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INVITED TALK 1: MARK NEWMAN, 
UNIVERSITY 0F MICHIGAN
Estimating structure in networks from complex or uncertain data

Most empirical studies of networks assume simple and reliable data: a straightforward 
edge list or adjacency matrix that reflects the true structure of the network accurately and 
completely.  In real life, however, things are rarely this simple.  Instead, our data are 
complex, consisting not only of nodes and edges, but also weights, values, annotations, 
and metadata.  And they are error prone, with both false positives and false negatives, 
conflated nodes, missing data, and other sources of uncertainty.  This talk will discuss 
methods for estimating the true structure and properties of networks, even in the face of 
significant uncertainty, and demonstrate some applications, particularly to social and 
biological networks.
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Key message

Comprehending complex systems often require modeling

and mapping of higher-order network flow representations

to simplify and highlight important dynamical patterns.

However, diverse complex systems require many different

higher-order network representations, including memory

and multilayer networks, to capture actual flow pathways

in the system. Here we show that various higher-order

network flow representations, including memory and mul-

tilayer networks, can be represented with sparse mem-

ory networks to efficiently reveal community structure in

higher order network flows.

Abstract

To comprehend the flows of ideas or information through

social and biological systems, researchers develop maps

that reveal important patterns in network flows. In prac-

tice, network flow models have implied conventional first-

order dynamics, but recently researchers have introduced

higher-order network flow models, including memory and

multilayer networks, to capture patterns in multi-step

pathways. Higher-order models are particularly important

for effectively revealing actual, overlapping community

structure, but higher-order flow models suffer from the

curse of dimensionality: their vast parameter spaces re-

quire exponentially increasing data to avoid overfitting and

therefore make mapping inefficient already for moderate-

sized systems.

To overcome this problem, we introduce an efficient

cross-validated mapping approach based on network flows

modeled by sparse memory networks. In sparse memory

networks, we discriminate physical nodes, which represent

the systems objects, from state nodes, which describe

the dynamics. State nodes are free to represent abstract

states and they are not bound to represent, for example,

previous steps in memory networks or layers in multilayer

networks. We show that various higher-order network

flow representations, including memory and multilayer

networks, can be represented with sparse memory network.

(b) Memory network

(d) Multilayer network

(e) Sparse memory network

(a) Higher-order network flows (c) Multilayer memory network

Figure 1: Modeling higher-order network flows with sparse

memory networks. (a) Multistep pathways from two sources

illustrated on a network with five physical nodes. (b) The

pathway data modeled with a second-order Markov model

on a memory network. (c) The pathway data modeled on a

two-layer network, one layer for each data source. (d) Both

memory and multilayer networks mapped on sparse memory

network with no redundant nodes. The black link highlights

the same step in all representations.

We illustrate our approach with a map of citation flows

in science with research fields that overlap in multidisci-

plinary journals. Compared with currently used categories

in science of science studies, the overlapping research fields

form better units of analysis because the map more effec-

tively captures how ideas flow through science.

*Corresponding author: ludvig.bohlin@umu.se
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Summary

A barrier to the computational modeling of neural dynam-

ics in the brain is the practical limit on resources, given the

enormous number of neurons in the human brain (∼ 1011).

Our work addresses this problem by developing a method

for obtaining low dimensional macroscopic descriptions

for the dynamics of large networks of neurons.

Model

The theta neuron model is a phase oscillator that is used

to model the dynamics of Class I excitable neurons. We

consider a setup of a large network of such theta neurons,

with pulse-like synaptic connections between the neurons

as dictated by the network topology. Previous studies

modeling the dynamics of such systems have generally

been restricted to networks within particular classes of

topologies (eg. Ref. [1]). We consider a broad class of net-

work topologies, allowing for arbitrary degree distributions

and assortativities (degree correlations).

Methods and Results

We use a mean field approach in conjunction with the

analytical techniques of Refs.[2] to study the behavior of

pulse coupled theta neurons on networks with arbitrary

degree distributions and assortativity, extending results in

Ref.[1](fully connected networks), and Ref.[3](networks of

Kuramoto oscillators). We analytically obtain a reduced

system of equations describing the mean-field dynamics

of the system, with a significantly lower dimensionality

compared with the complete set of dynamical equations

for the system. This dimensional reduction allows for

a computationally efficient simulation of the mean-field

dynamics of the system, which can be used to calculate an

order parameter for the full system, and hence allows for

an efficient characterization of phase transitions and at-

tractors. We find that, for sufficiently large well-connected

networks, the dynamical behavior of the reduced system

agrees well with that of the full network. For networks

with tightly peaked degree distributions, the macroscopic

behavior closely resembles that of fully connected net-
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Figure 1: Degree dependent behavior across nodes for a

network topology with a highly skewed degree distribution.

Note the close agreement between the simulations on the

full network and the calculations according to the lower

dimensional mean field theory.

works previously studied by others. In contrast, networks

with highly skewed degree distributions exhibit different

macroscopic dynamics due to the emergence of degree

dependent behavior of different oscillators (Fig. 1). In

general the long term dynamics of the order parameter

can be broadly classified into one of three phases – (1)

the partially resting phase; (2) the asynchronously firing

phase; and (3) the synchronously firing (SF) phase. We

observe that the SF phase of the system can be suppressed

by the addition of either assortativity or disassortativity

to the network.
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Summary

We quantify customer preference in grocery stores by

analysing mesoscale structure in bipartite consumer–

product networks. Building on previous work on anno-

tated networks [2], we show that incorporating node meta-

data into the network model (see Figure 1) reduces the un-

certainty in the optimal network partition. Although we

focus on consumer behaviour, our methods are applicable

to any bipartite network, where analysing the one-mode

projections would result in information loss.

Data and motivation

We use anonymised basket-level transaction information

to construct a bipartite network of customers and prod-

ucts, where weighted edges correspond to purchases ag-

gregated over a three-month time window. Mesoscale

structure in these networks (such as community struc-

ture) reveals groups of customers with similar preferences

and groups of products that are preferred by different cus-

tomer types. This information can feed into a system of

personalised product recommendations, or it can suggest

new segmentations of customers and products, both of

which are used by stores for business planning.

For a given network, there may be several different par-

titions of the nodes into groups that are close to optimal

(e.g. that give similarly high likelihood values in a statis-

tical framework). As shown in [2], using additional data

in the form of node annotations may improve the qual-

ity and interpretability of the optimal partition. For our

application, we use product categories as annotations on

the product nodes, as illustrated in Figure 1.

Mesoscale structure in annotated networks

We first adapt the algorithm in [2] to bipartite networks;

this allows us to find structure in unweighted consumer–

product networks. To work with weighted networks in-

stead, we modify the weighted stochastic block model in

[1] to incorporate annotations. Although the second ap-

proach should be more suitable for our data, we find that
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Figure 1: Schematic of a bipartite network of customers

(blue squares) and products (red circles). Known product

categories serve as annotations on the product nodes.

the unweighted method consistently gives more meaning-

ful results, likely due to the computational implementa-

tion.

Results

The algorithm that fits the model to an annotated input

network returns a soft partitioning of customer and prod-

uct nodes into a prespecified number of groups. We find

that incorporating annotations tends to increase the prob-

ability of a product node belonging to its optimal group,

thus reducing the amount of uncertainty in the final par-

tition. This optimal solution reveals sets of customers

with distinctive shopping patterns, including a group of

price-sensitive customers who prefer snacks and frozen

meals and a group of people who are more likely to buy

produce, fresh meat, and other ingredients for cooking at

home.
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Summary

Power Grid Islanding is an effective method to mitigate

cascading failures in power grids. The challenge is to

partition the power grid network into smaller connected

components, called islands, so that each island can operate

independently for a short period of time. In order for an

island to operate, it is necessary that the power supply and

demand at that island be almost equal (if the supply and

demand are not exactly equal but still relatively close, load

shedding/generation curtailing can be used in order for the

island to operate). Equality of supply and demand in an

island, however, may not be sufficient for its independent

operation. It is also important that the infrastructure in

that island have the physical capacity to safely carry the

power flows. To address this problem, we introduce and

study the Doubly Balanced Connected graph Partitioning

(DBCP) problem. The DBCP problem is the problem of

partitioning a graph into two parts such that both parts

are connected and comparable in size, and supply is almost

equal to demand in each part. The idea is that when an

island is large enough compared to the initial network,

it most likely has enough capacity to carry power flows.

In this way, the partitions obtained from solutions to the

DBCP problem are operational.1

Doubly Balanced Connected Graph Partitioning

We introduce and study the Doubly Balanced Connected

graph Partitioning (DBCP) problem: Let G = (V,E)

be a connected graph with a weight (supply/demand)

function p : V → Z satisfying p(V ) =
∑

j∈V p(j) = 0.

The objective is to partition V into (V1, V2) such that

G[V1] and G[V2] are connected, |p(V1)|, |p(V2)| ≤ cp, and

max{ |V1|
|V2| ,

|V2|
|V1|} ≤ cs, for some constants cp and cs. We

1This abstract summarizes the results that appeared in [4].

This work was supported in part by DTRA grant HDTRA1-13-1-

0021, DARPA RADICS under contract #FA-8750-16-C-0054, fun-
ding from the U.S. DOE OE as part of the DOE Grid Modernization

Initiative, and NSF under grant CCF-1320654 and CCF-1423100.

focus on the case that weights (supply/demand values)

are ±1, but our techniques can be extended, with similar

results, to the case in which the weights are arbitrary (not

necessarily ±1), and also to the case that p(V ) 6= 0 and

the excess supply/demand should be split evenly.

The connected partitioning problem with only the size

objective has been studied previously. In the most well-

known result, Lováz and Gyori [1,3] independently proved

that every k-connected graph can be partitioned into k

arbitrarily sized connected subgraphs. However, neither

of the proofs is constructive, and there are no known

polynomial-time algorithms to find such a partition for

k > 3. The objective of balancing the supply/demand

alone, when all p(i) are±1, can also be seen as an extension

for the objective of balancing the size (which corresponds

to p(i) = 1).

Since the power grids are designed to withstand a single

failure (“N −1” standard), and therefore 2-connected, our

focus is mainly on the graphs that are at least 2-connected.

We use the embedding for k-connected graphs introduced

in [2] and show that when G is 2-connected, a solution

with cp = 1 and cs = 3 to the DBCP problem always

exists and can be found in polynomial time. Moreover,

when G is 3-connected, we show that there is always a

‘perfect’ solution (a partition with p(V1) = p(V2) = 0 and

|V1| = |V2|, if |V | ≡ 0(mod 4)), and it can be found in

polynomial time.
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Summary

Networks are now used to study many systems in scien-

tific and societal domains, where nodes represent system

elements and edges represent relationships among these el-

ements. These networks exhibit a broad variety of intricate

structural properties. Mathematical measures developed

within network science can be used to characterize several

structural features of networks. However, this charac-

terization of individual features is unable to provide an

automated, statistically principled and computationally

efficient method to classify networks in large data sets.

While many network features are common across net-

works from the same broad class, such as social networks

or types of biological networks, we identify finer scales of

classifications within such a broad class, leveraging that

networks of more similar systems tend to have more similar

features. That is, networks representing similar purposes

are expected to arise from shared domain specific mecha-

nisms, so it should be possible to classify networks into

categories based on features at various structural levels.

We present a novel hybrid approach to network classifi-

cation, combining manual selection of features of interest

with machine learning classifiers. By selecting well-studied

features that have been used throughout social network

analysis and network science and then classifying with

methods such as random forests that are of special util-

ity in the presence of feature collinearity, we find that we

achieve higher accuracy, in shorter computation time, with

greater interpretability on benchmark problems compared

to existing network classification methods. As this hybrid

approach relies on a novel combination of existing open-

source tools, it can be easily implemented across different

application domains to develop classification strategies

that are computationally efficient and intuitively under-

stood.

We demonstrate the broad applicability of our approach

by classifying days of the week from call detail records,

diagnosing types of cancer tumors based on their tran-

scription factor- gene regulatory networks, and testing the

method against network classification benchmarks. Fur-

thermore, we extended this approach to classification of

recurrence networks used in nonlinear time series analysis

and climate networks.

Figure 1: Classification of days of the week from daily commu-

nication networks extracted from call record data of a European

country. (a) Random forest classification of days of the week:

The performance of the 7-day classifier is displayed in the top

row with the binary weekend/weekday classifier in the bottom

row. (b) KNN classification of days of the week: This visualizes

a single realization of classification of days of the week using

KNN, where ntrain is the total number of days used for the

training set, which included equal number of days of each day

of the week.

∗These authors contributed equally to this work.
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Summary

In studies of the problem of controlling large-scale net-

works in both network science [1] and control theory [2, 3],

the dynamics of individual agents are often assumed to be

represented by a scalar integrator. This assumption poses

restrictions for many real-world networks where essential

behaviors of an agent cannot be captured by modeling it

as a single integrator. In this work, we treat the individual

agents as multi-input multi-output linear dynamical sys-

tems, and then, by letting the interaction between agents

be governed by a diffusion process over an undirected

graph, we investigate the combined influence of individual

agent dynamics and the underlying network topology on

the controllability of a networked multi-agent system.

Problem Setup

Here we consider a network of N agents wherein xi ∈ Rn,

i = 1, . . . , N represents the state of agent i. By letting

vi ∈ Rp and yi ∈ Rp denote the input and output of agent

i, respectively, we define the agent dynamics as

ẋi = Axi +Bvi

yi = Cxi,
(1)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rp×n. Moreover,

we assume C to be of full-rank. The underlying network

topology is encoded by the graph G = (V, E ,Γ), where

each agent corresponds to a node in V = {1, . . . , N} and E
defines the associated edge set. Γ ∈ RN×N

≥0 represents the

adjacency matrix associated with G, and γij , the elements

of Γ, represent the coupling strength along the edge (i, j).

The associated graph Laplacian is defined as L = D − Γ.

In this framework, the input vi to agent i has two

components: (i) a social component governed by diffusive

coupling with neighbors, and (ii) an external input (control

signal). However, we assume that only m (1 ≤ m ≤ N)

agents have direct access to the external control signal, and

these agents constitute the leader set Sm , {s1, . . . , sm}.
Hence, vi can be expressed as

vi = ui1Sm(i) +
N∑
j=1

γijC(xj − xi), (2)

where 1Sm
denotes the indicator function of Sm ⊆ V and

1Sm(i) = 1 if i ∈ Sm and otherwise is 0.

Main Result

By assuming the graph to be undirected and connected,

we have L = Lᵀ ≥ 0. Hence, L can be diagonalized as

L = ΨΛΨᵀ, (3)

where Ψ ∈ SO(N) and Λ = diag(λ1, λ2, . . . , λN ), 0 =

λ1 < λ2 ≤ · · · ≤ λN is the diagonal matrix of eigenvalues

of L. This factorization, together with the PBH test

[4], leads us to a necessary and sufficient condition for

controllability of the overall dynamics (1)-(2).

Theorem 1 Consider the networked multi-agent system,

the dynamics of which are governed by (1) and (2). This

system is controllable if and only if the following conditions

hold true:

(I) [ψs1,j , ψs2,j , · · · , ψsm,j ] 6= 0 for any j = 1, . . . , N

where ψij are individual elements of the matrix Ψ.

(II) For each λi ∈ spec(L), none of the left eigenvectors

of (A− λiBC) are orthogonal to B.

Future Directions

Our result explicitly reveals how the dynamics of individ-

ual agents interact with the associated graph Laplacian

towards influencing the controllability properties of a given

network. In future work, we will characterize sets of leader

nodes in such a network of linear dynamical systems that

achieve critical control objectives in an optimal way.
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Summary

We introduce a macroscopic reduction for networks of

coupled oscillators motivated by an elegant structure we

find in experimental measurements of circadian protein

expression and several mathematical models for coupled

biological oscillators. The observed structure in the col-

lective amplitude of the oscillator population differs from

the well-known Ott-Antonsen ansatz, but its emergence

can be characterized through a simple argument depend-

ing only on general phase-locking behavior in coupled

oscillator systems. We further demonstrate its emergence

in networks of noisy heterogeneous oscillators with com-

plex network connectivity. Applying this structure, we

derive low-dimensional macroscopic models for oscillator

population activity.

Low Dimensional Relations

In large ensembles of coupled phase oscillators we may

define the Daido order parameters [3] as,

Zm(t) = Rm(t)eiψm(t) =
1

N

N∑
j=1

eimφj(t), (1)

where φj are the phases of the oscillators, Rm are the

phase coherences and ψm are the mean phases. In 2008,

Ott and Antonsen introduced a powerful macroscopic

reduction for coupled oscillator networks [1]. In its most

powerful form the Ott-Antonsen approach assumes that

Rm = Rm1 , ψm = mψ1.

We examined both experimental data [2] and simula-

tions of coupled biological oscillators for a relationship

between the Daido order parameters. Surprisingly, we

found the Ott-Antonsen relation did not provide a good

approximation, however the ansatz,

Rm = Rm
2

1 ψm = mψ1 (2)

did describe the systems we tested well.

Emergence

In order to characterize the emergence of our ansatz we

consider a model network of N noisy heterogeneous phase
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Figure 1: (a) Barabasi-Albert Scale-Free network (b)

Watts-Strogatz Small World network. Circles show the

results from simulations of networks (Eq. 3). Solid lines

show Rm = Rm
2

1 . Colors differetiate coupling strengths.

oscillators,

φ̇i = ωi +
K

di

N∑
j=1

AijH(φj − φi) +
√
Dηi(t), (3)

where ηi is a white noise process. Numerical simulations

of Equation. 3 with a Gaussian distribution of frequencies

(ωi) shows that our ansatz robustly emerges in the network

as the coupling strength increases (Fig. 1). We give a

simple analytical argument which explains the prevalence

of our ansatz in biological networks.

Macroscopic Model

Finally, we demonstrate how our ansatz may be used to

extract low-dimensional macroscopic models for networks

of coupled biological oscillators.
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Summary

The statistical analysis of networks requires analytically

tractable probability distributions that quantify the prob-

ability to observe a network under a null hypothesis. In

this talk we will present the class of generalized hypergeo-

metric ensembles, which provides a powerful framework to

perform statistical hypothesis testing and model selection

in complex networks.

Abstract

Statistical ensembles of networks, i.e., probability spaces

of all networks that are consistent with given aggregate

statistics, have become instrumental in the analysis of

complex networks [1]. Their numerical and analytical

study provides the foundation for the inference of topo-

logical patterns [5, 3], the definition of network-analytic

measures [5], as well as for model selection and statistical

hypothesis testing [2]. Contributing to the foundation of

these data analysis techniques, we introduce generalized

hypergeometric ensembles (gHypEs), a broad class of ana-

lytically tractable statistical ensembles of finite, directed

and weighted networks.

This framework is a generalization of the classical con-

figuration model [4], commonly used to randomly generate

networks with given degree sequence or distribution. Dif-

ferent from this, we utilize an edge-centric sampling of

m edges from the set of all possible edges, such that the

sequence of expected degrees of nodes is preserved. For

each pair i, j of the n nodes, we sample edges from a set of

Ξij possible multi-edges uniformly at random. This can be

viewed as an urn problem where edges to be sampled are

represented by balls in an urn. We specifically obtain an

urn with M =
∑

i,j Ξij balls having n2 = |V × V | differ-

ent colours, representing all possible edges between a given

pair of nodes. Each adjacency matrix A, with entries Aij

such that
∑

i,j Aij = m, corresponds to one particular

realization drawn from this ensemble. The probability to

draw exactly A = {Aij}i,j∈V edges between each pair of

nodes is given by the multivariate hypergeometric distribu-

tion. Moreover, by biasing the above mentioned sampling,

we can further generalise the ensemble such that each pair

of nodes has a given propensity to form an edge, i.e. arbi-

trary degree-corrected tendencies of pairs of nodes to form

edges between each other. This new sampling process

is described by a biased urn, whose sampling probability

is the multivariate non-central Wallenius hypergeometric

distribution [6].

Studying empirical and synthetic data, we show that this

class of ensembles provides a powerful framework for model

selection and hypothesis testing in complex networks. We

demonstrate how gHypEs can be used to develop statistical

regression models to analyze data in the form of complex

networks. The resulting non-linear parametric models

take as independent variables diverse hypotheses about

the network structure, e.g. community membership or

more complicated node-node relations. They allow then

to regress the influence of such hypotheses on the network

topology, estimating the intensity and the significance of

their effects. The goodness of fit of a regression model

can be assessed by means of likelihood-ratio tests, or

by computing the mahalanobis distance of the network

according to the chosen model.
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Abstract

Over-the-counter (OTC) derivative markets were regarded

as one of the key factors contributing to the Global Fi-

nancial Crisis of 2007-2008, which has had long-standing

societal implications. Unlike centrally organized markets,

participants in OTC markets trade on a bilateral basis,

engendering large networks of contractual obligations and

risk transfers. These markets are also known to be opaque

(i.e., market information is often very limited to most

agents) and large in size (the aggregate volumes of total

bilateral obligations can amount to several trillion dollars

[2, 1]). The size, coupled with the lack of transparency of

these markets has become an important concern for policy

makers [3].

In this paper, we show both theoretically and empiri-

cally that the size and complexity of OTC markets can

be reduced without affecting individual trade balances.

First, we find that the networked nature of these markets

generates an excess of obligations: a significant share of

the total market volume can be deemed redundant. Sec-

ond, we show conditions under which such excess can be

removed while preserving individual net positions. We

refer to this netting operation as compression and identify

feasibility and efficiency criteria, highlighting intermedia-

tion as the key element for excess levels. We show that a

trade-off exists between the amount of excess that can be

eliminated from markets and the conservation of trading

relationships. We then design several compression bench-

mark solutions and test their efficiency using a unique

and granular dataset on credit-default swap transactions

involving all EU firms and their global counterparties.

The compression benchmarks gradually differ in their ca-

pacity to modify the markets initial web of outstanding

trades. We find that, between 2014 and 2016, on average

more than 75% of the total notional in markets eligible

for compression. While bilateral compression is shown

to be limited, more sophisticated compression techniques,

which can identify longer chains of compressible contracts,

generally remove most of the eligible outstanding notional.

In particular, even the most conservative multilateral

compression approach, which does not alter trading rela-

tionships, reaches up to 98% of notional elimination.

