: Plot of the average location of the VOI in the

nomination list against: the number of seeds used in the

matching (left) and the ratio of the size of the smaller

graph to the larger (right).

(mean ± 2*se). As can seen in Figure 1 (left), as the

number of seeds increases, the location of the VOI in the

nomination list decreases.

To explore how the accuracy of our methodology is

influenced by matching graphs which differ in size, we

next consider pairs of graphs on different sized vertex sets

such that the number of vertices in the smaller graph is

r times the number of vertices in the larger graph (300),

for r = 0.25, 0.30, . . . , 1. For each r, we plot the average

location of the VOI in the nomination list along with a

confidence interval, as before, and plot these values in

Figure 1 (right). In this figure we can see that when

the graphs to match have a large discrepancy between

the sizes of their vertex sets there is less accuracy in the

algorithm.

Exploring real pairs of networks

We now explore the effect that the number of seeds has

on our methodology in two examples. The first involves a

pair of high-school friendship networks [5], and the second

is a comparison of subnetworks of Twitter and Instagram.

For the first high school network, we choose one of the

vertices to be the VOI and apply our methodology using

seedsets of size s ∈ {1, . . . , 9}, where all seeds are adjacent

to the VOI in the first graph. We create a histograph for

each s, shown in Figure 2 (left), displaying the normalized

location of the VOI in the nomination list with respect to

the size of the second neighborhood. Thus, values of 0,

0.5, and 1 imply that the VOI was first, half-way down,

and last in the nomination list, respectively. As can be

seen in the plot, as the number of seeds increases, the

algorithm improves in performance.

For the Twitter and Instagram networks, we were given
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Figure 2: Example of how using seeds lowers location of

VOI in nomination list: pair of high school networks (left)

and pair of social networks (right).

11 correspondences. Letting one vertex be the VOI we

obtain the average and confidence interval (as before) for

the location of the VOI in the nomination list when using

an even size subset of the remaining 10 vertices, see Figure

2 (right).

Concluding Remarks

In all, we provide a methodology which uses seeded graph

matching applied to local networks in order to generate

a nomination list pertaining to a vertex of interest. We

demonstrate the performance of our methodology via sim-

ulations and real-data examples.
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Introduction

The study of diffusion processes on complex networks has

recently been receiving a lot of attention and is of concern

to a diverse set of practitioners. A particular important

problem that has been extensively investigated is the In-

fluence Maximization problem the objective of which is

to identify a set of k vertices on the network that when

activated result in maximal activation of vertices on the

entire network under a given diffusion model. The prob-

lem initially posed in the context of viral marketing by

Domingos and Richardson [2] was formalized in its present

form and solved using a greedy hill-climbing optimizer for

the linear-threshold and the independent-cascade diffusion

models by Kempe et al. in [3]. Following these two land-

mark works, several researchers have scrutinized different

aspects of the problem that include approaches with al-

gorithm complexity lower than the greedy optimizer and

variations in the diffusion models for different scenarios.

Influence Maximization with Community Detection

In this work we examine the impact of network community

structure on the influence maximization problem, both

from a qualitative perspective as well as from a computa-

tional view-point. The literature on utilizing community

structure to accelerate the mining of influential nodes in a

complex network is comparatively sparse. Notable works

on this topic include the works by Wang et al. [5] and

Chen et al. [1]. While the former first selects a com-

munity that results in maximum marginal influence gain

and then attempts influence maximization on that com-

munity, the latter selects candidate seeds based on the

community features and heuristics followed by a pruning

step that finalizes the overall seed set. Our strategies for

exploring the benefits of utilizing community structure for

the influence maximization problem revolves around four

motivating factors namely

• The recognition that the dynamical processes on com-

plex networks are strongly influenced by the modular

nature of the underlying graph whereby phenomena such

as information flow or random walks tend to have strong

components within the communities.

• The need to target each of the communities from the point

of view of representing communities of different sizes in

certain applications such as in viral marketing

• Accelerate the mining of influential nodes by exploiting

community structure without incurring a significant dete-

rioration in the number of activations.

• Leveraging HPC platforms to parallelize the independent

Monte Carlo runs thereby resulting in additional speedups

We seek to identify L seed sets S1, S2, . . . SL such that

the seed set Sp correspond to the community Cp. Accord-

ingly, our approach also involves strategies to distribute

the overall budget k for the full seed-set size into L smaller

budgets corresponding to the L communities. The strat-

egy that we consider in this work involves assigning the

seed set sizes proportional to the size of the communities

and run the influence maximization algorithms on each

of the communities and eventually aggregate the seeds

thus obtained. Given the gold-standard nature of the re-

sults based on the greedy hill-climbing optimizer, we have

chosen the greedy optimizer as a representative algorithm

due to its simplicity, and as a test case to prove the utility

and scalability of our approach using community detec-

tion. More advanced optimization methods can replace

the hill-climbing optimizer in our framework for further

scalability.

Datasets and experiments

Our dataset comprises three graphs - two based on real-

world social networks and one based on a synthetic genera-

tive model. Our first graph (LFR-1k) is based on synthetic

networks that follow generative LFR model with commu-

nity structure. Our second graph (PBlogs) represents a

real-world network and is based on the political blogo-

sphere during the 2004 U.S. election. The third graph

(WikiVotes) is also based on a real-world network in the

form of the Wikipedia vote network. The number of ver-

tices range from 1000 to 4160 while the number of edges

1
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Input LT-W LT-C IC-W IC-C

LFR-1k 1.309e6 1.289e6 7.756e5 8.346e5

P-Blogs 8.075e5 7.854e5 4.688e5 5.110e5

Wiki-Votes 2.315e6 2.298e6 1.442e6 2.321e6

Table 1: Cumulative number of activations across all samples

(3200) for each algorithm is computed using the four algorithms

detailed.

range from 11,433 to 100,132. We leveraged the parallel

community detection tool Grappolo that is based on a

parallel implementation of the Louvain algorithm [4]. For

the two real-world graphs we filtered out isolated vertices

and edges including degree-1 nodes that do not contribute

to influence spread and that degrade the quality of the

communities detected. Figure 1 presents a visualization

of the three graphs with their communities.

Figure 1: From L to R : LFR-1k, PBlogs and the WikiVotes

graphss. Colors indicate communities and the relative sizes of the
nodes, their out-degree values.

The abbreviations for different algorithms / models that

we considered are as follows. LT-W denotes the linear

threshold (LT) model on the entire graph while LT-C

denotes the LT model with communities. Similarly IC-W

denotes the independent cascade (IC) on the entire graph

whereas IC-C denotes the IC model with communities. We

assessed the quality of influence spread obtained by our

community-based influence maximization implementation

by inputting the overall seed-set from the communities and

then running the diffusion model on the entire graph. In a

second experiment we computed the cumulative number of

activated vertices by running the influence maximization

algorithms on the entire graph. The results are tabulated

in table 1 for all the algorithms considered. These results

show very little degradation in the net activations between

the LT and LT-C models while the net activations im-

proved for the IC-C model when compared to the IC-W

model.

Next, we present the speedups obtained by our workflow

involving influence maximization via community detection.

The results are tabulated below in table 2. The speedups

range from 3× to 28× for the three graphs in our dataset

Input LT-W/LT-C SpUp IC-W /IC-C SpUp

LFR-1k 6203/1066 5.82 65265/2266 28.78

P-Blogs 7867/2582 3.05 40979/1921 3.44

Wiki-Votes 79600/6453 12.33 250387/18668 13.41

Table 2: Runtimes (in seconds) to select 100 seeds using 3200

samples and 40 threads.

and for the different diffusion models. Specifically we note

that the graphs considered in this work are moderate in

size with a small number of communities. Complexity

analyses of the algorithms for the diffusion models reveal

that higher speedups are possible for larger graphs that

contain a correspondingly larger number of communities.

