


Extreme elastohydrodynamics: 
of films, flags, fishes and finches ....

Extreme geometries + extreme rates

- how films heal, peel and fly

- how flags flutter  
            and how fishes swim 

- how tubes oscillate and birds sing

L. Mahadevan
Engineering and Applied Sciences

Organismic and Evolutionary Biology
Harvard University

It is assumed here that the system is stationary, i.e., that
at t! dt the same system is just shifted by Udt. As a
function of the constant velocity U, one can write

vx " # 3U
2h2

$y2 # h2%:

Let us now write the power Pd dissipated in such a flow
by viscous stress. It reads

Pd "
ZZZ

F & vdxdydz "
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#@p
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vxdSdx;

and, per unit length of the contact line,
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The lower boundary xmin is very important as the pre-
vious expression usually diverges for h$x% ! 0. In the
following, the value of xmin will be taken such that
h$xmin% corresponds to the molecular mean free path, as
below this length scale the hydrodynamic viscous treat-
ment is no longer valid in any case. The upper boundary
xmax plays a much smaller role and its contribution can
generally be neglected (taking xmax " 1). This may not be
the case however when the bonding wave comes close to
the edge of the wafer, where the effects of a reduced
dissipation produce an increase of the bonding velocity
(which can be observed).

We write now the power of the driving force, i.e., the
amount of energy obtained per time unit from the bonding
forces (bf),

Pbf " 2"w
dx
dt

" 2"wU;

where 2" is the bonding energy.
Equating these two power quantities, we obtain the

equation giving the bonding front velocity

2"wU " 6!U2w
Z xmax

xmin

dx
h$x%

which yields

U " 2"
6!

Rxmax
xmin

dx
h$x%

: (2)

Equation (2) is not in itself a direct relation between
bonding velocity (U) and energy (2") as one needs to know
the integral

Z xmax

xmin

dx
h$x%

for the considered profile. This profile depends on the
bonding energy.

From an experimental point of view however, Eq. (2) is
interesting as the velocity is usually measured from an IR
video recording of the bonding front propagation. The
video images do not only give positions of the bonding
line, but also allow the reconstruction of the gap profile
h$x%, through the observation of equal-thickness interfer-
ence fringes (Fig. 2).

Interference fringes are seen on the pictures for an IR
wavelength of # ' 1:3 $m i.e., showing contour lines
every !2h " #=2 " 0:65 $m. From the lateral spacing
of these fringes, the profile can be reconstructed (see
Fig. 3). The experimental profile can be used to estimate
the dissipative part. Data are either fitted to the theoretical
profile or integration is directly performed numerically.
The most important part is the lower cutoff xmin. Taking
xmin so that 2hmin is equal to the molecular mean free path
" (" " 0:5( 10#7 m for air at STP), we can calculate
numerically the integral at the denominator of Eq. (2). For
a bonding energy of 2" " 100 mJ=m2, one would predict
a velocity of the order of 2 cm=s, close to what is actually
observed. We assume the air trapped between the two
wafers has a viscosity at 20 )C of ! " 18:6( 10#6 Pa s.

We shall now determine the shape of the plate profiles
when the bonding front advances (as measured using the IR
interference fringes) and show that their deformation
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FIG. 2. IR photograph of the bonding front propagating across the wafer assembly. The video sequence allows the determination of
the bonding velocity while the fringe pattern gives the wafer deformation profile close to the bonding line (see Fig. 3).
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FIG. 2. IR photograph of the bonding front propagating across the wafer assembly. The video sequence allows the determination of
the bonding velocity while the fringe pattern gives the wafer deformation profile close to the bonding line (see Fig. 3).
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FIG. 2. IR photograph of the bonding front propagating across the wafer assembly. The video sequence allows the determination of
the bonding velocity while the fringe pattern gives the wafer deformation profile close to the bonding line (see Fig. 3).
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(Reiutord; 2006)
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Figure 5
A supported intermembrane junction in which antibodies are bound to the lower membrane.
Fluorescence interference contrast (FLIC) imaging of the upper membrane reveals
topographical features (a) that reflect the distribution of fluorescently labeled antibodies (b). A
schematic of the structure is illustrated in c, and a three-dimensional topography map
calculated from a marked region of the FLIC data is plotted in d.

fluctuations is required for patterning to occur. Only membrane modes that are slow
enough to couple to protein mobility drive intermembrane protein patterns. How-
ever, the long wavelength modes that proved most important in these experiments
are not likely to exist in live cell membranes owing to the enhanced stiffness provided
by coupling to the cytoskeleton. Nonetheless, similar processes may possibly occur
in live cells but on different length scales.

MEMBRANE BENDING FLUCTUATIONS
Intercellular junctions create a complex environment in which a variety of collec-
tive molecular motions, over relatively long length scales, can become coupled to
individual molecular interactions (35). The kinetic on rate for binding of an in-
tercellular receptor-ligand pair, for example, is intimately associated with the local
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Figure 4
(a) Schematic drawing of an
immunological synapse
between a T cell and an
antigen presenting cell
(APC). (b) Fluorescence
image of the synapse
illustrating the positions of
T cell receptor (TCR)
( green) and lymphocyte
function associated antigen
(LFA) (red ). Cognate
ligands on the APC, major
histocompatibility complex
(MHC), and intercellular
adhesion molecule (ICAM)
are organized into a
complimentary structure.
TCR-MHC and
LFA-ICAM complexes have
preferred intermembrane
separations of 15 and
42 nm, respectively. Thus
membrane bending energy
is reduced by segregating
the complexes (c).

The observed protein patterns do not represent equilibrium configurations. Pre-
sumably, the equilibrium state would be a flat membrane junction from which all
proteins had been excluded. In most experiments there was a large area to which the
protein could escape, and the mechanical strain energy in the membrane is clearly
minimized when it is not bent. Nonetheless, characteristic length scales for the pro-
tein patterns were observed. This has been attributed, in part, to a kinetic process
whereby the protein is plowed over the surface by the second membrane as it ad-
heres. The protein is driven into densely packed regions until it ultimately jams, and
the force generated by membrane bending strain is no longer sufficient to drive the
process. This interpretation is supported by the observation of the reduced lateral
mobility of the protein in the dense domains within the junction. Although this is
likely to occur in some cases, it is not the only plausible mechanism that determines
the final pattern.

We have analyzed observed protein patterns within model intermembrane junc-
tions in terms of the thermal fluctuation spectrum of the membrane just prior to
touch down (37). These results suggest that coupling of membrane fluctuations to
protein mobility may also contribute to the final pattern. Coordination of timescales
between protein lateral mobility with the length and timescales of membrane thermal
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Figure 5
A supported intermembrane junction in which antibodies are bound to the lower membrane.
Fluorescence interference contrast (FLIC) imaging of the upper membrane reveals
topographical features (a) that reflect the distribution of fluorescently labeled antibodies (b). A
schematic of the structure is illustrated in c, and a three-dimensional topography map
calculated from a marked region of the FLIC data is plotted in d.

fluctuations is required for patterning to occur. Only membrane modes that are slow
enough to couple to protein mobility drive intermembrane protein patterns. How-
ever, the long wavelength modes that proved most important in these experiments
are not likely to exist in live cell membranes owing to the enhanced stiffness provided
by coupling to the cytoskeleton. Nonetheless, similar processes may possibly occur
in live cells but on different length scales.

MEMBRANE BENDING FLUCTUATIONS
Intercellular junctions create a complex environment in which a variety of collec-
tive molecular motions, over relatively long length scales, can become coupled to
individual molecular interactions (35). The kinetic on rate for binding of an in-
tercellular receptor-ligand pair, for example, is intimately associated with the local
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antigen presenting cell
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image of the synapse
illustrating the positions of
T cell receptor (TCR)
( green) and lymphocyte
function associated antigen
(LFA) (red ). Cognate
ligands on the APC, major
histocompatibility complex
(MHC), and intercellular
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complimentary structure.
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42 nm, respectively. Thus
membrane bending energy
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The observed protein patterns do not represent equilibrium configurations. Pre-
sumably, the equilibrium state would be a flat membrane junction from which all
proteins had been excluded. In most experiments there was a large area to which the
protein could escape, and the mechanical strain energy in the membrane is clearly
minimized when it is not bent. Nonetheless, characteristic length scales for the pro-
tein patterns were observed. This has been attributed, in part, to a kinetic process
whereby the protein is plowed over the surface by the second membrane as it ad-
heres. The protein is driven into densely packed regions until it ultimately jams, and
the force generated by membrane bending strain is no longer sufficient to drive the
process. This interpretation is supported by the observation of the reduced lateral
mobility of the protein in the dense domains within the junction. Although this is
likely to occur in some cases, it is not the only plausible mechanism that determines
the final pattern.

We have analyzed observed protein patterns within model intermembrane junc-
tions in terms of the thermal fluctuation spectrum of the membrane just prior to
touch down (37). These results suggest that coupling of membrane fluctuations to
protein mobility may also contribute to the final pattern. Coordination of timescales
between protein lateral mobility with the length and timescales of membrane thermal
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The observed protein patterns do not represent equilibrium configurations. Pre-
sumably, the equilibrium state would be a flat membrane junction from which all
proteins had been excluded. In most experiments there was a large area to which the
protein could escape, and the mechanical strain energy in the membrane is clearly
minimized when it is not bent. Nonetheless, characteristic length scales for the pro-
tein patterns were observed. This has been attributed, in part, to a kinetic process
whereby the protein is plowed over the surface by the second membrane as it ad-
heres. The protein is driven into densely packed regions until it ultimately jams, and
the force generated by membrane bending strain is no longer sufficient to drive the
process. This interpretation is supported by the observation of the reduced lateral
mobility of the protein in the dense domains within the junction. Although this is
likely to occur in some cases, it is not the only plausible mechanism that determines
the final pattern.

We have analyzed observed protein patterns within model intermembrane junc-
tions in terms of the thermal fluctuation spectrum of the membrane just prior to
touch down (37). These results suggest that coupling of membrane fluctuations to
protein mobility may also contribute to the final pattern. Coordination of timescales
between protein lateral mobility with the length and timescales of membrane thermal
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cellular recognition - bilayer adhesion ... 

(Groves; 2004)

Elastohydrodynamic adhesion of a membrane:
from wafer bonding to the immunological synapse

S. Mandre and L. Mahadevan
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

(Dated: September 8, 2009)

Adhesion of thin membranes arises in a variety of situations in physical chemistry, biology and
technology often occurs in liquid environments. Here we address the dynamics of adhesion in such
situations starting with the adhesion of a thin plate, such as a silicon wafer to a flat substrate. We
show that the role of hydrodynamics is crucial in limiting the dynamics of the adhesive front which
moves at a constant velocity with a singularity in the curvature of the sheet along the adhesive front.
We also consider a number of different geometries associated with adhesion and analyze these using
scaling laws. Finally, we consider the formation of the immunological synapse when T cell receptors
bind to antigen presenting substrates, and show how similar concepts allow us to understand the
very slow spatiotemporal evolution of the adhesive patterns (do we still?).

PACS numbers: 47.15.gm, 47.15.km, 47.35.Pq, 47.55.df

Consider a one–dimensional elastic plate immersed in
an ambient fluid and is attracted to a substrate through a
short–range potential, as shown in the schematic in figure
1. Given the properties of the plate and of the interven-
ing fluid, as well as the interaction potential, we have to
determine the distance of the plate from the substrate
h(x, t), where x is the coordinate along the length of the
plate and t is time. We assume the interaction potential
to be described by a generalized Lennard–Jones function

Φ(s) = 4

(

1

s2m
−

1

sm

)

, (1)

with a parameter m. This form for the potential enters
the dynamics of the bending of the plate as

p(x, t) = Bhxxxx +
A

ε
Φ′

(

h

ε

)

, (2)

where B is the bending stiffness of the plate, A is the
adhesion energy per unit length between the substrate
and the plate, ε is the interaction distance and p is the
hydrodynamic pressure in the thin gap between the plate
and the substrate. The potential has a minimum as 21/m,
where Φ takes the value −1 and rapidly decays to zero for
h " ε. Typically, the adhesive interaction between the
plate and the substrate is short–ranged, implying that ε
is much smaller than typical length scale in the problem.
Thus it is desirable to label the region over which Φ is
appreciably non–zero as the contact region and formulate
effective conditions to be applied at the edge of this region
called the contact point. This is the central goal of this
letter. We see that the condition depends not only on
whether the situation is static or dynamic, but also on
the nature of the dynamics.

We start with the static case, described by Landau and
Lifshitz, because of its simplicity. In the static case the
fluid pressure p ≡ 0 and thus (2) simplifies to the ODE

Bhxxxx +
A

ε
Φ′

(

h

ε

)

= 0. (3)

Rigid substrate

Flexible plate

Viscous fluid

x

h(x, t)

FIG. 1: Schematic setup for a flexible plate adhering to a
substrate in the presence of an intervening fluid layer.

