Mathematics Meets Medicine: An Optimal Alignment

Boston Park Plaza Hotel and Towers Boston, Massachusetts May 10-13, 2008 Jan Modersitzki

Department of

Computing and Software

McMaster University

Hamilton, Canada

http://www.cas.mcmaster.ca/~modersit

McMaster

Motivation

Image Registration

Given a reference image \mathcal{R} and a template image \mathcal{T} , find a reasonable transformation *y*, such that the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

reference ${\mathcal R}$

transformed template $\mathcal{T}[y]$

IR $T \mathcal{D} S \perp C F + R$

 \cdot R VP RIC Σ

itlepage

Motivation

template T

Motivation

Image Registration

Given a reference image ${\mathcal R}$ and a template image ${\mathcal T},$

find a reasonable transformation y, such that

the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

Questions:

- What is a transformed image T[y]?
- What is similarity of $\mathcal{T}[y]$ and \mathcal{R} ?
- What is reasonability of y?

Image Registration: Variational Problem

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min,$$

$$y_{\rm reg}(x) = x$$

McMaster

Outline

- Applications
- ▶ Variational formulation $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y] \xrightarrow{y} \min$
 - image models T[y]
 - distance measures $\mathcal{D}[T[y], R]$
 - regularizer $\mathcal{S}[y]$
- Numerical methods
- Constrained image registration
- Conclusions

People

Bernd Fischer

Eldad Haber

Oliver Schmitt

Stefan Heldmann Hanno Schumacher

Nils Papenberg

siam.

IR T D S 1 C F+R VP R

Titlepag

Motivatio

Outline

Applications

HNSP: Sectioning

with Oliver Schmitt, Institute of Anatomy, University Rostock, Germany

- sliced
- flattened
- stained
- mounted
- ▶ ...
- digitized

large scale digital images, up to 10.000×20.000 pixel

HNSP: Microscopy

HNSP: Deformed Images

sections 3.799 and 3.800 out of about 5.000

HNSP: Results

3D elastic registration of a part of the visual cortex (two hemispheres; 100 sections á 512×512 pixel)

Neuroimaging (fMRI)

with Brian A. Wandell, Department of Psychology, Stanford Vision Science and Neuroimaging Group

"flattened visual cortex"

DTI: Diffusion Tensor Imaging with Brian A. Wandell, Department of Psychology, Stanford Vision Science and Neuroimaging Group

MR-mammography, biopsy (open MR) with Bruce L. Daniel, Department of Radiology, Stanford University

pre contrast

post contrast

Virtual Surgery Planning

S. Bommersheim & N. Papenberg, SAFIR, BMBF/FUSION Future Environment for Gentle Liver Surgery Using Image-Guided Planning and Intra-Operative Navigation

Results for 3D US/CT

with Oliver Mahnke, SAFIR, University of Lübeck & MiE GmbH, Seth, Germany

Motion Correction from Thomas Netsch,

Philips Research, Hamburg, Germany

McMaster

SPECT: Single Photon Emissions CT with Oliver Mahnke, SAFIR, University of Lübeck & MiE GmbH, Seth, Germany

Registration in Medical Imaging

- Comparing/merging/integrating images from different
 - ► times, e.g., pre-/post surgery
 - devices, e.g., CT-images/MRI
 - perspectives, e.g., panorama imaging
 - objects, e.g., atlas/patient mapping
- Template matching, e.g., catheter in blood vessel
- Atlas mapping, e.g., find 2D view in 3D data
- Serial sectioning, e.g., HNSP

Registration is not restricted to medical applications

▶ ...