In addition to the speedups obtained from the utilization

of the community structure, scalability results from the

parallelization of the random samples in the influence

maximization workflows show up to 6.3X speedup (for the

PBlogs graph) on 20 cores relative to the baseline run on

2 cores.

Conclusions and Future Work

In this work we presented the idea of accelerating the min-

ing of influential nodes in a complex network by leveraging

community detection as a pre processing step. The simple

approach that we adopted is shown to provide significant

speedups in the computation of the influential seeds and

the resulting influence spread does not deteriorate sig-

nificantly when compared to the influence maximization

on the entire graphs. In fact as reported, the number of

activations improves for some of the cases. We will be

working on providing a more rigorous theoretical justifica-

tion for our approach. In terms of scaling the approach to

work for human-scale graphs, we will be exploring more

advanced optimization strategies in conjunction with hier-

archical versions of our approach that leverage multi-level

community detection.
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Summary

Street networks – acting as the urban substrate for social

and economical developments – control many aspects of

our society, from disease spread to urban sprawl and

population growth. As cities and their transportation

systems become increasingly complex and multimodal, it is

important to understand the implications of such advances

to the topology and geometry of street networks. Using

tools from topological data analysis, we study how the

introduction of fast subway systems affect the embedding

space of the multilayer transportation network.

Introduction

Recent developments in network science together with

advances in technology and data collection have opened

the path for studies on the structure and function of multi-

layer transportation networks. Just like in other multilayer

networks, the interactions and dependencies between dif-

ferent transportation modes have been shown to have a

profound effect on their behavior, from centralities and

congestions [5] to resilience and navigability [3]. Here we

propose to apply tools from topological data analysis to

analyze multilayer transportation networks. In particu-

lar, network embedding is an exciting research direction

with a wide range of applications: revealing the under-

lying geometry of a network provides us with new lens

to examine their structural (e.g. heterogeneous degree

distributions and strong clustering [4]) and functional (e.g.

spreading processes [6]) properties. While street networks

alone can be well approximated by a two dimensional

Euclidian space, it is no longer the case when adding

shortcuts such as fast subway lines. In this case, we seek

to determine the appropriate embedding space, whether

it is a higher dimensional Euclidian space or a different

geometry altogether (e.g. hyperbolic).

Additional details

Let Gstreet = (Vstreet, Estreet, wstreet) be a weighted graph

of a connected street network in its “primal” representa-

tion, with nodes being street junctions and edges repre-

senting the street segments connecting them weighted

by the street length, wstreet(e ∈ Estreet) = l(e). Let

Gsubway = (Vsubway, Esubway, w
β
subway) be a weighted graph

of a connected subway network with nodes representing

subway stations and links connecting successive stations

on the same line. To account for the rapidity of subway

networks compared with roads, we associate subway links

with a parameter 0 < β ≤ 1 such that the weight of en

edge in Gsubway is the length of the line segment multiplied

by β, wβsubway(e ∈ Esubway) = β l(e), i.e. subway links are

considered to be 1
β times faster than street links [5].

Finally, the multilayer network is defined as the union

of these two networks, Gmulti = (Vstreet∪Vsubway, Estreet∪
Esubway∪Einter, w

β
multi) together with the addition of inter-

network edges Einter, connecting each subway station with

its closest street junction (obviously, subway stations are

accessible from more than one point on the street, but

this simplification will not change the bulk structure of

shortest paths [5]). The weight of these additional edges is

simply the Euclidian distance between the corresponding

street junction and subway station:

wβmulti(e) =





wstreet(e) = l(e), if i, j ∈ Vstreet
wβsubway(e) = β l(e), if i, j ∈ Vsubway

d(i, j) otherwise

where d(i, j) is the Euclidian distance between i and j.

Results

As a first step in seeking an appropriate embedding space

of a transportation network as described above, we exam-

ine the embedding of nodes in a two dimensional Euclidian

space, see Fig. 1. The mapping of street nodes to points

in a two dimensional space, obtained using Isomap [2],

are based on weighted shortest paths in the corresponding

graph. In Fig. 1(a) we consider shortest paths in the

street network, Gstreet, without the subway shortcuts: the

obtained embedding bears a strong resemblance with the

original map shown in Fig. 1(d). This is somewhat ex-

pected since indeed weighted shortest path in the street
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Figure 1: 2D embedding of the street network a-c) Two dimensional embedding of the street nodes based on

weighted shortest path distances in the street (a) and multiplex (b)-(c) networks. Edge colors match the map (d)

where edges (street segments) are colored according to their distance from the top (most north) point. Subway links

are shown in black. Inset: Residual variance of the embedding, R, as a function of β.

network can be well approximated by the Euclidean dis-

tance between two street junctions [1]. However, when

introducing fast subway links, the obtained embedding is

very different, see Fig. 1(b)-(c). Qualitatively, introducing

a fast subway is “pinching” the urban space, leading to a

more even distribution of accessibility, but also altering

the spatial distribution of betweenness centrality and con-

sequently congestions [5]. More importantly, the resulting

embedded space is no longer well approximated by a two

dimensional Euclidean space. This can be quantified by

calculating the residual variance R = 1 − ρ2, where ρ

the Pearson correlation coefficient between the mapped

distances to the shortest path network distances [2]. We

observe that R is non-linearly increasing with a decreasing

β, see inset in Fig. 1. At β = 0.5, which is close to the

NYC empirical value [5] (obtained by dividing the average

speed of subway trips, 17.4 mph, by the average speed of

taxi trips over weekdays, 9.7 mph), we obtain R = 0.028,

an order of magnitude larger than R = 0.002 obtained for

the street network alone.

Discussion

We have studied the effect of introducing fast subway links

to an otherwise two dimensional planar street network.

Those additional links constitute shortcuts between distant

parts of the city, thus significantly changing the mapping

of street nodes to a low-dimensional space. We have shown

that the two dimensional Euclidean space is no longer well

approximating shortest paths on the multilayer network.

In other words, the network is being warped into a higher

dimension, and we seek a mapping that better describes

the network and provide us with information about the

functionality of the urban space. Finding such a mapping

is an important problem with an extensive variety of

applications in urban science and civil and environmental

engineering.
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[1] M. Barthélemy. Spatial networks. Phys. Rep, 499:1 – 101, 2011.

[2] T. F. Cox and M. Cox. Multidimensional Scaling. Chapman
and Hall/CRC, 2nd edition, 1994.
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Introduction

Complex networks exhibit properties such as small-world

phenomenon [13], scale-free degree distribution [3], and

local clustering of nodes [13]. However, this clustering

tendency is difficult to quantify. A proposed measure

of clustering for node v [13] is to compute the fraction

of edges between neighbors of v that actually are in the

network, over all possible ones. The clustering coefficient

measures the tendency of nodes to cluster and create close-

knit groups and represents the probability of the presence

of a link in the network for random graphs [7].

The authors in [4] pointed out the importance of closed

paths (loops) in the cluster and discussed computation of

the clustering coefficient using the fraction of the number

of loops with length 3 (triangles) that include node v,

over all possible triangles that might include v. Because

this measure fails to describe the clustering of grid-like

parts of networks, the authors improved the measure by

counting loops with length 4 (quadrilaterals) and proposed

a new measure that considers different types of quadri-

laterals. Similarly [6] adresses bipartite networks, that

do not contain triangles and thus for which the standard

clustering coefficient is not useful. They also emphasize

the importance of longer loops in the network. Finally, [5]

proposed another similar clustering coefficient for bipartite

networks.

