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Physical context

In the situation in which a fluid domain, such as the sea,
consists of essentially two immiscible layers separated by a
sharp interface such as a thermocline (sharp variation in
temperature or a pycnocline (sharp variation of salinity), very
large amplitude and long wavelength nonlinear waves can be
produced in the interface and can propagate over large
distances. For example, there are generated when tides cause
water to move over submerged mountains on the ocean floor.
Cold water from the bottom gets pushed up over the ridge and
sets up a disturbance.
Among the most striking of early measurements were those of
Perry-Schimke (1965) in the Andaman sea (eastern side of
Indian Ocean). They found groups of internal waves up to 80m
high, 2000 m long on the main thermocline at 500 m in water
1500 m deep.



Figure: Bathymetry map of the Andaman sea



Figure: Isotherm contours on Oct. 25, 1976; Internal wave is
materialized by isotherms. Osborne-Burch, ‘Internal Solitons in the
Andaman Sea’, Science, 208 1980, 451.



The combination of in situ and remote sensing observations, as
well as the progress in detection technology over the last 40
years, have shown that internal soliton-like waves are important
and common features of costal oceans in many regions of the
world.
On the practical side, internal waves can significantly influence
measurements of currents, undersea navigation, submerged
engineering construction ... They play an important role in
mixing different layers of water in the ocean which can affect
the climate.
However, they are not directly visible to the observer, but they
may produce in some instances small scale patterns at the
surface that appears as a strip of rough waters.



Figure: Sequence of photographs of the Andaman sea surface taken
from an observation vessel (Oct. 27, 1976) as a rip band approches
from the west at a speed of 2.2m/sec (Osborne-Burch 1980) ; (a) The
rip is seen in the distance, stretching from one horizon to the other as
a well defined line of breaking waves. The background sea state
preceding the rip was ∼ 0.6 m. (b) continues to approach; (c) the rip
has just arrived at the vessel with wave heights 1.8 m. (d) the vessel
was tossed about in the 1.8m waves.



Figure: (e) the rearward edge of the rip was visible in 1.8 m waves; (f)
the rearward edge of the rip receded as the wave dropped to 1.3 m;
(g) the wave amplitudes have dropped to 0.6 m; (h) the rip has
completely passed as waves dropped to ripples of 0.1 m.



Internal wave signatures have been observed in photographs
taken from the space shuttle. The ripples induced by the
internal waves have been imaged under the highly incident light
of late afternoon. Their presence give rise to a differential
reflectancy property under oblique lighting.

Figure: photograph taken on May 5, 1985; from Atlas of Oceanic
internal solitary waves, the Andaman sea; Office of Naval Research,
2002.



On a historical note, there is a description of such a
phenomenon in a book by F.M. Maury :
‘Physical Geography of the sea and its meteorology’ (1885)
(quoted in Obsorne-Burch 1980)
In the entrance of the Malacca Straits, near the Nicobar and Acheen
Islands, and between them and Junkseylon, there are often very
strong ripplings, particularly in the southwest monsoon; these are
alarming to persons unacquainted, for the broken water makes a
great noise when the ship is passing through the ripplings in the
night. In most places, ripplings are thought to be produced by strong
currents, but here they are frequently seen when there is no
perceptible current..... so as to produce an error in the course and
distance sailed, yet the surface of the water is impelled foreward by
some indiscovered cause.



The ripplings are seen in calm weather approaching from a distance,
and in the night their noise is heard a considerable time before they
come near. They beat against the sides of the ship with great
violence, and pass on , the spray sometimes coming on deck; and a
small boat could nit always resist the turbulence of these remarkable
ripplings.

I Other fascinating pictures include those of the Strait of
Gibraltar (where the Atlantic Ocean meets with the
Mediterranean Sea). The two layers of fluid correspond to
different salinity and the current is caused by the tides
passing through the Strait.



Figure: Strait of Gibraltar; from the Atlas of Oceanic internal solitary
waves, Office of Naval Research



I An extensive collection of measurements and images of
various regions in the world can be found at
http://www.internalwaveatlas.com.

I Recent survey article by Helfrich and Melville (Ann.
Rev.Fluid Mech 2006) with an overview of properties of
internal solitary waves and vast bibliography.

I Finally internal waves are also generated in the
atmosphere when winds blow over mountain ranges;
morning glory clouds (Australia).



Mathematical Models
Due to its importance in oceanography, there has been a large
literature on internal waves in a variety of scaling regimes, and
thus a variety of mathematical models.
2 physical settings : fixed lid, or internal/surface wave coupling,

I Stable configuration : ρ > ρ1; ρ1/ρ close to 1
I layer thickness ratio h1/h plays important role.