This can be cast into a variational form as equivalent to
minimizing the total energy

E[h] =

∫ L

0

Bh2
xx

2
+ AΦ

(

h

ε

)

dx, (4)

where the plate extends from x = 0 to L. Clearly,
if h is dynamically free at the ends of the plate (i.e.
hxx = hxxx = 0 at x = 0, L), then the minimum in
E[h] occurs for h ≡ 21/mε, meaning that the whole plate
is in contact with the substrate. To eliminate that pos-
sibility, we hold the plate a distance hmax away from the
substrate at the right end x = L, with the left end free.
The details of the right boundary condition are not im-
portant for our discussion as long as it leads to a contact
region. It is easy to imagine holding the plate so far away
from the substrate, or applying such a large force on the
plate at that end, so that the plate completely loses con-
tact with the substrate; we assume in our discussion that
such is not the case. Our strategy in this letter is to
consider smaller and smaller values of ε, solve (3) numer-
ically and analyze the ensuing limit ε → 0. In particular,
we consider the right end to be hinged (i.e. hxx = 0) at
hmax = 40 for a plate of length L = 14.

The curvature of the plate hxx and the adhesive po-
tential Φ from the numerical solutions of (3) for various ε
and m are shown in figure 2. A small region near x ≈ −2
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moves at a constant velocity with a singularity in the curvature of the sheet along the adhesive front.
We also consider a number of different geometries associated with adhesion and analyze these using
scaling laws. Finally, we consider the formation of the immunological synapse when T cell receptors
bind to antigen presenting substrates, and show how similar concepts allow us to understand the
very slow spatiotemporal evolution of the adhesive patterns (do we still?).
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Consider a one–dimensional elastic plate immersed in
an ambient fluid and is attracted to a substrate through a
short–range potential, as shown in the schematic in figure
1. Given the properties of the plate and of the interven-
ing fluid, as well as the interaction potential, we have to
determine the distance of the plate from the substrate
h(x, t), where x is the coordinate along the length of the
plate and t is time. We assume the interaction potential
to be described by a generalized Lennard–Jones function

Φ(s) = 4

(

1

s2m
−

1

sm

)

, (1)

with a parameter m. This form for the potential enters
the dynamics of the bending of the plate as

p(x, t) = Bhxxxx +
A

ε
Φ′

(

h

ε

)

, (2)

where B is the bending stiffness of the plate, A is the
adhesion energy per unit length between the substrate
and the plate, ε is the interaction distance and p is the
hydrodynamic pressure in the thin gap between the plate
and the substrate. The potential has a minimum as 21/m,
where Φ takes the value −1 and rapidly decays to zero for
h " ε. Typically, the adhesive interaction between the
plate and the substrate is short–ranged, implying that ε
is much smaller than typical length scale in the problem.
Thus it is desirable to label the region over which Φ is
appreciably non–zero as the contact region and formulate
effective conditions to be applied at the edge of this region
called the contact point. This is the central goal of this
letter. We see that the condition depends not only on
whether the situation is static or dynamic, but also on
the nature of the dynamics.

We start with the static case, described by Landau and
Lifshitz, because of its simplicity. In the static case the
fluid pressure p ≡ 0 and thus (2) simplifies to the ODE

Bhxxxx +
A

ε
Φ′

(

h

ε

)

= 0. (3)

Rigid substrate

Flexible plate

Viscous fluid

x

h(x, t)

FIG. 1: Schematic setup for a flexible plate adhering to a
substrate in the presence of an intervening fluid layer.

This can be cast into a variational form as equivalent to
minimizing the total energy

E[h] =

∫ L

0

Bh2
xx

2
+ AΦ

(

h

ε

)

dx, (4)

where the plate extends from x = 0 to L. Clearly,
if h is dynamically free at the ends of the plate (i.e.
hxx = hxxx = 0 at x = 0, L), then the minimum in
E[h] occurs for h ≡ 21/mε, meaning that the whole plate
is in contact with the substrate. To eliminate that pos-
sibility, we hold the plate a distance hmax away from the
substrate at the right end x = L, with the left end free.
The details of the right boundary condition are not im-
portant for our discussion as long as it leads to a contact
region. It is easy to imagine holding the plate so far away
from the substrate, or applying such a large force on the
plate at that end, so that the plate completely loses con-
tact with the substrate; we assume in our discussion that
such is not the case. Our strategy in this letter is to
consider smaller and smaller values of ε, solve (3) numer-
ically and analyze the ensuing limit ε → 0. In particular,
we consider the right end to be hinged (i.e. hxx = 0) at
hmax = 40 for a plate of length L = 14.

The curvature of the plate hxx and the adhesive po-
tential Φ from the numerical solutions of (3) for various ε
and m are shown in figure 2. A small region near x ≈ −2
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FIG. 2: Curvature of the plate (left) and the adhesive potential (right). Legend shows various parameter pairs (ε, m).

develops to the left of which the curvature is zero and
h ≈ 21/mε and to the right of it Φ(h/ε) ≈ 0. Using domi-
nant balances, the length of this region can be estimated
to be O((Bε2/A)1/4), while h = O(ε). As ε → 0, this
region get narrower and narrower, eventually reducing to
a point x = xc, which defines the point of contact.

The effective conditions at the point of contact may
be derived from the variational principle (4) as follows
(Landau & Lifschitz). In the energy integral, the bending
term derives its value from the region x > xc, while the
adhesion term is non–zero only for x < xc. Thus the
integral can be split into

E[h] =

∫ xc

0

AΦ

(

h"

ε

)

dx +

∫ L

xc

B
(∂xxh)2

2
dx. (5)

Variations with respect to h of this energy lead to h =
21/mε → 0 for x < xc and Bhxxxx = 0 for x > xc. At
x = xc, using the scalings with ε in the inner region (i.e.
h = O(ε) and ∂x = O(ε−1/2)), h = hx = 0 but hxx

approaches a finite value. This value can be determined
by applying variations with respect to xc in (5), and the
extra condition provides the value of xc. Perturbing xc =
xc∗ + δxc, where xc∗ corresponds to the minimum and
δxc is a test perturbation, we can write the resulting
perturbation in E as

δE = −δxc

(

A + B
h2

xx

2

)

+

∫ L

xc

Bδhxxhxx dx, (6)

δh being the induced perturbation in h owing to the per-
turbation in xc. δh satisfies δhxxxx = 0 with δh+δxchx =
0 and δhx + δxchxx = 0 at x = xc, while δh = δhxx = 0
at x = L. Simplifying the bending integral in (6) by
parts and using the boundary conditions on δh leads to
δE = δxc(Bh2

xx/2−A). Setting this first variation in δxc

to zero leads to the bending moment condition

Bhxx =
√

2AB. (7)

An analytical solution can now be obtained in the limit

ε → 0:

h =

√

A

2B
(x − xc)

2

(

1 −
x − xc

3(L − xc)

)

, (8)

where

(L − xc)
2 =

3hmax

2

√

2B

A
. (9)

The numerical limiting procedure is observed to approach
this solution, as shown in figure 2.

Does this condition change in the dynamic case and
how? To answer this question, we modify the system
slightly; we consider a plate initially inclined to the sub-
strate with slope α with its left end adhering to the
substrate. Namely, h(x, 0) = 21/mε + αx. The plate
is attracted towards the substrate, but it is resisted by
the interveneing fluid that has to drain. We model this
drainage by a lubrication approximation, exploiting the
thinness of the film compared to the x-length scale. Sum-
marily, this approximation implies that the hydrody-
namic pressure p(x, t) satisfies the approximate x- mo-
mentum balance µuyy = px, where µ is the fluid viscos-
ity and u(x, y, t) is the x-component of the fluid velocity
field, y being the coordinate normal to the substrate.
The fluid in the gap is incompressible ux + vy = 0, where
v(x, y, t) is the y-component of the velocity field. These
two equations, along with the kinematic boundary con-
dition ht +uhx = v, stating that the fluid velocity at the
plate matches with the velocity of the plate, leads to

12µht =
(

h3px

)

x
. (10)

We use p = 0 at x = 0, L as boundary conditions ap-
plying to (10). The system under consideration is now
equations (2), (10) with the potential Φ in (1) subject to
boundary conditions hxx = hxxx = p = 0 at x = 0, L.
The parameters in the system are A, B, µ, ε, α, m
and L. The number of parameters can be reduced by
non-dimensionalizing the system using the length scale
" =

√

B/A for x and h, the time scale µ"3/B for t, and

hydrodynamics (+ continuity)

vertical force balance adhesion potential

Q. Speed, shape of wafer/ bilayer contact line ?  fluid flow is critical !
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Consider a one–dimensional elastic plate immersed in
an ambient fluid and is attracted to a substrate through a
short–range potential, as shown in the schematic in figure
1. Given the properties of the plate and of the interven-
ing fluid, as well as the interaction potential, we have to
determine the distance of the plate from the substrate
h(x, t), where x is the coordinate along the length of the
plate and t is time. We assume the interaction potential
to be described by a generalized Lennard–Jones function

Φ(s) = 4

(

1

s2m
−

1

sm

)

, (1)

with a parameter m. This form for the potential enters
the dynamics of the bending of the plate as

p(x, t) = Bhxxxx +
A

ε
Φ′

(

h

ε

)

, (2)

where B is the bending stiffness of the plate, A is the
adhesion energy per unit length between the substrate
and the plate, ε is the interaction distance and p is the
hydrodynamic pressure in the thin gap between the plate
and the substrate. The potential has a minimum as 21/m,
where Φ takes the value −1 and rapidly decays to zero for
h " ε. Typically, the adhesive interaction between the
plate and the substrate is short–ranged, implying that ε
is much smaller than typical length scale in the problem.
Thus it is desirable to label the region over which Φ is
appreciably non–zero as the contact region and formulate
effective conditions to be applied at the edge of this region
called the contact point. This is the central goal of this
letter. We see that the condition depends not only on
whether the situation is static or dynamic, but also on
the nature of the dynamics.

We start with the static case, described by Landau and
Lifshitz, because of its simplicity. In the static case the
fluid pressure p ≡ 0 and thus (2) simplifies to the ODE

Bhxxxx +
A

ε
Φ′

(

h

ε

)

= 0. (3)

Rigid substrate

Flexible plate

Viscous fluid

x

h(x, t)

FIG. 1: Schematic setup for a flexible plate adhering to a
substrate in the presence of an intervening fluid layer.

This can be cast into a variational form as equivalent to
minimizing the total energy

E[h] =

∫ L

0

Bh2
xx

2
+ AΦ

(

h

ε

)

dx, (4)

where the plate extends from x = 0 to L. Clearly,
if h is dynamically free at the ends of the plate (i.e.
hxx = hxxx = 0 at x = 0, L), then the minimum in
E[h] occurs for h ≡ 21/mε, meaning that the whole plate
is in contact with the substrate. To eliminate that pos-
sibility, we hold the plate a distance hmax away from the
substrate at the right end x = L, with the left end free.
The details of the right boundary condition are not im-
portant for our discussion as long as it leads to a contact
region. It is easy to imagine holding the plate so far away
from the substrate, or applying such a large force on the
plate at that end, so that the plate completely loses con-
tact with the substrate; we assume in our discussion that
such is not the case. Our strategy in this letter is to
consider smaller and smaller values of ε, solve (3) numer-
ically and analyze the ensuing limit ε → 0. In particular,
we consider the right end to be hinged (i.e. hxx = 0) at
hmax = 40 for a plate of length L = 14.

The curvature of the plate hxx and the adhesive po-
tential Φ from the numerical solutions of (3) for various ε
and m are shown in figure 2. A small region near x ≈ −2

Flexible sheet
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FIG. 2: Curvature of the plate (left) and the adhesive potential (right). Legend shows various parameter pairs (ε, m).

develops to the left of which the curvature is zero and
h ≈ 21/mε and to the right of it Φ(h/ε) ≈ 0. Using domi-
nant balances, the length of this region can be estimated
to be O((Bε2/A)1/4), while h = O(ε). As ε → 0, this
region get narrower and narrower, eventually reducing to
a point x = xc, which defines the point of contact.

The effective conditions at the point of contact may
be derived from the variational principle (4) as follows
(Landau & Lifschitz). In the energy integral, the bending
term derives its value from the region x > xc, while the
adhesion term is non–zero only for x < xc. Thus the
integral can be split into

E[h] =

∫ xc

0

AΦ

(

h"

ε

)

dx +

∫ L

xc

B
(∂xxh)2

2
dx. (5)

Variations with respect to h of this energy lead to h =
21/mε → 0 for x < xc and Bhxxxx = 0 for x > xc. At
x = xc, using the scalings with ε in the inner region (i.e.
h = O(ε) and ∂x = O(ε−1/2)), h = hx = 0 but hxx

approaches a finite value. This value can be determined
by applying variations with respect to xc in (5), and the
extra condition provides the value of xc. Perturbing xc =
xc∗ + δxc, where xc∗ corresponds to the minimum and
δxc is a test perturbation, we can write the resulting
perturbation in E as

δE = −δxc

(

A + B
h2

xx

2

)

+

∫ L

xc

Bδhxxhxx dx, (6)

δh being the induced perturbation in h owing to the per-
turbation in xc. δh satisfies δhxxxx = 0 with δh+δxchx =
0 and δhx + δxchxx = 0 at x = xc, while δh = δhxx = 0
at x = L. Simplifying the bending integral in (6) by
parts and using the boundary conditions on δh leads to
δE = δxc(Bh2

xx/2−A). Setting this first variation in δxc

to zero leads to the bending moment condition

Bhxx =
√

2AB. (7)

An analytical solution can now be obtained in the limit

ε → 0:

h =

√

A

2B
(x − xc)

2

(

1 −
x − xc

3(L − xc)

)

, (8)

where

(L − xc)
2 =

3hmax

2

√

2B

A
. (9)

The numerical limiting procedure is observed to approach
this solution, as shown in figure 2.