Classification of Registration Techniques

- feature space
- search space
- search strategy
- distance measure
- dimensionality of images (d = 2, 3, 4, ...)
- modality (binary, gray, color, ...)
- mono-/multimodal images
- ▶ acquisition (photography, FBS, CT, MRI, ...)
- inter/intra patient

Image Registration

Transforming Images

$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

Variational Approach for Image Registration

 $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

 \blacktriangleright Continuous models \mathcal{R}, \mathcal{T} for reference and template:

discrete data X, T \rightsquigarrow $\mathcal{T}(x) = interpolation(X, T, x)$

• Transformation $y : \mathbb{R}^d \to \mathbb{R}^d$

 $\mathcal{T}[y](x) = \mathcal{T}(y(x)) = \text{interpolation}(X, T, y(x))$

Interpolation

McMaster

McMaster

Multilevel

3

У

Transforming Images

$$\mathcal{T}[\mathbf{y}](\mathbf{x}) = \mathcal{T}(\mathbf{y}(\mathbf{x})) = \text{interpolation}(\mathbf{X}, \mathbf{T}, \mathbf{y}(\mathbf{x}))$$

non-linear

McMaster

McMaster

Distance Measures

$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

Distance Measures

Feature Based

(Markers / Landmarks / Moments / Localizer)

- ► *L*₂-norm, *Sum of Squared Differences (SSD)* $\mathcal{D}^{\text{SSD}}[\mathcal{T}[y], \mathcal{R}] = \frac{1}{2} \int_{\Omega} [\mathcal{T}(y(x)) - \mathcal{R}(x)]^2 dx,$
- correlation
- Mutual Information (multi-modal images)
- Normalized Gradient Fields

Sum of Squared Differences

Mutual Information

Regularization

$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min$

McMaster

siam

Transformation y

- Registration is severely ill-posed
- Restrictions onto the transformation y needed
- Goal: implicit physical restrictions

Implicit versus Explicit Regularization ...

Registration is ill-posed ~> requires regularization

- Parametric Registration
 - restriction to (low-dimensional) space (rigid, affine linear, spline,...)
 - regularized by properties of the space (implicit)
 - not physical or model based
- Non-parametric Registration
 - regularization by adding penalty or likelihood (explicit)
 - allows for a physical model
 - ► ~→ y is no longer parameterizable

registration is ill-posed \rightsquigarrow requires regularization

parametric registration

parametric registration

 $\mathcal{D}[R,T;y] \stackrel{y}{=} \min$ s.t. $y \in \mathcal{Q} = \{x + \sum w_j q_j, w \in \mathbb{R}^m\}$

non-parametric registration

non-parametric registration

$$\mathcal{D}[R,T;y] + \alpha \mathcal{S}[y-y_{\text{reg}}] \stackrel{y}{=} \min$$

References for Well-Posedness

- M. Droske and M. Rumpf.
 A variational approach to non-rigid morphological registration. SIAM Appl. Math., 64(2):668–687, 2004.
- B. Fischer and J. Modersitzki.

A unified approach to fast image registration and a new curvature based registration technique.

Linear Algebra and its Applications, 380:107–124, 2004.

J. Weickert and C. Schnörr.

A theoretical framework for convex regularizers in PDE-based computation of image motion.

Int. J. Computer Vision, 45(3):245-264, 2001.

> . . .

McMaster

Regularizer S

y(x) = x + u(x), displacement $u : \mathbb{R}^d \to \mathbb{R}^d$

- "elastic registration" $S^{elas}[u] = elastic potential of u$
- "fluid registration" $S^{\text{fluid}}[u] = \text{elastic potential of } \partial_t u$
- "diffusion registration" $S^{\text{diff}}[u] = \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} \|\nabla u_{\ell}\|_{\mathbb{R}^2}^2 dx$
- "curvature registration" $S^{\text{curv}}[u] = \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} (\Delta u_{\ell})^2 dx$

Elastic Registration

Transformation/displacement, y(x) = x + u(x)

$$S^{\text{elas}}[u] = \text{elastic potential of } u$$
$$= \int_{\Omega} \frac{\lambda + \mu}{2} \|\nabla \cdot u\|^2 + \frac{\mu}{2} \sum_{i=1}^d \|\nabla u_i\|^2 dx$$

image painted on a rubber sheet

C. Broit. *Optimal Registration of Deformed Images.* PhD thesis, University of Pensylvania, 1981.

Bajcsy & Kovačič 1986, Christensen 1994, Bro-Nielsen 1996, Gee et al. 1997, Fischer & M. 1999, Rumpf et al. 2002, ...