While some markets have already adopted compression

in order to reduce their risk and size, these results show, for

the first time, the efficiency and trade-offs of compression

when systematically applied at a larger scale. Finally, our

framework provides ways for regulators and policymakers

to curb the impact of financial crises and improve the

efficiency of markets by reducing the total aggregate size

of markets and reconfiguring the web of obligations.
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OTC markets, compression, intermediation, financial net-

work
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Summary

Numerous centrality measures have been developed to

quantify the importances of nodes in time-independent

networks, and many of them can be expressed as the

leading eigenvector of some centrality matrix C. Because

many networks depend on time, we introduce (see [1]) a

principled generalization of centrality measures that is

valid for any eigenvector-based centrality. We consider a

temporal network with N nodes as a sequence of T layers

that describe the network during different time windows,

and we couple centrality matrices {C(t)} for the layers

t ∈ {1, . . . , T} into a supra-centrality matrix,

C(ε) =


C(1) ε−1I 0 · · ·

ε−1I C(2) ε−1I
. . .

0 ε−1I C(3) . . .
...

. . .
. . .

. . .

 . (1)

Coupling strength ε > 0 is a tuning parameter that con-

trols the rate at which centralities change over time.

We study C(ε) for synthetic and empirical network

datasets, and our work consists of two main parts: (i) in-

terpreting the length-NT dominant eigenvector of C(ε)

for centrality analysis, and (ii) conducting a singular

perturbation analysis for the time averaging limit ε→ 0+.

Joint, Marginal and Conditional Centralities

Each entry vj(ε) in the dominant eigenvector of C(ε) en-

codes a “joint centrality” that reflects both the importance

of physical node i = mod(j,N) and time layer t = dj/Ne.
It is convenient to represent the length-NT eigenvector

v(ε) by an N ×T matrix so that entry Wit = vi+N(t−1)(ε)

encodes the joint centrality of physical node i at time t. In

Fig. 1(a), we illustrate an example synthetic network with

T = 3 and N = 4. We indicate the associated joint cen-

tralities for ε = 0.5 with a table in Fig. 1(b). The shaded

regions in Fig. 1(b) describe two new concepts that we

call “marginal node centralities” (MNC) {xi =
∑

tWit}
and “marginal layer centralities” (MLC) {yt =

∑
iWit},

which provide uncoupled centralities. We study how the
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Figure 1: Example temporal network. (a) Intra-layer edges

(black lines) encode the network at different instances and inter-

layer identity edges (gray lines) couple these layers together

with strength ε−1. (b) For coupling strength ε = 0.5, we

indicate joint node-layer centralities {Wit} (white boxes), MNC

{xi} (right-most row) and MLC {yt} (bottom row).

centrality of each node evolves over time by also defining

“conditional node centralities” {Zit = Wij/yt}, which quan-

tify the importances of physical nodes at time t relative

to other physical nodes at that particular time.

Time-Averaged Centrality and First-Order-Mover

Scores

Joint, marginal and conditional centralities depend on cou-

pling strength ε, which tunes the rate at which the nodes’

centralities change over time. We conduct a singular per-

turbation analysis for the limit ε→ 0+, which implements

a time averaging in that the conditional node centralities

become constant in time, Zit → αi for every t. We refer to

the values {αi} as the nodes’ “time-averaged centralities,”

and we find that they correspond to the zeroth-order terms

of a singular perturbation expansion. Interestingly, the

values {αi} correspond to the dominant eigenvector for a

weighted average of centrality matrices,
∑

t wtC
(t). We

also study first-order terms to define “first-order-mover

scores” that concisely describe the magnitude to which

nodes’ centralities change over time.
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Summary

A scenario has recently been reported in which in or-

der to stabilize complete synchronization of an oscillator

network—a symmetric state—the symmetry of the sys-

tem itself has to be broken by making the oscillators

nonidentical. But how often does such behavior—which

we term asymmetry-induced synchronization (AISync)—

occur? Here we present a general scheme for constructing

AISync systems and demonstrate that this behavior is the

norm rather than the exception in a wide class of physical

systems that can be seen as multilayer networks. This

framework doesn’t depend on specific nodal dynamics and

provides novel insights into the phenomenon of AISync.

Introduction

A general belief in the field of network dynamics is that ho-

mogeneity in the local dynamics and interaction network

can facilitate complete synchronization. It has been shown,

however, that structural heterogeneity in networks of iden-

tical oscillators or oscillator heterogeneity in structurally

symmetric networks can stabilize otherwise unstable syn-

chronous states, thus effectively breaking the symmetry of

a system to stabilize a symmetric state. These scenarios

can be interpreted as the converse of symmetry breaking,

and hence also a converse of chimera states.

Results

We first identify the class of all structurally symmetric

networks by generalizing the vertex-transitive graphs (in

which each node can be mapped to any other node through

node permutations that leave the network invariant) from

algebraic graph theory to directed edges and multiple edge

types. These are the ideal networks for the study of AISync

due to their structural homogeneity and fundamental role

in cluster synchronization (as symmetry clusters).

Consider a symmetric network of N (not necessarily

identical) oscillators coupled through K different types

of interactions [e.g., Fig. 1(a)]. Determining the stability

of such systems is extremely challenging, and even the

existence of a synchronous state is not guaranteed. In
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FIG. 1. Multilayer construction of AISync networks. (a) Example of a symmetric network of N = 4 heterogeneous oscillators

and K = 3 types of (directed) links with associated interaction functions H(1), H(2) and H(3). (b) One of many possible
multilayer networks corresponding to the network in (a), with L = 2 layers and n = LN = 8 identical subnodes. Subnodes
are labeled with node indices, with prime and double prime indicating layer 1 and 2, respectively. (c) Flattened, monolayer

representation of the multilayer network in (b). (d) Block structure of the adjacency matrix eA for the monolayer network in
(c). Colors indicate di↵erent types of nodes (diagonal blocks) and links (o↵-diagonal blocks).

ing the MSF framework to the flattened representation
of the system.

In our multilayer construction, each node represents
a set of L identical subnodes, belonging to L di↵erent
layers and connected by a set of internal sublinks. The
pattern of these internal sublinks is thus considered part
of the node’s properties and can be used to represent
node heterogeneity. For a pair of connected nodes, the
type of the connecting link is determined by the pattern
of external sublinks between the subnodes of these two
nodes. This construction yields a multilayer network [18–
23] of subnodes and sublinks with L layers; see Fig. 1(b)
for an L = 2 example. Note that in general there is
more than one possible multilayer network for a given
symmetric network. Coupling the dynamics of subnodes
di↵usively in this network, Eq. (1) can be written at the
subnode level as

ẋ
(i)
` = f(x

(i)
` ) +

NX

i0=1

LX

`0=1

eA(ii0)
``0

⇥
h(x

(i0)
`0 ) � h(x

(i)
` )

⇤
, (2)

where x
(i)
` = x

(i)
` (t) is the m-dimensional state vector for

subnode ` (i.e., in layer `) of node i, the function f de-
termines the dynamics of every isolated subnode, and h
is the interaction function common to all sublinks. Here,
for all links of a given type between di↵erent nodes, the

corresponding coupling matrix eA(ii0) := ( eA(ii0)
``0 ), i 6= i0,

is the same and encodes the subnode connection pat-
tern for that link type. In contrast, the subnode connec-
tion pattern within each node i is encoded in the matrix

F (i) := ( eA(ii)
``0 ). Note that the node-to-node interactions

are not necessarily di↵usive, but the subnode-to-subnode
interactions are di↵usive. This guarantees the existence

of a synchronous state of Eq. (2) given by x
(i)
` (t) = s(t),

8i, ` with ṡ = f (s), which corresponds to a synchronous
state of Eq. (1). Thus, we have a general class of multi-
layer models of symmetric networks that admit complete
synchronization (see SM [24], Sec. S2 for more details).

To facilitate the stability analysis, we flatten the mul-
tilayer network representation into a single layer (see
Fig. 1(c) for an example). By defining a single index

for all the n := LN subnodes, in which node i has subn-
odes j = ki1, . . . , kiL with ki` := (i � 1)L + `, we can
rewrite Eq. (2) in the standard form for a (single-layer)
di↵usively coupled network of oscillators:

ẋj = f(xj) +

nX

j0=1

eAjj0 [h(xj0) � h(xj)], (3)

where xj = x
(i)
` and eAjj0 := eA(ii0)

``0 for j = ki` and

j0 = ki0`0 . The weighted adjacency matrix eA = ( eAjj0)
thus encodes the structure of the monolayer network in
this representation (see Fig. 1(d) for an example). This
matrix has a block structure in which the matrices F (i)

appearing on the diagonal blocks characterize node prop-

erties, while eA(ii0) appearing on the o↵-diagonal blocks
reflect the link types. Since subnodes and sublinks are
identical, we can directly apply the MSF analysis [26]
to Eq. (3) and obtain the stability function  (�). The
maximum Lyapunov exponent (MLE) of the synchronous
state is then computed as  := max2jn  (�j), where
�1, . . . , �n are the eigenvalues of the Laplacian matrix
eL := (eLjj0) of the monolayer network, defined as eLjj0 :=

�jj0
Pn

k=1
eAjk � eAjj0 , where �jj0 is the Kronecker delta

function. Here, �1 is the identically zero eigenvalue,
which is excluded in the definition of  for corresponding
to a mode of perturbation that does not a↵ect synchro-
nization stability. Thus, the synchronous state is asymp-
totically stable if  < 0 and unstable if  > 0. Using this
MSF analysis, we have developed a systematic method
for verifying the AISync conditions (C1) and (C2) for
our multilayer model (see SM [24], Sec. S3).

An example system exhibiting AISync is shown in
Fig. 2. The network structure is symmetric and has
N = 3 nodes and K = 2 types of links corresponding
to links in the clockwise and counterclockwise directions
in Fig. 2(a). Each node consists of L = 2 subnodes, each
of which is a chaotic Lorenz oscillator. The two subnodes
are connected by a sublink, the direction of which deter-
mines the node type. The system has two parameters, a
and b, representing the coupling strength of internal and

Figure 1: Multilayer construction of AISync networks.

(a) Example of a symmetric network of N = 4 heteroge-

neous oscillators and K = 3 types of (directed) links with

different interaction functions. (b) One of many possible

multilayer networks corresponding to the network in (a),

with L = 2 layers and n = LN = 8 identical subnodes.

this work we introduce and characterize a wide class of

multilayer systems of nonidentical oscillators, whose sta-

bility can nonetheless be analyzed by the master stability

formalism (MSF) and exhibit AISync generically.

In our multilayer system, each node can be further

decomposed into L identical subnodes, belonging to L

different layers and interacting through a set of internal

sublinks. The pattern of these internal sublinks is thus

part of the node’s properties and can be used to represent

node heterogeneity. For a pair of connected nodes, the

type of the connecting link is determined by the pattern

of external sublinks between the subnodes of these two

nodes (see Fig. 1(b) for an L = 2 example). Since subn-

odes and sublinks are identical, we can directly apply the

MSF analysis by flattening the multilayer network into a

monolayer network of diffusively coupled subnodes.

We have discovered an abundance of concrete exam-

ples of AISync systems under this multilayer framework,

including those with periodic and chaotic dynamics, di-

rected and undirected coupling schemes, and continuous-

and discrete-time dynamics. In particular, experimentally

testable AISync systems are constructed using optoelec-

tronic networks. Finally, since a symmetric network in

complete synchrony is the basic building block of cluster

synchronization in more general networks, AISync should

be common also in facilitating cluster synchronization by

breaking the symmetry of the cluster subnetworks.
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Abstract

Identifying highly ranked vertices in graphs is a common

query using centrality measures (specifically Katz Central-

ity). We use iterative solvers to obtain an approximate

solution to a ranking vector on the vertices of the graph

and use the residual to accurately certify how much of the

approximation matches the unknown exact solution.

Introduction

Katz centrality rankings quantify the ability of a vertex

to initiate walks in the graph, while penalizing long walks

by a fixed factor α. Calculating Katz scores exactly is

prohibitively computationally expensive (O(n3)) so in

practice iterative methods are often used to obtain an

approximation. We prove that the differences between the

approximation and unknown exact solution guarantee how

far down the ranking we can go before the approximation

error makes it unreliable.

Definitions and Theory

For a graph G = (V,E) with V the set of n vertices and

E the set of m edges with adjacency matrix A, we define

the Katz centrality of vertices in the graph as the n× 1

vector c∗ = A(I − αA)−11 [1].

Table 1: Notation used in this paper.

Name Definition

A Adjacency matrix, aij = 1 if (i, j) ∈ E, 0 else
M I − αA

x∗, c∗ Exact solutions, x∗ = M−11, c∗ = Ax∗

x(k), c(k) kth approximations (from iterative solver) to x∗, c∗

rk Residual, ‖1−Mx(k)‖2
λmin(M) Smallest eigenvalue of M

Theorem 1. If |c(k)i − c(k)j | > 2εk for εk = ‖A‖2
λmin(M)rk,

then the ranking of vertex i above j is correct.

Proof. We can bound the point-wise error in the ranking to

provide a necessary gap to certify correctness of elements

in the approximation.

‖c∗ − c(k)‖∞ ≤ ‖c∗ − c(k)‖2 = ‖Ax∗ −Ax(k)‖2
≤ ‖A‖2‖x∗ − x(k)‖2 = ‖A‖2‖M−11− x(k)‖2

≤ ‖A‖2‖M−1‖2rk ≤
‖A‖2

λmin(M)
rk =: εk

Since c
(k)
i − c∗i < εk and c∗j − c

(k)
j < εk, if c

(k)
i − c

(k)
j > 2εk,

then c∗i − c∗j > 0 and rank(i) > rank(j) is correct.

Experiments
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Figure 1: R=100, φ0=0.95.

Currently to iden-

tify top vertices,

we run an iter-

ative solver to

machine precision

(≈ 10−15). We

develop a new

stopping criterion

to find top ver-

tices with previ-

ously missing theoretical guarantee of correctness. For

top R vertices with desired precision φ0 ∈ (0, 1]: termi-

nate solver when |c(k)R − c
(k)
j | > 2εk, if current precision

R
j−1 > φ0. Figure 1 shows the reduction in # iterations

running to machine precision (IE) vs. # iterations with

the new stopping criterion (IA). Using 38 real-world

graphs and conjugate gradient as the iterative solver, we

obtain an average of 4.54× reduction with a maximum

of 19.6×, which is significant because running to machine

precision can take up to 1000s of iterations.

Conclusions and Future Work

We bridge the two fields of numerical analysis and network

analysis by understanding how the error in a linear solver

affects the data analysis problem of ranking. By bounding

the error in an approximate solution from an iterative

method, we can identify the most central vertices with

high confidence. Future work will study the theoretical

guarantees in a personalized setting, if we only desire

the Katz scores averaged from a user-desired set of seed

vertices, and extend our theory to directed graphs.
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Summary

Cascading failures are frequently observed in networked

systems and remain a major threat to the reliability of

network-like infrastructure. To assess system resilience,

we analyze the effect of link failure on the process of the

sandpile avalanche propagation through interconnected

networks. We observe a positive feedback between link

failure due to overuse and sandpile dynamics, where dam-

age spread is controlled by the link strength and density of

interlayer connections. Our work provides insight into the

problem of optimal robustness of systems of interconnected

networks.

Figure 1: Link failing order for low (top) and high (bot-

tom) usage threshold θ as a function of increasing interlayer

connectivity P . For low θ and P damage spreads in a

wave-like manner, while high θ leads to gradual fragmen-

tation of the system. Increased coupling between layers

results in further fragmentation as damage spread origi-

nates from more sites simultaneously. Adjacent color maps

correspond to the behavior of two layers of the system.

Model of overload failures

Here we consider a classic model of cascading failure,

the BTW sandpile model, on a system of interdependent

networks. Additionally we assume that links in the system

fail after they have transported more than θ grains of

sand. For simplicity and ease of visualization, we consider

a system of two square lattices, with periodic boundary

conditions in each layer, where both inner and interlayer

links are characterized by the same strength θ.

Propagation of overload failures

In a weakly connected system where θ is low structural

damage to the network propagates radially from a site

of initial failure causing an abrupt collapse of the entire

system (Fig.1; top, left). An increase of link strength

θ causes more gradual and uncorrelated damage spread,

with different parts of the system failing at different times

(Fig.1; bottom, left). In both cases an increase in cou-

pling P between layers leads to increase in the number of

sites at which failures originate followed by simultaneous

destruction of remaining links (Fig.1; right).

Strong and weak links, however, affect system resilience

in diametrically different manner. Increase of coupling

P between layers in a system with weak links leads to

greater diversity of times at which links fail, with an

abrupt collapse of the network occurring at later times

(Fig.1; top, right). Thus when operating a system built

on weak components the increase of coupling between

layers comes as a strategy improving resilience to failures.

On the other hand, an optimal resilience for a system of

strong components is reached at low connectivity, where

greater variability of failing times is observed.

These results come in line with observations of numer-

ous nature and man-made networks characterized by a

modular structure, where clusters of strongly connected

nodes are weakly coupled with each other. Our work sug-

gests that such mixed topology might be most robust one

with respect to failures propagating through the system.
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Summary

The tendency for real-world networks to cluster is the ba-

sis for many models and algorithms for complex networks.

The standard measurement of this tendency is the cluster-

ing coefficient, which is the probability that a length-2 path

is “closed”, i.e., induces a triangle. However, higher-order

structures beyond triangles are crucial to understanding

complex networks, and the clustering behavior with re-

spect to such structures is not well understood. Here we

introduce higher-order clustering coefficients, which mea-

sure the closure probability of higher-order cliques and

reveal new insights into how networks cluster.

Generalizing the clustering coefficient and data insights

In many domains, clustering comes from temporal closure

patterns, particularly through the closure of a length-2

path into a triangle. This pattern, commonly referred to as

triadic closure, occurs throughout social and information

networks [1, 4]. In other cases such as metabolic networks,

clustering arises from dense modules operating within a

larger system [2]. In general, clustering is a tendency for

lower-order structures (e.g., edges) to form higher-order

structures (e.g., triangles or dense modules).

The prototypical measurement for the extent to which

the nodes of a network form clusters is the clustering

coefficient, which is the fraction of length-2 paths that

induce a triangle [3]. However, the clustering coefficient is

inherently restrictive as it measures the closure pattern of

just one simple structure—the triangle, or 3-clique. In this

work, we generalize the clustering coefficient to account

for higher-order closure patterns.

Our generalization is based on an alternative interpreta-

tion of the clustering coefficient as a form of clique expan-

sion. Specifically, consider any 2-clique K in a network

(that is, a single edge). Now “expand” K by attaching

an edge e adjacent to K (i.e., e and K share exactly one

node). The clustering coefficient C is then the fraction

of (2-clique, adjacent edge) pairs that are closed, mean-

ing that the pair induces a (2 + 1)-clique, or a triangle.

For higher-order clustering coefficients, instead of expand-

1. Start with `-clique 2. Find adjacent edge 3. Check for (` + 1)-clique

C2

C3

C4

Figure 1: Our `th-order clustering coefficient C` is the

probability that an (`-clique, adjacent edge) pair is closed,

i.e., induces an (` + 1)-clique.
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Figure 2: Distribution of second- and third-order local

clustering coefficients over all nodes in two networks.

ing 2-cliques to 3-cliques, we simply expand `-cliques to

(` + 1)-cliques (Fig. 1). This definition maintains many

nice properties of the classical clustering coefficient such

as global and local network measurements, probabilistic

interpretations, and computational feasibility.

In addition to developing mathematical properties of

higher-order clustering coefficients, we use them to gain

insights into real-world networks. For example, while

nodes in both a neural and a social network have high

local clustering in the traditional sense, only nodes in

the social network network exhibit higher-order clustering

(Fig. 2). We also show that a network with large higher-

order clustering must have a 1-hop neighborhood with

small clique-based conductance. We use this to find good

seeds for local clustering with personalized PageRank.
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Summary

We propose two novel structure-preserving network trans-

formations and associated null models for the study of in-

formation spreading on temporal networks. Both transfor-

mations build on the commonly used randomly-permuted-

times null model (PT) which randomizes contact time-

stamps on edges. By preserving the lifespan of edges

(PTE) or nodes (PTN), our null models eliminate artifacts

introduced by the PT model when the ongoing link picture

does not hold. We use the proposed transformations to

estimate the information spreading capacity i) of synthetic

networks with heterogeneous edge lifespans, and ii) empir-

ical networks with nodes entering and leaving dynamically.

Our analysis shows that predictions of spreading capacity

change significantly with the choice of null model, putting

in question earlier results based solely on PT null models.

Temporal networks and randomized null models

Time-dependent networks exhibit different temporal struc-

tures, e.g., bursty interevent times (IETs), bursty edge

activation dynamics, and heterogeneous edge and node

lifespans. It is natural to study the influence of an ob-

served structure on the information spreading capacity

of a network by comparing measurements of simulated

spreading on the network against those in an appropriately

constructed null model that destroys this structure.

The randomly-permuted-times null model (PT), which

randomizes contact timestamps on edges, is commonly

used in the literature to study the effects of a bursty IET

distribution [2]. In addition to destroying burstiness, how-

ever, PT also changes several other temporal structures,

e.g., mean IET as well as edge and node lifespans. This can

introduce artifacts in the randomized reference network

that unintentionally bias its spreading properties. For

instance, an increase in the active lifespan of nodes may

inaccurately reflect the network behavior in cases where

nodes are dynamically entering and leaving the network.

To address these limitations, we introduce two new null

models that preserve the first and last timestamps of edges

(PTE) or nodes (PTN), while permuting timestamps of

contacts that occurred within the lifespan of edges/nodes.

Simulated spreading on temporal networks

To study the effects of temporal structure on the spreading

capacity of a network, we perform simulations of determin-

istic susceptible-infected (SI) dynamics. For each network,

we run 500 simulations with random initial infections and

extract mean prevalence curves from the data. We use the

time to reach 20% prevalence to characterize the speed-

up and slow-down of spreading in each original network

relative to the corresponding null models.

We study synthetic networks (using the method in [1]

albeit without rescaling in order to control IET statistics)

with varying heterogeneity in edge lifespans to highlight

the difference between the PT and PTE null models. We

use empirical networks, e.g., the sexual contact network

in [3], to investigate the difference between PT and PTN

null models when nodes enter and leave dynamically.

Results and discussion

Our analysis shows that application of the PT network

transformation may lead to the incorrect conclusion that

networks such as the sexual contact network show a large

speed-up in spreading, whereas this does not follow when

preserving node lifespans as ensured by the PTN trans-

formation. Similarly, we find that differences in predicted

spreading on synthetic networks based on PTE and PT

null models, respectively, become significant with increased

heterogeneity in edge lifespans. Finally, comparison of

spreading dynamics on empirical and synthetic networks

and the corresponding PTE null models suggest that

bursty edge IETs, in fact, slow down spreading.
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Summary

We develop a branching process approximation of the cas-

cade size evolution for a large class of models on infinitely

large (configuration model type) random networks [1].

Our approach allows us to identify a basic trade-off be-

tween cascade exposure and damage diversification that

determines whether cascades kick-off.