Does this condition change in the dynamic case and
how? To answer this question, we modify the system
slightly; we consider a plate initially inclined to the sub-
strate with slope α with its left end adhering to the
substrate. Namely, h(x, 0) = 21/mε + αx. The plate
is attracted towards the substrate, but it is resisted by
the interveneing fluid that has to drain. We model this
drainage by a lubrication approximation, exploiting the
thinness of the film compared to the x-length scale. Sum-
marily, this approximation implies that the hydrody-
namic pressure p(x, t) satisfies the approximate x- mo-
mentum balance µuyy = px, where µ is the fluid viscos-
ity and u(x, y, t) is the x-component of the fluid velocity
field, y being the coordinate normal to the substrate.
The fluid in the gap is incompressible ux + vy = 0, where
v(x, y, t) is the y-component of the velocity field. These
two equations, along with the kinematic boundary con-
dition ht +uhx = v, stating that the fluid velocity at the
plate matches with the velocity of the plate, leads to

12µht =
(

h3px

)

x
. (10)

We use p = 0 at x = 0, L as boundary conditions ap-
plying to (10). The system under consideration is now
equations (2), (10) with the potential Φ in (1) subject to
boundary conditions hxx = hxxx = p = 0 at x = 0, L.
The parameters in the system are A, B, µ, ε, α, m
and L. The number of parameters can be reduced by
non-dimensionalizing the system using the length scale
" =

√

B/A for x and h, the time scale µ"3/B for t, and
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FIG. 2: Curvature of the plate (left) and the adhesive potential (right). Legend shows various parameter pairs (ε, m).

develops to the left of which the curvature is zero and
h ≈ 21/mε and to the right of it Φ(h/ε) ≈ 0. Using domi-
nant balances, the length of this region can be estimated
to be O((Bε2/A)1/4), while h = O(ε). As ε → 0, this
region get narrower and narrower, eventually reducing to
a point x = xc, which defines the point of contact.

The effective conditions at the point of contact may
be derived from the variational principle (4) as follows
(Landau & Lifschitz). In the energy integral, the bending
term derives its value from the region x > xc, while the
adhesion term is non–zero only for x < xc. Thus the
integral can be split into

E[h] =

∫ xc

0

AΦ

(

h"

ε

)

dx +

∫ L

xc

B
(∂xxh)2

2
dx. (5)

Variations with respect to h of this energy lead to h =
21/mε → 0 for x < xc and Bhxxxx = 0 for x > xc. At
x = xc, using the scalings with ε in the inner region (i.e.
h = O(ε) and ∂x = O(ε−1/2)), h = hx = 0 but hxx

approaches a finite value. This value can be determined
by applying variations with respect to xc in (5), and the
extra condition provides the value of xc. Perturbing xc =
xc∗ + δxc, where xc∗ corresponds to the minimum and
δxc is a test perturbation, we can write the resulting
perturbation in E as

δE = −δxc

(

A + B
h2

xx

2

)

+

∫ L

xc

Bδhxxhxx dx, (6)

δh being the induced perturbation in h owing to the per-
turbation in xc. δh satisfies δhxxxx = 0 with δh+δxchx =
0 and δhx + δxchxx = 0 at x = xc, while δh = δhxx = 0
at x = L. Simplifying the bending integral in (6) by
parts and using the boundary conditions on δh leads to
δE = δxc(Bh2

xx/2−A). Setting this first variation in δxc

to zero leads to the bending moment condition

Bhxx =
√

2AB. (7)

An analytical solution can now be obtained in the limit

ε → 0:

h =

√

A

2B
(x − xc)

2

(

1 −
x − xc

3(L − xc)

)

, (8)

where

(L − xc)
2 =

3hmax

2

√

2B

A
. (9)

The numerical limiting procedure is observed to approach
this solution, as shown in figure 2.

Does this condition change in the dynamic case and
how? To answer this question, we modify the system
slightly; we consider a plate initially inclined to the sub-
strate with slope α with its left end adhering to the
substrate. Namely, h(x, 0) = 21/mε + αx. The plate
is attracted towards the substrate, but it is resisted by
the interveneing fluid that has to drain. We model this
drainage by a lubrication approximation, exploiting the
thinness of the film compared to the x-length scale. Sum-
marily, this approximation implies that the hydrody-
namic pressure p(x, t) satisfies the approximate x- mo-
mentum balance µuyy = px, where µ is the fluid viscos-
ity and u(x, y, t) is the x-component of the fluid velocity
field, y being the coordinate normal to the substrate.
The fluid in the gap is incompressible ux + vy = 0, where
v(x, y, t) is the y-component of the velocity field. These
two equations, along with the kinematic boundary con-
dition ht +uhx = v, stating that the fluid velocity at the
plate matches with the velocity of the plate, leads to

12µht =
(

h3px

)

x
. (10)

We use p = 0 at x = 0, L as boundary conditions ap-
plying to (10). The system under consideration is now
equations (2), (10) with the potential Φ in (1) subject to
boundary conditions hxx = hxxx = p = 0 at x = 0, L.
The parameters in the system are A, B, µ, ε, α, m
and L. The number of parameters can be reduced by
non-dimensionalizing the system using the length scale
" =

√

B/A for x and h, the time scale µ"3/B for t, and

far from the contact line: h = h0;hxx = 0

hxx =
√

2A/B

at the contact line: h = hx = 0

Obreimov (1930) - measurement of adhesion !

Statics ?

Dynamics ?

p = 0

3

the scale B/!3 for pressure. This simplifies the system to

p = hxxxx +
1

σ
Φ′

(

h

σ

)

and (11)

12ht =
(

h3px

)

x
, (12)

where σ = ε/! is the non–dimensional adhesion length
scale. We choose representative values of the other pa-
rameters α, m, σ and the dimensionless L and time–
march (11-12) numerically starting from the initial con-
dition h(x, 0) = 21/mε+αx and p = 0 to get a preliminary
idea of the ensuing dynamics. Figure 3 show the results;
a dynamic contact zone forms with the plate making con-
tact to the left of the point, i.e. Φ != 0 only to the left
of the zone. This zone moves with a constant speed to
the right. It is also numerically observed that all the
fluid displaced from underneath the plate in the process
is accumulated in a bulge immediately to the right of
the contact zone. Moreover, the shape of the deformed
plate to the right of this zone at various times appear
self–similar. This prompt us to look for a solution of the
form.

h(x, t) = tβf(η), p(x, t) = tκg(η), η =
x − ct

tγ
. (13)

The exponents β, κ, γ are determined using the gov-
erning equations and volume conservation. We assume
γ < 1, subject to subsequent verification, so that the time
derivative in (12) is approximated as ht = −tβ−γcf ′ +
tβ−1(βf − γηf ′) only by the first term for large t. The
governing equations (11-12) to the right of the contact
zone where Φ ≈ 0 then give

g = f ′′′′, κ = β − 4γ, (14)

−12cf ′ = (f3g′)′, β − γ = 3β + κ − 2γ. (15)

Also the accumulated volume in the bulge is α(ct)2/2,
giving

∫

∞

0

f(η)dη =
αc2

2
, β + γ = 2. (16)

This set of three equations in three unknowns gives β =
5/4, κ = −7/4 and γ = 3/4. Moreover, (14–15) can be
simplified further to yield

f2f ′′′′′ = −12c. (17)

The function f is plotted in figure 3 to verify our sim-
ilarity hypothesis and agreement can be observed. One
useful feature of this similarity solution is that the small
η asymptotics can be analytically derived to be

f ∼ kc1/3η5/3, g ∼
40

81
kc1/3η−7/3 for η % 1, (18)

where k = 9(70−1/3). Due to this scaling, close to the

contact zone h ∝ t5/4
(

x−ct
t3/4

)5/3
= (x − ct)5/3, which is
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FIG. 3: Dynamics of the bonding process starting from an
inclined plate. Top panel shows snapshots in time of the shape
of the plate for σ = 0.1, L = 2000, m = 2, α = 0.1. Bottom
panel shows the collapse of these shapes onto a universal self–
similar curve described in (13).

purely steadily propagating. This allowed Rieutord, et al
to derive the propagating speed without recourse to the
similarity solution. This power law scaling is cut off by
an inner scale δ =

√
ε determined by taking h = O(ε), so

that the adhesion potential is non–zero. Thus, it can be
seen that as ε → 0, the outer solution satisfies h = hx = 0
at the contact point, but hxx grows like ε1/6. So far the
analysis is silent about the speed c, which we will derive
using energy conservation and see to be also dependent
on inner scale.

An analogue of the energy equation can be derived to
find the speed c by multiplying (11) by ht, multiplying
(12) by p and subtracting the two results to get
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Not only does this equation show that the dynamics
evolve towards decreasing the total energy E[h], but also
gives a handle on the rate at which they happen. Sub-
stituting the similarity scalings in (19) yields the various
terms to be
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where ηmin = O(δ/t3/4) signifies the inner scale cut–off.
The integrand in (20) diverges for small η, but the inte-
grand is not only bounded but also approaches zero like
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where k = 9(70−1/3). Due to this scaling, close to the
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FIG. 3: Dynamics of the bonding process starting from an
inclined plate. Top panel shows snapshots in time of the shape
of the plate for σ = 0.1, L = 2000, m = 2, α = 0.1. Bottom
panel shows the collapse of these shapes onto a universal self–
similar curve described in (13).
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where the second equation was derived in [9] in a slightly
different context. Here, the total torque at any cross sec-
tion, D@xxh! f, is the sum of the passive elastic torque
M " D@xxh and the active torque f, while T#x$ is the
tension, as defined in Fig. 1. We have neglected the inertia
of the sheet in the vertical direction, an assumption that is
valid when !htt" % !!g. Thus for motion with character-
istic time scale #& L=U, the sheet must be sufficiently
short and close to the wall to satisfy the inequality L2 %
!!
! gU2=h. Furthermore, we have also neglected tension in

the vertical momentum balance equation, an assumption
that is valid when the sheet is curved only slightly. We now
make the system dimensionless by using the definitions
x " Lx0, t " 12$L2

h20!!g"
t0, h " h0h0, p " !!"gp0, U "

!!g"h20
6$L U0 for the scaled variables x0, t0, h0, p0, U0.

Omitting primes, we write the complete set of equations
for a freely moving foil, which are the scaled forms of (3),
an integrated form of (4) and (5):

 @th!U@xh' @x#h3@xp$ " 0; (6)

 W@tU " '
Z 1

0

!
U
h
! 3p@xh

"
dx; (7)

 p " B@xxxxh! 1' @xxf: (8)

Here W " "2h30!!!g
12$2L2 measures the ratio of horizontal solid

inertia to viscous drag, and B " hE"2

12L4!!g measures the ratio
of the passive bending elasticity and gravity. Global force
and torque balance which result from integrating (8) and its
first moment imply that

 

Z 1

0
pdx " 1;

Z 1

0
p#x' 1=2$dx " 0: (9)

To complete the formulation of the problem, we need some
boundary conditions. Since the ends of the sheet are free,
they must have no forces or torques, and the pressure must
equal the ambient pressure, so that

 #f' B@xxh$j0;1 " #@xf' B@xxxh$j0;1 " pj0;1 " 0: (10)

We are now ready to address a variety of different problems
of increasing complexity. Here we limit ourselves to (i) the
settling of a stiff or soft passive sheet, i.e., when f " 0, and
(ii) the swimming of an active stiff or soft sheet f ! 0.