I Fix lid : Weakly nonlinear models for interface
(Boussinesq, KdV, BO, ILW) ; fully nonlinear models
Benjamin ’67, Ono, ’75, Camassa-Choi ’96, ’06,
Nguyen-Dias ’07, Bona-Lannes-Saut ’07

I coupling interface/free surface: Long wave/long wave
Gear-Grimshaw ’84, Matsuno ’93, Craig-Guyenne-Kalisch
’05, Barros-Gravilyuk-Teshukov, ’07;

I Fix lid, internal wave propagation over periodic bottom
topography Ruis de Zárate-Vigo-Alfaro-Nachbin-Choi 2009



Long wave/short wave interaction

I I would like to focus on today on a regime that displays
features of the pictures shown earlier: i.e. a free surface
displaying small rough ripples created by the presence of a
relatively large interface.

I Long wave regime for the interface, and ‘small’
quasi-monochromatic wave obeying the modulational
Ansatz for the surface (Hashizume ’80).

I There is a clear scale separation.
I Goal: Write a mathematical model



The Euler Equations for stratified potential flow.
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∆ϕ = 0 , in the lower domain S(t ; η)

∆ϕ1 = 0 , in the upper domain S1(t ; η, η1) .



Boundary conditions
On the fixed bottom {y = −h} of the lower fluid, the boundary
condition is

∂yϕ(x ,−h) = 0 ,

On the interface {y = η(x , t)}, three boundary conditions - 2
kinematic , 1 dynamic (Bernouilli):

∂tη = ∂yϕ− ∂xη ∂xϕ
∂tη = ∂yϕ1 − ∂xη ∂xϕ1

ρ(∂tϕ+
1
2
|∇ϕ|2 + gη) = ρ1(∂tϕ1 +

1
2
|∇ϕ1|2 + gη) ,

On the top free surface {y = h1 + η1(x , t)}, 2 boundary
conditions:

∂tη1 = ∂yϕ1 − ∂xη1 ∂xϕ1

∂tϕ1 +
1
2
|∇ϕ1|2 + gη1 = 0 .

The goal is to describe simultaneously the evolution of the free
surface and free interface.



Hamiltonian Formulation

It is possible to write the system in the form of a Hamiltonian
system where the canonical variables are obtained in analogy
with methods of classical mechanics.

I If the absence of internal wave (one fluid), the canonical
variables are (η, ξ) where
η is the free surface
ξ = ϕ(x , η(x)) the trace of the velocity potential on the free
surface (Zakharov 1968).
The water wave problem takes the form

∂t

(
η
ξ

)
=

(
0 1
−1 0

)(
δηH
δξH

)
,

I Hamiltonian = Total energy.



H = kinetic energy + potential energy

=

∫ ∫ η(x)

−h+β(x)

1
2
|∇ϕ(x , y)|2 dydx +

∫
g
2
η2(x) dx

=
1
2

∫
ϕ
∂ϕ

∂n
dσ +

∫
g
2
η2(x) dx

=

∫
1
2
ξ(x)G(η)ξ(x) dx +

∫
g
2
η2(x) dx .

Dirichlet – Neumann operator for the fluid domain

ξ → G(η)ξ =
√

(1 + η2
x )
∂ϕ

∂n

∣∣∣∣
y=η

,



Choice of canonical variables follow principles of classical
mechanics: Given a curve η(·, t) in configuration space, the
Lagrangian given by

L := L(η, η̇) = kinetic energy− potential energy

Rewrite the kinetic energy entirely in terms of (η, η̇) : Use the
kinematic equation on free surface

η̇ = ∂yϕ− ∂xη∂xϕ =
√

(1 + η2
x )
∂ϕ

∂n
= G(η)ξ

L(η, η̇) =

∫
1
2
η̇G−1(η)η̇ dx −

∫
g
2
η2(x) dx .

The Legendre transform will identify the coordinate canonically
conjugate to η. Indeed,

δη̇L = G−1(η)η̇

which dictates that ξ(x) = ϕ(x , η(x)) is the appropriate choice.



I For stratified fluids, similar construction of canonical
variables (η, ξ, η1, ξ1).
η is the interface
h1 + η1 is the free surface
ξ = ρΦ− ρ1Φ1, ξ1 = ρ1Φ2.
Φ,Φ1,Φ2 are defined as
Φ = ϕ(x , η(x))
Φ1 = ϕ1(x , η(x)), Φ2 = ϕ1(x ,h1 + η1(x)) ,
(Benjamin-Bridges, 1997).

I Hamiltonian = Total energy.