Branching process approximations of the cascade size

Cascade processes are a widely observed phenomenon

in an interdependent world. Already the failure of a

few components of a system can trigger the failure of

dependent components and set off a cascade of successive

failures that endanger the functioning of the system as a

whole. Examples include financial institutions that face

insolvency, fiber bundles that break under stress, or traffic

nodes that distribute overload in case of congestion.

Many theoretical investigations of such phenomena are

concerned with the question how the network topology

and robustness of nodes contribute to the risk of large

cascades. As proxy, usually the average final fraction

of failed nodes ρ in random graph ensembles with given

degree distribution is analyzed. For some models, ρ can

be iteratively calculated in the (thermodynamic) limit of

infinitely large network size with the help of a branching

process approximation, also known as local tree or hetero-

geneous mean field approximation. In comparison with

Monte Carlo simulations, these calculations usually save

considerable computational time and efforts, while they

further deepen the theoretical understanding of the key

factors driving a cascade.

Commonly, they involve compositions of generating

functions corresponding to discrete probability distribu-

tions, for instance, the degree distribution of a network.

However, this approach breaks down when potentially

continuous and heterogeneous distributions determine the

dynamics of a process. To overcome this obstacle, we

present an alternative view on branching process approx-

imations and shift the perspective towards the iterative

update of suitable probability distributions. Within this

framework, we are able to correctly compute the whole

time evolution of the average cascade size for a large

class of cascade processes. This allows to consider the

recovery of nodes and interventions at specific times also

analytically. Further, our approach captures certain fiber

bundle and overload redistribution models that could not

be tackled before. The key novelty is the introduction

of a random variable L that describes the impact that a

node can possibly have on its network neighbors, when it

has failed at some point before a considered point in time.

This variable carries all necessary information about the

former time steps and respects the Markovian nature of

the studied cascade processes.

This way, we can compare several cascade processes

involving a form of load distribution mechanism in case of

a node’s failure. We encounter a basic trade-off between

two effects that are fostered by the presence of hubs and

and overall high system connectivity: damage diversifica-

tion and cascade exposure. The failure time of hubs is

essential in deciding which effect outweighs the other. To

see this, let’s assume that a failing node splits a certain

amount of load between its (functional) network neighbors

and this load causes a damage that increases with the

amount of distributed load. On the one side, a failing node

inflicts a lower damage to each of its neighbors if it has

a higher degree, i.e. the load is shared between a higher

number of neighbors. On the other side, it inflicts damage

also to a higher number of nodes in the network. Thus,

its failure has also the potential to trigger considerable

further failures. Furthermore, a high degree node itself

is exposed to a high number of potential load distribut-

ing neighbors. So, it might face an increased failure risk.

However, the early failure of hubs can also prevent the

cascade amplification by disconnecting parts of the system

and thus blocking possible cascade paths. Additionally,

it can hinder the accumulation of high loads that would

eventually be distributed at a later point in time.
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Summary

Humans show significant variability in cognitive task per-

formance, and the origin of this variability is not well

understood. Using a data-driven computational model of

human brain dynamics, we demonstrate that the underly-

ing structural organization of individual brain networks

accounts for a significant portion of variability in three

language tasks.

Description

Diffusion spectrum imaging (DSI) provides information

about the structural (anatomical) connectivity between

brain regions. This data serves as a fundamental basis

for efforts aimed at enhancing our understanding of the

organization of the human brain as a complex and effi-

cient network. How important is this basic anatomical

skeleton of the brain in explaining and predicting indi-

vidual differences in cognition? To address this question,

we use a computational model that combines data-driven

structural connectivity with nonlinear Wilson-Cowan os-

cillators [1, 2] to study the spatiotemporal dynamics of

a human brain. We study simulated functional activity

both within the global brain network and throughout task

specific sub-networks across a cohort of individuals. We

then construct functional measures to explain individual

performance across three different language tasks. We find

that task performance correlates with the activation of

either local or global circuitry depending on the complex-

ity of the task. Motivated by experimental data, we also

stimulate the left inferior frontal gyrus of the model. We

quantify the spread of the stimulation and then use the

patterns of activation to explain the effect of stimulation

on task performance. By emphasizing differences in un-

derlying structural connectivity, our model is a powerful

tool to differentiate and predict individual performance

on tasks that vary in complexity.

Computational model

The anatomical structure of an individual’s brain is repre-

sented as a network whose connectivity is obtained from

the density of streamlines connecting different brain re-

gions (network nodes) as determined from DSI data. The

dynamics of each brain region is modeled by a nonlinear

Wilson-Cowan oscillator [2] where the average firing rate

of excitatory (E) and inhibitory (I) populations in the ith

region is given by

τ
dEi
dt

= −Ei(t) + (SEm
− Ei(t))SE

(
c1Ei(t) − c2Ii(t)

+ c5
∑
j

AijEj(t− τ jd ) + Pi(t)
)

+ σwi(t), (1)

τ
dIi
dt

= −Ii(t) + (SIm − Ii(t))SI

(
c3Ei(t) − c4Ii(t)

+ c6
∑
j

AijIj(t− τ jd ) +Qi(t)
)

+ σvi(t), (2)

where

SE,I(x) =
1

1 + e(−aE,I(x−θE,I)
− 1

1 + eaE,IθE,I
, (3)

c5 and c6 are excitatory and inhibitory coupling parame-

ters, respectively, which we optimize for a given individual,

τd represents the distance-based time delay between re-

gions, τ = 8 ms is a time constant, and wi and vi are

additive noise. The elements of the coupling matrix A

describe the connectivity between regions i and j derived

from images of an individual’s brain, and Pi(t) and Qi(t)

represent the external inputs to excitatory and inhibitory

states, respectively. Other constants in the model are

biologically derived as described in [1, 2].
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Abstract

Semidefinite programs (SDPs) have recently been devel-

oped for the problem of community detection, which may

be viewed as a special case of the stochastic blockmodel.

Here, we develop a semidefinite program that can be

tailored to other instances of the blockmodel, such as non-

assortative networks and overlapping communities, and

can also approximate latent space models.

For this SDP, we give theorems establishing label recov-

ery in sparse settings, with conditions that are analogous

to recent well-known results for community detection. In

misspecified settings where the data is not generated by

a blockmodel, we give an oracle inequality that bounds

excess risk relative to the best blockmodel approximation.

When the assumed blockmodel exhibits symmetry or

label-switching ambiguity, the computation time can be

significantly reduced by “parameterizing out” the non-

identifiable subspace, using a concept known in combi-

natorics as an association scheme. Simulations and com-

parison to existing methods are presented for community

detection, for overlapping communities, and for latent

space models.

A preprint can be found on Arxiv [1].

Idea of the Semidefinite Program

The main idea is the following. In a K-class stochas-

tic blockmodel, we can encode the latent classes by an

indicator matrix Z ∈ {0, 1}n×K , given by

Zik =

1 if node i ∈ kth class

0 otherwise,
,

so that the matrix ZZT ∈ {0, 1}n×n satisfies

[ZZT ]ij =

1 if nodes i and j are in the same class

0 otherwise.

This matrix encodes whether two nodes are in the same

class (but not which class they are in).

Previous semidefinite programs worked with a relaxation

of the matrix ZZT . In this work, we consider a different

approach, in which we relax the matrix vec(Z) vec(Z)T

instead. Unlike ZZT , this matrix is able to fully encode

the latent class assignments. As a result, we will show

that our approach can be used for any blockmodel.

Theorems for Estimation

We will show that for blockmodels where the average de-

gree is bounded above some constant, the semidefinite

program recovers the labels, with missclassification rate

bounded by O
(
1/
√

avg. degree
)
. This implies “weak con-

vergence” for bounded degree graphs, and a vanishing

missclassification rate as the degree →∞.

If the data is not generated by a blockmodel, but in-

stead Aij ∼ Bernoulli(Pij) for some arbitrary matrix

P ∈ [0, 1]n×n, we will show that the SDP can be used

to “denoise” the adjacency matrix and estimate P , with

estimation error converging to the best blockmodel ap-

proximation to P . Among other things, this suggests that

the SDP can be used to approximate latent space models

by “discretizing” the underlying latent space.

Optimization

The matrix vec(Z) vec(Z)T is much larger than ZZT , hav-

ing nK rows and columns. At first glance, this suggests

that the SDP will be very slow to solve compared to previ-

ous versions. However, the semidefinite program will often

be highly structured. In particular, whenever the stochas-

tic blockmodel exhibits any type of “label-switching” am-

biguity, we will show the non-identifiable subspace can be

removed, resulting in a lower dimensional optimization

problem. As a result, for many blockmodel types the

new SDP will be roughly the same order complexity as

previous SDP approaches. In simulation, solving the SDP

was practically “fast” for networks with 1000-1500 nodes.
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Abstract

In an explosion of research over the last decade, numerous

authors have adapted many single-layer analytic tech-

niques to the context of multi-layer networks. Detecting

and illuminating meso-scale structure within networks —

whether identified as communities, partitions, or other-

wise — using clustering techniques is a central technique

in network analysis as it provides a path to recognize the

most salient features of network structure and associated

dynamics. In the context of multiplex networks — ones

with a single node set but multiple, functionally distinct

layers of edges — clustering techniques have proved diffi-

cult to extend generally. Work in several directions has

been successful in extending ideas in community detection

to multi-layer networks but has also revealed a basic stum-

bling block: many single-layer clustering techniques rely

on the analysis and manipulation of structural models of

the network and there are a number of possible choices

for structural representations of multi-layer networks.

The goal of our work is to explore the impact of different

structural representations of multiplex networks in the

context of a popular clustering methods, spectral clus-

tering. We focus on two structural models, the diagonal

supra-adjacency representation [3] and a model motivated

by a multiplex dynamical model [2]. The two models take

different approaches to linking the layers into a coherent

whole. The first models layer interactions by explicitly in-

cluding structural ties between copies of the same node in

the different layers. The second models these interactions

by allowing copies of distinct nodes on different layers to

directly interact with one another.

To test these different structural representations, we

create several families of synthetic networks on which we

use our detection algorithm. First, we create multiplex

networks with Erdős-Rényi layers to test cases where we

expect no community structure and hence node copies

should group together. Second, we create identical planted

communities on the layers using a stochastic block model

to test a case where any reasonable method should de-

tect the communities. Third, we create different planted

communities on the layers to test cases where the over-

all community structure might be ambiguous, reflecting

modeling choices. The last two families are similar to

the generative models of meso-scale structure recently put

forward in [1].

We find that our two structural models perform differ-

ently under these tests. For the diagonal supra-adjacency

model, the weight of the inter-layer connections plays a

significant role in its effectiveness, which follows from work

in Ref. [4]. In spectral clustering, small weight values

lead to the layers migrating to different clusters while the

method generally leads to the expected results for larger

weights. Results for the third experiment are consistent

with spectral estimates which show that for large weights

the spectrum is linked to the spectrum of the aggregation

of the layer networks [5]. The second model, in contrast,

performs well on our tests across all parameters. For

the last case, the clusterings depend on modeling choices

more closely, finding the planted communities on one of

the layers based on the preferences encoded in the model

parameters.

Our results point to significant consequences of using

different structural models, indicating that unlike the

single-layer case where a single structural model is appro-

priate for the majority of applications, multiplex models

require more careful consideration.
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Summary

Graph matching is the problem of finding a latent cor-

respondence between the nodes in two graphs with the

same node set. In many realistic applications, only a core

subset of the nodes are matchable in each graph, with the

remaining nodes being junk, only participating in one of

the two graphs. Under a statistical model for this situa-

tion, we show that correctly matching the core nodes is

still possible, provided the number of junk nodes does not

grow too rapidly [3].

Abstract

When studying more than one network, it is often fruitful

to exploit any underlying correspondence between the

nodes in the network, increasing the suite of available

tools for analysis. When this correspondence is latent, one

can attempt to estimate the correspondence by solving the

graph matching problem [1]: For two adjacency matrices

A,B ∈ {0, 1}n×n, the graph matching problem is to find

argminP∈P ‖A− PBPT ‖2F ,

where P is the set of permutation matrices. Assuming the

true latent correspondence is the identity mapping, we can

statistically model the two graphs by introducing positive

correlations between Aij and Bij . In this situation it has

been shown that provided the correlation and sparsity do

not decay too rapidly, the latent correspondence can be

correctly estimated for large graphs [2], computational

challenges not withstanding.

As presented above, we assume that all nodes in A

have a match in B, and vice versa, but realistically we

expect that only some nodes will have a match—the core

nodes C ⊂ [n]—and some nodes will only participate in

one network—the junk nodes J = [n] \ C. We model

this situation by imposing that corr(Aij , Bij) = 0 unless

both i, j ∈ C. Consider that for all i, j ∈ [n], with i < j,

Ai,j , Bij ∼ Bern(Λij) independently across i, j and with

corr(Aij , Bij) = Rij .

In the challenging yet simple case where all Λij = λ

and Rij = ρI{i, j ∈ C}, we are able to show that if the

number of junk nodes nJ = |J | is sublinear in the number

of core nodes nC = |C|, the minimizing permutation P

will correctly match core nodes, with Pii = 1 for all i ∈ C.
We can also allow for more complex situations, where both

the edge probabilities Λij and the edge-wise correlations

Rij are allowed to vary, but the resulting bounds decay to

|J | ≤
√
|C|. In the situation where Aij and Bij are not

assumed to be identically distributed, our proof technique

and methods are less powerful. This is due the possibility

that with enough junk nodes, some junk nodes in the first

graph can behave more like core nodes than junk node in

the second network.

In our presentation, we will demonstrate these results

in simulation and we will also investigate matching graphs

derived from Twitter in two separate months. We synthet-

ically create the core-junk situation for the Twitter data

by keeping a subset of the nodes in both graphs and the

remaining nodes are each kept in only one graph. While

solving the graph matching problem exactly is computa-

tionally intractable, we use a state-of-the-art approximate

algorithm which exploits a relaxation of the constraints to

make the problem continuous [4]. We also use seeds, a set

of nodes where the correspondence is known, to improve

the accuracy and computation time for our simulations.

After matching, we also investigate ways of clustering

nodes into core and junk sets and ranking which nodes

are mostly likely to be core nodes. Extensions beyond

the case that A and B are the same size are also being

explored by appropriately padding the smaller matrix.
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Summary

Mechanical percolation is a phenomenon in materials pro-
cessing wherein ‘filler’ rod-like particles are incorporated
into polymeric materials to enhance the composite’s me-
chanical properties. Experiments have well characterized
a nonlinear phase transition from floppy to rigid behav-
ior at a threshold filler concentration, but the underlying
mechanism is not well understood. We develop and utilize
an iterative graph compression algorithm to demonstrate
that this experimental phenomenon coincides with the
formation of a spatially extending set of mutually rigid
rods (‘rigidity percolation’).

Background

Nanoscopic to microscopic particles of high aspect ratio
are routinely incorporated into polymeric host materials to
enhance attributes such as electrical or thermal conductiv-
ity, charge storage, and mechanical properties [1, 2, 3, 4, 5].
Experimentally, such composite materials typically exhibit
a nonlinear response with respect to the density of rods or
filaments: the property gain scales linearly with rod den-
sity at low densities, then soars as rod density approaches
and exceeds a critical threshold. For conductivity, this
sharp transition with conducting rods in a poorly con-
ducting polymer is understood as a contact percolation
phase transition within the rod network. A sharp rise in
mechanical stability, however, occurs at volume fractions
well beyond the contact percolation threshold. This me-
chanical percolation phenomenon has been experimentally
characterized in many rod composites, but the under-
lying physical mechanism remains a subject of interest,
motivating different approaches including mean-field mi-
cromechanics models [1], effective medium theory [2], and
for nanoscale rods, incorporation of the interfacial domain
between the rods and host polymer [6]. Here, we explore
the underlying network structures within the rod phase
that generalize contact percolation to rigidity percolation,
one potential source of mechanical percolation.

Methodology

We model the rod phase in composites as a spatial disper-
sion of thin rectangles (in two dimensions) or cylinders
(in three dimensions). For tractability, we model each rod
contact point as a hinge, assuming for simplicity that fric-
tion and other attractive forces keep the rods in contact,
while allowing them to rotate freely about their point of
contact. It is our hypothesis that mechanical percolation
in nanorod composites may be successfully modeled and
analyzed through the formation of a spatially-extended
set of connected rods that are mutually rigid, which we
refer to as a spanning rigid cluster.

Rigid Graph Compression (RGC)

Our rigidity analysis is based on the identification of cer-
tain topological motifs—i.e. three rods intersecting pair-

Figure 1: RGC is used to identify a 9-rod rigid cluster in a 2D rod

dispersion. First, this dispersion is transformed into a graph wherein
rods are represented as nodes, which share an edge if they intersect
(or nearly intersect in 3D). Then, three primitive ‘rigidity motifs’—

provably rigid subgraphs (see inset)—are used to iteratively identify
and compress rigid bodies, which may be rods or already identified
mutually rigid sets of rods. The 3-clique community (inset) is a

non-primitive motif of computational value, which can constructed
using the 2- and 3-body motifs.

wise form a single rigid body—which we prove analytically
using rigidity matroid theory [7]. These rigidity motifs
apply hierarchically, and so we integrate them into an
iterative algorithm—Rigid Graph Compression (RGC)—
which we use to decompose large ensembles into mutually
rigid sets of rods (see Figure 1).

We first verify our method in 2D, finding that three
rigidity motifs are sufficient to estimate the rigidity perco-
lation threshold and correlation length parameter associ-
ated with the formation of a spanning rigid cluster. Then,
we apply RGC to 3D rod networks and demonstrate the
formation of a spanning rigid cluster using four motifs. As
no other rigidity detection analysis has been applied to
3D rod networks, we will (in the future) verify the efficacy
of this approach by comparing to dynamical simulations
of the composite system.
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Summary

We propose an attention shift network framework to sys-

tematically analyze the dynamics of collective attention in

response to real-world exogenous shocks such as disasters.

Through tracing hashtags that appeared in Twitter users’

complete timeline around several violent terrorist attacks

in 2015 and 2016, we study the properties of network struc-

tures and reveal the temporal dynamics of the collective

attention across multiple disasters. Further, to achieve a

more efficient monitoring of the collective attention dy-

namics, we propose an effective stochastic graph sampling

approach that accounts for the users’ hashtag adoption

diversity and data variability.

Extended Abstract

In recent years, there has been growing interest in the use

of social media in crisis response, with scope ranging across

natural disasters, terrorist attacks, and political riots.

During these events, the flow and flood of information

can easily lead to a poverty of attention and thus creates

a need to allocate such attention efficiently for affected

communities. Consequently, a systematic understanding

of attention dynamics at the collective level within disaster

context serves as the basis for scheduling effective crisis

communications, facilitating timely crisis response such

as just-in-time warning and evacuation.

In this work, we seek to quantitatively capture the col-

lective attention shift under exogenous shocks, specifically

disaster events, by using Twitter users’ communication

streams. Fig. 1 illustrates the collective attention before

and after the 2015 Paris attacks event based on how Paris

users shift their attention to various topics – captured

by the use of different hashtags. Before the event, users’

attended topics exhibited a salient community structure,

reflecting their scattered attention among various topics.

After the event happened, a few hashtags became the

hubs that suddenly appeared in many users’ tweets. Such

sudden change in users’ attended topics at the collective

level is referred to as “collective attention shift.”

We introduce a new framework for capturing collective

(a) Pre-event (11/12/2015) (b) Post-event (11/13/2015)

Figure 1: Collective attention before and after the 2015

Paris attacks event captured by attention shift networks.

attention shift. We illustrate our framework by using a

large corpus of twitter communications centered around

multiple shocking terrorist attacks in 2015 and 2016. We

employ hashtags as a proxy for users’ attended topics, and

utilize the hashtag adoption sequence from a user’s tweet

timeline as the trace of his/her attention shift process. We

construct an attention shift network or attention graph to

represent the attention shift process at the collective level.

Based on this network representation, we quantify the

structural change of collective attention shift and fur-

ther examine data sampling schemes that can capture the

structural change in a cost-effective manner. Our study

of the collective attention during multiple shocking ter-

rorist attack events in 2015 and 2016 and reveals several

properties of network structures and temporal dynamics

that are consistent across events.

We formulate a new problem for efficient monitoring

of the collective attention dynamics, and we propose a

cost-efficient sampling strategy that takes the users’ hash-

tag adoption frequency, connectedness and diversity into

account, with a stochastic sampling algorithm to cope

with the variability of the sampling targets. We show

that our proposed sampling approach outperforms several

alternative methods in both retaining the network struc-

tures and preserving the information with a small set of

sampling targets, suggesting the utility of our method in

various realistic settings.

1
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UNIVERSITY OF CHICAGO
Higher-order interactions stabilize dynamics in competitive networks

Networks have a long history in ecology, and have been used to represent consumer-resource 
(food webs), mutualistic (pollination, seed-dispersal),and competitive interactions. In these 
ecological networks, species are nodes and edges represent interactions between pairs of 
species. Early on, ecologists realized that pairwise interactions might not be sufficient to 
describe the intricacies of ecological systems, but so far empirical evidence for higher-order 
interactions has been scant. Moreover, we lack an understanding of how these higher-order 
interactions would affect population dynamics. I present a simple model of competition in 
which higher-order interactions dramatically change dynamics: when species interact in pairs, 
instability prevents the persistence of large communities; when species can interact in triplets, 
quadruplets, etc., Dynamics are stable and we can build persisting communities containing an 
arbitrary number of species.
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Summary

In Fall of 2016, the DREAM Disease Module Identification

challenge [5] invited participants to apply community de-

tection or graph clustering methods to predict functional

modules in heterogeneous anonymized genomic networks

based solely on network structure. Predictions were scored

based on the enrichment of modules for genes that had

been implicated in human disease based on GWAS studies.

We produced the winning entry [3] from a field of 42 teams

by combining our novel DSD metric for “detangling” the

network [1, 2] with standard off the shelf methods for

spectral clustering. We discuss the dataset (which itself

may be of broad interest to this community), how the

challenge was set up, what it was like to participate, and

what challenges and questions still remain for uncovering

disease-related communities in biological networks.

Introduction

A great deal of high-throughput information about human

genes can be represented in the form of gene-gene or

protein-protein association networks. It is well known

that such networks have a high degree of modularity, and

that the corresponding modules often comprise genes or

proteins that are involved in the same biological function.

The DREAM challenge was designed as a community effort

to extensively benchmark different methods and parameter

settings to best reveal biologically relevant modules across

diverse types of genomic networks. The contest dataset

comprised six different anonymized networks derived from

human genomic data, summarized in Table 1.