For a relatively stiff plate falling due to gravity, the
shape of the sheet is well approximated by

 h#x; t$ " h0#t$ ! #x' 1=2$%#t$; (11)

where h0#t$ is the average height of the sheet and %#t$ "
L&=h0 is its dimensionless slope. Substituting this ansatz
into Eqs. (6) and (9) yields a set of ordinary differential
equations which we can easily integrate numerically. In
Fig. 2(a), we show that for a tilted plate starting out at rest,

the slope %#t$ rapidly decreases to zero as the sheet settles
down almost vertically. To understand this, we substitute
(11) into (6)–(8) which, to leading order in %, yields (at
leading order)
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;
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The solution of (12) for an initially stationary plate, i.e.,
with U#0$ " 0 is h0 " # 1

h0#0$2 ! 24t$'1=2. Then, it follows
that %& h6 & t'3 ! 0; i.e., the plate aligns itself rapidly
with the substrate. This is because regions closer to the
substrate are subject to higher pressures which force the
plate to rotate and align with the substrate. For flexible
foils, a similar scenario is observed; the plate becomes
nearly horizontal, and the pressure beneath it is almost
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FIG. 2. Falling flexible sheet: (a) Trajectory of a rigid plate
obtained by numerical integration of Eqs. (12) for M " 1 with
initial conditions h#0$ " 2, U#0$ " 3, and %#0$ " 0:6. The plate
quickly aligns with the substrate before slowing down as it falls;
different lines correspond to snapshots separated by equal time
intervals. (b) Scaled sliding distance D " $Ds="!h#0$U#0$
(dotted line) as a function of the nondimensional flexibility B.
For a flexible plate Ds & B1=4 (solid line); when B&O#1$ the
sliding distance approaches the value given by Ds &U#0$#&
"!h#0$U#0$=$ (see text). Initial conditions are h#x; 0$ " 1 and
U#0$ " 0:1.
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where the second equation was derived in [9] in a slightly
different context. Here, the total torque at any cross sec-
tion, D@xxh! f, is the sum of the passive elastic torque
M " D@xxh and the active torque f, while T#x$ is the
tension, as defined in Fig. 1. We have neglected the inertia
of the sheet in the vertical direction, an assumption that is
valid when !htt" % !!g. Thus for motion with character-
istic time scale #& L=U, the sheet must be sufficiently
short and close to the wall to satisfy the inequality L2 %
!!
! gU2=h. Furthermore, we have also neglected tension in

the vertical momentum balance equation, an assumption
that is valid when the sheet is curved only slightly. We now
make the system dimensionless by using the definitions
x " Lx0, t " 12$L2
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t0, h " h0h0, p " !!"gp0, U "
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6$L U0 for the scaled variables x0, t0, h0, p0, U0.

Omitting primes, we write the complete set of equations
for a freely moving foil, which are the scaled forms of (3),
an integrated form of (4) and (5):
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of the passive bending elasticity and gravity. Global force
and torque balance which result from integrating (8) and its
first moment imply that
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To complete the formulation of the problem, we need some
boundary conditions. Since the ends of the sheet are free,
they must have no forces or torques, and the pressure must
equal the ambient pressure, so that

 #f' B@xxh$j0;1 " #@xf' B@xxxh$j0;1 " pj0;1 " 0: (10)

We are now ready to address a variety of different problems
of increasing complexity. Here we limit ourselves to (i) the
settling of a stiff or soft passive sheet, i.e., when f " 0, and
(ii) the swimming of an active stiff or soft sheet f ! 0.

For a relatively stiff plate falling due to gravity, the
shape of the sheet is well approximated by

 h#x; t$ " h0#t$ ! #x' 1=2$%#t$; (11)

where h0#t$ is the average height of the sheet and %#t$ "
L&=h0 is its dimensionless slope. Substituting this ansatz
into Eqs. (6) and (9) yields a set of ordinary differential
equations which we can easily integrate numerically. In
Fig. 2(a), we show that for a tilted plate starting out at rest,

the slope %#t$ rapidly decreases to zero as the sheet settles
down almost vertically. To understand this, we substitute
(11) into (6)–(8) which, to leading order in %, yields (at
leading order)
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h0#0$2 ! 24t$'1=2. Then, it follows
that %& h6 & t'3 ! 0; i.e., the plate aligns itself rapidly
with the substrate. This is because regions closer to the
substrate are subject to higher pressures which force the
plate to rotate and align with the substrate. For flexible
foils, a similar scenario is observed; the plate becomes
nearly horizontal, and the pressure beneath it is almost
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FIG. 2. Falling flexible sheet: (a) Trajectory of a rigid plate
obtained by numerical integration of Eqs. (12) for M " 1 with
initial conditions h#0$ " 2, U#0$ " 3, and %#0$ " 0:6. The plate
quickly aligns with the substrate before slowing down as it falls;
different lines correspond to snapshots separated by equal time
intervals. (b) Scaled sliding distance D " $Ds="!h#0$U#0$
(dotted line) as a function of the nondimensional flexibility B.
For a flexible plate Ds & B1=4 (solid line); when B&O#1$ the
sliding distance approaches the value given by Ds &U#0$#&
"!h#0$U#0$=$ (see text). Initial conditions are h#x; 0$ " 1 and
U#0$ " 0:1.
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where the second equation was derived in [9] in a slightly
different context. Here, the total torque at any cross sec-
tion, D@xxh! f, is the sum of the passive elastic torque
M " D@xxh and the active torque f, while T#x$ is the
tension, as defined in Fig. 1. We have neglected the inertia
of the sheet in the vertical direction, an assumption that is
valid when !htt" % !!g. Thus for motion with character-
istic time scale #& L=U, the sheet must be sufficiently
short and close to the wall to satisfy the inequality L2 %
!!
! gU2=h. Furthermore, we have also neglected tension in

the vertical momentum balance equation, an assumption
that is valid when the sheet is curved only slightly. We now
make the system dimensionless by using the definitions
x " Lx0, t " 12$L2

h20!!g"
t0, h " h0h0, p " !!"gp0, U "

!!g"h20
6$L U0 for the scaled variables x0, t0, h0, p0, U0.

Omitting primes, we write the complete set of equations
for a freely moving foil, which are the scaled forms of (3),
an integrated form of (4) and (5):
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12L4!!g measures the ratio
of the passive bending elasticity and gravity. Global force
and torque balance which result from integrating (8) and its
first moment imply that
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To complete the formulation of the problem, we need some
boundary conditions. Since the ends of the sheet are free,
they must have no forces or torques, and the pressure must
equal the ambient pressure, so that

 #f' B@xxh$j0;1 " #@xf' B@xxxh$j0;1 " pj0;1 " 0: (10)

We are now ready to address a variety of different problems
of increasing complexity. Here we limit ourselves to (i) the
settling of a stiff or soft passive sheet, i.e., when f " 0, and
(ii) the swimming of an active stiff or soft sheet f ! 0.

For a relatively stiff plate falling due to gravity, the
shape of the sheet is well approximated by

 h#x; t$ " h0#t$ ! #x' 1=2$%#t$; (11)

where h0#t$ is the average height of the sheet and %#t$ "
L&=h0 is its dimensionless slope. Substituting this ansatz
into Eqs. (6) and (9) yields a set of ordinary differential
equations which we can easily integrate numerically. In
Fig. 2(a), we show that for a tilted plate starting out at rest,

the slope %#t$ rapidly decreases to zero as the sheet settles
down almost vertically. To understand this, we substitute
(11) into (6)–(8) which, to leading order in %, yields (at
leading order)

 

@th0 " '12h30 'U%; W@tU " ' U
h0

! %
@th0
4h30

;

@t% " 6%
@th0
h0

: (12)
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with U#0$ " 0 is h0 " # 1

h0#0$2 ! 24t$'1=2. Then, it follows
that %& h6 & t'3 ! 0; i.e., the plate aligns itself rapidly
with the substrate. This is because regions closer to the
substrate are subject to higher pressures which force the
plate to rotate and align with the substrate. For flexible
foils, a similar scenario is observed; the plate becomes
nearly horizontal, and the pressure beneath it is almost
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FIG. 2. Falling flexible sheet: (a) Trajectory of a rigid plate
obtained by numerical integration of Eqs. (12) for M " 1 with
initial conditions h#0$ " 2, U#0$ " 3, and %#0$ " 0:6. The plate
quickly aligns with the substrate before slowing down as it falls;
different lines correspond to snapshots separated by equal time
intervals. (b) Scaled sliding distance D " $Ds="!h#0$U#0$
(dotted line) as a function of the nondimensional flexibility B.
For a flexible plate Ds & B1=4 (solid line); when B&O#1$ the
sliding distance approaches the value given by Ds &U#0$#&
"!h#0$U#0$=$ (see text). Initial conditions are h#x; 0$ " 1 and
U#0$ " 0:1.
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where the second equation was derived in [9] in a slightly
different context. Here, the total torque at any cross sec-
tion, D@xxh! f, is the sum of the passive elastic torque
M " D@xxh and the active torque f, while T#x$ is the
tension, as defined in Fig. 1. We have neglected the inertia
of the sheet in the vertical direction, an assumption that is
valid when !htt" % !!g. Thus for motion with character-
istic time scale #& L=U, the sheet must be sufficiently
short and close to the wall to satisfy the inequality L2 %
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! gU2=h. Furthermore, we have also neglected tension in

the vertical momentum balance equation, an assumption
that is valid when the sheet is curved only slightly. We now
make the system dimensionless by using the definitions
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and torque balance which result from integrating (8) and its
first moment imply that

 

Z 1

0
pdx " 1;

Z 1

0
p#x' 1=2$dx " 0: (9)

To complete the formulation of the problem, we need some
boundary conditions. Since the ends of the sheet are free,
they must have no forces or torques, and the pressure must
equal the ambient pressure, so that

 #f' B@xxh$j0;1 " #@xf' B@xxxh$j0;1 " pj0;1 " 0: (10)

We are now ready to address a variety of different problems
of increasing complexity. Here we limit ourselves to (i) the
settling of a stiff or soft passive sheet, i.e., when f " 0, and
(ii) the swimming of an active stiff or soft sheet f ! 0.

For a relatively stiff plate falling due to gravity, the
shape of the sheet is well approximated by

 h#x; t$ " h0#t$ ! #x' 1=2$%#t$; (11)

where h0#t$ is the average height of the sheet and %#t$ "
L&=h0 is its dimensionless slope. Substituting this ansatz
into Eqs. (6) and (9) yields a set of ordinary differential
equations which we can easily integrate numerically. In
Fig. 2(a), we show that for a tilted plate starting out at rest,

the slope %#t$ rapidly decreases to zero as the sheet settles
down almost vertically. To understand this, we substitute
(11) into (6)–(8) which, to leading order in %, yields (at
leading order)
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foils, a similar scenario is observed; the plate becomes
nearly horizontal, and the pressure beneath it is almost
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FIG. 2. Falling flexible sheet: (a) Trajectory of a rigid plate
obtained by numerical integration of Eqs. (12) for M " 1 with
initial conditions h#0$ " 2, U#0$ " 3, and %#0$ " 0:6. The plate
quickly aligns with the substrate before slowing down as it falls;
different lines correspond to snapshots separated by equal time
intervals. (b) Scaled sliding distance D " $Ds="!h#0$U#0$
(dotted line) as a function of the nondimensional flexibility B.
For a flexible plate Ds & B1=4 (solid line); when B&O#1$ the
sliding distance approaches the value given by Ds &U#0$#&
"!h#0$U#0$=$ (see text). Initial conditions are h#x; 0$ " 1 and
U#0$ " 0:1.
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where the second equation was derived in [9] in a slightly
different context. Here, the total torque at any cross sec-
tion, D@xxh! f, is the sum of the passive elastic torque
M " D@xxh and the active torque f, while T#x$ is the
tension, as defined in Fig. 1. We have neglected the inertia
of the sheet in the vertical direction, an assumption that is
valid when !htt" % !!g. Thus for motion with character-
istic time scale #& L=U, the sheet must be sufficiently
short and close to the wall to satisfy the inequality L2 %
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that is valid when the sheet is curved only slightly. We now
make the system dimensionless by using the definitions
x " Lx0, t " 12$L2

h20!!g"
t0, h " h0h0, p " !!"gp0, U "

!!g"h20
6$L U0 for the scaled variables x0, t0, h0, p0, U0.

Omitting primes, we write the complete set of equations
for a freely moving foil, which are the scaled forms of (3),
an integrated form of (4) and (5):

 @th!U@xh' @x#h3@xp$ " 0; (6)

 W@tU " '
Z 1

0

!
U
h
! 3p@xh

"
dx; (7)

 p " B@xxxxh! 1' @xxf: (8)

Here W " "2h30!!!g
12$2L2 measures the ratio of horizontal solid

inertia to viscous drag, and B " hE"2

12L4!!g measures the ratio
of the passive bending elasticity and gravity. Global force
and torque balance which result from integrating (8) and its
first moment imply that

 

Z 1

0
pdx " 1;

Z 1

0
p#x' 1=2$dx " 0: (9)

To complete the formulation of the problem, we need some
boundary conditions. Since the ends of the sheet are free,
they must have no forces or torques, and the pressure must
equal the ambient pressure, so that

 #f' B@xxh$j0;1 " #@xf' B@xxxh$j0;1 " pj0;1 " 0: (10)

We are now ready to address a variety of different problems
of increasing complexity. Here we limit ourselves to (i) the
settling of a stiff or soft passive sheet, i.e., when f " 0, and
(ii) the swimming of an active stiff or soft sheet f ! 0.

