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The problem

min f(x)

» f:R" — R nonlinear, ¢ C> and bounded below
» No convexity assumption
» Results from the discretization of some infinite-dimensional

problem on a relatively fine grid for instance (n large)

— lterative search of a first-order critical point x,. (s.t. Vf(x.) =0)



'Newton’s method |

Xk+1 = X + Sg with sz(xk) Sg = —Vf(xk)

» Fast convergence (quadratic) to a local minimizer x, of f

» If xo sufficiently close to x,

— Requires a globalization technique in order to:

— Ensure convergence of the iterates from every starting point

— Take account of the nonconvexity when far from a local min.

Line search — Trust region — Adaptive regularization




Hierarchy of problem descriptions

Assume now that a hierarchy of problem descriptions is available,
linked by known operators

| Finest problem description ‘

Restriction | R P 1 Prolongation

’ Fine problem description |

Restriction | R P 1 Prolongation

Restriction | R P 7 Prolongation

‘ Coarse problem description ‘

Restriction | R P 7 Prolongation

| Coarsest problem description ‘




Grid transfer operators

R, : R" — IR"!

Prolongation

P :R"'" — R"

i
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Sources for such problems

v

Parameter estimation in

» discretized ODEs

» discretized PDEs

v

Optimal control problems

v

Variational problems (minimum surface problem)

v

Optimal surface design (shape optimization)

v

Data assimilation in weather forecast (different levels of physics
in the models)



The minimum surface problem

with the boundary conditions: — Discretization using a finite
element basis

fx), y=0, 0<x<1

0, x=0, OS)’SI X
f(x)a y:17 0<x<1
0, x=1, 0<y<1
where
fx) =xx (1 —x) Yy



' The solution at different levels|

n =312 =961 n = 63% = 3969 n=127* = 16129



| The main issue|

’ Hierarchy of problem descriptions ‘ ‘ globalization technique

N /

| Efficiency — Robustness ‘

|

lllustration within a trust-region framework

(Unconstrained case)



Past and recent developments

Line-search

» Fisher (1998), Frese-Bouman-Sauer (1999), Nash (2000)
» Lewis-Nash (2000, 2002, to appear)

» Oh-Milstein-Bouman-Webb (2003)

» Wen-Goldfarb (2007, report 2008)

» Gratton-Toint (report 2007)

» Gratton-Sartenaer-Toint (to appear in SIOPT)
» Gratton-Mouffe-Toint-Weber Mendonga (to appear in IMAJNA)
» Mouffe-Gratton-Sartenaer-Toint-Tomanos (in preparation)

» Toint-Tomanos-Weber Mendonga (report 2007)

Adaptive regularization

» Toint-Tomanos (in preparation)



A very active field

» Large Scale Optimization and PDE-Based Problems
(MS2, MS12, MS42, MS52)

» Multigrid/Multilevel Optimization Methods and Their Applications
(MS62)

» Numerical Treatment of PDE Constrained Optimization
Problems:

» A: Numerical Analysis (MS3, MS13)
» B: Algorithms (MS23, MS33)
» C: Applications (MS53, MS63, MS73)

» Optimization with PDE Constraints (CP3)



1. | Trust-region methods | for beginners

2. | Multigrid | for beginners

3. |RMTR | (a Recursive Multilevel Trust-Region Method)

» Theoretical aspects

» Practical aspects

4. | Some numerical fIavor|




Trust-region philosophy

At iteration £ (until convergence):

» Choose a local model m; of f around x; (Taylor’s model)

» Compute a trial step s, that suff. reduces my in a trust region:

(approx.) minimize,cg:  mi(x + )
subject to lIsl| < Ax

» Evaluate f(x; + s¢)

» If achieved decrease (Af) ~ predicted decrease (Amy), then

» accept the trial point  (xer1 = xx + s)
» possibly enlarge the trust region (A; )

else

» keep the current point  (xer; = xx)
» shrink the trust region (Ag \)



minimize : f(a, 3) = —10a* 4 108 + 4sin(aB) — 2a + ot

Two local minima: (—2.20,0.32) and (2.30,—0.34)



xo=(0.71,-3.27) and f(xo) = 97.630

Contours of f Contours of my around x
(quadratic model)




