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PULSE PROPAGATION ALONG GRANULAR CHAINS

Granular chains serve as convenient model systems to study energy propagation
experimentally, numerically, and theoretically

An uncompressed chain of granules that just
touch, initially at rest except for first granule
with velocity Vg

Sonic vacuum



PULSE PROPAGATION ALONG GRANULAR CHAINS

Granular chains serve as convenient model systems to study energy propagation
experimentally, numerically, and theoretically

For the mathematically inclined, granular chains are beautiful nonlinear systems

An uncompressed chain of granules that just "
touch, initially at rest except for first granule
with velocity Vg

_____ V(3) ~ 3% Parabolic

Vo)

Even parabolic potential is nonlinear!

There is NO restoring force, only a repulsive force

Sonic vacuum



PULSE PROPAGATION ALONG GRANULAR CHAINS

Granular chains serve as convenient model systems to study energy propagation
experimentally, numerically, and theoretically

For the mathematically inclined, granular chains are beautiful nonlinear
systems
An uncompressed chain of granules that just "

touch, initially at rest except for first granule
with velocity Vg

_____ V(3) ~ 3% Parabolic
V(3) ~ 52° Hertz

Even parabolic potential is nonlinear!

There is NO restoring force, only a repulsive force

Sonic vacuum

The usual potential



PULSE PROPAGATION ALONG GRANULAR CHAINS

1. How does a pulse propagate in a granular medium?

Distribution of energy
Dissipation of energy
Fragmentation

FI— Bl ¥, fm

2 1400 e ——

120) s
1000) -+

4 ".

400 -
time, [us] 600 ;."'

yzfﬂfﬁ TN |

From Spadoni and Daraio, PNAS 107, 7230 (2010)

Prototype of a nonlinear acoustic lens used to
focus acoustic energy into a “sound bullet”
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Some applications benefit from spreading of energy and fragmentation (e.g. shock
absorption), others from focusing of energy (e.g. detection of buried objects, sound
bullets).



PULSE PROPAGATION ALONG GRANULAR CHAINS

1. How does a pulse propagate in a granular medium?

2. How does the physical design of the medium affect these behaviors?
(Figs: Sen et al., Herbold et al.)
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1. How does a pulse propagate in a granular medium?

2. How does the physical design of the medium affect these behaviors?
(Figs: Sen et al., Herbold et al.)
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PULSE PROPAGATION ALONG GRANULAR CHAINS

1. How does a pulse propagate in a granular medium?

2. How does the physical design of the medium affect these behaviors?
(Figs: Sen et al., Herbold et al.)

Monodisperse chains Mixed material chains
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3. Very long list of interesting questions, including:

Different initial conditions: precompression, no longer sonic vacuum, sound
waves can propagate. Profound effects on pulse propagation.

Shapes of granules, e.g. cylinders or ovals instead of spheres. Profound
effects on pulse propagation.

5

Mass and size distribution profile of the granules in the chain, including
random distributions. Profound effects on pulse propagation.

~ge-le geeedd (Fraternali et al.)




3. Very long list of interesting questions, continued:

Manner of excitation, e.g. a continuous excitation profile on the first granule
instead of an impulse.

’.W > .W
Higher dimensions: packing geometry, rotational motion, everything entirely
different.

Two dimensions

One dimension

FRICTION has major consequences on energy propagation



GOALS - and how to achieve them

Experiments: there are many well-controlled experiments in a variety of
one-dimensional chains and a few in two-dimensional
granular beds.

*

Numerical simulations: While there are lots of them, they are severely limited
because there are so many parameters. Simulations are typically
done in small systems because of computational constraints.

*

ANALYTIC THEORY: OUR GOAL is to greatly extend what is now available
in order to overcome experimental and numerical limitations.



ANALYTIC APPROACHES:
F=ma

An uncompressed chain of granules that just
touch, initially at rest except for first granule
with velocity vg
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An uncompressed chain of granules that just
touch, initially at rest except for first granule

with velocity vg emme- V(z)~ 52 Parabolic
V(3) ~ 523 Hertz

Equations of motion:
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Only when k and k+1 Only when k-1 and k
overlap. Otherwise =0 overlap. Otherwise =0

Plus: initial pulse



ANALYTIC APPROACHES:
F=ma

An uncompressed chain of granules that just
touch, initially at rest except for first granule

with velocity vg emme- V(z)~ 52 Parabolic
V(8) ~ 825 Hertz

Equations of motion:

o -1 -1
MLy = —Tr—1(Te — T+1)" ~ + T (Tr—1 — Tk)" How to solve??
Only when k and k+1 Only when k-1 and k How does pulse propagate?
overlap. Otherwise =0 overlap. Otherwise =0