For a relatively stiff plate falling due to gravity, the
shape of the sheet is well approximated by

 h#x; t$ " h0#t$ ! #x' 1=2$%#t$; (11)

where h0#t$ is the average height of the sheet and %#t$ "
L&=h0 is its dimensionless slope. Substituting this ansatz
into Eqs. (6) and (9) yields a set of ordinary differential
equations which we can easily integrate numerically. In
Fig. 2(a), we show that for a tilted plate starting out at rest,

the slope %#t$ rapidly decreases to zero as the sheet settles
down almost vertically. To understand this, we substitute
(11) into (6)–(8) which, to leading order in %, yields (at
leading order)

 

@th0 " '12h30 'U%; W@tU " ' U
h0

! %
@th0
4h30

;

@t% " 6%
@th0
h0

: (12)

The solution of (12) for an initially stationary plate, i.e.,
with U#0$ " 0 is h0 " # 1

h0#0$2 ! 24t$'1=2. Then, it follows
that %& h6 & t'3 ! 0; i.e., the plate aligns itself rapidly
with the substrate. This is because regions closer to the
substrate are subject to higher pressures which force the
plate to rotate and align with the substrate. For flexible
foils, a similar scenario is observed; the plate becomes
nearly horizontal, and the pressure beneath it is almost
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FIG. 2. Falling flexible sheet: (a) Trajectory of a rigid plate
obtained by numerical integration of Eqs. (12) for M " 1 with
initial conditions h#0$ " 2, U#0$ " 3, and %#0$ " 0:6. The plate
quickly aligns with the substrate before slowing down as it falls;
different lines correspond to snapshots separated by equal time
intervals. (b) Scaled sliding distance D " $Ds="!h#0$U#0$
(dotted line) as a function of the nondimensional flexibility B.
For a flexible plate Ds & B1=4 (solid line); when B&O#1$ the
sliding distance approaches the value given by Ds &U#0$#&
"!h#0$U#0$=$ (see text). Initial conditions are h#x; 0$ " 1 and
U#0$ " 0:1.
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are the initial cond. - do you solve the full PDE with
no assumptions about h(x, t) ? ). In Fig.2, we see that
when B ! 1 the plate stops very quickly, and travels
furthest when the plate is very stiff. This is because flex-
ibility causes parts of the foil to be very close to the wall
which slows it down enormously. In this regime, the size
of the boundary layer lB over which bending effects are
important are given by (12), which yields Bh/l4B ∼ 1 so
that lB ∼ (Bh(0))1/4. Then, the scaled sliding distance
D = µDs/ρh(0)ξ ∼ B1/4. (not completely clear - need
to rewrite this part ... )

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

z (b)

0.0001 0.001 0.01 0.1

0.02

0.03

B

Sliding distance

FIG. 2: Passive sheet: (a): Trajectory of a rigid plate ob-
tained by numerical integration of the equations (15) with ini-
tial conditions h(0) = 2, U(0) = 3, and γ(0) = 0.6 for M = 1.
The alignment of the plate with respect to the substrate oc-
curs quickly, following which it slows down as it falls; different
lines correspond to snapshots separated by equal time inter-
vals. (b) Scaled sliding distance D = µDs/ξρh(0)U(0) (dot-
ted line) as a function of the non dimensional flexibility B.
For a flexible plate D ∼ B1/4 (solid line); when B ∼ O(1) the
sliding distance approaches the value given by (19). Initial
conditions are h(x, 0) = 1 and U(0) = 0.1.

Having understood the case of a passive flexible sheet
that descends under its own weight towards the floor, we
now address the question of the active flexible sheet, i.e.
the autonomous flying carpet and its natural counter-
parts. Since the functional space spanned by f , which is
determined by the internal dynamics of the active sheet
(in the case of an organism) is infinitely large, here we
study the problem using an inverse method, imposing

the shape of the sheet, and using this to deduce the form
of f . This also allows us to compute the time-averaged
power delivered by the active torque f as

P =
1
T

∫ T

0

∫ L

0
(∂xxf)(∂th)dxdt, (20)

while the dimensionless averaged viscous power dissi-
pated in the fluid is given by

S =
1
T

∫ T

0

∫ L

0

∫ h

0
∂zu

2dzdxdt = Ss + Su (21)

where Ss =
∫ L
0 U2/hdx and Su =

∫ 1
0

(∂xp)2

12µ h3dx are, re-
spectively, the steady power required to drag a plate at
a distance h from a wall (in the absence of gravity), and
the unsteady power required to generate lift/thrust via
unsteady motions.

At the simplest level, we may write the form of the
sheet as a generalization of (14)

h(t, x) = h0(t) + γ(t)x + A sin (ωt− qx) . (22)

where h0(t) is the average thickness of the fluid film, γ(t)
the average angle of the sheet with respect to the wall,
and the third term represents the actively generated os-
cillatory part of the motion with A the amplitude of oscil-
lations, ω the temporal frequency of the oscillations, and
q the wave number. Accounting for multiple frequencies
and wave numbers, while possibly useful in mimicking
natural locomotion does not change our formalism, but
makes the algebra more tedious.
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FIG. 3: Characteristics of a steadily moving active sheet with
A = 0.1 q = 25, ω = 1 and B = 0. The temporal evolution
of the variables U(t) (in thick gray line), h(t) (in thick line)
and γ(t) (in thin line) show an initial transient followed by
a steady state corresponding to movement at a finite average
velocity, height and tilt angle.

The equations (10), (12) together with the 6 boundary
conditions (13) constitutes a fourth order system for f, p
and the two unknowns h0(t), γ(t). At each time step,

p ∼ ∆ρgξ.
y

µU/h0 ∼ pγ µUγ ∼ ph3
0/L2

4

for a given set of parameters A,ω, q we use a Newton-
Raphson method to determine h0, γ after solving the dis-
cretized form of (10), (12) to enforce the boundary con-
ditions (13), while U is obtained using (11).In Fig. 3, we
show the results of our numerical experiments for a typ-

ical parameter set corresponding to a perfectly flexible
sheet B = 0; after a short transient, the sheet reaches
a periodic steady state and moves with a finite averaged
velocity U and height h0 and average tilt γ.
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FIG. 4: Active foil: averaged velocity and power consumed vs the forcing parameters (a) q = 25, ω = 1, B = 0 The dashed
curves in (a) are obtained with B = 0.03. (b) A = 0.01 and q = 25 B = 0. (c) A = 0.1, q = 25 and ω = 1. Show the fits to
power laws for U = U(A, ω). Also, the font for U in the figures should be changed.

In Fig. (4)a we show the average velocity and power
as a function of the wave amplitude A ω; the velocity
increases monotonically as A is increased, but the power
shows a maximum. While large velocities require large
amplitudes of oscillation, since the dissipation is domi-
nated by regions of small h, we see a cross-over in the
power required which actually decreases beyond a criti-
cal amplitude (for a given frequency), since the sheet is
further away on average. In Fig. 4b, we show that as
the forcing frequency ω is changed, the velocity and the
driving power (not shown) increase monotonically. One
might have expected a non-monotonic dependence, since
if the forcing frequency is too high, the plate cannot re-
spond. However, since we have neglected the vertical
inertia of the plate in our formulation, we do not see this
effect. We also varied the forcing wavenumber q to see its
effect on the velocity and power; we find that there is es-
sentially no dependence of the velocity on the wavenum-
ber, while the power increases monotonically. This is
consistent with the fact that the dominant contribution
to swimming arises from long wavelength modes that can
sweep large volumes of liquid; short wavelength modes do
not lead to coherent motion. Finally, we investigate the
role of flexibility: we find that the velocity remains al-
most constant over a range of B, as shown in Fig. 4c,
but the power required is non-monotonic (Why ? Do we
understand this ? ).

To understand these trends, we consider times large
compared to those associated with the oscillations of the
sheet. Then the fluid pressure must just balance the
weight of the sheet, so that p ∼ ∆ρgξ. Similarly, for

a sheet moving at constant velocity, the balance of hor-
izontal forces yields the relation µU/h0 ∼ pγ. Finally,
continuity coupled with horizontal force balance in the
fluid yields µUγ ∼ ph3

0/L2. These scaling relations are
equivalent to (10-(12) for the unknowns h0, U, γ, p. Com-
plementing these relations with the kinematic condition
ωA/q ∼ UγL which states that the fluid flow induced
by the traveling waves must balance that induced by the
steady movement of the sheet yields h0 ∼ (Aω/q)1/3, γ ∼
(Aω/q)1/3, U ∼ (Aω/q)2/3. Since we expect only the long
wavelength modes to generate movement, we expect that
q ∼ 1/L, so that U ∼ (Aω)2/3, consistent with the nu-
merical results shown in Fig. 4.a,b. Qualitatively, we see
that to maintain a fast moving sheet, we need a large am-
plitude and frequency with a characteristic wavelength
of deformation on scales comparable to the length of the
sheet. Furthermore, stiffer sheets are better than soft
sheets.

So, can a carpet fly ? For a 10 cm long sheet of thick-
ness 1 mm, floating on an air layer of thickness 10−3 m,
we find that U ∼ 1 m.s−1 and a characteristic time-scale
of order 0.1 s. A forcing frequency of order 10 Hz, the ac-
tive foil can propagate with a velocity of order 5 cm.s−1

with an amplitude of oscillation of order 250 µm. The
non-dimensional bending stiffness B is in that case 0.1,
and the active torque fmax = 10−1 N.m, all of which are
within the realm of possibilities in nature and in technol-
ogy. To move beyond our quantitative analysis of these
multi-parameter problems now requires a combination of
experiments with bio-mimetic devices and observation of
real organisms.

vertical forces

kinematics

horizontal forces continuity

q ∼ 1/L

Scaling laws:

U ∼ (Aω)2/3(
∆ρgξL

µ
)1/3 γ ∼ h0/Lh0 ∼ (Aω)1/3(

∆ρgξ

µ
)−1/3
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Aerodynamics. We will assume that the flow is incompressible,
inviscid, and irrotational. Then the tension in the flag T ! 0,c
and we may describe the unsteady fluid flow as a superposition
of a noncirculatory flow and a circulatory flow associated with
vortex shedding, following the pioneering work of Theodorsen
(3). This allows us to respect Kelvin’s theorem preserving the
total vorticity of the inviscid system (which is always zero) by
considering a vortex sheet in the fluid and an image sheet of
opposite strength that is in the plate. Both flows may be
described by a disturbance velocity potential !, which itself may
be decomposed into a noncirculatory potential, !nc, and a
circulatory potential, !", with ! ! !nc " !". Then ! satisfies the
Laplace equation, #2! ! 0, characterizing the two-dimensional
f luid velocity field, (u, v) ! (!x, !y), with boundary conditions
on the flag, #!!n!Y!0 ! Yt " UYx, and in the far-field, #!3 0
as r 3 $.

For small deflections of the plate, the transverse velocity of the
fluid, v, varies slowly along the plate. Then we may use a classical
result from airfoil theory (11) for an airfoil moving with a
velocity v ! Yt " UYx, assumed to be vary only slightly from a
constant, to deduce an approximate form for the noncirculatory
velocity potential along the plate as (12)

!nc # " x%L $ x&'Yt % UYx(. [3]

This expression neglects terms of order O(UYxt) (and higher)
that correspond physically to the rate of change of the local angle
of the plate, which can only be systematically accounted for in a
non-local way.d A true check of the validity of our model requires
a comparison with the solution of the complete problem, con-
stituting work in progress. However, as we will see, this simple
model is able to capture the qualitative essence of the mecha-
nisms involved and agrees reasonably with experiments. Pro-
ceeding forward, then, we can use the linearized Bernoulli
relation to determine the jump in pressure due to the noncir-
culatory flow so that

Pnc # )2& f%' t!nc % U'x!nc&

#
& fU%2x $ L&

"x%L $ x&
%Yt % UYx& $ 2 "x%L $ x&& fYtt.

[4]

Here we note that the fluid added-mass effecte is characterized
by the term proportional to Ytt, and again we have neglected
terms of order O(Yxt) and higher associated with very slow
changes in the slope of the plate.

Kelvin’s theorem demands that vorticity is conserved in an
inviscid flow of given topology. Thus, the circulatory flow
associated with vortex shedding from the trailing edge requires
a vorticity distribution in the wake of the airfoil and a (bound)
vorticity distribution in the airfoil to conserve the total vorticity.
If a point vortex shed from the trailing edge of the plate with
strength )* has a position (L#2)(1 " X0), X0 + 1, we must add
a point vortex of strength * in the interior of the sheet at
(L#2)(1 " (1#X0)). This leads to a circulatory velocity potential
along the plate (3–5)

!* # )
*

2(
arctan$ "x%L $ x& "x0

2 $ 1
L
2 %1 % x0& $ xx0 % ,

where x0 ! ((x0 " 1#X0)#2) characterizes the nondimensional
center of vorticity, which is at ((1 " x0)#2). Therefore, for a
distribution of vortices of strength " defined by * ! "(L#2)dx0,
the circulatory velocity potential is

!" # )
1

2(

L
2&

1

$

arctan$ "x%L $ x& "x0
2 $ 1

L
2 %1 % x0& $ xx0 % "dx0.

