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The problem

min
x∈IRn

f (x)

I f : IRn → IR nonlinear, ∈ C2 and bounded below

I No convexity assumption

I Results from the discretization of some infinite-dimensional
problem on a relatively fine grid for instance (n large)

−→ Iterative search of a first-order critical point x∗ (s.t. ∇f (x∗) = 0)



Newton’s method

xk+1 = xk + sN
k with ∇2f (xk) sN

k = −∇f (xk)

I Fast convergence (quadratic) to a local minimizer x∗ of f

I If x0 sufficiently close to x∗

−→ Requires a globalization technique in order to:

– Ensure convergence of the iterates from every starting point

– Take account of the nonconvexity when far from a local min.

Line search — Trust region — Adaptive regularization



Hierarchy of problem descriptions

Assume now that a hierarchy of problem descriptions is available,
linked by known operators

Finest problem description

Restriction ↓ R P ↑ Prolongation

Fine problem description

Restriction ↓ R P ↑ Prolongation

. . .

Restriction ↓ R P ↑ Prolongation

Coarse problem description

Restriction ↓ R P ↑ Prolongation

Coarsest problem description



Grid transfer operators

Restriction Prolongation

Ri : IRni → IRni−1 Pi : IRni−1 → IRni

Ri = σPT
i



Sources for such problems

I Parameter estimation in

I discretized ODEs

I discretized PDEs

I Optimal control problems

I Variational problems (minimum surface problem)

I Optimal surface design (shape optimization)

I Data assimilation in weather forecast (different levels of physics
in the models)



The minimum surface problem

min
v

∫ 1

0

∫ 1

0

(
1 + (∂xv)2 + (∂yv)2) 1

2 dx dy

with the boundary conditions:
f (x), y = 0, 0 ≤ x ≤ 1
0, x = 0, 0 ≤ y ≤ 1
f (x), y = 1, 0 ≤ x ≤ 1
0, x = 1, 0 ≤ y ≤ 1

where

f (x) = x ∗ (1− x)

→ Discretization using a finite
element basis

y

x



The solution at different levels
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The main issue

Hierarchy of problem descriptions globalization technique

↘ ↙
Efficiency – Robustness

⇓
Illustration within a trust-region framework

(Unconstrained case)



Past and recent developments

Line-search

I Fisher (1998), Frese-Bouman-Sauer (1999), Nash (2000)

I Lewis-Nash (2000, 2002, to appear)

I Oh-Milstein-Bouman-Webb (2003)

I Wen-Goldfarb (2007, report 2008)

I Gratton-Toint (report 2007)

Trust-region

I Gratton-Sartenaer-Toint (to appear in SIOPT)

I Gratton-Mouffe-Toint-Weber Mendonça (to appear in IMAJNA)

I Mouffe-Gratton-Sartenaer-Toint-Tomanos (in preparation)

I Toint-Tomanos-Weber Mendonça (report 2007)

Adaptive regularization

I Toint-Tomanos (in preparation)



A very active field

I Large Scale Optimization and PDE-Based Problems
(MS2, MS12, MS42, MS52)

I Multigrid/Multilevel Optimization Methods and Their Applications
(MS62)

I Numerical Treatment of PDE Constrained Optimization
Problems:

I A: Numerical Analysis (MS3, MS13)

I B: Algorithms (MS23, MS33)

I C: Applications (MS53, MS63, MS73)

I Optimization with PDE Constraints (CP3)

Too late! To come



Outline

1. Trust-region methods for beginners

2. Multigrid for beginners

3. RMTR (a Recursive Multilevel Trust-Region Method)

I Theoretical aspects

I Practical aspects

4. Some numerical flavor



Trust-region philosophy

At iteration k (until convergence):

I Choose a local model mk of f around xk (Taylor’s model)

I Compute a trial step sk that suff. reduces mk in a trust region:{
(approx.) minimizes∈IRn mk(xk + s)
subject to ‖s‖ ≤ ∆k

I Evaluate f (xk + sk)