Lk A | Sk | Sl +s0) | AF/Amy | xip1 |
[0 1 [(0.05093) | 43742 | 0998 | xy+|




Lk [ A ] Sk [ FCa+s0) | AF/Amg | x|
0 1 (0.05, 0.93) 43.742 0.998 Xo + 5o
1] 2 [ (-0.62,1.78) | 2306 1.354 | x; + 59




Lk A Sk | flo+s0) | Af/Amy | x01 |
0 1 (0.05,0.93) 43.742 0.998 Xo + 5o
T2 [(-0.62,1.78) | 2306 | 1354 |x +s
214 [ (321,000) | 6295 | —0.004 | x
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‘f(xk+sk) ‘ Af [ Amy ‘ Xt 1

Lk ][ A | Sk
0 1 (0.05,0.93) 43.742 0.998 X0 + So
T 2 [ (-062,1.78) | 2.306 1354 | x + 5
2 4 | (321,000) | 6295 | —0.004 | x,
3 2 (1.90,0.08) —29.392 0.649 X2 + 82
2 \k\\; //
. j 7
o> | (
1f ///
//, \\
/ \
1 L\
] ?@\ \\




L&A Sk [ fCa+s0) | AF/Amy [ xi
0 1 (0.05,0.93) 43.742 0.998 X0 + So
1] 2 [ (-0.62,1.78) 2.306 1.354 [ x|+
2] 4 | (3.21,0.00) 6.295 —0.004 x)

3 2 | (1.90,0.08) [ —29.392 [ 0.649 [ xs+ s
4 2 (0.32,0.15) —31.131 0.857 X3 + 53




Lk [ A Sk | SO+ s0) | AF/Amy | xep
O 1 ] (005093 | 43742 | 0998 |+
T 2 [ (—062,1.78) | 2.306 1354 | x &5
2 4 (3.21,0.00) 6.295 —0.004 X
3 2 (1.90,0.08) —29.392 0.649 X2 + 852
4 2 (0.32,0.15) —31.131 0.857 X3 + 53
5 4 | (-0.03,-0.02) | —31.176 1.009 X4 + 84
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(—0.03,-0.02) | —31.176 1.009 X4 + 84

kA Sk | fOn +s0) [ AF/Amy | g
O 1 ] (005093 | 43742 | 0998 |+
T 2 [ (—062,1.78) | 2.306 1354 | x &5
2 4 (3.21,0.00) 6.295 —0.004 X

3 2 (1.90,0.08) —29.392 0.649 X2 + 82
4 2 (0.32,0.15) —31.131 0.857 X3 + 53
5| 4

6| 8

(—0.02,0.00) —31.179 1.013 X5 + S5




Path of iterates: From another xj:




'What makes it work ?|

(approx.) minimize,cg:  my(x; + )
subject to IIs]] < Ag

(g = Vme(xe) = Y (x) !

minimize ; > o me(x — 1gx)
subject to tl|gell < Ax

l

Model decrease at the ‘ Cauchy point x{

(Best decrease of the model within the trust region
along the steepest descent direction —g;)



m(x) — my(x) > 4| ge]| min ”Z'“H,Ak}

lllustration from [Conn, Gould, Toint, 2000]

2

positive curvature and minimum inside | my (xy) — my(x$) > %“gﬁ"k”

positive curvature and minimum outside | my(xx) — my(x$) > 1| gi [l Ax

negative curvature my (i) — my () > ||gxl|Ax

B = upper bound on the curvature of my



First-order convergence

Sufficient decrease condition:

DA



'What makes it fast ?|

(e + ) = f(xe) + gfs + 15T His

where g, = Vf(x) and H, ~ V*f(x;) (possibly indefinite)

Any global minimizer s* of

minimize,cge  mi(xe + 5)
subject to Isll. < Ax

satisfies:

[(Hi+ M) 5" = —g |

where H, + \*I is pos. (semi)def., A* >0 and A*(||s*|l. — Ax) =0



Exact solution: search for A* (Moré-Sorensen)

For A fixed, find A > max{0, —Anin(Hx)} such that:

» H, + M is positive semidefinite

s[> < Ay for A=0

> ‘s()\) =—(Hy+ M)~ ! gkl satisfies
Is(M)]l2 — A =0

by applying a safeguarded Newton’s method to the secular equation:

Dominating cost: s(A\) (a small number of Cholesky factorizations)



Inexact solution: Krylov method (Steihaug-Toint)

» Adapt the (preconditioned) conjugate gradient method:

» iterative method (n iterations) that generates a sequence
{p;} of mutually conjugate directions with respect to H:

PTHipi =0 i)

» along which my(x; + s) is exactly minimized

» for the solution of the trust-region subproblem:

(approx) min,cge  my(xe + 5)
subject to lIsll2 < Ag




‘ Start from the Cauchy point x{ | (that is, with py = —gx)

» in order to ensure a further reduction in the model m;

Terminate

» when an approximate minimizer is found (Stop)

» when the trust-region boundary is passed (Stop at the
boundary)

» when a direction of negative curvature is encountered
(move to the boundary and Stop)

For instance: e The Steihaug-Toint algorithm

e The Generalized Lanczos Trust-Region algorithm
(GLTR)



Book on trust-region methods

TrusT-REGION
METHODS

Trust-region methods [Conn, Gould, Toint, 2000]



On the side of multigrid methods

Consider the linear system (discrete Poisson equation, for instance):

s (residual equation)

where
> e=x,—X (error) » x. (exact solution)
» r=>b—Ax (residual) > X  (approximation)

Expansion of ¢ in Fourier modes shows high (oscillatory) and low
(smooth) frequency components:

Fourier modes




'Relaxation methods|

Basic iterative methods:

» correct the i component of x; in the order 1,2,...,n

» to annihilate the i component of r;

1 n
el = + ( > aibuli+ [bh-)
T\ =LA
Gauss-Seidel
Do) = ( Za,, Xeli— Y aij[xk]i+[b]i>
j=i+1

— Solve the equations of the linear system one by one



Smoothing effect

Very effective methods at “smoothing”, i.e., eliminating the
high-frequency (oscillatory) components of the error:

error of error after 10 error after 100
initial guess GS iterations GS iterations

But they leave the low-frequency (smooth) components relatively
unchanged



Assume now (two levels):

> ‘A fine grid (f) description‘ Ae=r — Aed =/

B ‘A coarse grid (c) description | Acet = ¢

> ’ Linked by transfer operators‘ A =RA'P, =R, r*=RA




Coarse grid principle

Smooth error modes on a fine grid
“look less smooth” on a coarse grid

— When relaxation begins to stall at the finer level:

» Move to the coarser grid where the smooth error modes appear
more oscillatory

» Apply a relaxation at the coarser level:
» more efficient

» substantially less expensive



Two-grid correction scheme

Fine e snmlh Srpooth
fine e

Smaller oscil.
fine e

] r
Oscil. smooth
=
coarse e

P
Smooth
coarse e

smooth
—

Smaller smooth
fine e



Smoothing on fine grid only:

Two-grid correction scheme:

k=0 k=10 k=100



Multigrid scheme

Fine e smooth

Smooth Smaller oscil.
fine e fine e
| R i
Oscil. smooth Smooth
—
coarse e coarse e

l

smooth smooth
— (recur) —

smooth
—

Smaller smooth
fine e

Recursive use to annihilate oscillatory error level by level (O(n))






W-cycle




'Mesh Refinement|

> ‘ Solve the problem on the coarsest level

= Good starting point for the next fine level

» | Do the same on each level

= Good starting point for the finest level

> | Finally solve the problem on the finest level |

y—




Full Multigrid

| Combination of Mesh Refinement and V-cycles ‘




Books on multigrid

A Multigrid Tutorial [Briggs, Henson, McCormick, 2000]

Multigrid [Trottenberg, Oosterlee, Schiiller, 2001]



'Back to our main issue|

’ Hierarchy of problem descriptions ‘ ‘ Trust-region technique

N /

| Efficiency — Robustness |

4

Multilevel optimization method |

Note: Multilevel Moré-Sorensen algorithm: (Hy + M) s = —g;
[Toint, Tomanos, Weber Mendonga, report 2007]



| The framework|

Assume that we have:

» A hierarchy of problem descriptions of f

» Transfer operators, fori=1,...,r:

> _ (the restriction)
- PR R

the prolongation)

Terminology: a particular i is referred to as a level

[m]

DA



minimize Taylor's model of £, around x;

min f.(x) = f(x .
@) =1 - at all in the trust region of radius A,

xeR"

| or (whenever suitable and desirable)

at x: ‘ compute Vf.(x;) (possibly Hy) ‘ | trial step s |

Restriction | R P 7 Prolongation

use f,_ to construct a coarse local model of f,
and minimize it within the trust region of radius A,

— If more than two levels are available (r > 1), do this recursively



Example of recursion with 5 levels (r = 4)

Level 3

Level 2

Level 1

Level 0

i: level index (0 <i <)

Notation:
k: index of the current iteration within level i



'Construction of the coarse local models|

]lfﬁ;éo for i:0,...,r-1|

» Impose first-order coherence via a correction term:

» Impose second-order coherence*) via two correction terms:

20w = Rewp  and  Hiow = RHypP

(*) Not needed to derive first-order global convergence

]lff,:o for i=0,...,r—1

» Galerkin model: Restricted version of the quadratic model at the
upper level



Preserving the trust-region constraint

Au,p - |‘5Blo ),k T mlow.()”

— min [A

]t;m Aup - Hx]ow,k - xluw,OH]

Note: Motivation to switch to co-norm
[Gratton, Mouffe, Toint, Weber Mendonga, to appear]



'Use the coarse model whenever suitable |

» When

and

» When

and

Igiowll =

||Rgup|| > K ”gupH

”glowH

||Rgup|| > Elow

» When

(“Coarsening condition”)



'Use the coarse model whenever desirable]

’Taylor model (Taylor step) \ \ Coarse model (recursive step) \

l |

‘ Alternate for efficiency (multigrid) ‘

| Be as flexible as possible |

Leave the choice even when the coarse model is suitable




Recursive multilevel trust-region algorithm (RMTR)

At iteration £ (until convergence):
> either a Taylor or (if suitable) a coarse local model
(first-order coherent):

» Taylor model: compute a Taylor step
(sufficient decrease condition OK)

» Coarse local model: | apply the algorithm recursively

(sufficient decrease condition KO)
» Evaluate the change in the objective function
» If achieved decrease ~ predicted decrease, then

» accept the trial point
» possibly enlarge the trust region

else

» keep the current point
» shrink the trust region

» | Impose current trust region C upper level trust region




Global convergence

] Based on the trust-region technology ‘

» Uses the sufficient decrease argument (imposed in Taylor's
iterations)

» Plus the coarsening condition (|[Rgupll > « ||gupl|)

Main result

lim gl =0
k—o00

[Gratton, Sartenaer, Toint, to appear]



Intermediate results |

At iteration (i, k) we associate the set:

Level 4

Level 3

Level 2

Level 1

Level 0




Let

Then, at a non critical point and if the trust region is small enough:

— Back to “classical” trust-region arguments

DA



'Premature termination|

For a recursive iteration (i, k):

A minimization sequence at level i — 1 initiated at iteration (i, k)
denotes all successive iterations at level i — 1
until a return is made to level i

Level 4

Level 3

Level 2

Level 0




Properties of RMTR

» Each minimization sequence contains at least one successful
iteration

» Premature termination in that case does not affect the
convergence results at the upper level

Which allows

» Stop a minimization sequence after a preset number of
successful iterations

» Use fixed lower-iterations patterns like the V or W cycles in
multigrid methods



A practical RMTR algorithm: Taylor iterations

| At the coarsest level|

> using the exact Moré-Sorensen method

(small dimension)

At finer levels
> using a smoothing technique from multigrid

(to reduce the high frequency residual/gradient components)



SCM Smoothing

Adaptation of the Gauss-Seidel smoothing technique to optimization:

» Sequential Coordinate Minimization (SCM smoothing)

Successive one-dimensional minimizations of the model
along the coordinate axes when positive curvature

» Cost: 1 SCM smoothing cycle ~ 1 matrix-vector product



' Three issues

» How to‘ impose sufficient decrease in the model‘ ?