∂t


η
ξ
η1
ξ1

 ≡ J∇H =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



δηH
δξH
δη1H
δξ1H

 ,



Scaling regime

h : typical depth of lower fluid
a : order of amplitude of interface
λ : order of wavelength of interface

I Long wave/small amplitude regime for interface (KdV)

h
λ

= ε,
a
h

= ε2

h1 : typical depth of upper fluid
a1 : order of amplitude of free surface

I (very) small amplitude for surface: (modulational regime)

a1

h1
= ε1, ε1 = ε2+α, α ≥ 0



Linear analysis near fluid at rest
Linearized equations:

∂tη = δξH(2), ∂tξ = −δηH(2)

∂tη1 = δξ1H(2), ∂tξ1 = −δη1H(2) .

the quadratic part H(2) of the Hamiltonian is given by
(D = −i∂x )

H(2) =
1
2

∫
(ξ, ξ1)A(D)

(
ξ
ξ1

)
+ g(ρ− ρ1)η2 + gρ1η

2
1

where A(D) is a 2× 2 matrix of Fourier multipliers. The
dispersion relation is given by the quadratic equation for ω2

ω4 − gρk
1 + tanh(kh) coth(kh1)

ρ coth(kh1) + ρ1 tanh(kh)
ω2

+ g2(ρ− ρ1)k2 tanh(kh)

ρ coth(kh1) + ρ1 tanh(kh)
= 0 .



2 solutions associated to 2 different modes of wave motion:
The branch ω+(k) associated to the free surface
and the branch ω−(k) associated to the interface.
For example,

lim
k→∞

ω+(k) = gk

(agrees with dynamics of free surface with no interface present)

lim
k→∞

ω−(k) =
g(ρ− ρ1)

ρ+ ρ1
k

(agrees with asymptotics of dispersion relation for rigid lid)
When kh and kh1 → 0 (with ratio h/h1 finite): phase speeds
asymptotic to

(c±)2 =
g
2

(
h + h1 ±

√
(h − h1)2 + 4

ρ1

ρ
hh1

)
.

Note that the phase velocity (c−)2 associated with the free
interface (the ‘slower’ dispersion curve) is positive for ρ > ρ1
(stable stratification). Also, for ρ > ρ1, the ‘faster’ free surface
phase velocity c+ is slower than if there were no interface
present.



Scalings, Ansatz and resonant condition
Roughly speaking...

I Long wave/small amplitude regime for interface (KdV)

η ∼ ε2r(X , τ); X = εx , τ = ε3t

I (very) small amplitude for surface: (modulational regime)

η1 ∼ ε1v(X , τ1)ei(k0x−ω+(k0)t) + c.c, ε1 = ε2+α, τ1 = ε2t

I Assume unidirectional motion for the interface at velocity
c−. The wavenumber k0 is chosen such that wave packets
on the free surface (moving at group velocity ω+(k0)) move
at same speed as interface:

ω+′(k0) = c−

‘linear resonant condition’ between internal and surface
waves.
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Figure: Depth ratio h1/h vs. wavenumber k0 corresponding to the
linear resonance condition for ρ1/ρ = 0.1 (left) and ρ1/ρ = 0.99 (more
realistic) (right) .

There is always a surface mode of wavenumber k0 which
satisfies the resonance condition and thus travels at the same
linear speed as a long internal mode. The smaller h1/h, or the
closer ρ1/ρ to unity, the larger k0 (and hence the shorter the
surface mode). In addition, k0 varies monotonically as a
function of h1/h.



More precisely...... It is convenient to perform a normal mode
decomposition

(η, ξ, η1, ξ1)→ (µ, ζ, µ1, ζ1)

so that the quadratic part of the Hamiltonian H(2) simplifies to

H(2) =
1
2

∫
ζω2
−(D)ζ + µ2 + ζ1ω

2
+(D)ζ1 + µ2

1 dx ,

Through this transformation, the equations of motion are
transformed to

∂t


µ
ζ
µ1
ζ1

 = J∇H

Higher order terms of the Hamiltonian will be transformed as
well.



Since both internal and surface wave propagate with their
respective speeds, it is convenient to change the equations into
a moving frame of reference. This is done by subtracting a
multiple of the momentum I (Benjamin 1967)

I =

∫ (
ρ

∫ η(x)

−h
∂xϕdy + ρ1

∫ h1+η1(x)

η(x)
∂xϕ1 dy

)
dx

= −
∫ (

ξ∂xη + ξ1∂xη1

)
dx = −

∫ (
ζ∂xµ+ ζ1∂xµ1

)
dx ,

from the Hamiltonian, H → H − cI. It is possible to do so
because the total momentum is also a conserved quantity of
the coupled system.