Fluid Registration

Transformation/displacement, y(x, t) = x + u(x, t)

 $S^{\text{fluid}}[u] = \text{elastic potential of } \partial_t u$

image painted on honey

GE. Christensen.

Deformable Shape Models for Anatomy. PhD thesis, Sever Institute of Technology, Washington University,

1994.

Bro-Nielsen 1996, Henn & Witsch 2002, ...

McMaster University

Diffusion Registration

Transformation/displacement, y(x) = x + u(x)

$$S^{\text{diff}}[u] = \text{oszillations of } u$$
$$= \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} \|\nabla u_{\ell}\|_{\mathbb{R}^{2}}^{2} dx$$

heat equation

 B. Fischer and J. Modersitzki. Fast diffusion registration. AMS Contemporary Mathematics, Inverse Problems, Image Analysis, and Medical Imaging, 313:117–129, 2002.
 Horn & Schunck 1981, Thirion 1996, Droske, Rumpf & Schaller 2003, ...

McMaster

Curvature Registration

Transformation/displacement, y(x) = x + u(x)

$$\mathcal{S}^{\text{curv}}[\boldsymbol{u}] = \text{oscillations of } \boldsymbol{u} \\ = \frac{1}{2} \sum_{\ell=1}^{d} \int_{\Omega} \|\Delta \boldsymbol{u}_{\ell}\|_{\mathbb{R}^{2}}^{2} dx$$

bi-harmonic operator

B. Fischer and J. Modersitzki.
 Curvature based image registration.
 J. of Mathematical Imaging and Vision, 18(1):81–85, 2003.

Stefan Henn.

A multigrid method for a fourth-order diffusion equation with application to image processing. *SIAM J. Sci. Comput.*, 2005.

Registration of a

Curvature Registration

- ▶ Goal: do not penalize affine linear transformations $S[Cx + b] \stackrel{!}{=} 0$ for all $C \in \mathbb{R}^{d \times d}$ and $b \in \mathbb{R}^{d}$
- But: $S^{\text{diff},\text{elas},\text{fluid},\dots}[Cx+b] \neq 0$!
- ► Idea: $S^{\text{curv}}[y] = \sum_{\ell} \int_{\Omega} (\Delta y_{\ell})^2 dx \Rightarrow S^{\text{curv}}[Cx + b] = 0$

siam

Summary Regularization

- ► Registration is ill-posed ~ requires regularization
- Regularizer controls reasonability of transformation
- Application conform regularization
- Enabling physical models (linear elasticity, fluid flow, ...)
- ► ~ high dimensional optimization problems

Numerical Methods for Image Registration

Optimize \leftrightarrow Discretize

Image Registration

 $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min, \quad y_{\text{reg}}(x) = x$

Numerical Approaches:

- ► Optimize → Discretize
- ► Discretize → Optimize

relatively large problems:
 2.000.000 – 500.000.000 unknowns

Optimize → Discretize: ELE

Image Registration

$$\mathcal{J}[y] = \mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \min, \quad y_{\text{reg}}(x) = x$$

- Euler-Lagrange eqs. (ELE) give necessary condition: $\mathcal{D}_y + \alpha \mathcal{S}_y = 0 \iff f[y] + \alpha \mathcal{A}y = 0$ system of non-linear partial differential eqs. (PDE)
- outer forces *f*, drive registration
- inner forces Ay, tissue properties
- ELE ~> PDE: balance of forces

Optimize → Discretize: Summary Continuous Euler-Lagrange equations

 $f[y] + \alpha \mathcal{A} y = 0, \quad f[y^k] + \alpha \mathcal{A} y^{k+1} = 0, \quad f[y] + \alpha \mathcal{A} y = y_t$