> How to | impose the trust-region constraint| ?

» What to | do if a negative curvature is encountered ‘ ?




‘ Start the first SCM smoothing cycle ‘

» by minimizing along the largest gradient component
(enough to ensure sufficient decrease)

’Perform (at most) p SCM smoothing cycles‘

» while inside the trust region (reasonable cost)

Terminate

» when an approximate minimizer is found (Stop)

» when the trust-region boundary is passed (Stop at the
boundary)

» when a direction of negative curvature is encountered
(move to the boundary and Stop)



Convergence to weak minimizers

SCM smoothing limits its exploration of the model’'s curvature to the
coordinate axes — only guarantees asymptotic positive curvature:

» along the coordinate axes at the finest level (i =r)

» along the the prolongation of the coordinate axes at levels
i=1,...,r—1

» along the prolongation of the coarsest subspace (i = 0)

“Weak” minimizers \




'Some numerical flavor|
[Gratton, Mouffe, Sartenaer, Toint, Tomanos, in preparation]

Standard Newton trust-region algorithm (TCG)
Applied at the finest level

Algorithm RMTR
Applied at the finest level

Standard Newton trust-region algorithm (TCG)
Applied successively from coarsest to finest level*)

Algorithm RMTR
Applied successively from coarsest to finest level*)

(*) Starting point at level i + 1 obtained by prolongating the solution at level i



Test problem characteristics

Problem name ny r Type Bounds Description

P2D 1.046.529 | 9 | 2-D, quadratic Poisson model problem
P3D 250.047 | 5 | 3-D, quadratic Poisson model problem
DEPT 1.046.529 | 9 | 2-D, quadratic Elastic-plastic torsion problem
DPJB 1.046.529 | 9 | 2-D, quadratic Journal bearing problem
DODC 1.046.529 | 9 | 2-D, convex Optimal design problem
MINS-SB 1.046.529 | 9 | 2-D, convex Minimium surface problem
MINS-OB 1.046.529 | 9 | 2-D, convex Minimium surface problem
MINS-DMSA 1.046.529 | 9 | 2-D, convex Minimium surface problem
IGNISC 3.969 | 5 | 2-D, convex Combustion problem
DSSC 1.046.529 | 9 | 2-D, convex Combustion problem
BRATU 1.046.529 | 9 | 2-D, convex Combustion problem
MINS-BC 1.046.529 | 9 | 2-D, convex Minimium surface problem
MEMBR 16.383 | 6 | 2-D, convex Membrane problem
NCCS 7.938 | 6 | 2-D, nonconvex Optimal control problem
NCCO 7.938 | 6 | 2-D, nonconvex Optimal control problem
MOREBV 1.046.529 | 9 | 2-D, nonconvex Boundary value problem




Performance profiles

CPU time
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'CPU times|

Problem name AF MF MR FM

P2D 1061.2 70.3 | 532.1 25.9
P3D 626.1 60.9 18.3 | 71.7
DEPT 1350.5 70.1 97.1 8.7
DPJB 3600.0 | 506.6 | 249.8 | 63.2
DODC 868.1 57.4 171.6 | 29.2
MINS-SB 3600.0 | 3600.0 | 3600.0 | 153.6
MINS-OB 1433.6 54.0 114.0 | 21.9
MINS-DMSA 1155.7 89.8 | 281.0 19.2
IGNISC 8.5 4.7 2.0 1.7
DSSC 3183.8 | 3600.0 116.1 12.1
BRATU 2020.7 | 1227.3 80.1 9.9
MINS-BC 2706.4 97.0| 5246 | 57.9
MEMBR 18.2 10.0 5.9 3.9
NCCS 146.1 | 2212.6 6.7 7.0
NCCO 145.6 | 3600.0 0.0 0.0
MOREBV 3600.0 | 1572.7 | 3600.0 | 34.0

Best

Second best




In summary

> ’ Successful merging of robustness and efficiency

> ‘ Still a lot to investigate ‘

> | Lots of applications |