I If achieved decrease (∆f ) ≈ predicted decrease (∆mk), then

I accept the trial point (xk+1 = xk + sk)
I possibly enlarge the trust region (∆k ↗)

else

I keep the current point (xk+1 = xk)
I shrink the trust region (∆k ↘)



minimize : f (α, β) = −10α2 + 10β2 + 4 sin(αβ)− 2α+ α4
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Two local minima: (−2.20, 0.32) and (2.30,−0.34)



x0 = (0.71,−3.27) and f (x0) = 97.630

Contours of f
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

5 4 (−0.03,−0.02) −31.176 1.009 x4 + s4
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k ∆k sk f (xk + sk) ∆f/∆mk xk+1

0 1 (0.05, 0.93) 43.742 0.998 x0 + s0

1 2 (−0.62, 1.78) 2.306 1.354 x1 + s1

2 4 (3.21, 0.00) 6.295 −0.004 x2

3 2 (1.90, 0.08) −29.392 0.649 x2 + s2

4 2 (0.32, 0.15) −31.131 0.857 x3 + s3

5 4 (−0.03,−0.02) −31.176 1.009 x4 + s4

6 8 (−0.02, 0.00) −31.179 1.013 x5 + s5
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Path of iterates:
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What makes it work ?

{
(approx.) minimizes∈IRn mk(xk + s)
subject to ‖s‖ ≤ ∆k

(gk = ∇mk(xk) = ∇f (xk)) ↓
{

minimize t ≥ 0 mk(xk − tgk)
subject to t‖gk‖ ≤ ∆k

↓
Model decrease at the Cauchy point xC

k

(Best decrease of the model within the trust region
along the steepest descent direction −gk)



mk(xk)− mk(xC
k ) ≥ 1

2‖gk‖min
[
‖gk‖
βk
,∆k

]
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Illustration from [Conn, Gould, Toint, 2000]

positive curvature and minimum inside mk(xk)− mk(xC
k ) ≥ 1

2
‖gk‖2

βk

positive curvature and minimum outside mk(xk)− mk(xC
k ) ≥ 1

2‖gk‖∆k

negative curvature mk(xk)− mk(xC
k ) ≥ ‖gk‖∆k

βk = upper bound on the curvature of mk



First-order convergence

Sufficient decrease condition:

mk(xk)− mk(xk + sk) ≥ κ (mk(xk)− mk(xC
k ))

⇓

lim
k→∞

‖∇f (xk)‖ = 0



What makes it fast ?

mk(xk + s) = f (xk) + gT
k s + 1

2 sTHks

where gk = ∇f (xk) and Hk ≈ ∇2f (xk) (possibly indefinite)

Any global minimizer s∗ of

{
minimizes∈IRn mk(xk + s)
subject to ‖s‖2 ≤ ∆k

satisfies:

(Hk + λ∗I) s∗ = −gk

where Hk + λ∗I is pos. (semi)def., λ∗ ≥ 0 and λ∗(‖s∗‖2 −∆k) = 0



Exact solution: search for λ∗ (Moré-Sorensen)

For ∆k fixed, find λ ≥ max{0,−λmin(Hk)} such that:

I Hk + λI is positive semidefinite

I s(λ) = −(Hk + λI)−1 gk satisfies

 ‖s(λ)‖2 ≤ ∆k for λ = 0

‖s(λ)‖2 −∆k = 0

by applying a safeguarded Newton’s method to the secular equation:

φ(λ) def= 1
‖s(λ)‖2

− 1
∆k

= 0

Dominating cost: s(λ) (a small number of Cholesky factorizations)



Inexact solution: Krylov method (Steihaug-Toint)

I Adapt the (preconditioned) conjugate gradient method:

I iterative method (n iterations) that generates a sequence
{pj} of mutually conjugate directions with respect to Hk:

pT
j Hkpi = 0 i 6= j

I along which mk(xk + s) is exactly minimized

I for the solution of the trust-region subproblem:

{
(approx) mins∈IRn mk(xk + s)
subject to ‖s‖2 ≤ ∆k



Start from the Cauchy point xC
k (that is, with p0 = −gk)

I in order to ensure a further reduction in the model mk

Terminate

I when an approximate minimizer is found (Stop)

I when the trust-region boundary is passed (Stop at the
boundary)