Plus: initial pulse




Two very different analytic approaches

1. Continuum approximation (Nesterenko, 80's)

Equations of motion for chain of monodisperse cylinders (n=2) but only when there is overlap

T = — (T — Ti+1) + (Tp—1 — k)



Two very different analytic approaches

1. Continuum approximation (Nesterenko, 80's)

Equations of motion for chain of monodisperse cylinders (n=2) but only when there is overlap
L = — (T — Tht1) + (T—1 — Tk)

Taylor expand xj41 about x; and keep a discreteness correction (important!)
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Two very different analytic approaches

1. Continuum approximation (Nesterenko, 80's)

Equations of motion for chain of monodisperse cylinders (n=2) but only when there is overlap
L = — (T — Tht1) + (T—1 — Tk)

Taylor expand xj41 about x; and keep a discreteness correction (important!)

?x(k,t)  9%x(k,t) N 1 0%x(k,t)
otz Ok2 12 9k4

Obtain a traveling pulse solution

x(k,t) = b(t) f (%)

Amplitude b, shape f, width A




PULSE ALONG A CHAIN OF MONODISPERSE CYLINDERS:

x(k,t) = b(t) f (%)

The pulse retains 95% of the initial energy

Shape:

f(z) = 2.431 /oo A% (2Y/3(2/3y))dy

Width and amplitude:

This describes a pulse that gets bigger and fatter with time




UPSHOT: Pulse travels forward with increasing width and amplitude

Momentum conservation requires that particles be ejected
backwards

CHAIN FRAGMENTATION




UPSHOT: Pulse travels forward with increasing width and amplitude

Momentum conservation requires that particles be ejected
backwards

CHAIN FRAGMENTATION

&1, = —0.158k 5/ boABEE



Equations of motion for chain of monodisperse spheres (n=5/2)

Ep = — (g — Tpg1)? % + (xp_1 — x1)3/2

Continuum approximation + discreteness correction

< 8:13)3/2_'_ 1 ( 8:10)1/2 93 1 83
ok 16 \ 9k k3
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82:13_ 3

ot2 9k
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Obtain a traveling pulse solution (Nesterenko)



PULSE ALONG A CHAIN OF MONODISPERSE SPHERICAL GRANULES:

With co = 0.836

The pulse retains 99.7% of the initial energy - NO BACKSCATTERING, no fragmentation

Velocity depends on amplitude

PULSE DOES NOT SPREAD OR GROW, it moves with shape unchanged
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With co = 0.836

The pulse retains 99.7% of the initial energy - NO BACKSCATTERING, no fragmentation

Velocity depends on amplitude

PULSE DOES NOT SPREAD OR GROW, it moves with shape unchanged
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Taking stock so far

*Continuum approximation including a discreteness correction works very well for monodisperse
(and also for softly non-monodisperse) granular chains, even when pulse is very narrow.
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Taking stock so far

*Continuum approximation including a discreteness correction works very well for monodisperse
(and also for softly non-monodisperse) granular chains, even when pulse is very narrow.

*In a chain of cylindrical granules:
Pulse grows in amplitude and width as it propagates
Pulse speed is constant, independent of amplitude
Chain fragments
Pulse carries 95% of initial energy

*In a chain of spherical granules:
Pulse remains constant in shape and speed as it propagates
Pulse speed depends on pulse amplitude
Chain does not fragment
Pulse carried essentially all of initial energy

Some additional pluses:
Continuum approximation can handle weakly nonlinear and even linear cases,
Successfully predicts not only solitary waves but also periodic and shock waves.

Some serious minuses:
It can not easily handle large variations in granule radius or size
Difficult to extend to higher dimensions

WHAT TO DO? A surprising solution



2. “Opposite” to Continuum Theory: BINARY COLLISION APPROXIMATION

Simplest version: transfer of energy along the chain occurs via a succession of
two-particle collisions.

Particle k=1 collides with initially stationary particle k=2, which then acquires a
velocity and collides with stationary particle k=3, and so on.

Velocities after each collision follow from conservation of energy and momentum.

QUESTION: Does this
work?




FULL EQUATION OF MOTION when granules overlap:

medr = —Te(@r — Trg1)> 2 + re—1 (Xp—1 — x5)3/2
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FULL EQUATION OF MOTION when granules overlap:

medr = —Te(@r — Trg1)> 2 + re—1 (Xp—1 — x5)3/2
BINARY COLLISION APPROXIMATION - SIMPLEST CASE
. 3/2
mede = —Te(Tr — Trr1)>/

Mpg1Fpt1 = T (T — Trogq)>/?

CAN SOLVE RECURSIVELY

PLUSES: Can handle most granular configurations “two by two” (see caveat later)

MINUSES: Can only handle narrow pulses, pulse fronts



RELATIVE ERROR IN PULSE VELOCITY

Continuum approximation vs Binary Collision approximation
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For cylinders the binary collision
approximation is not appropriate.