Results were evaluated based on the number of discov-

ered modules that were statistically significantly associated

with complex traits and diseases. To this end, the chal-

lenge organizers collected over 200 GWAS datasets that

were associated with a broad range of complex traits and

diseases, half provided for parameter tuning in training

rounds; the rest for evaluation of the submissions.

Network → # Nodes # Edges Edge weight

PPI-1 N 17,397 2,232,405 Confidence

PPI-2 N 12,420 397,309 Confidence

Signaling Y 5,254 21,826 Confidence

Expression N 14,679 1,000,000 Correlation

Cancer N 14,678 1,000,000 Correlation

Homology N 10,405 4,223,606 Confidence

Results

Our team’s approach to the challenge was based on our

DSD spectral graph metric of Cao et al. [1, 2]. We pre-

processed all networks using DSD to “detangle” the net-

works, and then applied off the shelf clustering and commu-

nity detection methods to the detangled networks. [4, 6].

This approach won on the subchallenge that considered

each of the six network separately; and performed in the

top cohort on the subchallenge that integrated information

across the six heterogeneous networks. We discuss our

winning strategy, the interesting data sets, and what seem

to be both the strengths and the limitations of current

methods for these biological datasets.

.
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We present a graph-based methodology to reduce the compu-
tational cost of obtaining first passage times through sparse
fracture networks. We derive graph representations of generic
three-dimensional discrete fracture networks (DFN) using the
DFN topology and flow boundary conditions. Subgraphs corre-
sponding to the k shortest loopless paths between the inflow to
outflow boundaries are identified and transport on their equiv-
alent subnetworks is compared to transport through the full
network. The number of paths included the subgraphs is based
on the scaling behavior of the number of edges in the graph
with the number of shortest paths. First passage times through
the subnetworks are in good agreement with those obtained in
the full network, both for individual realizations and in distri-
bution. Accurate estimates of first passage times are obtained
with an order of magnitude reduction of CPU time and mesh
size using the proposed method.

We generated 100 three-dimensional generic discrete frac-
ture networks. The fracture networks are fairly sparse but dense
enough that there are multiple paths between the inflow and
outflow boundaries. Steady state conditions are numerically
determined to obtain the fluid velocity field within each net-
work. A graph representation G of each DFN F is constructed
using the network topology. We also include source and target
vertices into G to incorporate flow direction. The mapping is
bijective, so every subgraph G′ ⊆ G has a unique pre-image F ′

in the fracture network,

Subgraphs G′, along with their equivalent subnetworks F ′,
corresponding to the union of the edges in k-shortest loopless
paths from the source to target are identified in each graph. All
edges in G have unit weight, so these paths correspond to the
fewest number of edges between the source and the target. The
pre-image of this subgraph, its equivalent fracture subnetwork
F ′, is the fewest number of intersections, and thus connected
fractures, spanning the inflow and outflow boundaries. We also
consider the 2-core of the graph, which is an upper bound on the
union of loopless paths from source to target. Figure 1 shows
three subnetworks (top) and their subgraphs (middle). Semi-
transparent vertices indicate fractures that have been eliminated
from the fracture network.

Accuracy of the method is determined by comparing the first
passage times of a solute transported through the full network
τ̂ and the subnetworks corresponding to the k shortest paths
τ̂ ′. While the shortest path requires the smallest CPU times,
it provides the worst estimates of first passage times. Using
the ten shortest paths requires slightly more CPU time, but the
predictions of first passage times are significantly improved.
The primary paths through the network, discussed above, are
included in the first ten shortest paths for all networks. The 2-
core of the graph, provided the best predictions of first passage
times. However, the CPU time required for computation on the
2-core subnetwork was 75% of that needed for the full network,
underscoring the trade-off between accuracy and efficiency.

(a) Shortest Path (b) Ten Shortest Paths (c) Network 2-Core
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Figure 1: Subnetworks (top) and subgraphs (middle) derived
from the full DFN. (a) The shortest path through the network,
(b) the union of the ten shortest paths in the network and, (c)
the 2-core. Semi-transparent vertices denote fractures that have
been eliminated from the fracture network. The first passage-
times (bottom) get more accurate as more edges are included.
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Summary

Recent developments in network science have enabled re-

searchers to investigate the topological structure of Supply

Chain Networks (SCNs) [1]. A typical SCN model consists

of nodes which represent individual firms and links which

represent various interactions between firms. In this study,

we present a topological model of bounded rationality for

SCNs.

Methodology

In order to generate an ensemble of network topologies

representative of SCNs, we use the Log Normal Fitness

Attachment (LNFA) mechanism [2]. The tunable σ pa-

rameter of the lognormal distribution offers considerable

flexibility to this model, as it can be varied to generate

a wide spectrum of network topologies. Using the LNFA

protocol, by varying σ, we generated 2, 000 networks (each

with 1, 000 nodes), with scale-free exponents ranging be-

tween 1.5 and 4.5.

Inspired by the work of [4], here we argue that there

could be a direct relationship between the amount of social

interaction of a particular player and their level of bounded

rationality. Accordingly, we modelled the rationality of

each firm, as a monotonically increasing linear function

of their degree, with a network wide parameter to control

the responsiveness of rationality to degree.

Nash Equilibrium (NE) assumes that players behave

perfectly rationally. However, in reality, players are only

boundedly rational due to limitations in information avail-

ability, computational time and cognitive capacity. Quan-

tal Response Equilibrium (QRE) offers a direct way to

model games with noisy strategies, by using logit proba-

bilistic choice functions. For instance, the logit formation

used by [3] is parametrised in a way that is directly anal-

ogous to the bounded rationality interpretation. As the

rationality parameter is varied from zero to infinity, the

choice behaviour of the agents moves from random to

fully rational. In establishing the logit QRE for each

interaction, we used the Prisoner’s Dilemma game.

The Jensen-Shannon divergence (JSD) is generally used

to measure the divergence between two probability distri-

butions. Accordingly, we use the JSD between the QRE

and NE of each interaction (i.e. link) in the SCN, as an

indicator of the rationality of that interaction. Then we

averaged the JSD values over all interactions in the SCN

to gauge the overall system rationality. This is based on

the game theoretic assumption that proximity to NE is

an indicator to a certain player’s rationality [4].

Results and Discussion

The scatter plot for the average JSD against the scale-free

exponent values, of the networks considered, indicates

that when the scale-free exponent is below 2.5, the cumu-

lative interactions within each SCN rapidly approach the

NE. Since γ = 2 is the boundary between hub and spoke

(γ<2) and scale-free (γ>2) network topologies [5], it sug-

gests that when the individual node rationality correlates

with its topological degree, it may give rise to a hub and

spoke network topology in a competitive strategic decision

making environment.
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Summary

Ant colonies exhibit a remarkable social dynamic in which

each ant specializes in one particular function. The roles

that have been observed are often analogous to human

activities, there are nurses, workers, foragers, guards and

so on. To perform these tasks effectively there must be

sufficient communication between ants of different types;

the foragers need to react when other ants are in need

of food, the guards need to be called to arms when a

threat appears, and each ant needs must be aware of what

the others are doing in order to decide what she herself

should do. By observing interactions and mapping their

communication networks we can begin to understand how

ants self-organize to achieve balance and efficiency.

Abstract

One way to find out how ant society is structured is to

manipulate its environment and observe how the colony

adapts. In a laboratory experiment we introduced a colony

into an artificial nest box that was barely large enough

to contain them, then, after observations had been made,

the box was extended to four times its original size. We

tracked the locations of all 80 ants and recorded each

trophallaxis (food-sharing) interaction over a 4-hour pe-

riod. At first it seemed like the ants changed their be-

haviors in response to the changes in nest space; they

adapted to the larger nest box by segregating into two

distinct spatial regions, prompting the question: how does

their spatial organization affect communication and food

distribution throughout the colony?

To answer this we constructed two types of network. In

the first, ants are nodes and the weight of each edge rep-

resents how similar they are in regards to their movement

patterns. The second is a temporal network constructed

from the trophallaxis interactions. We analysed commu-

nity structure, path lengths, path durations and com-

municability. We also developed a mathematical model

that considers the heterogeneity in contact rates between

different pairs of nodes and fit the model to the trophal-

laxis data and to several other animal and human contact

Figure 1: Inside the ant nest. The image in the top left

corresponds to the upper nest chamber in the large nest.

Images are not drawn to scale. The colors represent which

group it was assigned by the process described. The red

lines represent a trophallaxis interaction.

networks.

We conclude that ants exhibit a remarkable consistency

in their social structure even when tested by extreme

changes to their environment, in particular:

� The spatial and social structure of the ant colony is

robust against changes to their nest size.

� Spatial structure and social structure, as observed in

the trophallaxis network, are co-dependent.

� The rate at which food and information spreads

through the network of trophallaxis interactions is

not affected by the size and density of the nest.

� Ant populations are more homogeneously mixed than

human and other animal populations. This aspect of

their behavior is not affected by the nest size.
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Summary

We argue that nonbacktracking walks are relevant and

useful for centrality computations. By exploiting an an-

alytic expression for the appropriate generating function,

we show that Katz centrality can be made nonbacktrack-

ing on directed graphs at no extra cost. The range of val-

ues available for the downweighting parameter is found to

be determined by the spectrum of a three-by-three block

matrix involving the original adjacency matrix. Theoret-

ical and numerical examples will be used to the illustrate

the benefits of not tracking back.

Background and Problem Setting

Let G = (V,E) be a loopless, unweighted digraph with n

nodes and no multiple edges. Let A ∈ R
n×n be its adja-

cency matrix, D ∈ R
n×n be the diagonal matrix whose

diagonal entries areDii = (A2)ii, S ∈ R
n×n be the matrix

whose entries are defined as Sij = AijAji, and I be the

identity matrix. A walk, i.e., traversal through a sequence

of (possibly repeated) nodes, is said to be backtracking if

it contains at least one node subsequence of the form i ℓ i,

and nonbacktracking (NBTW) otherwise. NBTWs have

typically been studied on undirected networks [1, 3, 4],

but the definition continues to make sense in the directed

case [5]. It is intuitively reasonable to consider a version

of Katz [2] based on NBTWs. Let us denote by pr(A) the

matrix whose (i, j)th entry counts the number of NBTWs

of length r from node i to node j.

We define and study the NBTW centrality measure b =

(
∑

∞

r=0
trpr(A))1, where 1 ∈ R

n is the vector of all ones

and t > 0. Here bi > 0 gives the centrality of node i.

NBTW-based Centrality

Theorem 1 ([5]) Let φ(A, t) :=
∑

∞

r=0
trpr(A) and let

M(t) = I −At+ (D− I)t2 + (A−S)t3. Then, within the

radius of convergence, M(t)φ(A, t) = (1− t2)I.

Theorem 1 shows that the NBTW centrality measure b

satisfies M(t)b = (1−t2)1. SinceM(t) has the same spar-

sity as I − tA, we see that NBTW centrality for digraphs

may be computed at least as cheaply as Katz [2].

Radius of Convergence

Theorem 2 The power series
∑

∞

r=0
trpr(A) converges if

0 < t < 1/ρ(C), where ρ(C) is the spectral radius of

C :=







A (I −D) (S −A)

I 0 0

0 I 0






∈ R

3n×3n.

Theorem 2 determines a suitable range for the parameter

t. The restriction is less severe than the Katz version,

0 < t < 1/ρ(A), and the difference can be dramatic.

We will also show that removing certain types of nodes

from the network does not affect the spectral radius of

C; thus, the cost of computing ρ(C) can be significantly

reduced. Moreover, the same pruning operations can be

used to speed up the linear system solve.

By considering the limit t → 1/ρ(C) from below, we

also obtain a generalization to the directed case of the

nonbacktracking eigenvector centrality measure from [3].

We will give theoretical examples to show that the new

NBTW centrality measure (a) can avoid unwanted local-

izaton effects present in Katz, and (b) performs in an

intuitively more reasonable manner than its eigenvector

counterpart on star-like graphs. Comparisons will also be

given for real networks.
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Summary

Applications in computer network security, social media

analysis, and other areas rely on analyzing a changing

environment. The data is rich in relationships and lends

itself to graph analysis. Traditional static graph analysis

cannot keep pace with network security applications ana-

lyzing nearly one million events per second[3] and social

networks like Facebook collecting 500 thousand comments

per second[5]. Streaming frameworks like STINGER[2]

support ingesting up three million of edge changes per

second but there are few streaming analysis kernels that

keep up with these rates. Here we present a new algorithm

model for applying complex metrics to a changing graph.

In this model, many more algorithms can be applied with-

out having to stop the world.

Non-Stop Streaming Data Analysis Model

In our non-stop streaming data analysis model, the in-

put stream keeps making changes to a graph concurrent

with analysis algorithms. The algorithms do not have

access to the changes explicitly and may or may not en-

counter changes during their execution. We consider an

algorithm valid for our model if it produces a correct re-

sult on a graph consisting of the starting graph and some

unspecified subset of concurrent changes. Clearly, not all

algorithms will remain valid in our streaming model, but

a surprisingly useful subset are valid. So far, we have

shown[4] the following algorithms valid under reasonable

assumptions: breadth-first search, triangle counting (mod-

ified algorithm), simplified Shiloach-Vishkin connected

components, and PageRank.

Algorithms that are not valid often make a decision twice

on data that has changed. For example, some algorithms

treat high-degree and low-degree vertices differently. If the

classification of high-degree or low-degree is not saved, the

graph could change to push a vertex from one category to

another, and an algorithm could completely miss a vertex.

Another example is S. Kahan’s connected components

algorithm[1]. That algorithm computes the connected

components of a reduced graph and then returns to label

the original graph. If previously disconnected components

are now connected, the labeling procedure could overwrite

its own results unpredictably.

In [4], we prove that validity is the strongest form

of correctness in our model for algorithms that produce

subgraphs (e.g. tree building, community extraction)

subject to some reasonable assumptions on execution.

Fully general analysis would require keeping snapshots or

versioned data structures. Neither are feasible at these

scales, tens to hundreds of billions of edges, or rates of

change, many millions of updates per second.

Extension to Streaming Kernels

Our model can be extended to support streaming updates

to analysis results. We assume that all changes made

during a kernel’s execution are recorded and set aside.

After execution, a kernel can use those changes to compute

focused updates. If concurrent changes again are saved,

and if the updating algorithm is valid in our model, the

process can repeat to update graph analyses efficiently.

Consider triangle counting. To update the triangle

counts, an algorithm can re-compute the triangle count

starting from only the vertices changed during its previous

execution. This produces a result valid for the “starting

graph” by incorporating the prior changes and the un-

known subset of concurrent changes.

References

[1] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Soft-
ware and algorithms for graph queries on multithreaded archi-
tectures. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–14. IEEE, 2007.

[2] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER:
High performance data structure for streaming graphs. In
The IEEE High Performance Extreme Computing Conference
(HPEC), Waltham, MA, Sept. 2012. Best paper award.

[3] M. Vallentin, V. Paxson, and R. Sommer. Vast: A unified
platform for interactive network forensics. In 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16), pages 345–362, Santa Clara, CA, 2016. USENIX
Association.

[4] C. Yin, J. Riedy, and D. A. Bader. Validity of graph algorithms
on streaming data. 2017. (in submission).

[5] Zephoria. https://zephoria.com/top-15-valuable-facebook-
statistics/ retrieved in January 2017.

1



ADVERSARIAL ANALYSIS OF COMMUNITY DETECTION

W. Philip Kegelmeyer, Jeremy Wendt, Ali Pinar, Kristen Altenburger

SIAM Workshop on Network Science 2017
July 13–14 · Pittsburgh, PA, USA

Summary

Community detection is often used to understand the na-

ture of a network. However, there may exist an adversarial

member of the network who wishes to evade that under-

standing. We analyze such a situation, quantifying the

efficacy of certain attacks against community detection

and providing preliminary results on possible defenses.

A Sample Adversarial Model

Consider a network in which each node has been assigned

a starting “temperature”; “hot”, “cold”, or “unknown”,

with corresponding values of 1, -1, and 0. The temperature

of a community is then the average of its nodes’ tempera-

tures. The adversary’s goal is to avoid being associated

with other hot nodes. The only “attack” permitted, in

the current model, is to make links from itself to other

nodes, as illustrated in Figure 1, where the green-ringed

adversary node has added orange false edges to pull itself

into a cooler community.

Original Tampered

Figure 1: An Example of Temperature Tampering

The adversary’s goal for a given network is to reduce

its community temperature as much as possible with the

fewest added edges. We assume an adversary who has full

knowledge of the network and further knows that Louvain

will be used as the community detection method.

Attack Evaluation

We abstract a specific “attack” as a list of the network’s

nodes in the order that the adversarial node will attach to

Supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multi-mission laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energys National Nuclear Security Administration under
contract DE-AC04-94AL85000.

them. We have invented a handful of heuristics to guide

the creation of these attacks. We assess each attack by

adding N false edges in the indicated order and evaluating

the temperature T of the adversary’s resulting community.

We plot N vs T in “attack efficacy” curves; an example is

in Figure 2.

Figure 2: Example Attack Efficacy Curves

How To Defend?

If one could exactly detect the falsely inserted edges, they

could be removed, thereby returning the adversary to their

“natural” community. We have conducted a preliminary

investigation around building machine learning models

to that end. We extract various features of each edge

(such as the betweenness centrality of the edge’s nodes),

generate training data with the inserted edges labeled,

and use decision tree ensembles to detect them.

As one example result on real data, the original tempera-

ture of the adversary was 0.15. After adding 20 false edges,

the adversary node was able to lower its temperature to

-0.79. Applying an initial machine learning model raised

the adversary’s temperature back up to -0.02, and so was

able to remediate much of the attack. Though to do so, it

removed 65 of the network’s edges, many more than the

20 false edges, and so altered some of the native structure

of the network. Accordingly, current work is addressing

both improving the defense models and evaluating the

consequences of false alarms in the model.
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Summary

The inverse problem of finding networks from data, some-

times called network tomography, has been a long standing

and important issue for incorporating the theory of com-

plex systems toward real world applications. Here we take

an information theoretic perspective that information flow

relates to network structure and dynamics on networks,

but it is crucial to have a way to distinguish direct versus

indirect influences. We develop Causation Entropy (CSE)

to this purpose, and utilize it in a constructive algorithm

that we call oCSE for optimal causation entropy.

Description

Inferring the coupling structure of complex systems from

time series data in general by means of statistical and

information-theoretic techniques is a challenging problem

in applied science. The reliability of statistical inferences

requires the construction of suitable information-theoretic

measures that take into account both direct and indirect

influences, manifest in the form of information flows, be-

tween the components within the system. In this work, we

present an application of the optimal causation entropy

(oCSE) principle [2, 3, 5, 4, 1], to identify the coupling

structure and jointly apply the aggregative discovery and

progressive removal algorithms based on the oCSE princi-

ple to infer the coupling structure of the system from the

measured data. We will include discussion of examples

such as the functional brain network as inferred by fMRI

functional magnetic imaging.

Identifying connections in a complex process manifest

as causal direct information flowsuggests a new way of

detecting and understanding fundamental changes in the

dynamical process of a complex system. The question

of fragility and robustness concerns how the macroscopic

behavior of a system will change in response to local

perturbations.We interpret the phrases robust and frag-

ile as a global descriptor of the system, in terms of the

change of the information carrying capacity of paths be-

tween states of a complex system, due to the loss of a

state, or connection, with a corresponding descriptor in

terms of information betweenness. Stated more broadly

about the interdependencies of complex systems, consider

a large-scale process in which minor changes frequently

occur, and the question is, can we define and, hence detect,

those changes which would render the system effectively

different and likewise significantly alter the system per-

formance, before the system might fail. Thus, here we

suggest a fragility-robustness duality to detect a tipping

point whereby even a minimal detail change can cause a

catastrophic systemic outcome.
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Despite the prevalence of weighted networks in nature,

some community detection methods do not easily ex-

tend to handle edge weights. One reason for this may

be that generative models crucial to community detec-

tion methodology, like the configuration model [2] or the

degree-corrected stochastic block model [3], are for bi-

nary networks. In this work, we introduce an analogue

to the configuration model for weighted networks. Our

“continuous” configuration model generates a community-

less weighted network with given expected degrees and

expected strengths (node edge-weight sums). Explicitly,

let d and s be given vectors of degrees and strengths, and

A,W the (random) adjacency and weight matrices. We

show that under the model, for all nodes i, j,

P(A[i, j] = 1) ∝ d(i)d(j) and E(W [i, j]) ∝ s(i)s(j).

These relationships reflect and extend the 1st-order prop-

erties of the configuration model to edge weights. There-

fore, we propose the continuous configuration model as

a natural null for community detection on heterogeneous

weighted networks, much as the standard configuration

model has been for unweighted networks [5].

With an explicit, generative null model, diverse avenues

for community detection on weighted networks become

available. We present a method called Continuous Con-

figuration Model Extraction (CCME), featuring a core

iterative procedure with hypothesis tests under the contin-

uous configuration model. CCME is in the style of existing

testing-based methods for binary networks based on the

standard configuration model [4, 6]. We prove a central

limit theorem for edge weight sums under the continu-

ous configuration model, which facilitates a closed-form

approximation to p-values inherent to testing algorithm.

Another important facet of our work is the use of a

weighted stochastic block model (WSBM). Though some

stochastic block models with edge weights have been pro-

posed [1], we give a new model that is strength-corrected

as well as degree corrected. We employ our WSBM in a

theoretical analysis of the continuous configuration model

and CCME. We prove that, under standard assumptions,

communities from the WSBM are high-probability “fixed

points” of CCME: the method recovers them as statisti-

cally significant node sets. Importantly, our result allows

for network sparsity near the detectability limit, on par

with recent consistency analyses for binary networks [7].

We also feature the WSBM in an empirical study of

CCME and competing methods. Combining the WSBM

and the continuous configuration model, we provide a

novel method for simulating weighted networks with both

communities and “background” nodes not significantly

connected to any community. We also extend the WSBM

to involve overlapping communities. In simulation settings

involving these diverse flavors of the WSBM, we find that

CCME outperforms competitors that are capable of de-

tecting overlapping and background nodes. We also apply

CCME and competing methods to real-world weighted

networks from various domains, showing that communities

found with CCME suggest intuitive insights about the

natural systems.
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Summary

We describe a method for efficiently computing a hierarchy

of r-dominating graphs that summarizes the neighborhood

structure of a DNA sequence graph at multiple resolu-

tions. This is currently being applied to the problem of

metagenome species binning.