The authors in [12], showed that clustering coefficient

measures are highly correlated with degree, and they pro-

posed a measure that preserves the degree sequence for

the maximum possible links among neighbors of node v,

thus avoiding correlation biases. Although none of these

methods considered weighted and directed networks, [10]

introduced a version of clustering coefficient that considers

weighted network, and [8] introduced a way to measure

a general clustering coefficient for weighted and directed

networks.

These shortcomings of previous methods and numer-

ous versions of the proposed clustering coefficients expose

the need for a generalized measure that works for a wide

range of applications. We apply the concept of modulus of

families of loops as a tool to study structural properties of

network clustering. Research in [2] showed that modulus

is a convex optimization problem that can be solved effec-

tively. Pietro Poggi-Corradini and Nathan Albin, from the

NODE1 research group (https://node.math.ksu.edu/),

will present the theoretical aspects of these notions and

the available efficient numerical algorithms to compute

them.

In this work we explore the versatility of modulus of

families of loops and show that it provides a deeper ap-

proach to the study of network clustering properties. We

also propose a new clustering coefficient that can explain

nontrivial situations that conventional methods cannot

handle. Moreover, we show that preprocessing the loops

in the network can improve spectral clustering to partition

disjoint and overlapped communities.

Analyzing richness of loops in a network with p-modulus

Let G = (V,E) be a network with nodes V and links

E. Using standard terminology, a loop γ on a network

is represented by a finite string of nodes v1v2v3 . . . vrv1,

such that vi and vi+1 are linked with an edge and the vi’s

are all distinct. We call Γ the family of all loops. We

define the ρ-length of loop γ as

`ρ (γ) :=
∑

e∈γ
ρ (e) (1)

where ρ : E → [0,∞) is a density, interpreted as a penalty

or cost the walker must pay for traversing link e. When

ρ0 (e) ≡ 1, `ρ0 represents the hop-length of γ. We define

the ρ-length of Γ as `ρ (Γ) = infγ∈Γ `ρ (γ). A density ρ

is admissible for a family of loops Γ if `ρ (Γ) ≥ 1. Let

A (Γ) be the set of all admissible densities for Γ. Let

w : E → (0,∞) be a positive weight function. Then, for

1 < p <∞, Modp,w (Γ) is defined as

Modp,w (Γ) = inf
ρ∈A(Γ)

Ep,w (ρ) = Ep,w (ρ∗) , (2)

where Ep,w(ρ) =
∑
e∈E w (e) |ρ (e) |p is the energy of the

density ρ and ρ∗ is the unique minimizer [1, Lemma 2.1].

1NODE is supported by NSF grant n. 1515810
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For example, if G is a tree, Modp (Γ) = 0; if G is a complete

graph, Modp (Γ) = 1
3p

(
n
2

)
. We consider p = 2 for the rest

of this discussion due to its physical interpretations and

computational costs. In [11] we showed that 2-modulus

has properties that allow quantification of the richness of

various family of walks (e.g., loops).

Clustering coefficient with modulus of family of loops

A node v has a high clustering coefficient when many short

loops pass through v and its close-by nodes. The stan-

dard method of counting triangles considers the smallest

loops, while other methods considers the next shortest

loops, quadrilaterals. A method must be devised to com-

pare these loops and evaluate the combined influence to

improve clustering coefficient measures. The previous sec-

tion introduced a way to evaluate a family of loops using

the modulus of the family. We propose a comprehensive

measure of clustering. We define our clustering coefficient

by

cLv =
Mod2(Γghv )

Mod2(ΓKv
)
,

where ghv is the subgraph that contains all loops with

length≤ h rooted to v and Kv is the complete graph with

the same number of nodes as ghv and For the global cluster-

ing coefficient we can either average the above coefficient

over all the nodes or find cL =
Mod2(ΓGh )

Mod2(ΓKn ) .

A simple example of the proposed clustering coefficient

is presented in Figure 1. As one can see the standard

method on the right is unable to capture loops with length

4, but our proposed measure on the left indicates that

cL1 = cL2 = 0.75 and c5 = 0.56 while in the standard

version c5 = 1 and c1 = c2 = 0.67. Additional examples

for bipartite, directed, and weighted networks will be

presented.

Loop analysis of the network and improvement of the

partitioning algorithms

Analyzing loops in a graph provides information about

the cluster structure and emphasizes the importance of

edges in these clusters. After we computed the modulus of

loops in a network, the extremal density ρ∗(e) gives extra

information about the structure of partitions that contains

many short loops and the importance of edges in these

clusters. We can substantially improve the performance of

some partitioning methods such as spectral partitioning

by preprocessing the network into a weighted network

with edge weights ρ∗(e)’s.
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Figure 1: Clustering coefficient computed for each node

in the network by the proposed Loop Modulus method

(left) and the Standard method (right).
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Summary

Encoding the axon bundles between brain regions as a

complex network has provided novel insights into brain

function and disease. Standard network tools describe

local or aggregate global phenomena, however many neu-

ral functions occur at the mesoscale. Here we employ a

recently developed method from algebraic topology us-

ing regions involved in all-to-all connected subgraphs to

illuminate closed circuit connection patterns that consis-

tently exist across eight human subjects, and highlight

the potential of this topological view of the brain network.

Additional Detail

Networks Studied

We first translate diffusion spectrum imaging (DSI) data

from eight healthy individuals in triplicate into undirected,

weighted networks [1]. For both the average network across

subjects and individual networks, we compute topologi-

cal statistics and discern mesoscale connectivity patterns.

We compare these results with our model, a minimally

wired graph created using coordinates of brain regions as

nodes [3] and edges with weights inversely proportional

to distance between nodes.

Topological Calculations

Given G, a graph with vertex set V , define a k-clique

as a set of k nodes where all pairwise connections exist.

Cliques exist in the brain network as sets of completely

connected brain regions (Fig. 1a). As any subset of nodes

in a clique must also form a clique, called a face, and so

we enumerate only maximal cliques, or cliques that are

not faces of any other (Fig. 1b). The maximal clique

distribution can then be compared to the network created

from minimally wiring region coordinates from individuals

(Fig. 1c). As nodes may be involved in varying numbers

and degrees of cliques, Fig. 1d displays the distribution of

node participation in ranges of clique dimensions which

correspond to regions shaded in Fig. 1c.

The number of cliques containing a node of interest

carries information about the connectivity of the node.

Indeed, we see correlation between node participation and

node strength, communicability [2], and k-core and s-core

decompositions [4] as expected.

In order to detect closed circuits in the weighted DSI

network, we first detect structure in a binary graph, and

repeat this process for every weight threshold. Given a

binary graph created from one threshold level, homology

allows us to roughly find structural cavities enclosed by

cliques arranged in specific patterns called cycles. Apply-

ing this notion to weighted networks, persistent homology

describes how cycles in one threshold map to cycles in the

next (Fig. 2a). Such a mapping provides the edge density

(ρ) at which a cycle first exists (Fig. 2a; ρbirth) and when

a cycle is completely triangulated by cliques and thus no

longer encloses a cavity (Fig. 2a; ρdeath).