- all difficulties dumped into right hand side *f* spatial discretization straightforward
 efficient solvers for linear systems
 small controllable steps (~> movies)
 - moderate assumptions on f and \mathcal{A} (smoothness)
- no optimization problem behind
 - non-linearity only via *f*
- small steps

siam

Software: http://www.math.uni-luebeck.de/SAFIR

Discretize → Optimize: Summary

Discretization \rightsquigarrow finite dimensional problem: $y^h \approx y(x^h)$

$$D(y^h) + \alpha S(y^h) \xrightarrow{y^h} \min, \quad y^h \in \mathbb{R}^n, \qquad h \longrightarrow 0$$

efficient optimization schemes (Newton-type) linear systems of type $H \ \delta_y = -rhs$,

 $H = M + \alpha B^{\top} B$, $M \approx D_{yy}$, $rhs = D_y + \alpha (B^{\top} B) y^h$

siam

efficient multigrid solver for linear systems large steps

discretization not straightforward (multigrid)

all parts have to be differentiable (data model)

Multilevel

____C

ML

Multilevel

for $\ell = 1:\ell_{max}$ do

transfer images to level ℓ approximately solve problem for yprolongating y to finer level \rightsquigarrow perfect starting point end for

ML

Advantages of Multilevel Strategy

Regularization

Focus on essential minima

Creates extraordinary starting value

Reduces computation time

ML

siam

ML

Example: Multilevel Iteration History

Literature

- Hajnal JV, Hill DLG, Hawkes DJ: Medical Image Registration, CRC 2001.
- Modersitzki J: Numerical Methods for Image Registration, OUP 2004.
- Goshtasby AA: 2-D and 3-D Image Registration, Wiley 2005.

Books

Example: COLD

Combining Landmarks and Distance Measures

Patent AZ 10253 784.4; Fischer & M., 2003

Adding Constraints

Constrained Image Registration

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] + \beta \int_{\Omega} \psi \left(\mathcal{C}^{\text{soft}}[y] \right) dx \xrightarrow{y} \min$$

subject to $\mathcal{C}^{hard}[y](x) = 0$ for all $x \in \Omega_{\mathcal{C}}$

Example: landmarks/volume preservation

- soft constraints (penalty)
- hard constraints
- both constraints

Rigidity Constraints

McMaster

Soft Rigidity Constraints

FAIR with Soft Rigidity

$$\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] + \beta \mathcal{C}[y] \xrightarrow{y} \min$$

C soft constraints / penalty:

$$C[y] = \frac{1}{2} \| \underbrace{r^{\text{linear}}(y)}_{\text{linear}} \|_{Q}^{2} + \frac{1}{2} \| \underbrace{r^{\text{orth}}(y)}_{Q} \|_{Q}^{2} + \frac{1}{2} \| \underbrace{r^{\text{det}}(y)}_{Q} \|_{Q}^{2}$$
orientation
$$r^{\text{linear}}(y) = [\partial_{1,1}y_{1}, \dots, \partial_{d,d}y_{1}, \ \partial_{1,1}y_{2}, \dots]$$

$$r^{\text{orth}}(y) = \nabla y^{\top} \nabla y - I_{d}$$

$$r^{\text{det}}(y) = \det(\nabla y) - 1$$

$$r^{\text{rigid}} \iff [r^{\text{linear}} = 0 \land r^{\text{orth}} = 0 \land r^{\text{det}} = 0]$$