I when a direction of negative curvature is encountered
(move to the boundary and Stop)

For instance: • The Steihaug-Toint algorithm
• The Generalized Lanczos Trust-Region algorithm

(GLTR)



Book on trust-region methods

Trust-region methods [Conn, Gould, Toint, 2000]



On the side of multigrid methods

Consider the linear system (discrete Poisson equation, for instance):

Ax = b  Ae = r (residual equation)

where

I e = x∗ − x̃ (error)

I r = b− Ax̃ (residual)

I x∗ (exact solution)

I x̃ (approximation)

Expansion of e in Fourier modes shows high (oscillatory) and low
(smooth) frequency components:
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Relaxation methods
Basic iterative methods:

I correct the ith component of xk in the order 1, 2, . . . , n

I to annihilate the ith component of rk

Jacobi

[xk+1]i =
1
aii

− n∑
j=1, j 6=i

aij[xk]i + [b]i


Gauss-Seidel

[xk+1]i =
1
aii

− i−1∑
j=1

aij[xk+1]i −
n∑

j=i+1

aij[xk]i + [b]i


−→ Solve the equations of the linear system one by one



Smoothing effect

Very effective methods at “smoothing”, i.e., eliminating the
high-frequency (oscillatory) components of the error:
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But they leave the low-frequency (smooth) components relatively
unchanged



Assume now (two levels):

I A fine grid (f ) description Ae = r → Af ef = rf

I A coarse grid (c) description Acec = rc

I Linked by transfer operators Ac = RAf P, ec = Ref , rc = Rrf



Coarse grid principle

Smooth error modes on a fine grid
“look less smooth” on a coarse grid

−→When relaxation begins to stall at the finer level:

I Move to the coarser grid where the smooth error modes appear
more oscillatory

I Apply a relaxation at the coarser level:

I more efficient

I substantially less expensive



Two-grid correction scheme

Fine e smooth→ Smooth
fine e

Smaller oscil.
fine e

smooth→ Smaller smooth
fine e

↓ R P ↑
Oscil.

coarse e
smooth→ Smooth

coarse e



Smoothing on fine grid only:
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Multigrid scheme

Fine e smooth→ Smooth
fine e

Smaller oscil.
fine e

smooth→ Smaller smooth
fine e

↓ R P ↑
Oscil.

coarse e
smooth→ Smooth

coarse e

↓
smooth→ (recur)

smooth→

Recursive use to annihilate oscillatory error level by level (O(n))



V-cycle

k k + 1

0 1 2 ∗

0 1 2 ∗

0 1 2 ∗

0 ∗

Smoothing

1



W-cycle

k k + 1

0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗ 0 1 2 3 4 ∗

0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗

Smoothing

1



Mesh Refinement

I Solve the problem on the coarsest level

⇒ Good starting point for the next fine level

I Do the same on each level

⇒ Good starting point for the finest level

I Finally solve the problem on the finest level
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Full Multigrid

Combination of Mesh Refinement and V-cycles
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Books on multigrid

A Multigrid Tutorial [Briggs, Henson, McCormick, 2000]

Multigrid [Trottenberg, Oosterlee, Schüller, 2001]



Back to our main issue

Hierarchy of problem descriptions Trust-region technique

↘ ↙
Efficiency – Robustness

⇓
Multilevel optimization method

Note: Multilevel Moré-Sorensen algorithm: (Hk + λI) s = −gk

[Toint, Tomanos, Weber Mendonça, report 2007]



The framework

Assume that we have:

I A hierarchy of problem descriptions of f :

{fi}r
i=0 with fr(x) = f (x)

I Transfer operators, for i = 1, . . . , r:

I Ri: IRni → IRni−1 (the restriction)

I Pi: IRni−1 → IRni (the prolongation)

Terminology: a particular i is referred to as a level



The idea

min
x∈IRn

fr(x) = f (x) → at xk:
minimize Taylor’s model of fr around xk

in the trust region of radius ∆k

↓ or (whenever suitable and desirable)

at xk: compute ∇fr(xk) (possibly Hk) trial step sk

Restriction ↓ R P ↑ Prolongation

use fr−1 to construct a coarse local model of fr
and minimize it within the trust region of radius ∆k