Essential Cycle Examples

Cycles essential to the network architecture are generally

considered to be those which evade triangulation for the

longest ranges of threshold levels. We show two examples

of such cycles in Fig. 2b. The left, green cycle encloses a

two-dimensional cavity which exists in every scan of all

eight individuals. The right, purple cycle composed of

seven nodes created from 3-cliques is found in at least one

scan in six out of eight individuals. A permutation test

using the minimally wired model suggests cycle existence

is unlikely (p< 0.03 for green cycle, p<0.001 for purple

cycle within each hemisphere).
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Figure 1: Clique mapping on the brain network indicates regions of complete connectivity. (a) Cliques of degree 2, 3,

and 4 shown in the brain network, highlighted in the circle plot, and as familiar representations. (b) Example of a

maximal 4-clique and a list of its faces. (c) Distribution of maximal cliques in the DSI and minimally wired networks.

(d) Locations of the brain connect in differing ranges of clique degrees. Ranges shown correspond to shaded regions in

panel (c).

Figure 2: Topological methods detect cycles in the brain network. (a) Example network at four threshold levels with

increasing edge density (ρ). Green cycle forms at ρ = ρbirth, shrinks in length in the next threshold shown, and is

completely triangulated at ρ = ρdeath. (b) Cycles found using persistent homology. The green cycle contains the

lateral orbitofrontal (lOF), medial orbitofrontal (mOF), rostral anterior cingulate (rAC), suprior frontal (SF), and

putamen (Pu) regions. The purple cycle includes the medial temporal (MT), inferior temporal (IT), inferior parietal

(IP), supramarginal (SM), superior parietal (SP), superior temporal (ST), and lateral occipital regions (LOC). Each

cycle shown in the brain and as a schematic for a cycle of 2-cliques (left, green) and one of 3-cliques (right, purple).
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Summary

We use the mutual edge flow change ratios (the ratio

between the change of flow on an edge, and the initial flow

on the failed edge) to evaluate the topological robustness

of power grids to line failures. In particular, we show

that mutual edge flow change ratios are independent of

the power supply/demand distribution and solely depend

on the grid structure. Then, we define and analytically

compute the failure cost of an edge and the average edge

failure cost in a graph, and demonstrate that the results

can be used to study the robustness of power grids to a

single line failure.

Model

We adopt the linearized (or DC) power flow model, which

is widely used as an approximation for the AC power flow

model [1,4]. We represent the power grid by an undirected

graph G = (V,E) where V and E correspond to the buses

and transmission lines, respectively. pv is the active power

supply (pv > 0) or demand (pv < 0) at node v ∈ V (for

a neutral node pv = 0). We assume pure reactive lines,

where each edge {u, v} is characterized by its reactance

xuv = xvu. A power flow is a solution (f, θ) of:
∑

v∈N(u)

fuv = pu, ∀ u ∈ V (1)

θu − θv − xuvfuv = 0, ∀ {u, v} ∈ E (2)

where N(u) is the set of neighbors of node u, fuv is the

power flow from node u to node v, and θu is the phase

angle of node u. Eq.(1)-(2) are equivalent to the matrix

equation: AΘ = P , where Θ ∈ R|V |×1 is the vector of

phase angles, P ∈ R|V |×1 is the power supply/demand

vector, and A = [aij ] ∈ R|V |×|V | is the admittance matrix

This abstract summarizes some of the results that appear in [2].
This work was supported in part by DTRA grant HDTRA1-13-1-

0021, CIAN NSF ERC under grant EEC-0812072, and the People

Programme (Marie Curie Actions) of the European Unions Sev-
enth Framework Programme (FP7/2007-2013) under REA grant

agreement no. [PIIF-GA-2013-629740].11.

of the graph G. The power flow equations can be solved by

using the Moore-Penrose Pseudo-inverse of the admittance

matrix, A+ = [a+ij ] [2].

To study the effects of a single edge (e′) failure, we

define the ratio between the change of flow on an edge,

e, and the initial flow on the failed edge, e′, as mutual

edge flow change ratio: Me,e′ = |∆fe/fe′ |. The mutual

edge flow change ratio corresponds to the Line Outage

Distribution Factor (LODF) defined in [4, P. 307].

Failure Impact

The following theorem provides an analytical rank-1 up-

date of the pseudo-inverse of the admittance matrix.

Theorem 1. If {i, j} is not a cut-edge, then,

A′+ = (A+aijXX
t)+ = A+− 1

a−1ij +XtA+X
A+XXtA+

in which X is an n× 1 vector with 1 in ith entry, −1 in

jth entry, and 0 elsewhere.

Corollary 1. The flow on an edge {r, s} after a failure

in the non-cut-edge {i, j} is,

f ′rs = frs −
ars
aij

(a+ri − a+rj)− (a+si − a+sj)
a−1ij − 2(a+)ij + (a+)ii + (a+)jj

fij .

To focus solely on topological robustness, in this abstract

we assume that xuv = 1 ∀{u, v} ∈ E. In this case, the

admittance matrix A is the Laplacian matrix of the graph

and using Corollary 1 the mutual edge flow change ratios

can computed as follows.

Lemma 1. The mutual edge flow change ratio for an

edge e = {r, s} ∈ E after a failure in a non-cut-edge

e′ = {i, j} ∈ E is,

Me,e′ =
∣∣∣

(a+ri − a+rj)− (a+si − a+sj)
−1− 2(a+)ij + (a+)ii + (a+)jj

∣∣∣.

The Lemma implies that the mutual edge flow change

ratios are independent of the power supply/demand dis-

tribution and solely depend on the grid structure.
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Network Robustness

Definition. The failure cost of an edge e in G is

denoted by FCe and defined as follows: FCe :=
1

m−1
∑
e′∈E
e′ 6=e

(Me′,e)
2.

The failure cost of an edge e is a good measure of

the average changes that occur in the flows of the other

edges as a result of the failure in an edge e. Determining

the costs can help constructing a reliable power grid in

two ways: (i) by designing networks with a minimum

maximum failure cost, and (ii) by setting the power supply

and demand values such that edges with high failure costs

carry small flows. The following Lemma analytically shows

the relation between the failure cost of a non-cut-edge

and the resistance distance between its end nodes. The

resistance distance between two nodes i, j ∈ V is r(i, j) :=

a+ii + a+jj − 2a+ij .

Lemma 2. In a connected graph G, for any non-cut-edge

e = {i, j},
FCe =

1

m− 1

r(i, j)

1− r(i, j) . (3)

Eq. (3) is very insightful. Intuitively, it demonstrates

that failures in edges with high resistance distance values

have a strong effect on the other edges. Moreover, (3)

allows to obtain a bound on the average edge failure cost,

which is defined below as a metric for the robustness of a

graph to a single edge failure.

Definition. In a graph G with n nodes and m edges,

the average edge failure cost is defined as, FCG :=
1
m

∑
e∈E FCe.

Using (3), the following Lemma provides a lower bound

on the average edge failure cost in a graph.

Lemma 3. In a 2-edge-connected graph G,

1

m

(m− 1

n− 1
− m− 1

m

)−1
≤ FCG, (4)

and equality holds, if for any two edges e = {i, j} and

e′ = {p, q}, r(i, j) = r(p, q).

Corollary 2. In a symmetric graph G, FCG = (m
2−m
n−1 −

(m − 1))−1. Moreover, for any graph H with the same

number of nodes and edges as G, FCH ≥ FCG.

Corollary 2 demonstrates that symmetric graphs have

the lowest average edge failure cost among all the graphs
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Figure 1: The average edge failure cost of the graph

(FCG) and the maximum mutual edge flow change ratio

(maxe,e′∈EMe,e′) versus the probability of rewiring (p) in

a Watts and Strogatz graph with 30 nodes and 60 edges.