For spherical granules, the error
with either is smaller than 2%!!



TAPERED CHAINS, DECORATED CHAINS

BACKWARD tapered chain

Good shock absorption properties: tapering in either direction attenuates energy
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Recursive BINARY COLLISION solutions

k—1 9
Pulse velocit Ve = L. = H ,
y k k . 1+ mj+1
3=1 m;

We say that the pulse “arrives at granule k” when the velocity of granule k
surpasses that of granule k-1. The residence time on granule k is the time
that granule k takes to transfer the pulse from k-1 to k+1.



Recursive BINARY COLLISION solutions

k—1 o
Pulse velocit Ve = L. = H ,
y k k . 1+ mj+1
3=1 ™m;

We say that the pulse “arrives at granule k” when the velocity of granule k
surpasses that of granule k-1. The residence time on granule k is the time
that granule k takes to transfer the pulse from k-1 to k+1.

Residence time

_ Sk 2/5 —1/5 T(7/5)
n=va () o £(9/10)

Now apply results to different tapering protocols



An example: backward geometrically tapered chain mmr'fﬂff'

Decay of pulse amplitude along chain Decay of pulse amplitude with time

20 40 60 t

k
Top to bottom: g=0.01, 0.02, 0.05, 0.08

v ~ 1t (q)
vr, = A(q)exp [—kIn A(q)] () ~t~7

Decay is exponential Decay is algebraic, power
law



An example: backward geometrically tapered chain mmr'fﬂff'

Rit1 1 1
R (1—-q), A(q = 5 (1 + a—q> _q)3)

(@) = ——In A(q)
n(q)

Decay of pulse amplitude with time

20 40 60 t

k
Top to bottom: g=0.01, 0.02, 0.05, 0.08

v ~ 1t (q)
vr, = A(q)exp [—kIn A(q)] () ~t~7

Decay is exponential Decay is algebraic, power
law



BACKWARD GEOMETRICALLY TAPERED CHAIN SReRCO T )

Pulse residence time Pulse position vs time

g = 0.01 to 0.06 in steps of 0.01, top to bottom



DECORATED CHAINS

0-0-0-0-0

®-0-0-0-0

Simple decorated chain Tapered decorated chain

Requires an extended version of the Binary Collision approximation

REASON: Small granules rattle back and forth



DECORATED CHAINS

0-0-0-0-0

9-0-0-0-0

Simple decorated chain Tapered decorated chain

Requires an extended version of the Binary Collision approximation

REASON: Small granules rattle back and forth

STRATEGY: Replace decorated chain with an effective undecorated chain

TRICKY: Choice of masses and interactions in the effective undecorated chain




0-0-0-0-9

o —  SO90e
......... Effective chain

STRATEGY (a non-trivial exercise):

* Approximate the motion of the small granule

T(t) = Tk (t) + Asin(wt + @)

* Determine xp,w, A

* Eliminate equations for small granules

* End up with effective chain of modified end masses, modified
interior masses, and modified interactions that all depend on
radius and mass of small masses



THREE-GRANULE TEST CASE: BIG, SMALL, BIG

Displacement
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Line: theory.



SIMPLE DECORATED CHAIN
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SIMPLE DECORATED CHAIN
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Time taken by the pulse to reach the kth
granule for different small-granule radii.
Symbols: theory.

Results equally good for tapered
decorated chain



MORE COMPLICATED PROFILES IN BABY STEPS

A random radius/mass distribution of small granules in the decorated chain

Distribution of time of arrival of the pulse to the penultimate large granule
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Ultimate goal: arbitrary profile
OPTIMIZATION!



Most recent work based on the Binary Collision Approximation:

Based on experiments of Herbold and Nesterenko on chains of o-rings (APL Vol. 90, 2007)

(a) (b) Toroidal rings between rigid cylinders that
act as nonlinear springs

Stainless Steel Caps

Stainless
Steel Striker

PTFE
Holder Two-term potential PLUS pre-compression (f)
PTFE Piezo .
; Wires to
O-ring Gauge oscilloscope

Stainless Steel
Cylinder with Sensor

Stainless Steel
Cylinder

Ep=F — (X — Xp1)®? — b(ap — xpy1)®

Epr1=—F + (Tr — Trg1)> 2 + b(xp — Tpp1)®



pulse velocity

RESULTS FOR CHAINS OF O-RINGS
BCA works well as long as pre-compression is not too strong.
In the case of gravity, it works well as long as chain is not too long.