Motivation

Metagenomics is the analysis of microbial communities

through shotgun DNA sequencing, which randomly sam-

ples many subsequences from the genomic DNA of each

microbe present in the community. A common problem

in metagenomics is the reconstruction of individual micro-

bial genomes from the mixture. Typically this is done by

first running an “assembly” algorithm that reconstructs

longer linear regions based on a graph of the sampled

subsequences [2], and then binning the resulting contigs

together using compositional analysis of the assembly.

Our novel approach to species extraction extracts bins

based on the neighborhood structure of the sequence graph.

Because bin extraction involves querying local regions of

the graph many times, we build a hierarchical atlas.

Atlas construction

An atlas level consists of a set of nodes, each representing

a connected subgraph of G called its shadow. The leaves

correspond to vertices in an r-dominating set D of G; that

is, the minimum distance from every vertex to a member

of D is at most r. The shadow of the node for v ∈ D

is the vertices for which v is the closest member of D.

Though computing an optimal r-dominating set is NP-

hard, we use a linear time approximation algorithm from

Dvořák and Reidl [3]. This algorithm uses an efficient

path shortcutting subroutine and its approximation factor

is low because G has small maximum degree.

The subsequent levels of the atlas are built using a

similar process on auxiliary domination graphs, which

connect members of the previous level’s r-dominating set

with overlapping shadows. This coarse-graining is designed

to respect underlying connectivity.

Querying the atlas

Our atlas is optimized for extracting connected subgraphs

of G that contain a set of query vertices and their local

neighborhoods. This search proceeds in a top-down man-

ner, building a frontier beginning at the top level and

refining progressively towards the bottom. To save space,

we store minhash sketches summarizing the shadows with

probabilistic coverage guarantees.

Results

To evaluate the construction and search algorithms, we

built an atlas for a synthetic data set constructed from

known genomes [4], and then used the known genomes

to search for genomic bins. Evaluating on a 15-member

subset of genomes, we were able to identify atlas nodes

containing genome bins with a median sensitivity of 85%

and a median specificity of 90%. We are now focusing on

engineering the atlas building approach to scale to a 60

million node experimental data set.

Future applications

The atlas may have other genomic applications, for both

Genome Wide Association Studies for genetic traits and

the analysis of 3-D physical contact maps of chromosomes.

Our methodology also applies to neighborhood querying

and extraction more generally. The atlas construction is

efficient on graphs of bounded expansion, which include

many real-world networks [1]. We also have implemented

the search subroutines and shadow sketching to allow

adaptation to specific domain use cases.
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Summary

A graph spectrum is the eigenvalues and their multiplic-

ities, and graph energy is the sum of eigenvalues. We

analyze spectra and energy of backbone networks under

different targeted attack scenarios. Our results indicate

that while the relative cumulative frequencies of eigenval-

ues merge to 0, the energy of networks show decreasing

and increasing behavior for node and link attacks.

Graph Spectra and Energy

Different data structures can represent connectivity of a

network. Let G = (V,E) be an unweighted, undirected

graph with n vertices and l edges. A(G) is the symmetric

adjacency matrix with no self-loops. The Laplacian matrix

of G is: L(G) = D(G)−A(G) where D(G) is the diagonal

matrix of node degrees, dii = deg(vi). Given the degree

of a node is di, the normalized Laplacian matrix L(G) is:

L(G)(i, j) =


1, if i = j and di 6= 0

− 1√
didj

, if vi and vj are adjacent

0, otherwise

Eigenvalues are the roots of the characteristic polyno-

mial. The set of eigenvalues {λ1, λ2, . . . , λn} together with

their multiplicities define the spectrum. Graph energy, E ,

is the sum of absolute values of its eigenvalues [3]. Given

an adjacency matrix of a graph, A(G), the graph energy is

EA(G) =
∑n

i=1 |λi(A)| [3]. The graph energy of the Lapla-

cian matrix, L(G), is EL(G) =
∑n

i=1 |λi(L)− 2l/n| [3].

Lastly, given the normalized Laplacian graph, L(G), its

energy is EL(G) =
∑n

i=1 |λi(L)− 1| [1].

Analysis

We use a realistic dataset of five backbone networks (shown

only for the Internet2 fiber-optic network) that are geo-

graphically located in the US [2]. The first step of our

analysis includes removal of nodes and links based on

betweenness centrality. Second, we calculate the spectra

and energy as the nodes and links are removed.
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Figure 1: Spectra of Internet2 backbone network
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(b) Internet2 link removal

Figure 2: Energy of Internet2 backbone network

Spectra of the Internet2 network are shown in Fig. 1.

As nodes and links are removed, eigenvalues merge to a

value of 0 [4]. The graph energy of the Internet2 backbone

network as nodes and links are removed is shown in Fig. 2.

The energy of the graph decreases as nodes are removed.

For the link removal scenarios, while the adjacency and

Laplacian energy levels decrease, the energy for the nor-

malized Laplacian increases. In conclusion, deterministic

eigenvalues are useful in evaluating resilience of graphs.
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Summary

The spectral radius of the adjacency matrix can impact the

dynamics in genetic, epidemiological, and biological neural

networks. Since observations from real world networks are

limited, we want to study the distribution of the spectral

radius on a collection of plausible networks using random

graph models. And while much literature has focused

on the distribution of the spectral radius for undirected

random graph models, very little work has explored the

analogous problem on directed or asymetrically weighted

graphs. Consequently, we address this gap by providing

concentration bounds and asymptotics to the spectral radii

distribution for a generalization of the directed Chung-Lu

random graph model that allows for community structure.

Background

In the directed Chung-Lu random graph model, two nodes

share a directed edge with probability proportional to the

product of the expected out-degree and in-degree of the

two corresponding nodes. And even though the choice of

the Chung-Lu random graph may appear arbitrary, this

model outputs realizations that emulate many features

commonly found in empirically observed networks, such as

degree heterogeneity, and is analytically tractable. Even

so, deriving spectral results for any directed random graph

model poses practical challenges, as the adjacency matrix

is no longer symmetric. We circumvent this difficulty by

employing a path counting argument as for any adjacency

matrix A, the average number of cycles of length r and

the number of paths of length r provide lower and upper

bounds to the rth power of the spectral radius, ρ(A)r, for

any choice of r ∈ N. Deriving concentration bounds on

the number of paths and cycles yields the following result.

Theorem 1. For the Chung-Lu random graph model with

lists of the expected in and out degree for each node,(a,b),

let S be the expected number of edges in the graph. Then

it follows that if a·b
S →∞ or the maximum of the proba-

bilities that two nodes share an edge approaches 0, then

with high probability ρ(A)
a·b
S

→ 1.

Recall that the number of paths of length r provides an

upperbound to ρ(A)r. As part of the proof strategy for

Theorem 1, we show that for a strategic choice of r, with

high probability that the number of paths of length r is

bounded above by C(a·b
S )r, where C

1
r ≈ 1. Note that

C could be rather large. Additionally, as the number of

paths (or cycles) bounds the spectral radius, we also attain

concentration bounds on the spectral radius that apply to

networks of finite size as illustrated in Figure 1.

  

● The spectral radius of an adjacency matrix plays an important role in
the dynamics of many (genetic, neuronal, contact) networks. 

● We initially focus on Chung-Lu random graph model where the
probability two nodes share a directed edge is proportional to the
product of the in-degree and out-degree of the two nodes.

● Prior results regarding the asymptotics of the spectral radii of Chung-
Lu type random networks have primarily focused on undirected graphs
or do not provide details on the speed of convergence.

● We then consider a generalization of the Chung-Lu random graph model
that enables us to model networks with community structure and is
still amenable to analysis.

Motivation

Bounding the Dominating Eigenvalue:

First we need a theoretical result regarding the dominating eigenvalue

of an asymmetric adjacency (non-negative) matrix.

Definition (Chung-Lu Random Graph): Given an expected degree

sequence d=(a,b) in ZNx2, where S = Σ a
i
 = Σ b

i
 and max

i,j
 a

i
b

j 
≤ S,

 
 

we construct an edge from node i to node j (independently) with

probability p
ij
 = a

i
b

j
/S.

 

Consider the upper bound on the spectral radius in Lemma 1,1T Ar 1,

this corresponds to the number of paths of length r in the graph.  

Similarly, the lower bound N-1 Σ
j
 a

jj

(r) is the average number of cycles

of length r.  Hence, to prove the desired eigenvalue concentration

result (Theorem 2) we will show that with high probability for some

choice of r , the rth root of the average number of cycles of length r

and the number of paths of length r are approximately the same.  

Theorem 1: Denote Pr (Cr) as the number of paths (cycles) of

length r.  Then in the Chung-Lu model with expected degree
sequence d = (a,b), 

 

Conjecture: Consider a realization A under the Community

Structure Chung-Lu Model where there are m2 partitions (m

communities).  Then almost surely, the spectral radius of A will

asymptotically converge to the maximum of the spectral radii

of m mxm matrices. 

In the special case where m = 2, the spectral radius of A will

converge to the maximum of the spectral radii of the matrices 
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Combinatorial Interpretation

of Lemma 1

Counting Expected Number of Paths

and Cycles of Length r

 Some Counting Theorems

Figure 2:  Numerical evidence for the conjecture in the case

of m=2 communities where the expected sum of edges in

each partition is identical.   The pink box plots (100 trials

each) shows the empirical distribution of the difference of

the prediction from Conjecture 1 and the computed spectral

radius for different sized networks.

In contrast, the blue box plot shows the difference from the

prediction of Theorem 2 and the dominating eigenvalue of

each realization.

Convergence Theorem
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Generalization of the Chung-Lu Model for

Generating Community Structure

N-1 Σ
j
 a

jj

(r)≤ max
j 
a

jj

(r) ≤ [ρ(A)]r = ρ(Ar) ≤ 1T Ar 1 

Lemma 1: Consider an N x N entry-wise non-negative matrix A.

Denote the spectral radius of A as ρ(A). Then for any positive 

integer r,

where a
jj

(r) is the jth diagonal entry of Ar and 1 is the vector of 

one's.

a·b  r 

S
≤ E(C

r
) ≤ a·b  

r 

S
exp(r2p

max
S2/(a·b)2)

    a·b  r-1 

S
≤ E(P

r
) ≤ a·b  r-1 

S
exp(r2p

max
S2/(a·b)2)S S

S
exp(r2p

max
S2/(a·b)2)

S
r2 p

max
 exp(4r2p

max
S2/(a·b)2)  Var(C

r
) ≤ 

a·b  2r-2 
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Theorem 2: Denote A as a realization of a random Chung-Lu graph

with expected degree sequence d=(a,b) in ZNx2. Define S = Σ a
i
 = 
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i
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Idea of Proof: In Theorem 1, by assumption (δ
2
) we can effectively ignore exp(r2p

max
S2/(a·b)2), 

as it is approaching 1.  We then bound P
r
 ,the number of paths of length r with Markov's 

Inequality, which by Lemma 1 is an upper bound for [ρ(A)] r.  After taking the rth root, we will 

get the desired upper bound on the spectral radius.  

Analogously for the lower bound we construct a lower bound for C
r
, the number of cycles of

length r and invoke Lemma 1 to achieve a lower bound on [ρ(A)] r.  To do this we could appeal 

to Chebyshev's Inequality, but instead use a more distribution specific result from [2].

   

Basic Idea: Choose a  partitioning for your matrix, define expected degree sequences 

for each of the partitioned submatrices and run Chung-Lu on each of these 

submatrices to form your graph.

On the Speed of Convergence:

It follows from the proof of Theorem 2 that it suffices to consider δ
1 
= O(ε

1
) and 

max(exp(-C/δ
2
),N-1)

 
= O(ε

2
) for some (well behaved) constant C.  One can show that for a

particular choice of r, the expected degree sequences corresponding to dense graphs yield ε
1
 

= O(log(N)1.25/N) and for many sparse graphs ε
1
 = O(log(N)1.25/N1/2).  See Figure 1 for a 

numeric example. 
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Where a(*) and b(*) are the expected (in/out) degree sequences of

the corresponding partitioned submatrix and S
* 
is the expected

number of edges in that submatrix.
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Accuracy of Predictors for the Spectral Radius of

Chung-Lu Graphs with Community Structure

Figure 3: Distribution of stopping time for three networks

(blue, green, pink) ordered according to their spectral radius

in an SIS model with parameter β (rate at which infected

nodes infect their neighbors).  Two of the networks were

generated using the Chung-Lu community model and all three

networks have the same expected quantity for   

S
S
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Figure 4: Distribution of measure of synchrony (on a scale

from 0 asynchronous to 1 fully synchronous) subject to noise

for three different networks sorted by their spectral radii.

Under certain conditions, the instability of the asynchronous

solution is determined by the dominating eigenvalue [3].

Dynamics are defined by 

         

dθ
i
/dt = ω

i
 + SΣ

j
 A

ij
sin(θ

i
-θ

j
) +σξ

i
(t)

where ξ
i
(t) is white noise. 

Convergence of Predictor in Theorem 2

for Chung-Lu Model 
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Figure 1: Red, empirical binned probability mass function of

the relative error between the observed spectral radii (100

realizations) and the asymptotic estimate (a·b/S =161) .  The

graphs generated have 600 nodes 

Purple and Blue, plots of concentration inequalities where the

y-axis indicates a bound on the likelihood that the spectral

radius will be larger (purple) or smaller (blue) than the

relative error (x-axis).  Purple uses Markov's Inequality while

Blue is a result from [2]. 
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Applications: The Influence of Community Structure on the

Spectral Radius and its Impact on Network Dynamics 
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Conclusions
● We proved theoretic and numeric results on the speed of convergence of the
spectral radius for directed Chung-Lu random graphs.  

● We also provided a conjecture (with numeric evidence) for the convergence of the
spectral radius for directed Chung-Lu graphs with community structure.  

● Through simulation, we evaluated the impact of community structure on the
spectral radius of the adjacency matrix and ultimately the dynamics of the
network for the SIS and Kuramoto models.

●  Finally, we expect that the same proof technique will yield the desired 
result on the convergence speed of the spectral radius in Chung-Lu 
networks with community structure. 

See Figure 2 for numeric evidence of this conjecture.  In addition, the impact of

community structure on the spectral radius can influence the dynamics of the network.

For examples, see Figures 3 and 4 where all networks in consideration have identical

expected degree sequences, but different partitioned expected degree sequences.

Figure 1: Concentration bounds of the spectral radius for Chung-
Lu random graph model with 600 nodes. The red curve is an

empirical pdf for the relative error between the observed spectral
radius and the quantity a·b

S
≈ 161. The magenta and blue curves are

one-sided upper bounds for the likelihood (y-axis) that the spectral

radius deviates more than the relative error listed on the x-axis.

Extensions

Path counting also yields spectral radii bounds for a gen-

eralization of the Chung-Lu model, where nodes belong

to communities and each node has an expected number

of incoming and outgoing connections with all nodes in a

given community. And even though counting paths in this

generalized model becomes much more difficult, as the

probability an edge exists now also depends on the com-

munity membership of the two nodes, we illustrate how to

derive concentration bounds for the number of paths and

cycles using the norm of a matrix product. Furthermore,

we demonstrate when the spectral radius converges to the

spectral radius of an m2 × m2 matrix, where there are

m communities in the network. Since the spectral radius

of the adjacency matrix can influence the dynamics in a

network and very little work has considered the spectral

radii distribution for directed random graphs, our novel

bounds on the spectral radii provide an important tool in

the analysis of real world directed networks.
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Abstract

The extent of the relation between architectural and func-

tional connectivity in the cerebral cortex is a question

which has attracted much attention in recent years. Neu-

roscientists frequently use the functional connectivity of

neurons, i.e. the measures of causality or correlations

between the neuronal activities of certain parts of a net-

work, to infer the architectural connectivity of the network,

which indicates the locations of underlying synaptic con-

nections between neurons. Architectural connectivity can

be used in the modeling of neuronal processing and in the

forming of conjectures about the nature of the neural code.

These two types of connectivity are by no means identical,

and no one-to-one correspondence or mapping exists from

one to the other. In particular, certain trivial measures of

functional connectivity, such as correlations, give rise to

an undirected network, while synaptic architectural con-

nectivity is always directed. Nevertheless, architectural

connectivity can be inferred from functional connectiv-

ity, and this work is one attempt to determine how to

do so. We will begin by examining different statistical

measures of functional connectivity, and, in particular, by

determining what directed measures can be employed, for

example mutual information, which are better suited for

the investigation than mere correlations of firing rates or

neuronal voltages. Additional work will involve analyzing

the neuronal network structure, looking especially at the

incidence matrices representing both types of connectivity

with the intention of establishing how one depends on

the other. This can be achieved by studying the struc-

ture of these matrices through tools including low-rank

decomposition and spectral properties.
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Summary

Dynamical systems with an underlying network struc-

ture arise frequently in the sciences (e.g. neuroscience)

as well as in applications (e.g. electrical circuits). We

are especially interested in the class of homogeneous cou-

pled cell networks (cf. Figure 1) for which Rink and

Sanders [4] have proved a strong connection to monoid

equivariant dynamics. We use this interplay to investigate

generic steady state bifurcations – qualitative changes in

the steady states due to variation of a parameter – in such

networks by means of equivariant dynamics.

Abstract

Rink, Sanders and Nijholt have provided numerous results

on dynamics in homogeneous coupled cell networks (cf. [1,

2, 3, 4, 5]). Using their methods, one can present network

ODEs as (sub-systems of) systems that are symmetric with

respect to a monoid representation. As one was mostly

concerned with group representations before this draws

attention to very exciting generalizations of representation

theory and equivariant dynamics.

We investigate this generalization and especially the

classification of generic steady state bifurcations which

could up to now only partly be realized: either in the direct

context of the networks or in a special case of the monoid

representation. We aim at generalizing this last statement

to include more general representations. Therefore, we

investigate arbitrary representations of arbitrary monoids

and examine the generic bifurcation behaviour of equivari-

ant systems. In order to do so, we employ methods from

equivariant bifurcation theory of groups on the one hand

and the theory of monoid representations on the other.

This allows us to extend the bifurcation result to arbitrary

monoid representations. Returning to the network context

this type of result has the advantage of providing informa-

tion on the dynamics of classes of networks rather than

individual ones as the results hold for all those networks

connected to the same monoid representation.

Example

1

2

3

Figure 1: Homogeneous coupled cell network.

The network in Figure 1 induces the ODE system

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x2, x3)

ẋ3 = f(x3, x3, x2)

(1)

where xi ∈ R and the first component denotes internal

dynamics. It is equivariant with respect to the symmetries

(x1, x2, x3) 7→ (x2, x2, x3) and (x1, x2, x3) 7→ (x3, x3, x2)

meaning that the right hand side commutes with their ap-

plication. The symmetries generate a monoid and describe

a 3-dimensional representation of it which decomposes as

the direct sum of three 1-dimensional subrepresentations.

Assuming that system (1) depends on a parameter λ ∈ R
and that it possesses the steady state (0, 0, 0) for all val-

ues of λ we search for steady state bifurcations. We

find that these generically occur in the direction of the

1-dimensional subrepresentations.
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Summary

In this work we extend power system theory from a

network science viewpoint, which exploits the features of

power networks. It appears that the whole of the nearly

100-year old subject of power systems can be rewritten in

the network-based paradigm to provide new insights.

Power network modeling

Consider a power system consisting of generator nodes

VG, load nodes VL and transmission lines E . The network-

reduced model was commonly adopted in earlier results.

It eliminates the load nodes via Kron reduction and usu-

ally leads to a full graph connecting the generators only.

This process reduces the dimension but breaks the origi-

nal power network structure. Also, the virtual lines cre-

ated by Kron reduction have considerable resistance rep-

resenting the effects of loads, which brings difficulties in

designing a Lyapunov function for stability and control

analysis. To avoid this problem, Bergen and Hill [1] first

proposed the structure-preserving model

Miθ̈i +Diθ̇i = Pi −

∑

(i,j)∈E

bij sin(θi − θj), i ∈ VG

Diθ̇i = Pi −

∑

(i,j)∈E

bij sin(θi − θj), i ∈ VL

where θi, Pi,Mi, Di, bij denote node angle, power injec-

tion, generator inertia, damping constant and line capac-

ity, respectively; and the resistance of physical line can

be reasonably neglected. Further, this model can be re-

garded as a complex dynamical network with the original

network structure and heterogeneous node dynamics. So

it is a natural model to develop power network science [2].

Some recent results have followed this direction [3, 4].

Power network stability

The mainstream approaches for power system stabil-

ity are node-based, e.g., to study stability by construct-

ing a proper Lyapunov function. The history of these

approaches dates back to the early 20th century in Rus-

sia and extensive investigations have been conducted [5].

However, the node dynamics evolves via the underlying

power network. The role of network topology is of impor-

tance but has not drawn enough attention [2]. We shed

new light on the instability mechanism of power systems

by taking the network-based viewpoint. We reveal that

the small-disturbance angle stability can be indicated by

the Laplacian matrix of the so-called power flow graph

describing the power flows over the network [6]. We also

establish matrix conditions in terms of the critical lines

to check stability and instability type for all equilibria.

Moreover, we apply cutset properties to explain instabil-

ity phenomenon in large-disturbance scenario [7].

Power network control

With the growing penetration of renewable energy, the

control paradigm of power systems is experiencing a pro-

found evolution. The control task is shifting from genera-

tor side to demand side, and the physical power network

has stronger interaction with the communication network

among control devices. A network science view will facili-

tate the control problems of such complex cyber-physical

networks. We have been working towards a distributed

non-disruptive demand-side control framework to quickly

regulate system dynamics after contingency [8].

Conclusion

We propose the subject of power network science as a

product of network science concepts and more theoretical

ideas in power system stability and control.
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Metrics and Ultrametrics

Let X be a set. Then d : X ×X → R is a metric on X if:

� Non-negativity: d(a, b) ≥ 0 for all a, b ∈ X.

� Non-degeneracy: d(a, b) = 0 if and only if a = b.

� Symmetry: d(a, b) = d(b, a) for all a, b ∈ X.

� Triangle inequality: For every a, b, c ∈ X:

d(a, b) ≤ d(a, c) + d(c, b).

If instead of the triangle inequality, d satisfies

d(a, b) ≤ max{d(a, c), d(c, b)}, for every a, b, c ∈ X,

then d is an ultrametric. Every ultrametric is a metric.

Classical Metrics on Graphs

Three well-known network metrics are shortest path, ef-

fective resistance and the (reciprocal of) minimum cut.

p-Modulus

Modulus is a way to quantify the richness of families of

objects on graphs, such as families of walks, trees, cycles

etc...Here we focus on families of walks. First we recall its

definition. For 1 ≤ p <∞, the p-modulus of a family Γ is

Modp(Γ) := inf
ρ∈Adm(Γ)

Ep(ρ) = inf
ρ∈Adm(Γ)

∑
e∈E

ρ(e)p,

where ρ : E → [0,∞) is admissible for Γ (ρ ∈ Adm(Γ)) if

`ρ(γ) :=
∑
e∈E
N (γ, e)ρ(e) ≥ 1 ∀γ ∈ Γ,

here N (γ, e) is the number of times γ crosses the edge e.