Each point is the average over 100 generated graphs with

the same parameters.

with the same number of nodes and edges. Moreover,

from Lemma 3 and Corollary 2 it can be concluded that

as graphs become more symmetrical, their average edge

failure cost (FCG) decreases. To demonstrate this nu-

merically, Fig. 1 shows the average edge failure cost of

the graph (FCG) and the maximum mutual edge flow

change ratio (maxe,e′∈EMe,e′) versus the probability of

rewiring (p) in Watts and Strogatz graphs [3] with 30

nodes and 60 edges. Initially (p = 0), G is a 4-regular

graph (namely, every node is connected to exactly 4 other

nodes). However, as p increases, G tends toward a random

graph with no symmetry. Thus, an increase in p in the

Watts and Strogatz graph can be considered as decrease

in the symmetry of the graph. As expected, the figure

shows that as p increases, both the average edge failure

cost of the graph (FCG) and the maximum mutual edge

flow change ratio (maxe,e′∈EMe,e′) increase.

Overall, the results suggest that as graphs become more

symmetrical, they become more robust against single edge

failures.
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Summary

Understanding the dynamics and functioning of biolog-

ical systems is one of the most challenging tasks faced

in modern science. Our goal is to develop a principled

information-theoretical approach to infer the causal net-

work structure underlying a biological system from data.

Basic Concepts from Information Theory

We start by reviewing some basic concepts from infor-

mation theory [5, 2]. The Shannon entropy of a discrete

random variable X is given by

H(X) = −
∑

x

p(x) log p(x), (1)

where p(x) = Prob(X = x). The joint entropy between

two variables X and Y is defined as

H(X,Y ) = −
∑

x,y

p(x, y) log p(x, y), (2)

where p(x, y) = Prob(X = x, Y = y) is the joint probabil-

ity. The conditional entropy of X given Y is

H(X|Y ) = −
∑

x,y

p(x, y) log p(x|y), (3)

where p(x|y) = Prob(X = x|Y = y) is the conditional

probability. The mutual information between two vari-

ables X and Y is

I(X;Y ) = H(X)−H(X|Y ), (4)

and can also be written as I(X;Y ) = H(X) + H(Y ) −
H(X,Y ). Mutual information is nonnegative and symmet-

ric: I(X;Y ) = I(Y ;X). Finally, the conditional mutual

information between X and Y given Z is

I(X;Y |Z) = H(X|Z)−H(X|Y,Z). (5)

Conditional mutual information is also generally nonnega-

tive, and symmetric with respect to X and Y .

Causation Entropy

Consider a stationary multivariate stochastic process {Xi
t},

with i = 1, 2, . . . , n. For the simplicity of discussion, here

we assume that the process is Markov order one (see

Ref. [8] for treatment of higher-order Markov processes).

Denote the collective of all variables at time t as: ~Xt, then

the Markov condition implies that p(xit|~xt−1, ~xt−2, . . .) =

p(xit|~xt−1). It is possible that this conditional probability

can be further reduced to a minimal subset of causal

components, Ni ⊂ {1, 2, . . . , n}, such that

p(xit|~xt−1) = p(xit|xNi
t−1). (6)

To identify the set of causal components Ni for a given

node i in the network, we introduce a quantity called

causation entropy as a type of (time-shifted) conditional

mutual information [6, 8]. In particular, the causation

entropy from the set of nodes J to node i conditioned on

the set of nodes K is defined as

CJ→i|K = I(XJ
t−1;Xi

t |XK
t−1). (7)

In Ref. [6, 8], we showed that the causation entropy as a

generalization of transfer entropy can be effectively used

as a measure for causal influence in a multivariate setting.

The key is to achieve an appropriate conditioning using a

suitable algorithmic approach, as we will discuss next.

Inferring Networks via Optimal Causation Entropy

To uncover the set of causal components Ni of node i in a

network, we devised an iterative optimization scheme that

contains two stages [7, 8]. Starting with K = ∅. In the

“forward” stage, in each iteration the node that maximizes

the causation entropy Cj→i|K is selected and added to K,

until the value of the maximum causation entropy reaches

zero. Then, in the “backward” stage, each node j in K is

selected and removed from K if Cj→i|K = 0.

In Ref. [8] we proved that the “optimal causation en-

tropy” procedure (oCSE) correctly and exactly identifies

the minimal and unique set of causal components under

mild conditions imposed on the underlying probability dis-

tribution of the Markov process. Numerical tests suggest

that the number of samples needed for accurate inference

scales as the average degree rather than the total num-

ber of nodes in the network, making oCSE an attractive

approach for the inference of large sparse networks.
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Additional Details

In practice, to apply oCSE for network inference, causa-

tion entropy need to be estimated from time series data,

{~xt}. One popular approach when dealing with biological

data is to discretize the data into a finite number of states

(for example, treating the state of a gene as either “on” or

“off” while ignoring the actual level of expression). Then,

the effective state of each variable can be regarded as a dis-

crete random variable and the entropy estimation becomes

straightforward by estimating the discrete probabilities.

The estimation of causation entropy (and other types of

entropy) is more challenging when dealing with continu-

ous random variables that cannot be treated as discrete

variables [1]. In this case more sophisticated estimation

techniques need to be adopted, many of which are non-

parametric, with the k-nearest neighbor estimation being

a typical choice for high-dimensional systems [3, 9, 10].

Another practical issue is to determine whether an es-

timated causation entropy Cj→i|K should be regarded as

zero (as opposed to positive). A common approach is to

“shuffle” the related time series to construct an empirical

cdf for the null hypothesis that Cj→i|K = 0 and compare

with the estimated value. In particular, we found that

(time) shuffling the time series of Xj
t while leaving those

of Xi
t and XK

t unchanged works out reasonably well [7, 8].

Reverse Engineering of Biological Networks

Biological systems are commonly modeled as dynamics on

networks. A notable example is gene-regulatory networks.

In such a network the genes are turned “on” and “off”

depending on the state of the other genes. Each gene can

be regarded as a node and its causal components are the

set of genes that directly influence its state. We generate

synthetic data from a random network of n = 320 genes

where the on/off state of each gene is determined by k

randomly chosen genes. Applying the oCSE approach, we

are able to infer the underlying network with relatively

small number of samples and the algorithm remains com-

putationally efficient even when the largest degree is not

known a priori, in sharp contrast to classical gene-network

inference methods which typically works for k ≤ 3 [4].
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Summary
We consider the optimization problem of generating graphs

that minimize degree correlations. We describe an algo-

rithm that solves this problem and obtain a complete

characterization of the joint degree structure of these max-

imally dissassortative graphs. More interestingly, we show

that for maximally disassortative graphs with scale-free

degree distribution, the asymptotic value of the rank corre-

lation measure Spearman’s rho increases as the exponent

of the distribution increases.

Introduction
Since their introduction in [2] the correlation between

the degrees of a randomly sampled edge, called degree

correlations, have become part of the standard set of topo-

logical features of networks. Many research has been done

on finding consistent measures and null-models for these

correlations as well as analyzing their impact on other

properties of, and processes on networks. However, there

are still many open questions related to these correlations,

such as the existence and structure of graphs with extreme

(positive)negative correlations. In [1] a first attempt is

made to analyze asymptotic properties of such extreme

graphs. Here we continue this idea and investigate both

the construction of graphs which are maximally disassor-

tative as well as the behavior of the minimal value of the

correlation measure on such graphs.