The Weight Q

- only locally rigid
- use weight function Q
- regions to be kept rigid move with y

$$||f||_{\mathcal{Q}}^2 = \int_{\Omega} f(x) \ \mathcal{Q}(y(x))^2 \ dx$$

Numerical Scheme

- $\blacktriangleright \quad Q(y^h) \approx \mathcal{Q}(y(x^h))$
- ► $r(y^h) = [\operatorname{diag}(Q(y^h)) r_1(y^h), \dots, \operatorname{diag}(Q(y^h)) r_{\operatorname{end}}(y^h)]$
- $C(y^h) = \frac{1}{2}r(y^h)^\top r(y^h)$
- $C_y(y^h) =$ lengthy formula
- $D(y^h) + \alpha S(y^h) + \beta C(y^h) \xrightarrow{y^h} \min$
- Optimizer: Gauß-Newton type approach,

$$H \approx "\nabla^2 \mathcal{D}" + \alpha B^\top B + \beta r_y^\top r_y$$

siam

 $T(\mathbf{y})$

Example: Knee T & grid

 $\det(\nabla \mathbf{y}) - 1$

S-Knee

Summary of Soft Rigidity Constraints

Results are OK

Implementation is straightforward

Constraints are not fulfilled

How to pick penalty (β, ψ) ?

Hard Rigidity Constraints

FAIR with Hard Rigidity

 $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{\text{reg}}] \xrightarrow{y} \text{min subject to } y \text{ rigid on } \mathcal{Q}$

Eulerian \rightarrow Lagrangian

computations of \mathcal{D} and \mathcal{S} involve det (∇y)

rigidity in \mathcal{T} domain \rightsquigarrow "linear" constraints

$$y(x) = D_k x + t_k, \quad k = 1 : \#$$
segments

Lagrangian Model of Rigidity (2D)

rigid on segment i

$$\mathbf{y}(\mathbf{x}) = \mathbf{Q}(\mathbf{x})\mathbf{w}^{i} = \begin{pmatrix} \cos w_{1}^{i} & -\sin w_{1}^{i} \\ \sin w_{1}^{i} & \cos w_{1}^{i} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} + \begin{pmatrix} w_{2}^{i} \\ w_{3}^{i} \end{pmatrix}$$

•
$$w = (w^1, \dots, w^m), \quad \mathcal{C} = (\mathcal{C}^1, \dots, \mathcal{C}^m), \quad m = \#$$
segments

$$\mathcal{C}^{i}[y,w] = y(x) - Q(x)w^{i}, \qquad i = 1, \dots, m$$

Lagrangian:

siam

$$L(\mathbf{y}, \mathbf{w}, p) = \mathcal{D}[\mathbf{y}] + \alpha \mathcal{S}[\mathbf{y}] + p^{\top} \mathcal{C}[\mathbf{y}, \mathbf{w}]$$

Numerical Scheme:

Sequential Quadratic Programming

Rigidity as a Hard Constraint

siam

Results are OK

Implementation is interesting

No additional Parameters

Volume Preserving Image Registration

Example: Tumor Monitoring

MRI scans of a female breast, with Bruce L. Daniel Department of Radiology, Stanford University

post contrast post contrast

Volume Preserving Constraints

$$\int_{y(V)} dx = \int_V dx \quad \text{for all} \quad V \subset \Omega$$

assuming y to be sufficient smooth,

$$det(\nabla y) = 1$$
 for all $x \in \Omega$

Volume Preserving Constraints

$$\mathcal{C}[\mathbf{y}](\mathbf{x}) = \det(\nabla \mathbf{y}(\mathbf{x})) - 1, \qquad \mathbf{x} \in \Omega_{\mathcal{C}}$$

siam

Approaches to VPIR

Soft constraints (add a penalty)

$$\mathcal{D}[y] + \alpha \mathcal{S}[y] + \beta \int_{\Omega} \psi(\mathcal{C}[y]) \, dx = \min$$

- T. Rohlfing, CR. Maurer, DA. Bluemke, and MA. Jacobs. Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. *IEEE TMI*, 22(6):730–741, 2003.
- Hard constraints

 $\mathcal{D}[y] + \alpha \mathcal{S}[y] = \min$ s.t. $\mathcal{C}[y](x) = 0$ for all $x \in \Omega_{\mathcal{C}}$

E. Haber and J. Modersitzki. Numerical methods for volume preserving image registration. *Inverse Problems*, 20(5):1621–1638, 2004.