[5]

To calculate the pressure difference due to the circulatory
f low, we assume that the shed vorticity moves with the f low
velocity U so that 't!" ! (2#L)U'x0!".f Then, we may write (3)

P" # )
& fU

2( "x%L $ x&&
1

$ 2x % L%x0 $ 1&

"x0
2 $ 1

"dx0. [6]

The vortex sheet strength " in the previous expression is
determined by using the Kutta condition, which enforces the
physically reasonable condition that the horizontal component
of the velocity does not diverge at the trailing edge:g

'x%!" % !nc&!x!L # finite. [7]

Substituting Eqs. 3 and 5 into Eq. 7 yields the relation

1
2( &

1

$ " x0 % 1
x0 $ 1 "dx0 # Yt % UYx. [8]

Multiplying and dividing Eq. 6 by the two sides of Eq. 8 we
obtain

P" # )
%L%2C $ 1& % 2x%1 $ C&&

"x%L $ x&
& fU%Yt % UYx& , [9]

where

cIn the appendices, we treat the case where T ) 0 due to the presence of a Blasius boundary
layer.

dThe general solution of the Laplace equation in two dimensions with the given boundary
conditions may be written as ! # , dx-L(Yt % UYx)#!x $ x-! and yields a nonlocal
potential. However, when the transverse velocity Yt % UYx varies slowly in space and is
close to a constant, we may use the local approximation given by Eq. 3.

eWhen the plate moves, fluid must also be displaced and the sheet behaves as if it had more
inertia (12).

fThis implies a neglect of any acceleration phase of the vorticity, a reasonable assumption
at high Re.

gThis is tantamount to the statement that that the inclusion of viscosity, no matter how
small, will regularize the flow in the vicinity of the trailing edge.

Fig. 1. Schematic representation of the system. An elastic plate of length L,
width l, and thickness h .. l, L clamped at the origin is embedded in a
three-dimensional parallel flow of an inviscid fluid with velocity U in the x
direction. Its transverse position is denoted by Y (x, t). The incomplete cylin-
ders depict the real vortex that is shed from the trailing edge, and an
imaginary vortex in the interior of the plate that moves inwards, and is
necessary to preserve the impenetrability of the boundary of the plate.
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We give an explanation for the onset of fluid-flow-induced flutter
in a flag. Our theory accounts for the various physical mechanisms
at work: the finite length and the small but finite bending stiffness
of the flag, the unsteadiness of the flow, the added mass effect,
and vortex shedding from the trailing edge. Our analysis allows us
to predict a critical speed for the onset of flapping as well as the
frequency of flapping. We find that in a particular limit correspond-
ing to a low-density fluid flowing over a soft high-density flag, the
flapping instability is akin to a resonance between the mode of
oscillation of a rigid pivoted airfoil in a flow and a hinged-free
elastic plate vibrating in its lowest mode.

The flutter of a flag in a gentle breeze and the flapping of a
sail in a rough wind are commonplace and familiar obser-

vations of a rich class of problems involving the interaction of
fluids and structures, of wide interest and importance in science
and engineering (1). Folklore attributes this instability to some
combination of (i) the Bénard–von Kármán vortex street that is
shed from the trailing edge of the flag and (ii) the Kelvin–
Helmholtz problem of the growth of perturbations at an inter-
face between two inviscid fluids of infinite extent moving with
different velocities (2). However, a moment’s reflection makes
one realize that neither of these is correct. The frequency of
vortex shedding from a thin flag (with an audible acoustic
signature) is much higher than that of the observed flapping,
while the lack of a differential velocity profile across the flag and
its finite flexibility and length make it qualitatively different
from the Kelvin–Helmholtz problem. After the advent of high-
speed flight, these questions were revisited in the context of
aerodynamically induced wing flutter by Theodorsen (3–5).
While this important advance made it possible to predict the
onset of flutter for rigid plates, these analyses are not directly
applicable to the case of a spatially extended elastic system such
as a flapping flag. Recently, experiments on an elastic filament
flapping in a flowing soap film (6) and of paper sheets flapping
in a breeze (ref. 7 and references therein) have been used to
further elucidate aspects of the phenomena such as the inherent
bistability of the flapping and stationary states, and a charac-
terization of the transition curve. In addition, numerical solu-
tions of the inviscid hydrodynamic (Euler) equations using an
integral equation approach (8) and of the viscous (Navier–
Stokes) equations (9) have shown that it is possible to simulate
the flapping instability. However, the physical mechanisms
underlying the instability remain elusive. In this paper, we
remedy this in terms of the following picture: For a given flag,
there is a critical f low velocity above which the fluid pressure can
excite a resonant bending instability, causing it to flutter. In fact,
we show that in the limit of a heavy flag in a fast-moving light
fluid the instability occurs when the frequency associated with
the lowest mode of elastic bending vibrations of the flag becomes
equal to the frequency of aerodynamic oscillations of a hinged
rigid plate immersed in a flow.

Physically, the meaning of this result is as follows: For a heavy
flag in a rapid flow, the added mass effect due to fluid motion
is negligible so that the primary effect of the fluid is an inertial
pressure forcing on the plate. For a plate of length L weakly tilted
at an angle !, the excess fluid pressure on it scales as "fU2!, where
"f is the fluid density and U is the fluid velocity. The inertia of
a plate of thickness h, of density "s, and oscillating at a frequency

#a scales as "sh#a
2L!. Equating the two yields the frequency of

oscillations of a freely hinged rigid plate approximately parallel
to the flow #a ! ("fU2!"shL)1/2. On the other hand, for a
flexible plate of thickness h and made of a material of Young’s
modulus E (bending stiffness of order Eh3) the elastic restoring
force per unit length due to a deflection by the same angle !
scales as Eh3!!L3 so that the frequency of the lowest mode of
free bending vibrations of a flexible plate #b ! (Eh2!"sL4)1/2.
Equating the two yields a critical velocity for the onset of flutter
of a plate of given length Uc ! (Eh3!"fL3)1/2. As we will see in
the following sections, this simple result arises naturally from the
analysis of the governing equations of motion of the flag and
the fluid. In particular, our analysis is capable of accounting for
the unsteady nature of the problem in terms of the added mass
of the fluid and the vortex shedding from the trailing edge in
terms of the seminal ideas of Theodorsen (3).

Equations of Motion
Elasticity. We consider the dynamics of an inextensible two-
dimensional elastic plateb of length L, width l, and thickness
h "" L "" l, made of a material of density "s and Young’s
modulus E embedded in a three-dimensional parallel f low of an
ambient fluid with a density "f and kinematic viscosity $, shown
schematically in Fig. 1. We assume that the leading edge of the
naturally straight plate is clamped at the origin with its tangent
along the x axis and that there are no variations in the flow along
the direction of the clamped edge, and that far from the plate,
the fluid velocity U # Ux. Then the transverse position of the
plate Y(x, t) satisfies the equation of motion (10):

mYtt % $BYxxxx & l%P & T Yxx. [1]

Here, and elsewhere Ab & 'A!'b, m # "shl is the mass per unit
length of the flag, B # Eh3l!12(1 $ (2) is its f lexural rigidity
(here ( is the Poisson ratio of the material), %P is the pressure
difference across the plate due to fluid flow, and T is the tension
in the flag induced by the flow.

In deriving Eq. 1, we have assumed that the slope of the plate
is small so that we can neglect the effect of any geometrical
nonlinearities; these become important in determining the de-
tailed evolution of the instability but are not relevant in under-
standing the onset of flutter. For the case when the leading edge
of the flag is clamped and the trailing edge is free, the boundary
conditions associated with Eq. 1 are (10):

Y't, 0( % 0, Yx't, 0( % 0,
[2]

Yxx't, L( % 0, Yxxx't, L( % 0.

To close the system of Eqs. 1 and 2, we must evaluate the fluid
pressure %P by solving the equations of motion for the fluid in
the presence of the moving plate.

aTo whom correspondence should be addressed. E-mail: lm@deas.harvard.edu.
bOur analysis also carries over to the case of an elastic filament in a two-dimensional parallel
flow.
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We give an explanation for the onset of fluid-flow-induced flutter
in a flag. Our theory accounts for the various physical mechanisms
at work: the finite length and the small but finite bending stiffness
of the flag, the unsteadiness of the flow, the added mass effect,
and vortex shedding from the trailing edge. Our analysis allows us
to predict a critical speed for the onset of flapping as well as the
frequency of flapping. We find that in a particular limit correspond-
ing to a low-density fluid flowing over a soft high-density flag, the
flapping instability is akin to a resonance between the mode of
oscillation of a rigid pivoted airfoil in a flow and a hinged-free
elastic plate vibrating in its lowest mode.

The flutter of a flag in a gentle breeze and the flapping of a
sail in a rough wind are commonplace and familiar obser-

vations of a rich class of problems involving the interaction of
fluids and structures, of wide interest and importance in science
and engineering (1). Folklore attributes this instability to some
combination of (i) the Bénard–von Kármán vortex street that is
shed from the trailing edge of the flag and (ii) the Kelvin–
Helmholtz problem of the growth of perturbations at an inter-
face between two inviscid fluids of infinite extent moving with
different velocities (2). However, a moment’s reflection makes
one realize that neither of these is correct. The frequency of
vortex shedding from a thin flag (with an audible acoustic
signature) is much higher than that of the observed flapping,
while the lack of a differential velocity profile across the flag and
its finite flexibility and length make it qualitatively different
from the Kelvin–Helmholtz problem. After the advent of high-
speed flight, these questions were revisited in the context of
aerodynamically induced wing flutter by Theodorsen (3–5).
While this important advance made it possible to predict the
onset of flutter for rigid plates, these analyses are not directly
applicable to the case of a spatially extended elastic system such
as a flapping flag. Recently, experiments on an elastic filament
flapping in a flowing soap film (6) and of paper sheets flapping
in a breeze (ref. 7 and references therein) have been used to
further elucidate aspects of the phenomena such as the inherent
bistability of the flapping and stationary states, and a charac-
terization of the transition curve. In addition, numerical solu-
tions of the inviscid hydrodynamic (Euler) equations using an
integral equation approach (8) and of the viscous (Navier–
Stokes) equations (9) have shown that it is possible to simulate
the flapping instability. However, the physical mechanisms
underlying the instability remain elusive. In this paper, we
remedy this in terms of the following picture: For a given flag,
there is a critical f low velocity above which the fluid pressure can
excite a resonant bending instability, causing it to flutter. In fact,
we show that in the limit of a heavy flag in a fast-moving light
fluid the instability occurs when the frequency associated with
the lowest mode of elastic bending vibrations of the flag becomes
equal to the frequency of aerodynamic oscillations of a hinged
rigid plate immersed in a flow.

Physically, the meaning of this result is as follows: For a heavy
flag in a rapid flow, the added mass effect due to fluid motion
is negligible so that the primary effect of the fluid is an inertial
pressure forcing on the plate. For a plate of length L weakly tilted
at an angle !, the excess fluid pressure on it scales as "fU2!, where
"f is the fluid density and U is the fluid velocity. The inertia of
a plate of thickness h, of density "s, and oscillating at a frequency

#a scales as "sh#a
2L!. Equating the two yields the frequency of

oscillations of a freely hinged rigid plate approximately parallel
to the flow #a ! ("fU2!"shL)1/2. On the other hand, for a
flexible plate of thickness h and made of a material of Young’s
modulus E (bending stiffness of order Eh3) the elastic restoring
force per unit length due to a deflection by the same angle !
scales as Eh3!!L3 so that the frequency of the lowest mode of
free bending vibrations of a flexible plate #b ! (Eh2!"sL4)1/2.
Equating the two yields a critical velocity for the onset of flutter
of a plate of given length Uc ! (Eh3!"fL3)1/2. As we will see in
the following sections, this simple result arises naturally from the
analysis of the governing equations of motion of the flag and
the fluid. In particular, our analysis is capable of accounting for
the unsteady nature of the problem in terms of the added mass
of the fluid and the vortex shedding from the trailing edge in
terms of the seminal ideas of Theodorsen (3).

Equations of Motion
Elasticity. We consider the dynamics of an inextensible two-
dimensional elastic plateb of length L, width l, and thickness
h "" L "" l, made of a material of density "s and Young’s
modulus E embedded in a three-dimensional parallel f low of an
ambient fluid with a density "f and kinematic viscosity $, shown
schematically in Fig. 1. We assume that the leading edge of the
naturally straight plate is clamped at the origin with its tangent
along the x axis and that there are no variations in the flow along
the direction of the clamped edge, and that far from the plate,
the fluid velocity U # Ux. Then the transverse position of the
plate Y(x, t) satisfies the equation of motion (10):

mYtt % $BYxxxx & l%P & T Yxx. [1]

Here, and elsewhere Ab & 'A!'b, m # "shl is the mass per unit
length of the flag, B # Eh3l!12(1 $ (2) is its f lexural rigidity
(here ( is the Poisson ratio of the material), %P is the pressure
difference across the plate due to fluid flow, and T is the tension
in the flag induced by the flow.

In deriving Eq. 1, we have assumed that the slope of the plate
is small so that we can neglect the effect of any geometrical
nonlinearities; these become important in determining the de-
tailed evolution of the instability but are not relevant in under-
standing the onset of flutter. For the case when the leading edge
of the flag is clamped and the trailing edge is free, the boundary
conditions associated with Eq. 1 are (10):

Y't, 0( % 0, Yx't, 0( % 0,
[2]

Yxx't, L( % 0, Yxxx't, L( % 0.