Degree distribution
Given a graph Gn of size n and degree sequence Dn =

{D1, . . . , Dn}, we let Ln be the number of edges and

denote the empirical degree and size-biased degree distri-

bution by

fn(k) =
1

n

n∑

i=1

1{Di=k}, (1)

f∗n(k) =
1

2Ln

n∑

i=1

Di1{Di=k}. (2)

We will assume that there exist distributions f and f∗,

on the positive integers, such that for some ε > 0,

lim
n→∞

P
(
max(d1(Fn, F ), ‖F ∗n − F ∗‖1) ≤ n−ε

)
= 1. (3)

Here the capital letters denote the corresponding cumu-

lative distributions, d1 is the Wasserstein metric and

‖F ∗n − F ∗‖1 =
∑∞
k=0 |f∗n(k)− f∗(k)|.

Spearman’s rho

A consistent measure for degree correlations in graphs,

introduced in [3], is Spearman’s rho. If we define F∗n(k) =

F ∗n(k) + F ∗n(k − 1), it follows from [4] that we have the

following asymptotically equivalent expression for Spear-

man’s rho

ρ(Gn) =
3

Ln

∑

i→j
F∗n(Di)F∗n(Dj)− 3 (4)

This equation shows that ρ(Gn) is completely determined

by the wiring of the graph and the size-biased degree

distribution.

Generating disassortative graphs

We propose a very straight forward Disassortative Graph

Algorithm (DGA), for generating disassortative graphs with

given degree sequence.

Given a degree sequence Dn, we rank the nodes, in

ascending order, by their degree, and let φ(i) denote the

node whose rank is i, i.e Dφ(n) ≥ Dφ(n−1) ≥ · · · ≥ Dφ(1).

Define zn to be the unique integer such that Hn(zn) ≥ 1/2

and Hn(zn − 1) < 1/2. We will create two list S and T ,

of stubs as follows;

S: Starting with node φ(n) we add Dφ(n) stubs to S

labeled φ(n). We do the same for node φ(n− 1) and

proceed until we reach a node with D < zn.

T : Let Ni denote the number of nodes with degree Dφ(i).

We start by taking Dφ(1) copies of the set of stubs

labeled φ(1), . . . , φ(N1) and add them to T . Then

we proceed to node φ(N1 + 1) and continue until we

reach a node with D > zn.

For an example of S and T , see Figure 1. To create edges

we move down these lists simultaneously, pairing stubs in

S to the one in T with the same index, until the degrees

in both lists equals zn. Observe that if Hn(zn) = 1/2 we

will have paired all available stubs. If this is not the case

we are left with stubs belonging to all nodes with degree

1
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S
φ(n)

φ(n)

Dφ(n)

φ(n − 1)

φ(n − 1)

Dφ(n−1)

φ(n − 2)

φ(n − 2)

Dφ(n−2)

T
φ(1)

φ(N1)

N1

φ(N1 + 1)

φ(N2)

N2

φ(N1 + 1)

φ(N2)

N2

Figure 1: Example of the ordering of stubs in the lists S

and T , and the pairing as done by DGA when Dφ(1) = 1

and Dφ(2) = 2.

zn. We now pair these stubs in a greedy fashion that

minimizes the number of self loops and multiple edges.

To see that DGA generates graphs that the minimizes

ρ(Gn) observe that by (4) this problem is equivalent to

min
σ∈S2Ln

2Ln∑

i=1

aiaσ(i),

where 0 ≤ a1 ≤ · · · ≤ a2Ln correspond to the ordered

degrees of the stubs and S2Ln is the set of permutations

of {1, . . . , 2Ln}. Since any specific wiring corresponds to

a permutation σ and the above minimum is attained for

any permutation σ(1) ≥ · · · ≥ σ(2Ln), it follows that DGA

solves the optimization problem of minimizing ρ(Gn).

Joint degree distribution
Let hn(k, `) denote the empirical joint degree distribution

hn(k, `) =
1

2Ln

∑

i→j
1{Di=k}1{Dj=`},

then we have the following

Theorem 1.1. Let Gn be generated by the DGA. Then

hn(k, `)
P→ ψ(k, `)E(k, `) as n→∞,

where

ψ(k, `) = 1{1−F∗(k)<F∗(`)}1{1−F∗(k−1)>F∗(`−1)} and

E(k, `) = min(1− F ∗(k − 1), F ∗(`))

−max(1− F ∗(k), F ∗(`− 1)).

Lower bound on Spearman’s rho
Since DGA minimizes ρ(Gn) we can use convergence results

from [3] to obtain that, for any 0 < δ < min(ε, 1),

lim
n→∞

P
(
ρ(Gn) > ρ(X,Y )− n−δ

)
= 1,

1.5 1.7 1.9 2.1 2.3 2.5
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Figure 2: Plot of E [ρ(Gn)] (y-axis), for graphs of size

107 and degree distribution (5) for different γ (x-axis),

generated by the DGA.

where X and Y have joint degree density h(k, `) =

ψ(k, `)E(k, `) and ρ(X,Y ) denotes the value of Spearman’s

rho for X and Y . When f∗(1) > 1/2 we can obtain the

more explicit lower bound 9f∗(1)2 − 6f∗(1)3 − 3, which

can be strictly larger than −1 for specific densities f∗.

To illustrate this effect we consider degrees that have a

scale-free distribution

P (D > t) ∼ t−γ γ > 1. (5)

For different values of γ we constructed 103 degree se-

quences, by sampling them in an i.i.d. fashion from (5),

generated graphs Gn using DGA and computed ρ(Gn). The

result are plotted in Figure 2, where we clearly observe

that the minimal value of ρ(Gn) increases as γ increases.

Conclusion
Although many aspects of degree correlations, such as

measures and neutral mixing models, have received much

attention in the literature, not much is known about net-

works with extreme (positive)negative correlation. We

provide a first step by characterizing the joint degree

structure of maximally disassortative graphs and showing

that the measured value of these correlations depends on

the (size-biased) degree distribution.
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Summary

This paper estimates the left-right ideological positions of

43,127 social network users by analyzing their published

textual data and the network data derived from their

interactions with other users. It appears that estimations

from textual and network data are in line with the left-

right ideology as measured with survey data.

Introduction

Reference to left-right ideology is prominent in everyday

political discussions. Many studies have already demon-

strated the potential of the large quantities of textual

and network data increasingly available through social

media to determine ideological positions [2, 4]. Despite

the fundamental contribution to the field, many doubts

prevail regarding the use of social networks data.

This paper makes use of a large-scale survey of Twitter

users (n = 43, 127) to validate ideal-point estimation of

individual social media users’ ideology. It innovates by

comparing ideological estimations from social network

analysis and unsupervised automated content analysis of

textual data.

Material

This analysis distinguishes between two types of social

network users: candidate users and all the other users.

The candidate users are those running as candidates for

one of the four principal national parties1 during the 2015

Canadian federal campaign. Candidates are analysed

separately as their political views can be easily associated

to those of the political parties they are running for.

Our research is based on a large online survey of so-

cial media users (n = 43, 127) collected by Vox Pop

Labs2. Respondents had the possibility to share their Twit-

ter account information for research purposes. Publicly-

available network and textual data were then collected

1Canadian political parties can be roughly sorted from left to

right: New Democrats, Greens, Liberals, Conservatives.
2This survey is a subsample of a larger online survey (more than

1, 300, 000 respondents) through the Vote Compass application. For

more information: www.votecompass.com.

using Twitter’s API. In order to circumvent the compari-

son problem of multilingual textual analysis, the analyses

is restricted to English-speaking users.

Methods

We estimate political ideologies of individuals using two

different methods. The first method uses individual users’

network information (“followers”), and the second method

uses textual data that they expressed online (“tweets”).