→ If more than two levels are available (r > 1), do this recursively



Example of recursion with 5 levels (r = 4)

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1

Notation:

 i: level index (0 ≤ i ≤ r)

k: index of the current iteration within level i



Construction of the coarse local models

If fi 6= 0 for i = 0, . . . , r − 1

I Impose first-order coherence via a correction term:

glow = Rgup

I Impose second-order coherence(∗) via two correction terms:

glow = Rgup and Hlow = RHupP

(∗) Not needed to derive first-order global convergence

If fi = 0 for i = 0, . . . , r − 1

I Galerkin model: Restricted version of the quadratic model at the
upper level



Preserving the trust-region constraint

∆up xlow,0•
•

∆+
low

xlow,k

∆up − ‖xlow,k − xlow,0‖

1

→ min
[
∆+

low, ∆up − ‖xlow,k − xlow,0‖
]

Note: Motivation to switch to∞-norm

[Gratton, Mouffe, Toint, Weber Mendonça, to appear]



Use the coarse model whenever suitable

I When ‖glow‖
def= ‖Rgup‖ ≥ κ ‖gup‖ (“Coarsening condition”)

and

I When ‖glow‖
def= ‖Rgup‖ > εlow

and

I When i > 0



Use the coarse model whenever desirable

Taylor model (Taylor step) Coarse model (recursive step)

↓ ↓
smoothing coarsening

↘ ↙
Alternate for efficiency (multigrid)

↓
Be as flexible as possible

⇓
Leave the choice even when the coarse model is suitable



Recursive multilevel trust-region algorithm (RMTR)
At iteration k (until convergence):

I Choose either a Taylor or (if suitable) a coarse local model
(first-order coherent):

I Taylor model: compute a Taylor step
(sufficient decrease condition OK)

I Coarse local model: apply the algorithm recursively

(sufficient decrease condition KO)

I Evaluate the change in the objective function
I If achieved decrease ≈ predicted decrease, then

I accept the trial point
I possibly enlarge the trust region

else
I keep the current point
I shrink the trust region

I Impose current trust region ⊆ upper level trust region



Global convergence

Based on the trust-region technology

I Uses the sufficient decrease argument (imposed in Taylor’s
iterations)

I Plus the coarsening condition (‖Rgup‖ ≥ κ ‖gup‖)

Main result

lim
k→∞

‖gr,k‖ = 0

[Gratton, Sartenaer, Toint, to appear]



Intermediate results

At iteration (i, k) we associate the set:

R(i, k) def= {(j, `) | iteration (j, `) occurs within iteration (i, k)}

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1



Let

V(i, k) def= { (j, `) ∈ R(i, k) | ∆mj,` ≥ κ‖gi,k‖∆j,`︸ ︷︷ ︸
“sufficient decrease”

}

Then, at a non critical point and if the trust region is small enough:

V(i, k) = R(i, k)

−→ Back to “classical” trust-region arguments



Premature termination

For a recursive iteration (i, k):

A minimization sequence at level i− 1 initiated at iteration (i, k)
denotes all successive iterations at level i− 1

until a return is made to level i

Level 4

Level 3

Level 2

Level 1

Level 0

k

R4

0 1 2 3 ∗

P4

R3

0 1 2 3 4 5 6 ∗

P3

R2

0 1 2 ∗

P2 R2

0 1 2 3 4 5 ∗

P2

R1

0 1 2 ∗

P1 R1

0 ∗

P1 R1

0 1 2 ∗

P1

1



Properties of RMTR

I Each minimization sequence contains at least one successful
iteration

I Premature termination in that case does not affect the
convergence results at the upper level

Which allows

I Stop a minimization sequence after a preset number of
successful iterations

I Use fixed lower-iterations patterns like the V or W cycles in
multigrid methods



A practical RMTR algorithm: Taylor iterations

At the coarsest level

I Solve using the exact Moré-Sorensen method

(small dimension)

At finer levels

I Smooth using a smoothing technique from multigrid

(to reduce the high frequency residual/gradient components)



SCM Smoothing

Adaptation of the Gauss-Seidel smoothing technique to optimization:

I Sequential Coordinate Minimization (SCM smoothing)

Successive one-dimensional minimizations of the model
along the coordinate axes when positive curvature

I Cost: 1 SCM smoothing cycle ≈ 1 matrix-vector product



Three issues

I How to impose sufficient decrease in the model ?