To close the system of Eqs. 1 and 2, we must evaluate the fluid
pressure %P by solving the equations of motion for the fluid in
the presence of the moving plate.

aTo whom correspondence should be addressed. E-mail: lm@deas.harvard.edu.
bOur analysis also carries over to the case of an elastic filament in a two-dimensional parallel
flow.
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Aerodynamics. We will assume that the flow is incompressible,
inviscid, and irrotational. Then the tension in the flag T ! 0,c
and we may describe the unsteady fluid flow as a superposition
of a noncirculatory flow and a circulatory flow associated with
vortex shedding, following the pioneering work of Theodorsen
(3). This allows us to respect Kelvin’s theorem preserving the
total vorticity of the inviscid system (which is always zero) by
considering a vortex sheet in the fluid and an image sheet of
opposite strength that is in the plate. Both flows may be
described by a disturbance velocity potential !, which itself may
be decomposed into a noncirculatory potential, !nc, and a
circulatory potential, !", with ! ! !nc " !". Then ! satisfies the
Laplace equation, #2! ! 0, characterizing the two-dimensional
f luid velocity field, (u, v) ! (!x, !y), with boundary conditions
on the flag, #!!n!Y!0 ! Yt " UYx, and in the far-field, #!3 0
as r 3 $.

For small deflections of the plate, the transverse velocity of the
fluid, v, varies slowly along the plate. Then we may use a classical
result from airfoil theory (11) for an airfoil moving with a
velocity v ! Yt " UYx, assumed to be vary only slightly from a
constant, to deduce an approximate form for the noncirculatory
velocity potential along the plate as (12)

!nc # " x%L $ x&'Yt % UYx(. [3]

This expression neglects terms of order O(UYxt) (and higher)
that correspond physically to the rate of change of the local angle
of the plate, which can only be systematically accounted for in a
non-local way.d A true check of the validity of our model requires
a comparison with the solution of the complete problem, con-
stituting work in progress. However, as we will see, this simple
model is able to capture the qualitative essence of the mecha-
nisms involved and agrees reasonably with experiments. Pro-
ceeding forward, then, we can use the linearized Bernoulli
relation to determine the jump in pressure due to the noncir-
culatory flow so that

Pnc # )2& f%' t!nc % U'x!nc&

#
& fU%2x $ L&

"x%L $ x&
%Yt % UYx& $ 2 "x%L $ x&& fYtt.

[4]

Here we note that the fluid added-mass effecte is characterized
by the term proportional to Ytt, and again we have neglected
terms of order O(Yxt) and higher associated with very slow
changes in the slope of the plate.

Kelvin’s theorem demands that vorticity is conserved in an
inviscid flow of given topology. Thus, the circulatory flow
associated with vortex shedding from the trailing edge requires
a vorticity distribution in the wake of the airfoil and a (bound)
vorticity distribution in the airfoil to conserve the total vorticity.
If a point vortex shed from the trailing edge of the plate with
strength )* has a position (L#2)(1 " X0), X0 + 1, we must add
a point vortex of strength * in the interior of the sheet at
(L#2)(1 " (1#X0)). This leads to a circulatory velocity potential
along the plate (3–5)

!* # )
*

2(
arctan$ "x%L $ x& "x0

2 $ 1
L
2 %1 % x0& $ xx0 % ,

where x0 ! ((x0 " 1#X0)#2) characterizes the nondimensional
center of vorticity, which is at ((1 " x0)#2). Therefore, for a
distribution of vortices of strength " defined by * ! "(L#2)dx0,
the circulatory velocity potential is

!" # )
1

2(

L
2&

1

$

arctan$ "x%L $ x& "x0
2 $ 1

L
2 %1 % x0& $ xx0 % "dx0.

[5]

To calculate the pressure difference due to the circulatory
f low, we assume that the shed vorticity moves with the f low
velocity U so that 't!" ! (2#L)U'x0!".f Then, we may write (3)

P" # )
& fU

2( "x%L $ x&&
1

$ 2x % L%x0 $ 1&

"x0
2 $ 1

"dx0. [6]

The vortex sheet strength " in the previous expression is
determined by using the Kutta condition, which enforces the
physically reasonable condition that the horizontal component
of the velocity does not diverge at the trailing edge:g

'x%!" % !nc&!x!L # finite. [7]

Substituting Eqs. 3 and 5 into Eq. 7 yields the relation

1
2( &

1

$ " x0 % 1
x0 $ 1 "dx0 # Yt % UYx. [8]

Multiplying and dividing Eq. 6 by the two sides of Eq. 8 we
obtain

P" # )
%L%2C $ 1& % 2x%1 $ C&&

"x%L $ x&
& fU%Yt % UYx& , [9]

where

cIn the appendices, we treat the case where T ) 0 due to the presence of a Blasius boundary
layer.

dThe general solution of the Laplace equation in two dimensions with the given boundary
conditions may be written as ! # , dx-L(Yt % UYx)#!x $ x-! and yields a nonlocal
potential. However, when the transverse velocity Yt % UYx varies slowly in space and is
close to a constant, we may use the local approximation given by Eq. 3.

eWhen the plate moves, fluid must also be displaced and the sheet behaves as if it had more
inertia (12).

fThis implies a neglect of any acceleration phase of the vorticity, a reasonable assumption
at high Re.

gThis is tantamount to the statement that that the inclusion of viscosity, no matter how
small, will regularize the flow in the vicinity of the trailing edge.

Fig. 1. Schematic representation of the system. An elastic plate of length L,
width l, and thickness h .. l, L clamped at the origin is embedded in a
three-dimensional parallel flow of an inviscid fluid with velocity U in the x
direction. Its transverse position is denoted by Y (x, t). The incomplete cylin-
ders depict the real vortex that is shed from the trailing edge, and an
imaginary vortex in the interior of the plate that moves inwards, and is
necessary to preserve the impenetrability of the boundary of the plate.
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Aerodynamics. We will assume that the flow is incompressible,
inviscid, and irrotational. Then the tension in the flag T ! 0,c
and we may describe the unsteady fluid flow as a superposition
of a noncirculatory flow and a circulatory flow associated with
vortex shedding, following the pioneering work of Theodorsen
(3). This allows us to respect Kelvin’s theorem preserving the
total vorticity of the inviscid system (which is always zero) by
considering a vortex sheet in the fluid and an image sheet of
opposite strength that is in the plate. Both flows may be
described by a disturbance velocity potential !, which itself may
be decomposed into a noncirculatory potential, !nc, and a
circulatory potential, !", with ! ! !nc " !". Then ! satisfies the
Laplace equation, #2! ! 0, characterizing the two-dimensional
f luid velocity field, (u, v) ! (!x, !y), with boundary conditions
on the flag, #!!n!Y!0 ! Yt " UYx, and in the far-field, #!3 0
as r 3 $.

For small deflections of the plate, the transverse velocity of the
fluid, v, varies slowly along the plate. Then we may use a classical
result from airfoil theory (11) for an airfoil moving with a
velocity v ! Yt " UYx, assumed to be vary only slightly from a
constant, to deduce an approximate form for the noncirculatory
velocity potential along the plate as (12)

!nc # " x%L $ x&'Yt % UYx(. [3]

This expression neglects terms of order O(UYxt) (and higher)
that correspond physically to the rate of change of the local angle
of the plate, which can only be systematically accounted for in a
non-local way.d A true check of the validity of our model requires
a comparison with the solution of the complete problem, con-
stituting work in progress. However, as we will see, this simple
model is able to capture the qualitative essence of the mecha-
nisms involved and agrees reasonably with experiments. Pro-
ceeding forward, then, we can use the linearized Bernoulli
relation to determine the jump in pressure due to the noncir-
culatory flow so that

Pnc # )2& f%' t!nc % U'x!nc&

#
& fU%2x $ L&

"x%L $ x&
%Yt % UYx& $ 2 "x%L $ x&& fYtt.

[4]

Here we note that the fluid added-mass effecte is characterized
by the term proportional to Ytt, and again we have neglected
terms of order O(Yxt) and higher associated with very slow
changes in the slope of the plate.

Kelvin’s theorem demands that vorticity is conserved in an
inviscid flow of given topology. Thus, the circulatory flow
associated with vortex shedding from the trailing edge requires
a vorticity distribution in the wake of the airfoil and a (bound)
vorticity distribution in the airfoil to conserve the total vorticity.
If a point vortex shed from the trailing edge of the plate with
strength )* has a position (L#2)(1 " X0), X0 + 1, we must add
a point vortex of strength * in the interior of the sheet at
(L#2)(1 " (1#X0)). This leads to a circulatory velocity potential
along the plate (3–5)

!* # )
*

2(
arctan$ "x%L $ x& "x0

2 $ 1
L
2 %1 % x0& $ xx0 % ,

where x0 ! ((x0 " 1#X0)#2) characterizes the nondimensional
center of vorticity, which is at ((1 " x0)#2). Therefore, for a
distribution of vortices of strength " defined by * ! "(L#2)dx0,
the circulatory velocity potential is

!" # )
1

2(

L
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1

$

arctan$ "x%L $ x& "x0
2 $ 1

L
2 %1 % x0& $ xx0 % "dx0.

[5]

To calculate the pressure difference due to the circulatory
f low, we assume that the shed vorticity moves with the f low
velocity U so that 't!" ! (2#L)U'x0!".f Then, we may write (3)

P" # )
& fU

2( "x%L $ x&&
1

$ 2x % L%x0 $ 1&

"x0
2 $ 1

"dx0. [6]

The vortex sheet strength " in the previous expression is
determined by using the Kutta condition, which enforces the
physically reasonable condition that the horizontal component
of the velocity does not diverge at the trailing edge:g

'x%!" % !nc&!x!L # finite. [7]

Substituting Eqs. 3 and 5 into Eq. 7 yields the relation

1
2( &

1

$ " x0 % 1
x0 $ 1 "dx0 # Yt % UYx. [8]

Multiplying and dividing Eq. 6 by the two sides of Eq. 8 we
obtain

P" # )
%L%2C $ 1& % 2x%1 $ C&&

"x%L $ x&
& fU%Yt % UYx& , [9]

where

cIn the appendices, we treat the case where T ) 0 due to the presence of a Blasius boundary
layer.

dThe general solution of the Laplace equation in two dimensions with the given boundary
conditions may be written as ! # , dx-L(Yt % UYx)#!x $ x-! and yields a nonlocal
potential. However, when the transverse velocity Yt % UYx varies slowly in space and is
close to a constant, we may use the local approximation given by Eq. 3.

eWhen the plate moves, fluid must also be displaced and the sheet behaves as if it had more
inertia (12).

fThis implies a neglect of any acceleration phase of the vorticity, a reasonable assumption
at high Re.

gThis is tantamount to the statement that that the inclusion of viscosity, no matter how
small, will regularize the flow in the vicinity of the trailing edge.

Fig. 1. Schematic representation of the system. An elastic plate of length L,
width l, and thickness h .. l, L clamped at the origin is embedded in a
three-dimensional parallel flow of an inviscid fluid with velocity U in the x
direction. Its transverse position is denoted by Y (x, t). The incomplete cylin-
ders depict the real vortex that is shed from the trailing edge, and an
imaginary vortex in the interior of the plate that moves inwards, and is
necessary to preserve the impenetrability of the boundary of the plate.
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Aerodynamics. We will assume that the flow is incompressible,
inviscid, and irrotational. Then the tension in the flag T ! 0,c
and we may describe the unsteady fluid flow as a superposition
of a noncirculatory flow and a circulatory flow associated with
vortex shedding, following the pioneering work of Theodorsen
(3). This allows us to respect Kelvin’s theorem preserving the
total vorticity of the inviscid system (which is always zero) by
considering a vortex sheet in the fluid and an image sheet of
opposite strength that is in the plate. Both flows may be
described by a disturbance velocity potential !, which itself may
be decomposed into a noncirculatory potential, !nc, and a
circulatory potential, !", with ! ! !nc " !". Then ! satisfies the
Laplace equation, #2! ! 0, characterizing the two-dimensional
f luid velocity field, (u, v) ! (!x, !y), with boundary conditions
on the flag, #!!n!Y!0 ! Yt " UYx, and in the far-field, #!3 0
as r 3 $.

For small deflections of the plate, the transverse velocity of the
fluid, v, varies slowly along the plate. Then we may use a classical
result from airfoil theory (11) for an airfoil moving with a
velocity v ! Yt " UYx, assumed to be vary only slightly from a
constant, to deduce an approximate form for the noncirculatory
velocity potential along the plate as (12)

!nc # " x%L $ x&'Yt % UYx(. [3]

This expression neglects terms of order O(UYxt) (and higher)
that correspond physically to the rate of change of the local angle
of the plate, which can only be systematically accounted for in a
non-local way.d A true check of the validity of our model requires
a comparison with the solution of the complete problem, con-
stituting work in progress. However, as we will see, this simple
model is able to capture the qualitative essence of the mecha-
nisms involved and agrees reasonably with experiments. Pro-
ceeding forward, then, we can use the linearized Bernoulli
relation to determine the jump in pressure due to the noncir-
culatory flow so that

Pnc # )2& f%' t!nc % U'x!nc&

#
& fU%2x $ L&

"x%L $ x&
%Yt % UYx& $ 2 "x%L $ x&& fYtt.

[4]

Here we note that the fluid added-mass effecte is characterized
by the term proportional to Ytt, and again we have neglected
terms of order O(Yxt) and higher associated with very slow
changes in the slope of the plate.