Page 69

McMaster

Volume Preservation using Soft Constraints

$$\mathcal{D}[y] + \alpha \mathcal{S}[y] + \beta \int_{\Omega} \log^2 \left(\mathcal{C}^{\text{soft}}[y] + 1 \right) dx \xrightarrow{y} \min$$

Drawbacks of Soft Constraints

constraints are generally not fulfilled

VP

- small soft constraints might be large on small regions (tumor!)
- additional parameters
- \blacktriangleright bad numerics for $\beta \rightarrow \infty$

MRI

Continuous Framework, Hard Constraints

VPIR

siam

$$\mathcal{D}[y] + \alpha \mathcal{S}[y] \xrightarrow{y} \min$$
 s.t. $\mathcal{C}[y] = 0, x \in \Omega_{\mathcal{C}}$

Distance measure *D* with Gâteaux derivative

$$d_{y,v}\mathcal{D}[y] = \int_{\Omega} \langle f(x, y(x)), v(x) \rangle_{\mathbb{R}^d} dx$$

Regularizer S with Gâteaux derivative

 $d_{y,v}\mathcal{S}[y] = \int_{\Omega} \langle \mathcal{B}y(x), \mathcal{B}v(x) \rangle_{\mathbb{R}^d} dx$

Volume preserving constraints

$$\begin{array}{lll} \mathcal{C}[u] &= & \det(\nabla y) - 1 \\ d_{y,v} \mathcal{C}[y] &= & \det(\nabla y) \left\langle \nabla y^{-\top}, \nabla v \right\rangle_{\mathbb{R}^{d,t}} \end{array}$$

Example: Volume Preservation in 2D

$$\mathcal{C}[x+u(x)] = \det(I_2 + \nabla u) - 1$$

= $\partial_1 u_1 + \partial_2 u_2 + \partial_1 u_1 \partial_2 u_2 - \partial_2 u_1 \partial_1 u_2$
= $\nabla \cdot u + N[u]$

- *N* is nonlinear, N[0] = 0
- linearization

siam

$$\mathcal{C}_{y} \approx \nabla \cdot + \begin{bmatrix} \xi(x) \cdot \partial_{1} & \eta(x) \cdot \partial_{2} \end{bmatrix}$$

Hard

 Stokes problem, needs careful discretization to keep LBB conditions or *h*-ellipticity

VP

Discretizing ...

- \mathcal{T} and \mathcal{R} on cell center grid
- $y = [y_1, y_2]$ on staggered grids

C F+R VP

vol(V, y) = ∫_{y(V)} dx ≈ vol(box), c_i = vol(box_i) - h^d
C(y^h) = (c_i)ⁿ_{i=1}, C_y(y^h) straightforward but lengthy

... and Optimize

Discrete VPIR

Find y^h such that

 $D(y^h) + \alpha S(y^h) \xrightarrow{y^h} \min$ s.t. $C_i(y^h) = 0$, i = 1 : # voxel

- SQP: Sequential Quadratic Programming
- ► Lagrangian with multiplier p $L(y^h, p) = D(y^h) + \alpha S(y^h) + p^\top C(y^h)$
- ▶ Necessary conditions for a minimizer: $\nabla L(y^h, p) = 0$
- Gauß-Newton type method, $H = {}^{"}\nabla^2 D" + \alpha B^{\top} B$

VP

$$\begin{pmatrix} H & \boldsymbol{C}_{\boldsymbol{y}} \\ \boldsymbol{C}_{\boldsymbol{y}}^{\top} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \delta \boldsymbol{y} \\ \delta \boldsymbol{p} \end{pmatrix} = - \begin{pmatrix} L_{\boldsymbol{y}} \\ L_{\boldsymbol{p}} \end{pmatrix}$$