I How to impose the trust-region constraint ?

I What to do if a negative curvature is encountered ?



Start the first SCM smoothing cycle

I by minimizing along the largest gradient component
(enough to ensure sufficient decrease)

Perform (at most) p SCM smoothing cycles

I while inside the trust region (reasonable cost)

Terminate

I when an approximate minimizer is found (Stop)

I when the trust-region boundary is passed (Stop at the
boundary)

I when a direction of negative curvature is encountered
(move to the boundary and Stop)



Convergence to weak minimizers

SCM smoothing limits its exploration of the model’s curvature to the
coordinate axes → only guarantees asymptotic positive curvature:

I along the coordinate axes at the finest level (i = r)

I along the the prolongation of the coordinate axes at levels
i = 1, . . . , r − 1

I along the prolongation of the coarsest subspace (i = 0)

“Weak” minimizers



Some numerical flavor
[Gratton, Mouffe, Sartenaer, Toint, Tomanos, in preparation]

All on Finest (AF)

Standard Newton trust-region algorithm (TCG)
Applied at the finest level

Multilevel on Finest (MF)

Algorithm RMTR
Applied at the finest level

Mesh Refinement (MR)

Standard Newton trust-region algorithm (TCG)
Applied successively from coarsest to finest level(∗)

Full Multilevel (FM)

Algorithm RMTR
Applied successively from coarsest to finest level(∗)

(∗) Starting point at level i + 1 obtained by prolongating the solution at level i



Test problem characteristics

Problem name nr r Type Bounds Description
P2D 1.046.529 9 2-D, quadratic Poisson model problem
P3D 250.047 5 3-D, quadratic Poisson model problem
DEPT 1.046.529 9 2-D, quadratic Elastic-plastic torsion problem
DPJB 1.046.529 9 2-D, quadratic x Journal bearing problem
DODC 1.046.529 9 2-D, convex Optimal design problem
MINS-SB 1.046.529 9 2-D, convex Minimium surface problem
MINS-OB 1.046.529 9 2-D, convex Minimium surface problem
MINS-DMSA 1.046.529 9 2-D, convex Minimium surface problem
IGNISC 3.969 5 2-D, convex Combustion problem
DSSC 1.046.529 9 2-D, convex Combustion problem
BRATU 1.046.529 9 2-D, convex Combustion problem
MINS-BC 1.046.529 9 2-D, convex x Minimium surface problem
MEMBR 16.383 6 2-D, convex x Membrane problem
NCCS 7.938 6 2-D, nonconvex Optimal control problem
NCCO 7.938 6 2-D, nonconvex Optimal control problem
MOREBV 1.046.529 9 2-D, nonconvex Boundary value problem



Performance profiles
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CPU times

Problem name AF MF MR FM
P2D 1061.2 70.3 532.1 25.9
P3D 626.1 60.9 18.3 71.7
DEPT 1350.5 70.1 97.1 8.7
DPJB 3600.0 506.6 249.8 63.2
DODC 868.1 57.4 171.6 29.2
MINS-SB 3600.0 3600.0 3600.0 153.6
MINS-OB 1433.6 54.0 114.0 21.9
MINS-DMSA 1155.7 89.8 281.0 19.2
IGNISC 8.5 4.7 2.0 1.7
DSSC 3183.8 3600.0 116.1 12.1
BRATU 2020.7 1227.3 80.1 9.9
MINS-BC 2706.4 97.0 524.6 57.9
MEMBR 18.2 10.0 5.9 3.9
NCCS 146.1 2212.6 6.7 7.0
NCCO 145.6 3600.0 0.0 0.0
MOREBV 3600.0 1572.7 3600.0 34.0

Best Second best



In summary

I Successful merging of robustness and efficiency

I Still a lot to investigate

I Lots of applications