Kelvin’s theorem demands that vorticity is conserved in an
inviscid flow of given topology. Thus, the circulatory flow
associated with vortex shedding from the trailing edge requires
a vorticity distribution in the wake of the airfoil and a (bound)
vorticity distribution in the airfoil to conserve the total vorticity.
If a point vortex shed from the trailing edge of the plate with
strength )* has a position (L#2)(1 " X0), X0 + 1, we must add
a point vortex of strength * in the interior of the sheet at
(L#2)(1 " (1#X0)). This leads to a circulatory velocity potential
along the plate (3–5)

!* # )
*

2(
arctan$ "x%L $ x& "x0

2 $ 1
L
2 %1 % x0& $ xx0 % ,

where x0 ! ((x0 " 1#X0)#2) characterizes the nondimensional
center of vorticity, which is at ((1 " x0)#2). Therefore, for a
distribution of vortices of strength " defined by * ! "(L#2)dx0,
the circulatory velocity potential is
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To calculate the pressure difference due to the circulatory
f low, we assume that the shed vorticity moves with the f low
velocity U so that 't!" ! (2#L)U'x0!".f Then, we may write (3)
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& fU

2( "x%L $ x&&
1

$ 2x % L%x0 $ 1&

"x0
2 $ 1

"dx0. [6]

The vortex sheet strength " in the previous expression is
determined by using the Kutta condition, which enforces the
physically reasonable condition that the horizontal component
of the velocity does not diverge at the trailing edge:g

'x%!" % !nc&!x!L # finite. [7]

Substituting Eqs. 3 and 5 into Eq. 7 yields the relation

1
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$ " x0 % 1
x0 $ 1 "dx0 # Yt % UYx. [8]

Multiplying and dividing Eq. 6 by the two sides of Eq. 8 we
obtain

P" # )
%L%2C $ 1& % 2x%1 $ C&&

"x%L $ x&
& fU%Yt % UYx& , [9]

where

cIn the appendices, we treat the case where T ) 0 due to the presence of a Blasius boundary
layer.

dThe general solution of the Laplace equation in two dimensions with the given boundary
conditions may be written as ! # , dx-L(Yt % UYx)#!x $ x-! and yields a nonlocal
potential. However, when the transverse velocity Yt % UYx varies slowly in space and is
close to a constant, we may use the local approximation given by Eq. 3.

eWhen the plate moves, fluid must also be displaced and the sheet behaves as if it had more
inertia (12).

fThis implies a neglect of any acceleration phase of the vorticity, a reasonable assumption
at high Re.

gThis is tantamount to the statement that that the inclusion of viscosity, no matter how
small, will regularize the flow in the vicinity of the trailing edge.

Fig. 1. Schematic representation of the system. An elastic plate of length L,
width l, and thickness h .. l, L clamped at the origin is embedded in a
three-dimensional parallel flow of an inviscid fluid with velocity U in the x
direction. Its transverse position is denoted by Y (x, t). The incomplete cylin-
ders depict the real vortex that is shed from the trailing edge, and an
imaginary vortex in the interior of the plate that moves inwards, and is
necessary to preserve the impenetrability of the boundary of the plate.
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(Theodorsen 1935)

∆(φnc + φγ) = 0

- mechanism / onset ?  frequency ? wavelength ?
mf ∼ ρfL2w p ∼ ρfU2- fluid:

inertia pressure

B ∼ Er
3
wms ∼ ρsrLw- solid: 

inertia elasticity

Parameters ρ =
ρfL

ρsr
=

mf

ms
u0 =

UL

r
(
ρs

E
)1/2 =

τs

τf
Re =

UL

ν
∼ 104

vortex shedding ?



Bernoulli equation (linearized): Kutta condition:

∆P = −2ρf (∂t + U∂x)(φγ + φnc) ∂x(φγ + φnc)|x=L is finite

Dimensionless system ?

time irreversibleinertia space irreversible

elasticityadded mass Theodorsen function - vortex shedding

- 1:1 resonance

h(s,τ ) = ζ(s)eστ

stability analysis ?

For a heavy flag in a fast flow

time-reversible !

ρ→ 0; ρu0 → 0 ρu2
0 → K, C[γ]→ 1



Mechanism ?

frequency “confusion” 

H-Y Kim, LM(2010)
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Other elastohydrodynamic instabilities ?
 
- low Re ? confined flows ?

1:1 resonance ! 

Mandre, LM; P. R. 
Soc. (A) (2009) - weak effect of fluid

- clustered frequencies
- hydrodynamics is slaved



Unconfined swimming - gait ? Argentina,  LM; 2010

Long history - Gray, Taylor, Lighthill, Wu ...  - prescribed kinematics ! 

Transverse mom. balance (local)

inertia elasticity pressure internal torqueboundary layer drag

Longitudinal mom. balance (global)

pressure X  slope  

∫ 1

0

∆Phsds −

4

3
√

Re
ρu

3/2

0
= u0τ

boundary layer drag

Nonlinear eigenvalue problem u0, h(s)

muscular torqueF (s,τ ) = g(s) cosω∗τ

pressure



 Paralyzed Trout in a wake (Liao et al., 2003)

Resonant interaction ? ... Flapping fish ?

Carangiform mode:
small added mass

large added mass



Resonance ! 

h(0, t) =
A

2
sinωt

Fig. 3. Locomotion velocity for βL = 10, Re = 104, A = 0.39 and ρ = 10

on the shape of the fish. The non-dimensional active torque
is mf . These deformations obey to the vertical momentum
balance (21). The internal torque induces deformations of the
plate that can generates thrust if the integrals I1, I2 or I3

becomes negative enough and manage to balance the viscous
shear that tends to diminish the locomotion velocity. The
integral I1 defined in (22) remains always positive and we in-
terpret as the effect of the pressure drag. In our simulation
the integral I2 remains positive. If h can be decomposed into
a planar wave propagating from the head of the fish to the
till, this integral becomes negative and it can lead the loco-
motion. The contribution from I3 is, in our simulation, to
general thrust.

The system (20,21) together with the boudary conditions
(10,11) forced with the internal torque (8,9) is self consistent.
In this work, we want to focus on established regime of lo-
comotion. In such case, h is oscillating with one temporal
frequency proportional to those of the active torque, at first
order. We then impose h = eiωtη(s) + c.c. with u̇ = 0, such
that our set of equation becomes a set of ordinary differential
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Fig. 4. Locomotion velocity u (thick curve) and amplitude of the tail η(1) (thin

curve) as function of ω, η̈(0) = A
2 Re = 104, A = 2 10−4 and ρ = 10

equation with constrains for the velocity from (20):

−ω2(1 + sf(s)ρ)η = −ρf(s)u(iωη + u∂sη)

−∂2
s

`
b(s)∂2

sη
´
− A

2i∂
2
s (F (s)e−iqs)

+ 1√
Re

ρu3/2
`
−∂sη + (s−

√
s)∂2

sη
´
[25]

This problem can be solved using continuation algorithms
like those implemented by the AUTO software [25]. In the
Fig. , we present the numerical results for a given set of pa-
rameters. The locomotion velocity is not monotonous and
presents peaks. Theses peaks are the signs of resonance phe-
nomenon, where the oscillation amplitude of the active plate
achieves maximum values.

In the passive limit, i.e. A = 0, this resonance instability
also occurs. By injecting the torque in the front of the plate,
i.e. s = 0, the locomotion velocity can also be computed. This
is achieved by changing the boundary conditions (11) into

η̈(0) =
A
2

, η̈(1) = 0.

In Fig. , we show the depedence of the locomotion velocity
and the oscillating amplitude of the tail of the fish as function
of the forcing frequency.

As in the active plate, the locomotion velocity is maximum
for various values of the forcing frequency ω . These extrema
are found in the vicinity of the maxima of the tail amplitude.
As expected, for large amplitude forcing, the resonance tongue
gather. This results suggests that the fishes could seek param-
eter regimes that induce resonance of its body to provide an
high amplitude of deformation.

4 www.pnas.org — — Footline Author
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Oscillating pivot Oscillating pivot + flow (to cancel thrust !)

J. Lim (Lauder lab)Swimming flag ? 



Birdsong  ?
Q. - Ethology ? Behavior ?
     - (Acoustic) ecology ?
     - Neuroscience ? Memory, learning, adaptation ...

     - Dynamics and control 

                   of an extended neuromuscular system ?

SYRINX

- elastohydrodynamic
flutter 

+ controls + filters



Short (physical/mathematical) history - N. Fletcher, Ishikawa-Flanagan (1970s) + 
                                                              M. Fee, R. Suthers, Goller  etc. - Physics of birdsong - G. Mindlin 

Parameters - pressure, flow rate, passive tension, active muscular force .... 

A minimal system -  physically ? mathematically ? 



A stretched rubber tube + a single displacement actuator ... ! 
Mukherjee,  LM; 2010

Actuated flutter modes

Figure 1: Schematic of experimental setup. c1,c2 - clamps; s1 - strain gauge
to measure lateral tension; s2 - measure longitudinal tension ; Tx - translation
stage to change lateral tension; Ty - stage changes longitudinal tension; F -
flow meter; g - grid projected onto device. Inset shows side view of the setup.
L - 10 mW Green laser pointer; m - mask used to produce grid; p - probe
used to excite device; c - High speed video camera (upto 90kHz frame rate)

s2 Tx

p

c1 c2s1Tx

Ty

g

F

c

L

m

- high speed imaging
- audio recording 
- control of tensions, flow rate, actuation

actuator

! !



Pure tone

Solitary wave
(excitable)

Chatter - chaos ?



Bird song via optimal control of an oscillator ?

(1)ẍ + r(t)ẋ + ω2(t)x = 0,u(t)

r(t), ω(t)

x(t)song mimic
(or variant ... )

control (flow rate, piston displacement, tension)

slowly varying .... relative to base frequency ( kHz !)

- muscular response ~ 10 ms or larger !

minimize
r(t),ω(t)

∫ T

0
(x − u(t))2 + W1

(
dω

dt

)2

+ W2

(
dr

dt

)2

dt subject to (1)

large !
Global optimization !

Mandre,  LM; 2010



Sequence of local optimization problems:

Bird song as optimal control

Shreyas Mandre and L. Mahadevan

August 13, 2010

Abstract

Using a linear oscillator as a model for the vocal organs of a bird, we pose the generation of particular
songs as a optimal control problem. The parameters to be optimized are the frequency and damping of
the linear oscillator. We demonstrate that a wide variety of songs can be represented as trajectories in
the frequency–damping plane.

Consider an oscillator
ẍ + r(t)ẋ + ω2(t)x = 0, (1)

where x(t) models the acoustic signal correspondint to the song, and r(t) and ω(t) are two functions that
the bird manipulates in order to generate the signal.

Given a recording of the bird song, the question we try to answer is whether there exist slowly varying
functions r(t) and ω(t), for which the solution of (1) comes close to the recorded bird song. We formulate
this as an optimization problem

minimize
r(t),ω(t)

∫ T

0
(x − u(t))2 + W1

(
dω

dt

)2

+ W2

(
dr

dt

)2

dt subject to ẍ + r(t)ẋ + ω2(t)x = 0. (2)

Large weights W1 and W2 suppress rapid variation in the song and are a measure of the slowness of the time
scale over which the control on ω and r is exercised.

The optimization algorithm uses the WKB approximation for the solution of (1). Within this approxi-
mation, the solution can be written as

x(t) =
1√
ω(t)

(
Ae(−Ψ(t)+iΦ(t)) + Be(−Ψ(t)−iΦ(t))

)
. (3)

where

Ψ(t) =
∫ t

0

r(s)
2

ds and Φ(t) =
∫ t

0
ω(s)ds, (4)

and A and B are arbitrary constants determined by initial condition. The differential optimization algorithm
then can be converted to an algebraic one by dividing the duration of the bird song into N intervals, with r
and ω approximated to be constants in each interval but vary from interval to interval. A and B determined
so that x and ẋ are continuous from the previous interval. The global optimization problem is then converted
into a sequence of N local optimization problems. For the kth local optimization problem, the values of rk

and ωk are determined by

minimize
rk,ωk

∫ tk

tk−1

(x − u(t))2 + W̃1 (ωk − ωk−1)
2 + W̃2 (rk − rk−1)

2 dt, (5)

where x is given by assuming r(t) = rk and ω(t) = ωk in (3), and W̃1,2 are rescaled W1,2 respectively.

1

r(t) = rk; ω(t) = ωk Ak;Bk continuity of x(t), ẋ(t)

Numerical optimization - Matlab ... (or variants)

E. vireo

pure tone song ... -1
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- healing films - kinetics ++ ?

- flag flutter -  3d effects ? far from onset ? rippling instabilities ? 
 
- fishes and flying films -  energetics ? optimality ? biomimetics ? 

- bird song - controlling the nonlinear dynamical system ?

elasticity + hydrodynamics + biology ....

 .... the greatest benefits may be derived from a cross-fertilization of the sciences 

- Lord Rayleigh, 1884.

The neglected borderlands between two branches of knowledge 

is often that which best repays cultivation ...