Connection to Classical Quantities

In the special case of connecting families Γ(a, b) modu-

lus recovers some classical quantities [1]. For instance,

2-modulus coincides with effective conductance, when

viewing the graph as an electrical network with edge-

conductances equal to σ. Also, 1-modulus recovers min

cut, and letting p tend to infinity, the p-th root of p-

modulus tends to the reciprocal of shortest-path. In gen-

eral, p-modulus continuously interpolates between these

classical measures.

The Main Theorem

For 1 ≤ p < ∞, let dp(a, b) := Modp(Γ(a, b))−1/p. If

G = (V,E) is a simple connected graph, then dp is a

metric on V . Moreover, d1 is an ultrametric. See [2].

Antisnowflaking

Whenever d is a metric on X and 0 < ε < 1, then dε is

also a metric on X. This is called snowflaking the metric.

What is the largest exponent t such that dt is still a metric?

We introduce the antisnowflaking exponent of a metric d:

ASFE(d) := sup{t ≥ 1 : dt is a metric}
Writing dp,G for our modulus metric, to show the de-

pendence on the graph G, we define

s(p) := inf{ASFE(dp,G) : G connected}.

Conjecture

We conjecture that, for all p ∈ (1,∞),

s(p) =
p

p− 1
.

We arrived at this conjecture analyzing numerical data

done on a set of Erdős Rényi graphs and using our own

algorithm for computing modulus.

We are currently working on proving this conjecture. The

case p = 1, 2,∞ (appropriately definied) are already es-

tablished. The result follows if one can show that dqp is a

metric when q is the Hölder conjugate exponent of p.

We have looked at the family of biconnected graphs, com-

plete graphs and hypercubes and so far the results seem

in line with the conjecture. We hope to present these nu-

merical analysis and examples worked on different families

of graphs in our poster.
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Summary

Network formation and transportation networks are fun-

damental processes in living systems. A new dynamic

modeling approach to describe the formation of biologi-

cal transport networks has recently been introduced by

Hu and Cai. They propose a continuum model, based

on macroscopic laws, as well as a discrete, purely local

dynamic adaptation model. We present an overview of

recent analytical and numerical results for these models.

Introduction

Transportation networks are ubiquitous in living systems

such as leaf venation in plants, angiogenesis of blood

vessels and neural networks which transport electric charge.

Biologists, engineers, physicists and computer scientists

have expressed great interest in understanding natural

networks. One of the main research questions is what

are the structural and topological properties of optimal

networks, in particular the existence of loops.

Description of the model

Traditionally most of the methodological tools use discrete

models, based on mathematical graph theory and discrete

energy optimization, where the energy consumption within

the network is minimized under the constraint of constant

total cost. However, biological systems are continuously

adapting their structures to meet the changing metabolic

demand. Hu and Cai have recently introduced a new

dynamic modeling approach [6] accounting for adapta-

tion of networks to fluctuations in the flow in contrast

to considering optimization as a global effect. Central to

their discrete model is a purely local dynamic adaptation

mechanism based on mechanical rules. In particular, this

dynamic adaptation model responds only to local infor-

mation and can naturally incorporate fluctuations in the

flow.

To formulate the discrete model we consider a connected

graph and associate each vessel of the graph with a non-

negative conductivity. Assuming that the material cost

for the vessel i of the network is proportional to the power

Cγi of its conductivity Ci for a parameter γ > 0 we con-

sider the energy consumption as the sum of the kinetic

energy of the material flow through the vessels and the

metabolic cost of maintaining the network. This energy

is constrained by the Kirchhoff law which expresses the

conservation of mass.

Besides, one can formulate a continuum model based

on macroscopic physical laws. This model was introduced

in [5], studied in [1, 3, 4, 2] and consists of a very complex

system of nonlinear partial differential equations. Be-

cause of its highly unusual coupling this model is also of

mathematical interest.

Analysis of the model

Using methods from mathematical and numerical analysis

we study the discrete and the macroscopic model and in-

vestigate the qualitative properties of network structures.

Experimental studies of scaling relations of conductivities

of parent and daughter edges in real networks suggest that

the choice of the parameter γ is crucial for the resulting

network formation [3]. This is also underlined by the

analytical and numerical results we have obtained indicat-

ing a phase transition behavior at γ = 1 with a uniform

sheet, i.e. the network is tiled with loops, for γ > 1 and a

loopless tree for γ < 1.

References

[1] G. Albi, M. Artina, M. Foransier, and P. A. Markowich. Biologi-
cal transportation networks: Modeling and simulation. Analysis
and Applications, 14(01):185–206, 2016.

[2] G. Albi, M. Burger, J. Haskovec, P. Markowich, and M. Schlot-
tbom. Discrete and continuum modelling of biological network
formation. Book chapter, submitted.

[3] J. Haskovec, P. Markowich, and B. Perthame. Mathematical
analysis of a pde system for biological network formation. Com-
munications in Partial Differential Equations, 40(5):918–956,
2015.

[4] J. Haskovec, P. Markowich, B. Perthame, and M. Schlottbom.
Notes on a pde system for biological network formation. Non-
linear Analysis, 138:127–155, 2016.

[5] D. Hu. Optimization, adaptation, and initialization of biological
transport networks. Notes from lecture, 2013.

[6] D. Hu and D. Cai. Adaptation and optimization of biological
transport networks. Physical review letters, 111:138701, 2013.



NETWORK INDUCED PHASE-LOCKED PATTERNS OF THE KURAMOTO FLOW ON CUBIC

GRAPHS

Yury Sokolov, G. Bard Ermentrout

SIAM Workshop on Network Science 2017
July 13–14 · Pittsburgh, PA, USA

Summary

We consider the Kuramoto model on sparse graphs, given

by the family of 3-regular graphs. We study network

properties that ensure the existence of stable equilibria

distinct from the synchronized state. The existence of such

stable structures may be a consequence of the dependence

of the basin of attraction of synchronized states on the

structure of the underlying network.

Abstract

One of the main interests in network dynamics is, un-

der which conditions on the underlying graph, does the

system exhibit one or another type of behavior. In partic-

ular, during the last several decades significant progress

has been made on how the network structure affects the

convergence and speed of convergence of coupled phase os-

cillators to the synchronized state. Fundamental rigorous

results have been made for extreme cases, i.e., n-cycles

and complete graphs, while different graph-based mea-

sures were proposed to capture the convergence to the

synchronized state for systems defined on general sparse

connected graphs.

We consider a simplified Kuramoto model on a family

of 3-regular (cubic) graphs with identical frequencies, and

unnormalized coupling, which is one for adjacent nodes in

the network. We show that there is a nonempty subset of

cubic graphs, so that the model defined on those graphs

admits stable equilibria distinct from synchronized state

– phase-locked patterns. We derive some conditions on

graphs under which the network of coupled phase oscilla-

tors converges to phase-locked patterns.

The question we address is dual to the study of syn-

chrony. Probably, some of the tools we have developed

can be applied in the analysis of the synchronized state

on sparse graphs.
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“Clustering Techniques for a Network Derived from Voting” 
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Proportional representation is simple when candidates are identified by group affiliation, but 
complex when it is voters, not political parties, who rank or rate candidates. Traditional 
algorithms are ad hoc, offering little insight. Yet clusters of voters may be identified from voting 
patterns, even when clusters overlap and some voters are left unclustered. We present a 
clustering algorithm using network science, tested on ballot sets from 38 districts, applying 
techniques of discrete, continuous, and combinatorial optimization to graphs with weighted 
edges and vertices. The vertices are mean rating vectors of combined ballots, based on identical 
top candidates, with vertex correlations specifying edge weights. A cluster is a fuzzy set of 
vertices with membership from correlation with the cluster mean rating vector. Our non-linear 
global optimization iterates from diverse initial cluster sets, like the clustering coefficient result, 
using a damped Newton method, while merging strongly overlapping clusters. Branch and bound 
is applied to find the best match among sets of candidates to a cluster set, maximizing the sum of 
cluster-averaged candidate ratings, with proportionality enforced by a soft penalty function, 
where each cluster is represented fractionally by its best rated elected candidates. Clustering 
reveals hidden issues of complexity, while yielding more proportional results and bringing the 
old field of voting algorithms into the realm of modern network science. 
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Summary

By studying a few hundred real world graphs up to a

few hundred thousand vertices, we find a large body of

empirical evidence that most real world graphs have a sta-

tistically significant power-law distribution with a cut-off

in the singular values of the adjacency matrix and eigenval-

ues of the Laplacian matrix in addition to the commonly

conjectured power-law in the degrees. The observed scal-

ing law in the cut-off enables us to compute only a subset

of the spectra of large networks, enabling testing graphs

with up to tens of millions of vertices and billions of edges,

where we find that those too show evidence of statistically

significant power-laws in the spectra. More details about

the data and experiments can be found in our paper [1].

Abstract

Power-laws have long been studied in real-world networks

such as web-crawls and online social networks. Among

other reasons, the purpose of studying these power-law dis-

tributions is to generate realistic synthetic network models

and to establish theory about why various algorithms work

better than expected in networks of this type. While there

have been a number of results and findings about power-

laws (and the absence thereof!) based on real-world data,

synthetic methods, and relationships between eigenvalues

and degrees, these studies are often limited to a few small

examples. Our specific interest is to investigate power-

laws in the singular values of the adjacency matrix, but in

the course of this, we also revisit many of these findings

with the goal of providing new guidance on the presence

of power-laws in three features of real-world networks:

1. the degrees;

2. the singular values of the adjacency matrix;

3. the eigenvalues of the Laplacian matrix;

For our study we considered real-world networks from

the Stanford project, Facebook, and various other sources

(all data is publicly available) up to a few hundred thou-

sand vertices where we could compute the exact eigenval-

ues. For comparison we also included a number of network

models. In total we studied over 5, 000 distributions. We

fit each of the distributions to a power-law, suppling a

cutoff in the tail, which gives the size of the distribu-

tion included in the power-law, and a test of significance,

to gauge the reliability of the results. A power-law is

significant if it passes this test.

The most interesting result is that power-laws in the

singular values appear more consistently than in the de-

gree distribution. Furthermore, a significant power-law

distribution in the degrees means there is a high probabil-

ity for a significant power-law distribution in the singular

values of the adjacency matrix and the eigenvalues of the

Laplacian matrix. The converse does not hold. The expo-

nents of the power-law distributions are much larger than

previously observed, ranging between 2 − 10. We find a

surprising direct relationship between the power-law in the

degree distribution and the power-law in the eigenvalues

of the Laplacian that was theorized in simple models but

is extremely accurate in practice.

We observe a scaling law for the size of the tail equal

to n2/3 for the degrees and Laplacian eigenvalues and

between n2/3 and n1/2 for the singular values. This allows

us to investigate a number of larger networks (up to 65

million vertices) by only considering the top values. These

networks are up to 100 times larger than those we used

to make our observations in the first part of our study,

and include network data-dumps in addition to crawled

networks. We find these too have significant power-law

distributions in their adjacency singular values, which is

consistent with those found on our smaller networks.

This finding is descriptive, but understanding the struc-

ture of real world networks allows us to take advantage

of inherent structure for faster computation in a variety

of settings. In particular, we suspect the results of the

reliable power-law in the singular values to be a useful

property for characterizing the extremely fast convergence

of many matrix-based algorithms on these types of net-

works.

References

[1] N. Eikmeier and D. F. Gleich. Revisiting power-law distributions
in spectra of real world networks. Accepted at KDD2017.



IDENTIFYING TRADE COMMUNITIES IN THE GLOBAL CO2 SUPPLY CHAIN NETWORK

USING SINGULAR VALUE DECOMPOSITION

Supun Perera, Somwrita Sarkar, Michael Bell

SIAM Workshop on Network Science 2017
July 13–14 · Pittsburgh, PA, USA

Summary

By applying the Singular Value Decomposition (SVD) tech-

nique to the global CO2 supply chain dataset presented in

Davis et al. [2], we seek to identify the closely knit CO2

trade clusters within the global CO2 supply chain network.

In particular, we separately consider the following trade

segments (each as a separate supply chain network); (1)

Extraction - Production (E-P), (2) Production - Consump-

tion (P-C), and (3) Extraction - Consumption (E-C).

Background

Singular value decomposition

Work by Sarkar et al. [1, 3] has revealed that SVD of a

graph matrix, followed by clustering of a reduced space rep-

resentation, can be used to identify community structures

without imposing any a priori assumptions on properties

of the communities, such as pre specifying the number

or the size. The algorithm uses the largest gaps between

the singular values as a heuristic to identify the optimal

number of modules in the network. Usually, in a network

which has community structure, a small number of singu-

lar (or eigen) values will be sharply separated from the

bulk distribution of eigenvalues [1].

Global CO2 supply chain network

Conventional production-based accounts of CO2 emissions

only represent a single point in the supply chain of fos-

sil fuels, which may have been extracted elsewhere and

may be used to provide goods or services to consumers

elsewhere [2]. In this regard, it is important to identify

the original sources of fossil fuels and the ultimate des-

tinations of goods and services reliant on these fuels, i.e.

the entire global supply chain of CO2 emissions. In this

study, we use the publicly available trade dataset pre-

sented by [2], which spans across the global supply chain

of CO2 emissions and tracks global CO2 emissions from

the points of Extraction (of all fossil fuels), Production (of

goods embodying emissions), and Consumption (of goods

embodying CO2 in all industry sectors) for 112 countries.

Results and discussion

E-P: Both extracting and producing countries were found

to have five distinct clusters with minimum overlaps. For

example, both Australia and New Zealand were found

to belong into the same cluster for both extraction and

production. On closer analysis, it is evident that both

these countries rely heavily on Middle East for extractions.

Similarly, both these countries significantly produce to

Japan.

E-C: The extracting countries indicated 3 clusters (i.e.

countries in each of these clusters extract for almost the

same countries). However, high levels of overlap was ob-

served across the clusters, indicating that many countries

which extract belong to multiple trade clusters which

include different consuming countries. The consuming

countries indicated 5 clusters. Much less overlap was ob-

served across these clusters, indicating that many consum-

ing countries belong to clear trade clusters which include

unique extracting countries.

P-C: Both producing and consuming countries were found

to have two clusters with high levels of overlaps. This

indicates that many countries which consume belong to

multiple trade clusters which include different countries

producing. Similarly, the producing countries belong to

clusters which include different countries consuming these

products.
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Summary

Community detection is a coarse-graining process of net-

work data, and the assessment of the coarse-grain level is

its crucial step. Here we propose [2] principled, scalable,

and widely applicable assessment criteria to determine

the number of clusters in community detection based on

the leave-one-out cross-validation (LOOCV) estimate of

the edge prediction error. We also compare the perfor-

mance of the LOOCV estimates with other popular cri-

teria.

Bayesian inference and model selection criteria

The Bayesian inference using the so-called stochastic

block model is one of the popular methods in commu-

nity detection. While it is computationally infeasible to

perform the inference exactly, the EM algorithm with be-

lief propagation [1] is known as the fast and accurate ap-

proach even in the case of sparse networks.

When we want to detect communities from a given net-

work data, we need to choose the number of communities.

The simplest way to determine the number of communi-

ties in the Bayesian framework is to measure the negative

marginal log-likelihood, or equivalently, the free energy;

when the free energy saturates as we increase the number

of communities, the most parsimonious model should be

chosen. While this criterion works when the model we

assume is consistent with the generative model, in prac-

tice, it overfits very often. While the use of the BIC-like

criteria can be a choice (e.g., [4, 3]), we introduce to use

another well-accepted principle for model selection which

is based on the prediction error.

Cross-validation error using belief propagation

One of the advantages of using the prediction errors is

that the model we use does not need to be consistent

with the generative model of the actual network. While

the cross-validation estimate is a standard approach for

measuring the prediction errors, it has both conceptual

and computational problems when it is naively applied to

Figure 1: Bethe free energy and cross-validation errors of

a real-world network data.

the inference using the stochastic block model. However,

when the LOOCV is considered and the belief propaga-

tion is used, we show that both of these problems can be

solved. We can conduct the model assessment very effi-

ciently and we confirm that the performance is indeed rea-

sonable for both synthetic and real-world networks (e.g.,

Fig. 1).

Among the prediction errors that we consider, we can-

not generally conclude which one is superior to others the-

oretically. Instead, we derive a generic inequality among

the prediction errors and a formal relation between the

prediction errors and the Bethe free energy. Furthermore,

when the network is actually generated by the stochas-

tic block model, we show that one of them achieves the

information-theoretical limit of detectability.
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Summary

In multiple graph inference often only a fraction of the

vertices possess a true match across networks, and many

graph matching algorithms do not identify truly matched

vertices after aligning the networks. Herein, we present a

procedure for detecting correctly matched vertices after

the networks have been aligned. We theoretically establish

the effectiveness of our procedure in a general bivariate

random graph model. These theoretical results are cor-

roborated in both simulated and real data experiments.

Introduction and Background

Given graphs G1 = (V1, E1) and G2 = (V2, E2)—with resp.

adjacency matrices A and B—the graph matching problem

(GMP) seeks to minimize ‖AP − PB‖F over permutation

matrices P ∈ P. The GMP has been extensively studied

in the literature, with numerous application areas; see,

for example, [1]. More recently there has been a flurry of

activity tackling the related problem of graph matchability

[2]: Given a latent alignment φ between V1 and V2, can

graph matching uncover φ in the presence of shuffled

vertex labels? To model this latent alignment, we define

the correlated Erdős-Rényi model.

Definition: For R,Λ ∈ [0, 1]n×n, we say (G1, G2)—with

resp. adjacency matrices A and B—are R-correlated Erdős-

Rényi(Λ) random graphs (abbreviated CorrER(Λ, R)) if:

marginally G1, G2 ∼ ER(Λ), i.e., Ai,j , Bi,j ∼ Bern(Λi,j)

independently across i and j; and for each {i, j} ∈
(
V
2

)
,

the correlation corr(Ai,j , Bi,j) = Ri,j ≥ 0.

Subsequent to the problem of matchability is the prob-

lem of match detectability: after matching, can we suc-

cessfully determine which vertices were correctly aligned

by the GM algorithm. Moreover, in applications it is often

the case that only a fraction of the vertices in G1 possess

a latent matched pair in G2, with the remaining vertices

having uncorrelated connectivity. We model this by set-

ting R = Rc⊕0nj
where n = nc +nj and Rc ∈ [0, 1]nc×nc

and 0nj is the nj × nj matrix of all zeros. We call the

first nc vertices the core and the remaining nj vertices the

junk and will refer to this as the core-junk ER model.

Core Detection

After matching core-junk ER graphs, there remains the

issue of determining which vertices were, in fact, core

vertices. In this model, assuming R ≥ 0, a natural statis-

tic for testing whether a vertex is a properly aligned

core vertex is a GM analogue of Mantel’s test statistic,

namely T ∗(·) := T (v,A,B, P ∗) = ∆v(P∗)−EP ∆v(P )√
VarP ∆v(P )

, where

∆v(P ) = ‖(AP − PB)v,•‖1, EP and VarP denote the

expectation and variance of ∆v(P ) with respect to uni-

form sampling of P over all permutation matrices, and

P ∗ ∈ argminP∈Π(nc+nj)‖AP − PB‖F .

Intuitively, if v is a properly matched core vertex then

∆v(P ∗) should be significantly smaller—due to the corre-

lation structure—than the number of errors induced by a

randomly chosen permutation. If v is a junk vertex or a

misaligned core vertex then, even with the small amount

of correlation induced by P ∗, we expect ∆v(P ∗) to be

closer to E(∆v(P ∗)) than in the core setting. In both the

core and junk cases,
√

VarP ∆v(P ) effectively normalizes

for the potentially varied degree distributions. Rather

than formalizing a hypothesis testing procedure using

T ∗(·)—which necessitates estimating the critical region

for T ∗(·)—we will instead use |T ∗(·)| to order the vertices’

likelihood of being in the core, with those having higher

values of |T ∗(·)| more likely to be in the core.

This intuition bears out in both theory and practice:

under mild assumptions in the core-junk ER model (satis-

fied, in one simple example, if Λ = p~1~1T and nc and R are

sufficiently large), it holds that minv∈core T (v,A,B,Q) >

maxu∈junk T (u,A,B,Q) with high probability for any ora-

cle labeling Q (i.e., Q = Inc ⊕Q′). These theoretic results

are corroborated by excellent performance on simulated

networks and real data experiments on Twitter data.
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Clustering networks by maximizing likelihood produces

clusters of quality similar or superior to modularity and

allows for the statistical testing of clustering significance.

However, identifying optimal clusterings based on likeli-

hood quickly becomes computationally prohibitive as the

network size grows large. At each proposed re-clustering,

a change-in-loglikelihood must be calculated and an ac-

cept/reject decision made. While the previous method

required the entire network’s edge set to be read for each

proposed re-clustering, we provide theorems that identify

the portions of the network that affect the change-in-

loglikelihood given a proposed re-clustering and reduce

the new data requirement to just the set of edges con-

nected to the vertex proposed for re-clustering. Further

efficiency in computation is achieved by a streamlining of

the change-in-loglikelihood formula.
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Abstract

Finding dense bipartite subgraphs and detecting the rela-

tions among them is an important problem for affiliation

networks that arise in a range of domains, such as social

network analysis, word-document clustering, internet ad-

vertising, and bioinformatics, to name a few. However,

most dense subgraph discovery algorithms are designed

for classic, unipartite graphs. Subsequently, studies on

affiliation networks are conducted on the co-occurrence

graphs (e.g., co-authors and co-purchase networks), which

projects the bipartite structure to a unipartite structure

by connecting two entities if they share an affiliation. De-

spite their convenience, co-occurrence networks come at a

cost of loss of information and an explosion in graph sizes,

which limit the quality and efficiency of solutions. We

study the dense subgraph discovery problem on bipartite

graphs. We define a framework of bipartite subgraphs

based on the butterfly motif (2,2-biclique) to model the

dense regions in a hierarchical structure. We introduce

efficient peeling algorithms to find the dense subgraphs

and build relations among them. Experiments show that

we can identify much denser structures compared to the

state-of-the-art techniques on co-occurrence graphs. Our

algorithms are also memory efficient, since they do not

suffer from the explosion in the number of edges of the

co-occurrence graph.1

Problem and Challenges

Our aim is to find many, if not all, dense regions in bi-

partite graphs and determine the relations among them

by using peeling algorithms. A common practice in the

literature for working with bipartite graphs has been cre-

ating co-occurrence (projection) graphs. Although the

projection enables the use of well-studied unipartite graph

mining algorithms, it has significant drawbacks:

• Information loss and ambiguity: Bipartite graphs

comprise one-to-many relationship information, but this

information is reduced to pairwise ties when projected

to a weighted or unweighted unipartite form. Those

pairwise ties are treated independently, which distorts

the original information. In addition, projections are

1This abstract is based on our paper available on

arXiv:1611.02756
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Figure 1: Dense subgraph profiles for the IMDb network. Each dot is a
bipartite subgraph, the density, |E|/(|U | · |V |), is color coded and |U | and
|V | are given on the x- and y-axis. Wing decomposition algorithm results in
36 bipartite subgraphs with ≥ 0.9 edge density that have at least 10 vertices
in each side. Other algorithms working on projections cannot report any
bipartite subgraph in that quality.

not bijective irrespective of the projection technique

being used, which creates ambiguity.