It works well for current experimental scenarions (Herbold and Nesterenko)
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Simulations and analytic results Simulations and analytic results



AMONG OUR CURRENT INTERESTS: TWO-DIMENSIONAL GRANULAR BEDS

So far: purely nhumerical

Hexagonal packing F,, = anr |hgr |3/2 + ’)’ilkk'

Hitting angle @
Fy = —|hyy |2 (arAsi + v1v:)

Observation angle @

Normal overlap h,, = yr — Yy

Furaw e awwarawaewaraawaw ey

RED: motion to the right

BLUE: motion to the left

INTENSITY: magnitude of velocity

Time=0,0000e+00 Gb=1,0e-06 Gve=1,6e+00 — Links: N=0152 Rchg=4.§
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Is mathematically and physically interesting. These systems are highly nonlinear and
discrete, and support a variety of propagating excitations, including highly localized pulses.



END NOTES

| hope | have convinced you that the study of pulse propagation in granular materials
Is mathematically and physically interesting. These systems are highly nonlinear and
discrete, and support a variety of propagating excitations, including highly localized pulses.

Most existing knowledge on these systems is based on laboratory and numerical
experiments on very particular granular chains (N = 19 is common). It is not always clear how
to use this knowledge for design and prediction purposes.



END NOTES

| hope | have convinced you that the study of pulse propagation in granular materials
Is mathematically and physically interesting. These systems are highly nonlinear and
discrete, and support a variety of propagating excitations, including highly localized pulses.

Most existing knowledge on these systems is based on laboratory and numerical
experiments on very particular granular chains (N = 19 is common). It is not always clear how
to use this knowledge for design and prediction purposes.

We have been particularly interested in developing theoretical tools for this
purpose. Our newest results rely on a binary collision approximation that has
been extremely successful in a number of chain geometries. We have developed
generalizations of this approximation to deal with more complex geometries.
This promises to provide a direct way to optimization.



END NOTES

| hope | have convinced you that the study of pulse propagation in granular materials
Is mathematically and physically interesting. These systems are highly nonlinear and
discrete, and support a variety of propagating excitations, including highly localized pulses.

Most existing knowledge on these systems is based on laboratory and numerical
experiments on very particular granular chains (N = 19 is common). It is not always clear how
to use this knowledge for design and prediction purposes.

We have been particularly interested in developing theoretical tools for this
purpose. Our newest results rely on a binary collision approximation that has
been extremely successful in a number of chain geometries. We have developed
generalizations of this approximation to deal with more complex geometries.
This promises to provide a direct way to optimization.

We have also been interested in the effects of friction on pulse propagation. This has
led to the discovery of entirely new excitation patterns in granular chains.



END NOTES

| hope | have convinced you that the study of pulse propagation in granular materials
Is mathematically and physically interesting. These systems are highly nonlinear and
discrete, and support a variety of propagating excitations, including highly localized pulses.

Most existing knowledge on these systems is based on laboratory and numerical

experiments on very particular granular chains (N = 19 is common). It is not always clear how
to use this knowledge for design and prediction purposes.

We have been particularly interested in developing theoretical tools for this
purpose. Our newest results rely on a binary collision approximation that has
been extremely successful in a number of chain geometries. We have developed
generalizations of this approximation to deal with more complex geometries.
This promises to provide a direct way to optimization.

We have also been interested in the effects of friction on pulse propagation. This has
led to the discovery of entirely new excitation patterns in granular chains.

ONGOING WORK INCLUDES EXTENSION OF THE THEORY TO ARBITRARY PROFILES

AND UNDERSTANDING ENERGY PROPAGATION IN HIGHER DIMENSIONAL GRANULAR
BEDS.



Our publications on the subject And the work continues......
1. Dynamics of two granules, PRE 68, 021303 (2003).

2. Pulse dynamics in a chain of granules with friction, PRE 68, 041304 (2003).

3. Self-similarity in random collision processes, PRE 68, 050103(R) (2003).

4. Pulse propagation in chains with nonlinear interactions, PRE 69, 016615 (2004).
5. Pulse velocity in a granular chain, PRE 69, 037601 (2004).

6. Velocity distribution in a viscous granular gas, PRE 71, 032301 (2005).

7. Observation of two-wave structure in strongly nonlinear dissipative granular chains,
PRL 98, 164301 (2007).

8. Sort-pulse dynamics in strongly nonlinear dissipative granular chains, PRE 78,
051303 (2008).

9. Energy transport in a one-dimensional granular gas, PRE 79, 061307 (2009).

10. Pulse propagation in tapered granular chains: An analytic study, PRE 80,
031303 (2009).

11. Pulse propagation in decorated granular chains: An analytical approach, PRE
80, 051302 (2009).

12. Pulse propagation in randomly decorated chains, PRE 82, 011306 (2010).

plus preprints under review and in preparation
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