Users’ estimated ideology scores are then validated with

users’ position on a left-right ideological scale built from

users’ responses to 30 survey questions on political is-

sues. Such additive scales are superior to single ideological

self-placement questions as they have been shown to con-

siderably reduce measurement error [1].

In the following, we denote aik the attitude of a respon-

dent i related to a specific issue k in the survey data. In

this work, we assume the existence of an underlying ideol-

ogy x in a one-dimensional space, interpreted as the cor-

responding left-right position of the individual user. The

related factor analysis model (1) assumes independent er-

ror terms εk. The 30 loading factors θk and the expectation

value of users’ ideologies xi are estimated by maximum-

likelihood methods using expectation-maximization.

aik = θkxi + εk (1)

The ideological estimates based on network information

are computed from the existing links between users’ and

candidates’ accounts. The extraction process relies on

the assumption that social networks are homophilic. The

model states that users tend to follow candidates with

specific attitudes that lie close to their opinions. Equation

2 assigns to a dependent variable yij a value of 1 when a

user i follows a candidate j, and a value of 0 otherwise.

Pr(yij = 1) = logit−1(si + pj −
∑

k∈K
||aik − ajk||2)) (2)

The term K represents a subset of issues that have a

major impact on users’ decisions to follow candidates. The

1
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two variables pj and si models respectively the effect of

candidates popularity and users susceptibility to follow

political accounts. Replacing the attitude variables by

θkxi and θkxj (as suggested by equation 1) conducts to

the popular roll-call model [3]. MCMC methods allows

extracting a set of ideologies estimates (x̂ net
i ,x̂ net

j ) for

the user and candidate respondents [2]. The procedure

does not require any prior on K since we only consider

the single parameter γ =
∑
k∈K θ

2
k in the roll-call model.

The ideological estimates based on textual data are com-

puted on the frequency distribution of bigrams (i.e., se-

quences of two adjacent words) in individual users’ tweets.

The assumption made in the extraction process suggests

that the use of particular bigrams reflects the publisher’s

attitudes. A specific bigram dictionary is constructed

using common popular words expressed by candidates

during the campaign period. To this end, the term aib

can be interpreted as user i’s global attitude towards an

underlying context related to the bigram b. The observed

frequency of bigrams in “tweets” are supposed to follow a

Poisson process parametrised by the attitudes:

λ = exp(si + pb + aib) (3)

Once again, the model introduces two parameters pb
and si to deal with the more frequent bigrams and more

active users or candidates. Similarly, equation 1 suggests

that aib can be decomposed in the product of θb and xi.

The resulting ideologies x̂texti are then estimated using the

“Wordfish” scaling algorithm [4].

Preliminary results

The preliminary results are based on 78 candidates and a

random sample of 1,890 users who meet the filtering crite-

ria. In a first step, we assess the extraction methods on

candidates as they can easily be linked to their respective

party. Party discipline is strong in Canada. Therefore,

we expect our estimates to identify clusters of candidates

belonging to the same party. Our results show (Figure 1)

that the two methods (text and network ideal points) are

effective at scaling candidates in our sample. We observe

a 90% of correlation between the output of the two ideal

point estimates for candidates based on social networks

data. The identified clusters are consistent with party

positions found in the survey data. It is worth noting that

in the textual data analysis, ideal points of bigrams are

successful where unigrams fail.
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Figure 1: Comparison of ideal points of 78 candidates

ideologies with textual data (bigrams) and network data

(“followers”)

In a second step, to validate the two methods at the

user level, we compared the ideal points to the survey

data ideal points. The comparison of the ideal points of

users’ networks to their ideal points of surveys’ answers

highlights a 60% correlation. Similar results are observed

for textual data at the user level.

At the end, this work illustrates the potential of social

network data to extract valid ideological positions of indi-

vidual users by combining two complementary extraction

methods.
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[2] P. Barberá. Birds of the same feather tweet together: Bayesian
ideal point estimation using twitter data. Political Analysis,
23(1):76–91, 2015.

[3] J. Clinton, S. Jackman, and D. Rivers. The statistical analysis
of roll call data. American Political Science Review, 98(02):355–
370, 2004.

[4] J. B. Slapin and S.-O. Proksch. A scaling model for estimating
time-series party positions from texts. American Journal of
Political Science, 52(3):705–722, 2008.

2

SIAM Workshop on Network Science 2016 Abstracts: Posters

123



MEAN-FIELD MODELS FOR TIME-AGGREGATED TEMPORAL NETWORKS

Haley A. Yaple, Catherine Northrup, Elisabeth Rutter, Kerry Stapf

SIAM Workshop on Network Science 2016
July 15-16 · Boston

Summary

We measure the effects of time step aggregation on dynam-

ics for networks where links represent transient connec-

tions. We derive mean-field models and corrections that

depend on the number of active links at any given time.

This work was completed by a team of three undergraduate

students as part of a summer research program.

Motivation

When networks are used in dynamics simulations to model

interactions, often links are assumed to exist for all time.

However, this may neglect important information, allowing

flows through the network that are not possible when links

are short-lived. For example, to model a fast-spreading

disease, one should take into account the order in which

an infected person visited their friends: if they visit an

infectious friend at the beginning of the day they may

spread the disease to their other friends later, while if

they visit the infectious friend at the end of the day they

cannot spread the infection further. Temporal scales of

such interactions have been studied [1], and several models

have been proposed [2]. However, the effect on dynamics,

the focus of this work, is not yet fully understood.

Dynamics

We use SI (susceptible/infected) epidemic spread to study

how time step aggregation may affect dynamics. This

model was chosen due to its simplicity. We further simplify

the dynamics by assuming guaranteed disease transmission.

Thus, any susceptible node connected by an active edge to

an infected node becomes infected at the next time step.

Modeling Temporal Connections

We make several simplifying assumptions. First, we as-

sume each link occurs at a distinct interval of time of

uniform duration. Second, we assume each link is only

active once throughout a simulation (no repeated inter-

actions). We build random networks according to the

Erdős-Réyni and Barabási-Albert algorithms, then select

edges at random over which infections may spread.

To investigate the regime between no aggregation and

complete aggregation, we select w edges from the network

per simulation time step, with order determined at random.

In this way, w acts as a parameter in our model: when w =

1 causality is completely respected and for w = m all m

edges exist at simultaneously. Then 1 < w < m represents

a simplification wherein w time steps are aggregated.

Mean-Field Equations

We derive mean-field differential equations describing the

SI dynamics, based on the fraction of active edges. This

fraction is w/m, or 2w/(nz) if there are n nodes of av-

erage degree z. It follows that the resulting equation is

equivalent to the mean-field model where time is rescaled

by the fraction of edges that exist. That is, the fraction

of infected nodes I is described well by

dI

dt
=

2w

nz
I(1− I). (1)

While the above matches simulation well for an Erdős-

Réyni network, more care is necessary for other network

types. Assuming that the heterogeneous degree distribu-

tion plays a major role in the dynamics for Barabási-Albert

networks, we extend (1) using the same scale factor of

2w/(nz) with a degree-based mean field model [3]. This

modification gives significant improvement.

To help validate our model’s performance, we tested

its convergence to simulation behavior as network size

varies. The measured error between theory and simulation

decreases rapidly as network sizes increases and other

parameters are held fixed (see Figure 1).

Corrections in Aggregating Time Steps

In the initial formulation above, time steps are aggregated

simply by allowing edges to exist simultaneously, without

allowing for transmission of disease to next-neighbors of

infected nodes. In general, to better represent aggrega-

tion of time steps, there should be w rounds of infection

between neighboring nodes. Neglecting this scenario is

a good first approximation, as it will only occur when

activated edges share a common node. While uncommon

for small w, this becomes likely when w/m is near one.