• Size inflation: Each affiliation in the bipartite network

with degree di results in a di-clique in the projected

graph. Thus, the number of edges in the projected

graph can be as many as
∑

v∈V
(
dv

2

)
, whereas it is only∑

v∈V dv in the bipartite network, where V is the set of

affiliations. Increase in the number of edges degrades the

performance and also artificially boosts the clustering

coefficients and local density measures in the projected

graph.

Given the drawbacks of projection approaches, we work

directly on the bipartite graph to discover the dense struc-

tures.

Contributions

• k-tip and k-wing bipartite subgraphs: We survey

attempts to define higher-order structures in bipartite

graphs, and use the butterfly structure (2,2-biclique)

as the simplest super-edge motif. Building on that,

we define the k-tip and k-wing subgraphs based on

the involvements of vertices and edges in butterflies,

respectively.

• Extension of peeling algorithms: We introduce

peeling algorithms to efficiently find all the k-tip and

k-wing subgraphs. Our algorithms are inspired by the

degeneracy based decompositions for unipartite graphs.

• Evaluation on real-world data: We evaluate our

proposed techniques on real-world networks. Figure ??

gives a glance of results on the IMDb movie-actor with

1.6M vertices and 5.6M edges.
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Summary

Common-interest social networks constitute a class of

social networks where two individuals are connected if

they share a common interest and they are socially con-

nected. We model these networks by a composite random

graph and derive necessary and sufficient conditions for

network-wide information diffusion to be possible. Sev-

eral future applications of the model will be discussed

including inference of missing links in social networks.

Common-interest social networks

A common-interest relationship between two individuals

manifests from their selection of common items from a

pool of available interests and hobbies [3]. We model these

relationships by a general random intersection graph (a.k.a.

inhomogeneous random key graph [2]), where each of the

n nodes is first assigned to one of r possible classes with

µi denoting the probability of a node being class-i. Then,

each class-i node selects Ki interests from a large pool

(for each i = 1, . . . , r) and a pair of nodes are connected

if they have at least one common interest.

This model can be shown to exhibit several characteris-

tics commonly seen in real-world social networks including

high clustering and small-world properties. However, it is

clear that people are not necessarily connected with every

single individual they have common interests with. In

particular, real-world social networks often contain com-

munities that form well-connected subgraphs with sparse

connection to the rest of the graph. This is often attributed

to some form of homophily, meaning that individuals tend

to be socially connected with a limited number of other

individuals who share the same culture, race, etc.

To incorporate these factors into our model, we consider

an inhomogeneous Erdős-Rényi (ER) graph [1], where a

class-i node and a class-j node are connected with prob-

ability αij independently from everything else. In this

setting, we can adjust the r× r edge probability matrix α

suitably to generate a specific structure of the underlying

social network formed by multiple communities. For in-

stance, we may set α12 = α21 = 0.1 while α11 = α22 = 0.9

to obtain a network with two relatively well-connected

communities formed by class-1 and class-2 nodes, respec-

tively. An added benefit of the inhomogeneous ER model

is that, unlike the classical ER graph, it is able to generate

scale-free networks with power-law degree distributions

[1].

Collecting, our proposed common-interest social net-

work model is formed by the intersection of an inhomoge-

neous random key graph with an inhomogeneous Erdős-

Rényi graph. In other words, we propose a model where

two individuals are connected if they i) share at least a

common interest; and ii) have an edge in the inhomoge-

neous ER model indicating that they have a social tie (e.g.,

they belong to the same community). In this talk, we will

present some recent results concerning the connectivity of

this intersection model. In particular, we will present a

sharp threshold result identifying the critical scaling of

the parameters involved for the model to be connected

almost surely. We discuss various implications of our re-

sults including those concerning the feasibility of global

information diffusion in the common-interest network. We

will also discuss various other applications of the model

for future work, particularly on the inference of missing

links in social networks.
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Summary

To achieve control objectives for extremely complex and

very large scale networks using standard methods is a

challenging, if not intractable, task. In this work we

propose a novel way to achieve approximate control for

such networks by using the theory of graphons and infinite

dimensional system theory.

Network Systems and Limit Graphon Systems

Consider an interlinked network SN of linear dynamical

subsystems {SN
i ; 1 ≤ i ≤ N}, each with an n dimensional

state space. Each subsystem is uniquely associated to a

vertex of the N node graph GN whose undirected edges

correspond to the dynamical interactions between the

subsystems. We specify the (symmetric) linear dynamics

for the network SN via the equation

ẋt = AN ◦xt+BN ◦ut, xt, ut ∈ RnN , AN , BN ∈ RnN×nN , (1)

where AN = AT
N denotes a (matrix weighted) adjacency

matrix of GN , BN = BT
N denotes a linear input-to-state

mapping, and ◦ denotes the so called averaging operator

given by AN ◦x = 1
(nN)ANx. The adjacency matrices can

be represented by step functions (see [2]) in the graphon

space Gsp
1 , i.e. the space of symmetric measurable func-

tions W1 : [0, 1]2 → [−1, 1]. Then trajectories of the

Fig.1 A half-graph, its step function and its graphon limit. (See [2].)

system (1) correspond one-to-one with the trajectories of

the system

ẋst = A[N ]
s xst +B[N ]

s ust , xst , u
s
t ∈ L2

step[0, 1], A
[N ]
s , B[N ]

s ∈ Gsp
1 ,

[A[N ]
s xs](α) :=

∫ 1

0

A[N ]
s (α, β)xs(β)dβ, xs ∈ L2[0, 1].

Gsp
1 is compact under the cut metric [2] and complete

under the L2[0, 1]2 metric. Let the graphon sequences

{A[N ]
s } and {B[N ]

s } be Cauchy sequences of step functions

in L2[0, 1]2 with graphon limits A and B (which will then

necessarily also be the limits in the cut metric, see [2]).

The limit system (A;B) is given by

LS∞ : ẋt = Axt +But, xt, ut ∈ L2[0, 1], A,B ∈ Gsp
1 ,

where, A and B are graphons, and hence as operators on

L2[0, 1] are bounded and hence continous; furthermore,

A generates a C0-semigroup. Specializing the theory in

[1] to the case of L2[0, 1] Hilbert state spaces, one can

show that the graphon system LS∞ has a unique mild

solution x ∈ C([0, T ];L2[0, 1]) for any x0 ∈ L2[0, 1] and

any u ∈ L2[0, T ;L2[0, 1]] (see [1]) .

Define WT =
∫ T

0
eAtBBT eA

T tdt as the controllability

Gramian operator, then the criterion for exact controllabil-

ity (see [1]) of the system LS∞ is that, for all h ∈ L2[0, 1],

〈WTh, h〉 ≥ cT ‖h‖2, where cT > 0.

The Graphon Control Strategy

(1) Consider the general control problem of steering the

states of each member of a sequence S of network systems

{SN ; 1 ≤ N ≤ ∞} to each of a sequence xT of desired

states {xNT ; 1 ≤ N ≤ ∞}, where it is assumed that S

converges to some limit system LS∞ and xT to some x∞T .

(2) Specify the corresponding control problem CP∞ for

LS∞ on L2[0, 1] and choose a tolerance ε > 0 . (3) Find

the control law u∞ for CP∞. (4) Then Theorem 1 below

and the convergence of the xT sequence yield Nε such that

xNT (uN ) is within ε of x∞T and of xNT for all N ≥ Nε.

Theorem 1 Assume (A;B) and (AN
s ;B

[N ]
s ) are exactly

controllable, then there exist controls u∞ and uN such that

‖x∞T (u∞)− xNT (uN )‖2 ≤‖AN∆‖2‖B‖2
∫ T

0

eT−τ (T − τ) · ‖u∞τ ‖2dτ

+ ‖BN∆ ‖2
∫ T

0

e(T−τ)‖A[N]
s ‖2 · ‖u∞τ ‖2dτ

where x∞T (u∞) = x∞T , AN
∆ = A−A[N ]

s and BN
∆ = B−B[N ]

s .
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Community detection and the related problem of graph

partitioning is a robust area of research in many scientific

disciplines. This has lead to the proliferation of a wide

range of methods and algorithms [1, 6, 7]. Our approach

to community detection for an undirected unweighted

graph, is inspired by the use of Hopfield recurrent neural

networks to the task of graph partitioning [5] and is a

clustering based method which incorporates the generation

and interpretation of spiking data.

A graph G(V,E) is mapped to a system of arti-

ficial neurons S(N,W ). Each vertex of the graph

(vi ∈ V ) is mapped to a parameterized spiking neuron

(ni(tR, vth, τ) ∈ N), and each undirected graph edge in

(E) is mapped to a positively weighted, symmetric pair

of synaptic connections (wij(sW ) ∈ W ). Through the

careful tuning of neuron parameters and the use of ex-

ternal stimuli, we extract information about community

structure from the similarity in neuron firing patterns.

Our approach has been applied to small (n < 50) graphs

with two or more clearly delineated communities, such as

the barbell graph [8] and the relaxed caveman graph [1].

We use systems of homogeneous neurons, described by

the leaky-integrate and fire model of neuron dynamics

[2], and simulated using the Python library Brian2 [3].

The nonlinear equation of motion for the j-th neuron

is, v̇j(t) = (1/τ)(vj(t) − Ij(t)) and the neuron fires a

spike when v(t) > vth. The spiking pattern generated

by neuron nj is dependent on an electrical term: Ij(t) =∑
tf
sW δ(t − tf ) + Iextj (t), which incorporates arrival of

synaptic impulses and an external driving current.

To identify the communities in a barbell graph, a

pair of external driving currents were applied to neu-

rons (ni, nj) in different communities: Iexti (t) = A sin(ωt),

Iextj (t) = −A sin(ωt)). The positive amplitude driving was

large enough to cause neuron ni to spike, and depending

on the synaptic weight sW would subsequently cause its

neighboring neurons to spike. The negative amplitude

driving is necessary to inhibit the spiking of neuron nj

and to inhibit the spread of the spike pattern.

This mapping and driving approach shows it is pos-

sible to distinguish between two communities in small

graphs using spiking data. It requires careful tuning of

all neuron parameters and is less effective when applied

to larger graphs with more than 2 communities or fuzzy

communities. For these graphs, driving with square pulses

is efficient stimuli [4] when the mapping is modified in

include positive and negative weighted synapses.
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Summary

In real-world situations where graph-based models are

used for clustering or community detection, expert users

or analysts frequently have knowledge in the form of pair-

wise must-link or cannot-link constraints that could be

injected into the clustering process. We develop a frame-

work for incorporating this information into the multiway

normalized cut cost [2] in a soft manner that handles con-

flicts, and we extend this framework to Newman-Girvan

modularity [1] by illuminating the connection between

modularity and normalized cuts. Finally, we illustrate

the impact of soft constraints in both image segmenta-

tion and in the analysis of brain network connectivity.

Background

Consider an undirected weighted graph G = (V, E) with

vertex set V = {v1, . . . , vn} and edge set E ⊆ V×V that we

wish to partition into k disjoint subgraphs Gi = (Vi, Ei),

i = 1, 2, . . . , k, where
⋃k

i=1 Vi = V . Let X ∈ R
n×k be a

partition indicator matrix so that Xi,j = 1 if vi ∈ Vj and

Xi,j = 0 otherwise. A partitioning cost used widely in

computer vision is the multiway normalized cut [2]:

NCutW(V1, . . . , Vk) =
1
k
tr
(

XTLX
(

XTDX
)−1

)

, (1)

where W, D, and L are the weighted adjacency, degree,

and Laplacian matrices of G. We show that (1) can be

written equivalently by:

NCutW(V1, . . . , Vk)

= 1
k
tr

(

X̂T

ℓ LX̂
′

ℓ

(

X̂T

ℓ (D−K)X̂′

ℓ

)

−1
)

(2)

for any ℓ = 1, . . . , k, where Ki,j = didj/Vol(V ), di

is the degree of Vi, Vol(V ) =
∑

vi∈V di, and where

X̂ℓ ∈ R
n×(k−1) is the matrix formed by removing the

ℓth column of X.

Incorporating Pairwise Constraints

If S ⊆ V ×V , Θ is a matrix of nonnegative weights, and

ej is the jth column of the identity matrix, we define the

following weighted potential matrix, to encode different

types of pairwise constraints:

QS,Θ =
∑

(vi,vj)∈S

θi,j
(

eie
T

i +eje
T

j −eie
T

j −eje
T

i

)

. (3)

Now, suppose that M and C are sets of ordered pairs of

vertices for which must-link (ML) and cannot-link (CL)

constraints are desired, respectively, and that the desired

strengths of these pairwise constraints are given by the

matrices Γ and Ξ. The NCut objective (2) can be modi-

fied to simultaneously incorporate both sets of constraints

by adding QM,Γ to L and QC,Ξ to D−K.

Connection to Modularity

The formulation (2) allows us to see an immediate connec-

tion to the Newman-Girvan modularity [1]. According to

the Newman-Girvan null model, a random graph is con-

structed so that the probability of an edge between ver-

tices vi and vj is Ki,j/Vol (V ). Hence, (2) is normalizing

the partitioning cost on G by the expected partitioning

cost on the null model.

The beauty of this interpretation of normalized cuts

is that soft cannot-link constraints on the original graph

are re-interpreted as soft must-link constraints on the null

model. The same idea can be used to define a soft pairwise-

constrained version of modularity maximization.

Computing and Illustrating Solutions

It is straightforward to form spectral relaxations for soft

pairwise-constrained versions of normalized cuts and mod-

ularity, allowing optimal values of each of these functions

to be approximated through the solution of generalized

eigenvalue problems. We will show how the resulting ap-

proximation algorithms can be applied to semi-supervised

image segmentation and to the investigation of functional

brain networks.
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The effective use of limited resources for controlling

spreading processes on networks is of prime significance

in diverse contexts, ranging from the identification of

“influential spreaders” for maximizing information dissemi-

nation and targeted interventions in regulatory networks,

to the development of mitigation policies for infectious

diseases and financial contagion in economic systems.

Most existing algorithms for optimal resource allocation

in spreading processes are based on topological charac-

teristics of the underlying network and aim to maximize

impact at infinite time. Solutions for these optimization

tasks that are based purely on topological arguments are

not fully satisfactory; in realistic settings the problem

is often characterized by heterogeneous interactions and

requires interventions in a dynamic fashion over a finite

time window via a restricted set of controllable nodes. The

optimal distribution of available resources hence results

from an interplay between network topology and spreading

dynamics.
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Figure 1: Forward-backward propagation for implement-

ing the constrained dynamic message-passing algorithm.

In this contribution [3], we introduce a new probabilistic

targeting formulation which incorporates the dynamics

and encompasses previously considered optimization prob-

lems. We show how the resulting set of problems can be

addressed as particular instances of a universal analytical

framework based on two ingredients: scalable dynamic

message-passing equations [1, 2] which allow for an ef-

ficient solution of the dynamics, and forward-backward

propagation, a gradient-free optimization method inspired

by the techniques used in artificial neural networks [4] and

implemented on top of the constrained message-passing

scheme (see Fig. 1). We demonstrate the efficacy of the

method on very large synthetic graphs, as well as on a va-

riety of real-world examples, see Fig. 2 for an illustration.
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Figure 2: Efficacy of the method applied to the online

mitigation of air-traffic mediated epidemic on the real-

world network of flights between major U.S. hubs.
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A general approach for solving many computational
and modeling problems on large-scale networks is
through multilevel (also known as multiscale, multires-
olution, etc.) algorithms. This approach generally
involves coarsening the problem, by producing a se-
quence of progressively coarser levels (smaller, hence
simpler, related problems), anf then recursively using
a solution of each coarse problem to provide an initial
approximation to the solution at the next-finer level.
At each level, this initial approximation is improved
by what is generally called “local processing” (LP).
This is an inexpensive sequence of short steps, each
involving only a few unknowns, together covering all
unknowns of that level several times over. Typical
examples of LP are few sweeps of relaxation (such
as Gauss-Seidel) in the case of solving a system of
equations, a few Monte Carlo passes in simulations,
or node refinement in partitioning. Following the LP,
the resulting approximation may be further improved
by one or several cycles, each using again a coarser-
level approximation followed by LP, applying them
at each time to the residual problem (the problem of
calculating the error in the current approximation).
At each level of coarsening one needs to define

the set of coarse unknowns. Each coarse unknown
is defined in terms of the next- finer-level unknowns
(defined, not calculated: they are all unknowns until
the coarse level is approximately solved and the fine
level is interpolated from that solution). In network
problems, each node of the coarse network can rep-
resent an aggregate of several fine-level nodes or a
weighted aggregate of such nodes, that is, allowing
each fine-level node to be split between several ag-
gregates. In the process of defining the set of coarse
variables and in constructing an explicit interpolation,
it is important to know how “close” two given fine-level

variables are to each other at the stage of switching
to the coarse level. We need to know, in other words,
to what extent the value after the LP of one variable
implies the value of the other. If they are sufficiently
close, they can, for example, be aggregated to form a
coarse variable. Addressing an issue of how to mea-
sure the “closeness” between two nodes and how to
design an appropriate coarsening is central to many
methods and applications.
We will review a class of relaxation-based meth-

ods termed algebraic distance along with several
(a)symmetric coarsening strategies. These measures
of closeness define the distance between one node i

and a small subset S of several nodes by measuring
how well their values are correlated at the coarsening
stage, namely, following the LP relaxation sweeps.

An essential aspect of the algebraic distance defined
here is that it is a crude local distance. It measures
meaningful closeness only between neighboring nodes;
the closer they are the less fuzzy is their measured
distance. For nodes that should not be considered
as neighbors, their algebraic distance just detects the
fact that they are far apart; its exact value carries
no further meaning. The important point is that this
crude local definition of distance is fast to calculate
and is all that is required for the coarsening purposes.
A similar notion of distance is then calculated at each
coarser level.
The coarsening strategies that are based on the

proposed measures of closeness can be represented
in various forms of algebraic multigrid inspired algo-
rithms. We will present both symmetric and asym-
metric coarsening schemes with applications to solvers
of Laplacian systems of equations, node immuniza-
tion, and network ordering. Our novel asymmetric
coarsening Laplacian solvers demonstrate a significant
improvement in the convergence ratio, and error. The
node immunization symmetric coarsening strategy
provides efficient and effective heuristics that outper-
form such solvers as COUENNE and BARON and
combinations of several local search methods. The
network ordering problems are all different versions
of the minimum p-sum problems with applications to
compression, cache-friendly layout and clustering.
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Extended Abstract

Divisive (top-down) graph-decomposition methods based

on edge centralities (e.g., Girvan and Newman 2002 [4],

and Fortunato et al. [3]) have been developed to avoid

deficiencies associated with agglomerative clustering meth-

ods [5]. These community detection methods iteratively

identify and remove high centrality edges to produce a

hierarchical decomposition of the graph into clusters (con-

nected components).

The divisive algorithm investigated in this paper is

based on “maximin” concurrent flow and its dual sparsest

cut. Formally, the maximum concurrent flow problem

(MCFP) is a maximum network flow problem in which

every pair of nodes can send and receive flow concurrently.

The term throughput is defined to be the ratio of the flow

supplied between a pair of nodes to the given demand for

that pair. The objective of the MCFP is to maximize the

throughput, which must be the same for all pairs of nodes,

subject to fixed capacity constraints on the edges [1].

A canonical MCFP solution is characterized by a maxi-

mal set of “slack” edges with residual flow capacity iden-

tifying a partition into connected components of slack

edges. The complementary “critical edges” are saturated

with flow by any MCFP solution, typically comprising an

edge “cut set” forming a bipartition of the graph. The

hierarchical MCFP (HMCFP) then further maximizes the

common throughput between all node pairs connected by

a path of slack edges determining a second throughput

level and second set of critical edges bifurcating all the

nodes. Iterating further, a series of throughput levels is de-

termined until all edges are critical, yielding a hierarchical

stratification portrayed as a dendrogram [6].

Real world networks such as the 15-node Florentine

Families network [2] are represented as graphs. Taking

edge capacities and node pair demands both as unity

provides a density based hierarchy by the HMCFP. For

the HMCFP at every throughput level, the slack edges

at that level identify a partition into component “cluster

nodes”. The cluster node partition at each level identifies

a graph contraction.

An edge of the contracted graph after k cuts can be

labeled by the set of j cuts that include that edge 1 ≤ j ≤
k. A path of two or more edges between the end nodes of

an edge that is cut by the same set of j cuts is termed a

“back channel” between the nodes. The edges with no back

channels between their end nodes are “backbone edges”

and characterize the subgraph of the contracted graph

termed a “backbone”. Backbone edges provide the excess

capacity to absorb the additional flow between end node

pairs to maximize the concurrent flow at that level.

The backbones for the Florentine Families graph HMCF

partitions into 3 and 10 parts are shown in Figure 1. The

backbones visually display relationships between clusters

at each level and introduce a “distance” between clusters.

Figure 1: Florentine Dendrogram and two Backbones
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Many real world applications include information on both
attributes of individual entities as well as relations between
them, while there exists an interplay between these attributes
and relations. For example, in a typical social network, the
similarity of individuals’ characteristics motivates them to form
relations, a.k.a. social selection; whereas the characteristics
of individuals may be affected by the characteristics of their
relations, a.k.a. social influence. We can measure proclivity in
networks by quantifying the correlation of nodal attributes and
the structure [1]. Here, we are interested in a more fundamental
study, to extend the basic statistics defined for graphs and draw
parallels for the attributed graphs.

