Preliminary Program

SIAM Conference on Control in the 90's: Achievements, Opportunities, and Challenges

MAY 17-19, 1989 Cathedral Hill Hotel, San Francisco, CA

Sponsored by the SIAM Activity Group on Control and Systems Theory

CONFERENCE Linear Systems THE DATES

Discrete Event Dynamical Systems

Nonlinear Systems

Stochastic Systems

Identification and Control of Fluids

Adaptive Control

Computation and Control

Optimal Control

Estimation

Identification

Robust Control

Control of Queues and Networks

Distributed Parameter Systems

Decentralized Control

Robotics

H-Infinity Control

TABLE OF CONTENTS

INVITED PRESENTATIONS

. 2-3 4
. 5-7
8-14
5 - 18
18
21
21
22
23

PROGRAM COMMITTEE

Arthur J. Krener (Co-Chair) University of California, Davis Christopher I. Byrnes (Co-Chair)

Arizona State University

John Baillieul

Boston University

Gilmer Blankenship University of Maryland

Stephen L. Campbell

North Carolina State University

Jane K. Cullum

IBM T.J. Watson Research Center

Biswa N. Datta

Northern Illinois University

Michel Fliess Ecole Superieure d'Electricite, France

Kevin A. Grasse

University of Oklahoma

H. Kimura

Osaka University, Japan

Petar Kokotovic

University of California, Santa Barbara

Jerrold Marsden

University of California, Berkeley

Clyde Martin

Texas Tech University

Elijah Polak

University of California, Berkeley

Eduardo Sontag

Rutgers University

Hector J. Sussmann

Rutgers University

Pravin Varaiya

University of California, Berkeley

ORGANIZING COMMITTEE

J. P. Aubin

University of Paris, France

H. Thomas Banks

Brown University

Mark H. A. Davis

Imperial College of Science and Technology, United Kingdom

William Helton

University of California, San Diego

Henry G. Hermes

University of Colorado, Boulder

G. Picci

University of Padua, Italy

S. S. Sastry University of California, Berkeley

Tzyh-Jong Tarn Washington University

Roger J-B. Wets

University of California, Davis

Alan Willsky

Massachusetts Institute of Technology

Wednesday, May 17, 8:00 AM

Invited Presentation 1

Trends and Opportunities in Control Theory

During the last two decades, there has been an increasing diversity of mathematical tools used in control theory. In parallel, there has been an increasing number of opportunities for applications of control theoretic concepts.

On the one hand, the increased diversity of mathematical tools and approaches has enriched the body of knowledge represented by control theory. On the other, lateral communication between researchers in the various branches of control theory has become more difficult than ever before, and therefore also the training of new scientists in these areas.

The application of control theoretic concepts is being driven by rapid progress in computer technology. New applications often require mathematical models different from those traditionally used in control theory.

The speaker will address these and other broad questions in context with the present status of control theory.

Andrzej Z. Manitius

School of Information Technology and Engineering George Mason University

Wednesday, May 17, 8:45 AM

Invited Presentation 2

State Space Computing: Past, Present, and Future

The speaker will survey numerical computing in control and system theory with particular emphasis on algorithms, numerical analysis, and mathematical software used for state space models. Some brief historical remarks will be followed by an assessment of the development and state-of-the-art in several key areas. One of these areas, which illustrates especially well the synergy that has existed between control and numerical linear algebra, will be the numerical solution of Riccati equations. Estimates of future trends in numerical computing for control will be presented, including remarks on parallel algorithms and algorithmically dedicated architectures.

Alan J. Laub

Department of Electrical and Computer Engineering University of California, Santa Barbara

Wednesday, May 17, 1:15 PM **Invited Presentation 3**

Adaptive Control

The goal of adaptation is to utilize the information contained in the output of a system while it is still evolving, in order to tune the controller itself in real-time so as to attain various objectives such as stabilizing the system at hand, ensuring that the output follows a given target trajectory, or even optimizing some measure of performance.

Over the last two decades this field of adaptive control has undergone considerable development in respect to theoretical understanding and practical implementation. Numerous successful practical applications have been reported, especially in the field of process control; and commercial adaptive controllers are now available.

The dynamic behavior of the overall adaptively controlled system, which includes both the dynamics of the system under control as well as the dynamics of the adaptation mechanism itself, is characterized by a set of nonlinear difference or differential equations. In addition, frequently there is "noise" entering the system, whose characteristics, such as spectral density, are unknown.