Figure 2 shows a schematic of this situation.

1
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Figure 1: Convergence testing for (a) Erdős-Réyni and (b)

Barabási-Albert networks. For the latter, agreement with

both standard mean-field model (upper curve), and degree-

based mean-field model (lower curve) are shown. Note

that for each, the error between simulation and theory

rapidly decreases as the number of nodes increases.

We derive corrections that account for this, by hand for

w = 1, 2, 3. For large w, we generate the corrected mean-

field equation using an algorithm coded in Mathematica.

See Figure 3 for a comparison of the corrected model with

simulations that allow for multiple rounds of infection.

Discussion

We have found that time step aggregation in a mean-field

model is equivalent to rescaling time by the fraction of

edges activated. The same behavior is observed when

we move to the more specialized degree-based mean field

model, providing evidence that this rescaling may hold in

general. The correction terms to allow for next-neighbor

transmission during an aggregated time step are small

when few edges are aggregated.

While the results shown above are promising, they do

not show that our model (even with corrections) is a good

fit for w/m near one. We hypothesize that this is due to

the small diameter of the networks used in our simula-

Figure 2: In this diagram of possible scenarios for disease

spread when w = 2, the infected group of nodes is labeled

I and the susceptible group S. The more likely scenario

is shown in (a): only nearest-neighbors may become in-

fected. In (b) the edges overlap at a susceptible node,

meaning that the next-neighbor of the infected node will

also become infected (when simulation allows for this).

Figure 3: Comparison of mean-field theory, with correc-

tions to account for multiple rounds of infection. Results

shown are for w = 4, n = 100. Model theory is solid red

line, simulation with multiple rounds of infection is blue

dotted line, simulation with single rounds of infection is

purple dashed line.

tions. For example, including the theoretical likelihood

of infecting your fifth-nearest neighbor is not important

if the network has diameter four. This may be tested in

the future by comparing results for networks generated

using the low-diameter Barabási-Albert algorithm with

configuration model networks of equivalent degree distri-

butions. Testing our results in the case of non-guaranteed

transmission may also illuminate underlying effects.
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Summary

We present a data-based approach to robust combinatorial

optimization for multiple network samples with cost uncer-

tainty, motivated by the hypothesis-testing based scheme

proposed by [4] for matching appropriate uncertainty sets

to robust optimization problems. We include hypothesis

tests developed in [1], who developed a framework for

comparing one or more samples of networks, and some

analogues of the classical one- and two-sample t-statistics

in the space of networks. From these tests and their

confidence regions, we provide new uncertainty sets for

effective robust formulations of optimization problems. As

a result we can examine multiple network-based datasets

through the robust combinatorial optimization solutions,

with applications to diverse settings, such as network flow

problems, and network-based representations of images

in neuroimaging, diffusion tensor imaging, and functional

magnetic resonance imaging.

Abstract

Robust Optimization is popular in optimizing under un-

certainty, whose approach generally involves defining a

set of possible realizations of uncertain parameters, and

to optimize against worst-case realizations within this

“uncertainty” set. As is well understood by the optimiza-

tion community, RO is useful in dealing with erroneous

or noise-corrupted data. In particular, for the user to

have some understanding of the structure of the uncer-

tainty set, it provides a set of tools and techniques that

are useful in solving different kinds of uncertainties; the

”model error” or ”noisy data” as well as complex, stochas-

tic kinds of uncertainty of a explicit model, in a way that

is computationally feasible [3]. In Robust formulation of

discrete optimization problems, it is natural associate a

network with a matrix, where we must deal with uncer-

tainty associated to the matrix A and the cost vector c

[?].

Combinatorial optimization is a class of discrete op-

timization where the decision variables are binary, x ∈
X ⊆ {0, 1}n. A prominent example of the generalized

combinatorial optimization problem is:

minimize c′x

subject to x ∈ X.

Examples of combinatorial optimization problems in-

clude the shortest path, the minimum spanning tree, trav-

eling salesman, the minimum assignment, the vehicle rout-

ing, and matroid intersection problems.

There are many questions in the RO literature involv-

ing how the choice of uncertainty set influences certain

attributes of the optimization process.

A big issue in RO includes tractability of several data-

driven uncertainty sets as outlined by [4].It involves the

issue of how to structure the uncertainty set R so that

the resulting problem is tractable and optimally trades

off expected return with loss probability, in the terms of

portfolio optimization. There are fundamental connec-

tions between distributional ambiguity, risk measures, and

uncertainty sets in RO.

A prominent connection is given by probability guaran-

tees. This issue asks, what does robust feasibility imply

about probability of feasibility, or, what is the smallest ε

we can find such that

x ∈ X(U)⇒ P(fi(x, ui) > 0) ≤ ε

under assumptions on a distribution for ui?

Choosing a good set is very important, as it would yield

tractable optimization problems from robust models whose

solutions perform well. Poorly chosen sets lead to robust

models that may be overly conservative or computationally

intractible.

Development of a data-driven theory of RO is interesting

from a theoretical perspective and also has many applica-

tions in the real-world of data. As stated in [3], most of

the models in the RO literature are not directly connected

to data. In [4], a data-driven methods for designing uncer-

tainty sets for robust optimization are described, drawing

upon what the confidence region of hypothesis testing can

tell us about the distribution from the data. We generally
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follow the scheme [[4] Sec. 3] to match certain problems

with optimal uncertainty sets based on three factors: a

priori assumptions on the distribution, the data, and a

hypothesis test. When the data are drawn i.i.d. from an

unknown distribution Q, uncertainty sets that built from

the scheme imply a probabilistic guarantee for Q at any

desired level ε.

For example, several sets given in [4] are

Uχ2

ε ,UGε ,UMε ,ULCXε ,UCSε , and UDYε , or the uncer-

tainty sets corresponding to hypothesis testing methods of

χ2-test, G-test, Marginal samples, Linear convex ordering,

Shawe-Taylor and Cristianini (2003) [5], and Delage and

Ye (2010) [2], respectively.

Moreover, we can combine this novel procedure with

[1]’s hypothesis testing method for statistical inference

on samples of networks. We can consider the confidence

regions for these proposed hypothesis tests.

What [1] illustrates is the connection between the math-

ematical properties of the geometric space of networks,

and the mean averaging of these networks.

Let G = (V,E,W ) denote a weighted undirected graph

with weights wij = wji ≥ 0, and associate to each G its

Laplacian L = D(W ) −W, where D denotes a diagonal

matrix of weighted degrees; i.e., Djj = dj(W ) =
∑
i 6=j wij .

We also assume that G is simple, so that there is a one-to-

one correspondence with graphs G and Laplacian matrices

L. Therefore, the space of networks corresponds with the

space of Laplacians. In this setting, we select a notion of

averaging based on the Fréchet mean to derive a central

limit theorem for sequences of network averages. Specifi-

cally, let G1, · · · , Gn denote n (simple) graphs that have

the same number of vertices, |V |. Let L1, · · · , Ln be corre-

sponding combinatorial Laplacians that are independent

and identically distributed according to distribution Q.

From this method of hypothesis testing over sequences

of network averages, we develop a new type of uncertainty

set for robust optimization.

We run numerical experiments on these newly developed

uncertainty sets for combinatorial optimization problems

with network data and we compare the tractability, proba-

bility guarantees, and effectiveness of solutions associated

with each of these sets. We prove that robust optimiza-

tion problems over uncertainty sets we have developed are

tractible.
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