More formally, an attributed graph is denoted by (A,X);
where An×n is the adjacency matrix and encodes the relation-
ships between the n nodes, and Xn×k is the attributes matrix
–each row shows the feature vector of the corresponding node.
Degree of a node encodes the number of its neighbors, com-
puted as ki =

∑
j Aij . We can extend this notion to networks

with binary attributes to the number of neighbors which share
a particular attribute x, i.e. ki(x) =

∑
j Aijδ(Xj , x); where

δ(Xj , x) = 1 iff node j has attribute x. Similar to the simple
graphs, where the degree distribution is studied and shown to
be heavy tail, here we can look at: 1) the degree distributions
per attribute, 2) the joint degree distribution of any pair of
attributes. Moreover, if we assume A(x1, x2) is the induced
subgraph (or masked matrix of edges) with endpoints of values
(x1, x2), i.e., (A(x1, x2))ij = Aijδ(Xi, x1)δ(Xj , x2), then
we can study and compare these distributions for the induced
subgraph per each pair of attribute values. For example, Fig-
ure 1 shows the same trend in the degree distribution of the
original graph and three induced subgraphs for CoRA Citations
Network [2], with 11,881 papers with 31,482 citations between
them, in which a single attribute AI indicates whether topic of
the corresponding paper is Artificial Intelligence.
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Figure 1: Degree distribution in attribute induced subgraphs.

100 101 102

0

100

101

102

1
A

I

~AI
100 101 102

0

100

101

102

1

~AI

A
I

Figure 2: Homophily in degrees: the joint frequency of non-AI
neighbors (x-axis), and AI neighbors (y-axis). We can further color
divide this distribution based on the value of the node itself, i.e., AI
papers are marked by red, and non-AI with blue.

Algebraically, we can compute the degree distributions as
the marginals of the adjacency matrix A, i.e., A1. This can be
generalized to attributed graphs by considering the matrix mul-
tiplication of adjacency matrix A with feature/attribute matrix
X , which results in a n×k matrixAX , in which columns show
the degree distribution of nodes for the corresponding attribute
value, i.e., number of neighbors of that particular attribute each
node has, e.g., number of female friends. In case of two at-
tributes, we can plot the resulting two columns to compare the
number of female v.s. male friends per each node. Figure 2
shows such comparison for CoRA, which has a significantly
strong proclivity[1] of 0.72, based on the mixing matrix of
{{37472, 2380}, {2380, 20732}}, due to homophily.

We call AX the “degree matrix”, since (AX)ij denotes the
number of neighbors that node i has, which have jth attribute,
i.e., (AX)ij =

∑
k AikXkj . Here, each column, (AX):j ,

shows the degree distribution for attribute j, i.e., the number
of neighbors which have the jth attribute, per each node; and
each row shows the attribute distribution for neighbors of node
i, i.e., number of neighbors node i has per each attribute value.

In the same fashion, we study different patterns in attributed
networks to reach a better understanding of these ubiquitous
datasets which are emerging in diverse domains.
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Summary

As the complexity of science grows, we are increasingly

challenged by the diversity and scale of knowledge required

to solve complex research problems. To efficiently navi-

gate through this complex space of knowledge, we need a

“map” of the current state of knowledge as well as a com-

putable framework to organize knowledge in a useful way.

Here we model scientific and technological knowledge as a

complex system, built up from heterogeneous interactions

between diverse, differentiated components, and develop

a stochastic block model for hypergraphs to describe the

evolution of this system quantitatively.

Introduction

Discoveries and inventions are commonly modeled as com-

binatorial processes of existing knowledge – building on

the shoulders of giants. Despite the continuous effort

in addressing this myth of successful explorations, little

has been achieved. Uzzi et al. (Science 2013) attempted

to address this myth by showing that papers with both

conventional and novel pairwise combinations of journal

references are associated with high citation counts. This

suggests the question: can we use these traces of knowledge

production to effectively guide scientific investigations?

Our answer is yes but we need to tackle directly on the

content of knowledge – the chemicals, diseases, methods,

physical entities, concepts and their relationships studied

in those papers. We also need new methods to account

for the high-dimensional relationships between those com-

ponents. We employ a hypergraph framework to examine

how scientists and engineers successfully construct novel

ideas and objects.

Data and Method

We begin by mapping the complex space of knowledge

onto a network. First of all, elementary components of

scientific and technological knowledge are identified us-

ing community curated ontologies — MeSH terms for

biomedical knowledge, and subclasses for patents. We

then represent the articles and patents as combinations of

those components and also contexts or subfields they draw

upon. Mathematically this representation is a hypergraph

and combinations of components are hyperedges.

To quantitatively characterize those combinations of

contents or contexts, we develop a mixed-membership

stochastic block model for hypergraphs, along with a hid-

den Markov process over the time sequence of hypergraphs

to capture their evolution. This model is generative, al-

lowing us to predict future combinations based on those

before in a principled, statistical manner.

On the system level, we find large-scale structures and

communities in the network. On a finer scale, the hyper-

graph model can be used to predict promising but unseen

combinations (with an AUC≈ 0.9).

The improbability of new combinations predicts success

in terms of citations (shown as a heatmap below).
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Introduction

In this paper 1 we present a two-step algorithm for pre-

dicting high betweeness and closeness centrality vertices

in time-varying networks. In contrast to earlier work [2]

on predicting the average betweeness centrality of time

varying networks, we predict the exact ids which is more

useful in a practical context. For example, if it is known

a-priori which vertices would have high centrality in the

future time steps, then proper infrastructure can be set

up beforehand to utilize these vertices.

Overview of Algorithm

The key idea behind our prediction is to classify networks

based on a property, that we term as Core Connectedness.

Consider a graph G with cores numbered from outer to

inner(top) respectively as 1, . . . ,Ki,Ki+1, . . . ,Kmax. We

classify the edges as inter-core (intra-core) when the end

points are in two different (same) cores. We define a

network to be Core Connected if Imax,i < δi − Jmax,i∀i
. Here Imax,i (Jmax,i) is the average inter (intra) core

distance between Kmax and Ki, and δi is the average of

intra-core within core Ki. We can analytically show that

if this condition is maintained then most of the shortest

paths pass through Kmax.

We use the following metrics to identify whether a

network is Core Connected; (i) Fraction of inter-edges

connected to the top core (higher is better), (ii) Average

density of the non-top cores (lower is better), (iii) Density

of the top-core (higher is better). We also check a fourth

property (iv) the overlap of the vertices in the top core at

consecutive time steps (higher is better).

In the first step of the algorithm, we use an

autoregressive-integrated-moving-average (ARIMA) [1] to

predict the Jaccard overlap between the nodes in the top

core at a future time step. In the second step once the

network is available, we can precisely identify the top cen-

tral nodes by identifying high degree vertices in the top

core. For networks where the four criteria are maintained,

our average F-score for prediction is 0.60 (best 0.81) for

1A longer version of this work has been submitted to a conference.

closeness and 0.58 (best 0.72) for betweenness centrality.

Results

Table 1 shows the results of our predictions on a set

of real world networks. These are Autonomous Sys-

tems(AS (V:7K, E:27K) and CA (V:31K,E:1M), Citation

Networks(HT (V:34K, E:4M) and HP(V:27K, E:3M)) and

Online social networks(SO (V:2M, E:36M), FW (V:46K,

E:2M), SU (V:194K, E:924K).

Each network is classified as a four tuple (column 1)

with G representing good and B representing bad. Mean,

standard deviation are reported for both prediction error

and F-Score. The categories are colored as per the groups

they belong. The higher, the number of Gs in the category,

the more accurate the prediction results.

Category Network CC Prediction (top 10) F-score e

GGGG AS 5.69,6.37 0.81,0.06

GGGG CA 8.76,6.02 0.77,0.08

GGBG HT 26.96,17.44 0.42,0.35

GGBG HP 11.64,5.76 0.42,0.33

BBBG SO 27.96,21.69 0.35,0.26

BBBB FW 109.90, 92.39 0.24,0.25

BBBB SU 147.06,106.53 0.02,0.09

Category Network BC Prediction (top 10) F-score

GGGG AS 6.97,7.68 0.72,0.08

GGGG CA 9.17,6.47 0.64,0.07

GGBG HT 20.74,14.86 0.52,0.30

GGBG HP 14.22,11.23 0.46,0.29

BBBG SO 26.15,24.72 0.39,0.30

BBBB FW 56.19, 34.95 0.20,0.19

BBBB SU 32.58,40.14 0.18,0.21

Table 1: Classification and the prediction performance

for real-world networks.
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Abstract

Reducing congestion inside stores (e.g., supermarkets)

is of great interest to many retailers; congestion affects

customer experience, and may delay the fulfillment of

online orders. We model stores as planar graphs in which

nodes represent zones, and edges connect the nodes of

neighboring zones. Customers traverse through the graph

via the edges, and they queue to be served at each node.

Once they have been served, they visit the next node.

This approach allows us to apply standard results from

queuing theory to find queue sizes and other quantities of

interest.

We analyse how the connectivity of the network affects

the total mean queue size Q, our measure of congestion.

We also find the network structures that minimize Q under

reasonable constraints on the network structure, which

gives insight into the store layouts with less congestion.

We would like this contribution to be considered for a

poster only.
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Abstract:  
 
Multi-channel Electroencephalography (EEG) signals measure the brain field potential 
fluctuations on the skull and we can mathematically calculate the electric current density 
inside the brain by solving an inverse problem. Based on these data, we can build 
functional network and connectivity of various brain areas during particular tasks of 
brain. In this talk, we briefly introduce mathematical methods for the EEG source 
reconstruction problems and discuss some of the applications in finding abnormality in 
brain activities during seizures of an infant patient with Glucose Transporter Deficiency 
Syndrome. We will also discuss a dynamic seizure model on a system of ordinary 
differential equations built on the network topology suggested from the EEG data, and 
compare the modeled dynamics with experimental data. 
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Summary

Detecting anomalous patterns from dynamic and multi-

attributed network systems has been a challenging prob-

lem due to the complication of temporal dynamics and

the variations reflected in multiple data sources. We

propose a Multi-view Time-Series Hypersphere Learning

(MTHL) approach that leverages multi-view learning and

support vector description to tackle this problem. Given

a dynamic network with time-varying edge and node prop-

erties, MTHL projects multi-view time-series data into a

shared latent subspace, and then learns a compact hyper-

sphere surrounding normal samples with soft constraints.

Our approach has several advantages: (1) it preserves

the original temporal regularities, (2) it extracts robust

representations from multi-view data sources, (3) it pro-

duces an optimized hypersphere that allows for effectively

distinguishing normal and abnormal cases.

Extended Abstract

Anomaly detection in dynamic network systems has at-

tracted lots of attention in recent years. Most prior works

do not take temporal variations into account [1, 3] – they

divide streaming data into fixed-length segments and use

integrated features as inputs to train models. The integra-

tion of attributes might lead to potential loss of temporal

information that is critical for anomaly detection. Be-

sides, those techniques primarily focus on single-view data

– that is, data captured from a single or homogeneous data

source. In addition, many studies are not able to provide a

specific representation of normal patterns, which is signifi-

cant for understanding a system. To deal with these tasks,

we propose a novel approach called Multi-view Time-series

Hypersphere Learning (MTHL). Our framework exploits

mutual supportive multi-view time-series, preserves the

temporal structure of streaming data, and learns a net-

work’s normal patterns by optimizing a hypersphere.

As shown in Figure 1, we consider a dynamic network

with a set of attributed vertices and dynamic relationships

among them. The network can describe a diversity of

Figure 1: Illustration of our framework.

real-world systems, for instance a city. In this case, the

vertices can represent regions with the attributes reflecting

their socio-economic factors, and the edges represent trans-

portation flows between regions. An anomalous region

can be detected if its time-dependent attributes or rela-

tionships deviated from what would normally be expected.

First, to preserve the temporal variation of multiple at-

tributes, we use multivariate time series representation –

a chronologically ordered sequence of feature vectors to

capture variation in attribute values. Second, inspired

by [2], we assume that all multi-view time series share a

common latent subspace, and the data from the normal

system would be projected into a compact area in the

latent space. MTHL learns a hypersphere around the

reference set and distinguishes normal and abnormal. Our

experiments on synthetic and real-world data demonstrate

MTHL’s promising results in detecting anomalous events.

Moreover, our approach exhibits consistent and good per-

formance in dealing with noises, anomaly pollution in

training phase and data imbalance.
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Summary

Across multiple scales of spatio-temporal variation, the

adult human brain is characterized by networks of neu-

ronal ensembles that differentially synchronize their ac-

tivity in response to cognitive demands and/or external

inputs. Topologically, these are networks have small-

world and scale free architectures that facilitate optimally

efficient processing of neural information. Optimality

may be associated with low network redundancy, high

efficiency in hierarchical processing and degeneracy. Al-

though a number of studies have shown that small-world

networks represent a fundamental aspect of the functional

organization of the healthy adult brain, little is known

about the functional topologies of brain networks and

their properties in the developing brain. In particular,

it is unclear how fundamental topological properties of

adult brain networks emerge in early life, as the brain un-

dergoes profound structural and functional changes, in-

cluding selective connection pruning and strengthening,

to facilitate increasingly efficient information processing

and complex behaviors. To address this question, longi-

tudinally acquired brain data from large cohorts is nec-

essary, particularly given significant variability of neural

activity in the developing brain, in part associated with

unique experiences in early life.

To robustly characterize dynamically varying neuronal

network architerctures during early development, a co-

hort of 395 healthy infants was measured longitudinally

with scalp EEG from 6 to 36 months of life. The dy-

namic reconfigurations and progressive re-organization of

both task-independent and functional networks were esti-

mated using probabilistic directional and non-directional

connectivity measures. It is shown that there is a sig-

nificant re-organization of brain network topologies even

in the first year of life, resulting in decreased network

redundancy and increased efficiency. However, the hierar-

chical organization of neural information processing does

not emerge until later in life by 36 months of age. Yet,

the infant brain may be able to perform the required cog-

nitive tasks. It is shown that this may be in part due to

an inherent degeneracy in brain networks that may be in

place early in life.
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Summary

We study collective decision making on a network us-

ing a two-alternative choice task. Typically, group evi-

dence accumulation is modeled heuristically with a coupled

drift-diffusion equation. Here we take a more principled

Bayesian approach and investigate the behavior of rational

agents who can only observe each others actions. Inter-

estingly, this analysis shows that even when no action is

observed, information can still be communicated between

the agents when their decision thresholds are asymmetric.

In recurrent networks the situation become more com-

plex, as agents have to account for correlations in the

information received.

Introduction

The two-alternative choice task has been thoroughly stud-

ied for a single observer [1]. Here an observer attempts

to ascertain the true state of the world, H ∈ {±1}, by

making sequential noisy observations. An ideal observer

sums the resulting log likelihood ratios, until the sum of

the evidence reaches one of two pre-determined decision

thresholds. Each threshold is identified with a decision.

Model

We extend this single-agent model of evidence integration

to a directed network with N agents. Each of the agents is

trying to infer the state of the true state of the world, H ∈
{±1}. Again, each agent makes independent observations

about this state, and accumulates evidence to reach a

decision. However, the agents can observe each other’s

decisions, but have no access to each other’s observations.

Thus, explicit communication between agents connected

by a directed edge occurs only when the agent being

observed makes a decision. We describe how an ideal

agent integrates information received from other agents

combined with its own direct observations to reach a

decision.

Results

If agents are biased, they set different evidence thresholds

for their decision. We show that in such asymmetric

situations if all agents know the evidence thresholds of
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Figure 1: Each plot shows (in blue) how much evidence

is gained from knowing a single neighbor has not made a

decision for two different sets of thresholds. It also shows

(in orange) the expected value of that neighbors evidence

given that they have not made a decision.

their neighbors, then agents can obtain information even

from observing that their neighbors have not made a

decision. Even in the simple case when the evidence

distributions are discrete and N = 2, the evidence gained

from observing a neighbor who has not yet made a decision

is heavily dependent on the thresholds (See Figure 1).

We derive stochastic differential equations in the con-

tinuum limit of many observations. An analysis of these

equations, confirmed by simulations shows, that the struc-

ture of the network affects the decision proces. Finally,

we compare the results to other models such as a coupled

diffusion equation [2].
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The information that is locally available to individ-

ual nodes in a network may significantly differ from the

global information. We call this effect local information

bias. This bias can significantly affect collective phenom-

ena in networks, including the outcomes of contagious

processes and opinion dynamics.To quantify local infor-

mation bias, we investigate the strong friendship paradox

in networks [1], which occurs when a majority of a node’s

neighbors have more neighbors than it does itself.

Consider a network with a degree distribution p(k)

where nodes have a binary attribute x (e.g., active vs

inactive). A node is in the paradox regime if attribute val-

ues x′ for more than half of its neighbors are 1. The

global probability of the strong friendship paradox is

P> 1
2

=
∑

k p(k)f(k), the weighted sum of observations by

nodes with degree k. Assuming that the degrees of neigh-

bors are independent and identically distributed (iid), the

probability of the paradox for each degree class is [2]

f(k) =
k∑

n> k
2

(
k

n

)
µx(k)n[1− µx(k)]k−n (1)

Here µ(k) is the probability a degree k node has x = 1,

µx(k) =
∑
k′

P (x′ = 1|k′)e(k, k
′)

q(k)
, (2)

where e(k, k′) is the joint distribution of degrees of linked

nodes, and q(k) =
∑

k′ e(k, k′). Fig. 1a shows P> 1
2

in a

power law network for different assortativity r (which is

given by e(k, k′)). Thus, even when few nodes are active

(have x = 1), many others will observe the “majority

illusion” [2], i.e., see that the majority of their neighbors

are active.

For the degree version of the strong friendship paradox,

we can define an indicator function xi = 1k′
i>k. The node

is in the paradox regime if x ≡ 1
k

∑k
i=1 xi >

1
2 . Then

Eq. (2) becomes µ(k) =
∑

k′>k
e(k,k′)
q(k) . However, plugging

this into Eq. (1), the function f(k) (dotted line in Fig. 1b)

does not fit the data. This suggests that the neighbors are

correlated [3]. Thus, Eq. (1) must be modified to represent
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Figure 1: (a) The global fraction of nodes that have a

majority active neighbors in a scale-free network as a

function of degree-attribute correlations and assortativity.

Only 5% of the nodes are actually active. (b) Comparing

observed paradox in a citation network to predictions of

the binomial and the correlated model.

a multivariate rather than a single binomial distribution:

f(k) = 1− Φ

{ 1
2 − µx(k)

σx(k)

}
, (3)

the variance is σ2
x(k) = 1

kµx(k)[1−µx(k)][1+(k−1)ρx(k)].

The function ρx(k) is the degree correlation of two random

neighbors xi and xj . This has to be derived from the joint

degree distribution of a connected ordered triplet of nodes

t(ki, k, kj). From the information given by µx(k) and

ρx(k) we can calculate f(k) in high precision (solid line

in Fig. 1b).

Our analysis identified certain properties that determine

the strength of the paradox in a network: attribute-degree

correlation, network assortativity and neighbor-neighbor

degree correlation. We also discovered that the neighbor-

neighbor degree correlation is significant in real world

networks. Understanding how the paradox biases local

observations can inform better measurements of network

structure and our understanding of collective phenomena.
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Abstract

Many complex systems of scientific interest are too com-

plicated to derive realistic models of their dynamics from

scientic principles, or even determine from these principles

which variables interact with each other. An alternative

approach, based on empirical processing of experimen-

tal observations, is to sample the variables in time and

try to infer the dependencies in the form of a directed

graph, an approach that we combined with the concept

of information to develop Causation Entropy (CSE). We

demonstrate the successful application of CSE when exact

values of entropy can be calculated (revealing the behavior

of toy symbolized stochastic processes under misplaced

partitions). We also show the successful use of CSE in

conjunction with efficient nonparametric estimation of

entropy (simulations of highly nonlinear discrete time

dynamical and stochastic systems and an application to

collective animal motion using empirically gathered data).

We are currently working with neuroscientists at Wake

Forest to uncover brain function from fMRI imagery in

terms of known anatomical regions. We will discuss how

the directed graph of information flows depend on the

discretization of time in continuous time systems and also

details regarding the definition and estimation of entropy

when the samples lie near an underlying measure zero

attractor.
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Summary

Many traditional bioinformatics expression analyses dis-

card much of the data inherent in the interactions known to

occur between genes and proteins. We harness these data

as well as toplogical considerations of protein interaction

networks to identify novel therapeutic targets in Ewing

sarcoma, a rare tumor characterized by transcriptional

dysregulation.

Abstract

Ewing sarcoma (ES) is a deadly and mysterious childhood

cancer. Though advances have been made in its treatment,

survival has plateaued over the last several decades as

insights into the genotype and phenotype of ES cells have

yielded disappointingly few viable treatment options [1].

Approximately 85% of ES cases are characterized by a

translocation between chromosomes 11 and 22, resulting

in a fusion protein known as EWS-FLI. Unfortunately,

this fusion proteins structure is not well-conserved and

currently undruggable [4]. If we are ever to cure this

disease, we must explore genes differentially regulated

by EWS-FLI and core pathways that we can perturb to

change the ES phenotype.

Aside from the EWS-FLI translocation, ES is a ge-

nomically quiet disease. Therefore, our study focuses on

changes at the RNA level. RNA-Seq studies by our collabo-

rators uncovered nearly 6,000 genes differentially regulated

by EWS-FLI; sitting atop a hierarchy with complex in-

terconnections allows EWS-FLI to create an environment

where it is difficult to tease out signal from noise.

We apply a network-based approach that combines pro-

tein interaction networks (PIN) and expression-level anal-

ysis by superimposing RNA-Seq data onto a PIN and

considering this structure as an abstraction of the coupled

thermodynamic processes that underlie all actions of a cell.

This paradigm allows us to calculate Gibbs free energy

which takes into account both the topology of the network

and how up- or down-regulated a protein/gene is com-

pared to interactors. We have found robust correlations

of PIN Gibbs free energy with disease progression and

survival in multiple cancer types [2]. To search for key

pathways, we utilize the concept of persistent homologies,

features of a surface that can be detected after smoothing

out roughness and noise. For the Gibbs free energy land-

scape, this amounts to identifying the subnetworks that

are the primary contributors to a phenotype.

Once the network has been pruned to only the most

important constituents, we analyze the network using

Betti number to find genes whose removal would most

destabilize the network by breaking as many cycles as

possible. The more cycles a network has, the greater its

robustness: if one link in a cycle is broken or a node

removed, the network can reroute around it.

Work published by our collaborators has demonstrated

this technique can uncover novel therapeutic targets [3].

This idea is currently being used in phase II trials in

Europe to identify personalized drug targets for cancer

patients.

We report strong qualitative and quantitative differences

in the Gibbs landscapes of relatively treatment resistant

and sensitive ES cell lines. The cell lines display major

alterations in which biologically relevant subnetworks are

upregulated. We identify several novel and several current

therapeutic targets using Betti numbers.
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