Long-wave scaling, modulational Ansatz and an
additional canonical change of variables

We assume that the ‘internal’ modes are long waves according
to the scalings

X = εx , µ(x , t) = ε2µ̃(X , t) , ζ(x , t) = εζ̃(X , t) ,

the ‘surface’ modes are quasi-monochromatic waves obeying
the modulational Ansatz, which after an additional canonical
transformation takes the form (ε1 = ε2+α)

µ1(x , t) =
ε1√

2
ω+(D)1/2

(
v(X , t)eik0x + c.c

)
+ ε2

1µ̃1(X , t) ,

ζ1(x , t) =
ε1√
2i
ω+(D)−1/2

(
v(X , t)eik0x − c.c

)
+
ε2

1
ε
ζ̃1(X , t) ,



The next step is to enter these scalings into the Hamiltonian
and expand in powers of ε.....
Finally, we look at the dynamics of the system in a preferred
direction of propagation by decomposing the interface into two
components : r(X , t) is the component that is principally
right-moving, while s(X , t) is principally left-moving.



Effective equations and interpretation

(τ = ε3t , τ1 = ε2t)

∂τ r + λ1r∂X r + λ2∂
3
X r = ε2αλ3∂X |v |2

∂τ1v = i
[1

2
ω+′′(k0)∂2

X v + κrv
]

The coefficients λ1, λ2, λ3, k0, κ depend on the parameters
ρ, ρ1,h,h1. Choose α > 0 so that rhs of KdV disappears.
We are interested in the situation in which the internal wave
give rise to localized bound states for the linear Schrödinger
equation : the surface wave patterns will exhibit trapped surface
modes visible in the vicinity of the solution peak and will travel
with it.
They are the effective signature of the presence of the internal
waves.



Depending on the signs of the coefficients, the KdV equation
∂τ r + λ1r∂X r + λ2∂

3
X r = 0 has solitons which are depression or

bumps.
Fix ρ1/ρ close to 1 (for example 0.95), h = 1 and vary h1.The
coefficient λ2 always > 0,
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Figure: λ1 versus h1

λ1 < 0 for h1 small, λ1 > 0 otherwise. If h1 is sufficiently small,
the KdV soliton 3u0

λ2
λ1

sech2(
√

u0
2 (X − u0λ2τ)) is a depression.



Turning to the Schrödinger equation with a (slowly varying)
1-soliton potential

∂τ1v = i
[1

2
ω+′′(k0)∂2

X v + κr(X − εu0τ1)v
]

Make the change of variable Y = X − εu0τ1

∂τ1v − εu0∂Y v = i
[1

2
ω+′′(k0)∂2

X v + κr v
]

Phase shift v = ei(pY+qτ1)v1 to eliminate advection term; Look
for solution v1 = eiντ1W

−W ′′ − 2κ
ω+′′(k0)

rW = − 2ν
ω+′′(k0)

W



Schrödinger operator: −∂xx − 2κ
ω+′′(k0)

r . Fix ρ1/ρ close to 1 (for

example 0.95), h = 1 and vary h1, we find κ > 0 , ω+′′(k0) < 0 .
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(k0) versus h1

For existence of bound states, we need r < 0, which
corresponds to h1 ‘small’. Note that |ω+′′(k0)| very small, like
for the semi-classical limit. Bound states are very narrow
concentrated close to the soliton.
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Conclusion

We have presented an asymptotic analysis of the coupling
between the interface and the free surface of a two layer fluid,
in a scaling regime in which the internal mode is treated as a
long wavelength nonlinear internal wave, while the surface
mode is smaller and taken in a modulational regime. This is a
physically realistic situation for certain cases of internal waves
in the ocean, whose visible signature on the surface is a band
of roughness which propagates at the same velocity as the
internal wave.
Using a perturbation theory we have derived a coupled set of
equations which describe this regime, in which the internal
mode evolves according to an equation of KdV type, and the
surface mode is propagated at the resonant group velocity, and
is modulated according to a time dependent linear Schrödinger
equation.



In the case of a soliton internal wave (when it is a wave of
depression), the Schrödinger equation will often have bound
states, leading to the phenomenon of trapped surface wave
modes which propagate as the signature of the internal wave.
We propose this as a possible explanation for the bands of
surface roughness observed in the pictures shown in the
beginning, which are associated with the presence of large
amplitude internal waves.
Another observation in the Osborne-Burch paper (1980) is that
after the solitary wave and its ripples pass, the sea is very calm
and flat ‘like a mirror’. It is as though the internal wave sweeps
up all the small scale surface disturbances into its bound
states, which are then captive above the internal solitary wave
and carried away with it. We do not have yet a mathematical
model to describe this phenomenon.