► Solving the KKT system: MINRES $\begin{pmatrix} H & C_y \\ C_y^\top & 0 \end{pmatrix} \begin{pmatrix} \delta y \\ \delta p \end{pmatrix} = - \begin{pmatrix} L_y \\ L_p \end{pmatrix}$

with preconditioner

$$\begin{pmatrix} H & \\ & \hat{S} \end{pmatrix},$$

$$\hat{S} \approx C_y H^{-1} C_y^{\top}$$
$$\hat{S}^{-1} := C_y^{\dagger} H (C_y^{\dagger})^{\top}$$
$$C_y^{\dagger} = (C_y C_y^{\top})^{-1} C_y$$

• Multigrid for H and $C_y C_y^{\top}$

... details

- ► Line search for $y^h \leftarrow y^h + \gamma \delta y^h$ based on merit function merit_{KKT} $(y^h) := D(y^h) + \alpha S(y^h) + \theta \|C(y^h)\|_1$ $\theta := \|p\|_{\infty} + \theta_{\min}$ p from $\|D_y + \alpha S_y + C_y^{\top}p\| \xrightarrow{p} \min$ note, $(C_y C_y^{\top})p = -C_y(D_y + \alpha S_y)$
- For the projection step:

$$\operatorname{merit}_{\mathcal{C}}(\boldsymbol{y}^h) := \|\boldsymbol{C}(\boldsymbol{y}^h)\|_2^2$$

• If $\operatorname{merit}_{C}(y^{h}) > \operatorname{tol}$, solve for correction δy such that $C(y^{h} + \delta y) \approx C(y^{h}) + C_{y}(y^{h}) \delta y = 0$

Blobs

VPIR example: Blobs

VP

MRI

VPIR Example: Tumor Monitoring

VPIR Example: Tumor Monitoring

VP

1.00 0.75 0.50 0.25 0.00

unconstrained

VP constrained

MRI

McMaster

Registration and Intensity Correction

Distance Measures

- images features (moments, landmarks, markers, ...)
- sum of squared differences (SSD)
- mutual information (MI)

Problem: sophisticated distance measures enable registration, but do not correct intensities

http://www.sci.utah.edu/stories/2002/sum_mri-epi.html

RIC: Registration and Intensity Correction Registration and Intensity Correction

$$\mathcal{J}[y,s] = \mathcal{D}[\mathcal{T}[y], s \mathcal{R}] + \mathcal{S}[y - y_{\text{reg}}] + \text{Hom}(s) \xrightarrow{y,s} \min$$

$$\mathcal{D}[\mathcal{T}[y], s \mathcal{R}] \stackrel{\text{e.g.}}{=} \frac{1}{2} \|\mathcal{T}[y] - s \mathcal{R}\|_{L_2}^2 = \frac{1}{2} \int \left(\mathcal{T}(y(x)) - s(x)\mathcal{R}(x)\right)^2 dx$$

intensity correction needs to be regularized (excludes trivial solutions s = T/R, $s \equiv 1$)

choices: Hom(s) = $\int |\nabla s|^p dx$, $|\nabla s| = \sqrt{(\partial_1 s)^2 + (\partial_2 s)^2}$

- diffusivity for p = 2
- total variation for p = 1
- Mumford-Shah penalty

MRI

MRI inhomogeneities

Images from Samsonov, Whitaker, & Johnson, University of Utah

RIC

Staining Artifacts

Images from Oliver Schmitt, Anatomy, University Rostock

RIC

Summary

Siam A1 IR T D S | C F+R VP RIC Σ

Summary

- Introduction to image registration: important, challenging, interdisciplinary
- ► General framework based on a variational approach: $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \alpha \mathcal{S}[y - y_{reg}] \xrightarrow{y} min$
- Discussion of various building blocks:
 - ▶ image model T[y]
 - distance measures D
 - regularizer S
- ► Numerical methods: multilevel, optimize ↔ discretize
- ► Constraints *C*:

landmarks, local rigidity, intensity correction, ...

Solutions and Algorithms For Image Registration