The speaker will survey the advances that have been made in designing adaptive controllers and in analyzing the complex nonlinear, possibly stochastic, dynamics involved. The key ideas behind the demonstrations of stability of the overall system and the self-tuning property of the adaptive controller will be explained.

Panganamala R. Kumar

Department of Electrical Engineering University of Illinois, Urbana

Thursday, May 18, 8:00 AM Invited Presentation 4

The Exemplary Behavior of Linear Controllers

There has always been a natural symbiosis between the mathematical framework used for describing dynamical systems and the principles being used in control theory. In this development, linear systems theory — from frequency domain descriptions to the state space methodology to polynomial matrix descriptions to co-prime factorizations — has played the pioneering role. In this talk, we will first review how dynamical systems can be formalized with variables as important supporting characters. This framework encompasses input/output and state space descriptions as special cases and, as a vantage point, has the benefit of being independent of the particular structure of the behavioral equations. We will subsequently cast interconnection and (feedback) control in this setting, with the latter viewed as a special type of interconnection. We will finally use this framework to find algorithms for computing the optimal least squares controller for linear systems described by an equation of the type $R(\sigma)\omega = 0$ with R(s) a polynomial matrix and σ differentiation or the shift. The crucial role in these algorithms is played by a quadratic polynomial matrix equation.

Jan C. Willems

Mathematics Institute

University of Groningen, The Netherlands

Thursday, May 18, 8:45 AM Invited Presentation 5

Trends and Recent Developments in **Stochastic Control Theory**

Broadly speaking, stochastic control theory is concerned with recursive estimation and control for systems with uncertainties modelled as random variables or random processes. The theory is motivated by application in such diverse areas as aerospace guidance and control, signal processing and communications, manufacturing processes and financial economics. Mathematical theories of optimal stochastic control, for models based on stochastic differential equations and Markov diffusion processes, are well developed. They have close connections with the theory of viscosity solutions of nonlinear partial differential equations. In addition, ideas from control and calculus of variations enter in the theory of large deviations, which is concerned with asymptotic estimates for probabilities of rare events associated with stochastic processes.

Another direction is the control of discrete event dynamical systems, such as those arising in computer/communication networks and production or assembly lines. Typical kinds of control actions involve scheduling of tasks, routing of messages, and dynamic resource allocation.

INVITED PRESENTATIONS

A long standing problem has been to find computationally implementable algorithms for stochastic control and nonlinear estimation. Notwithstanding the difficulties, recent progress has been encouraging.

Wendell H. Fleming Division of Applied Mathematics Brown University

Thursday, May 18, 1:15 PM Invited Presentation 6 Modeling and Control of Discrete Event Dynamical Systems

A discrete event dynamical system (DEDS) is a dynamical system whose behavior is governed by a sequence of discrete events, which occur at asynchronous and possibly unknown time intervals. For example, an event may represent the arrival of a vehicle in the traffic system, the arrival of a message in the communication system or the completion of a task, the breakdown or repair of a machine, or a reconfiguration of the system in a flexible manufacturing system. Such systems arise in a wide variety of applications, most of which are complex man-made systems, such as flexible manufacturing systems, data communications and computer networks, multi-mode control systems for reconfigurable aircraft and for computercontrolled subsystems of automobiles, data base management, and computer operating systems.

The speaker will examine a number of models and techniques that have been proposed for DEDS, with an emphasis on possible control applications. Such models and techniques include models based on traces or formal languages, petrinets, communicating sequential processes, models based on temporal or modal logic, queueing models, generalized semi-Markov processes, and perturbation analysis. The basic message will be that DEDS represents a new and challenging research area for control theorists and applied mathematicians, and that a combination of techniques from formal logic and languages, computer science, control theory, queueing theory, and random processes will be required.

Steven I. Marcus Department of Electrical Engineering University of Texas, Austin

Friday, May 19, 8:00 AM Invited Presentation 7 Controllability, Stabilization, and Identification of Distributed Systems

The speaker will review some of the ideas and techniques of controllability and, in particular, provide an updating of the main trends in connection with the Hilbert Uniqueness Method introduced in his John von Neumann lecture at the SIAM annual meeting in 1986.

Applications leading to new problems will be indicated, with examples taken from (1) the stabilization of structures, including numerical methods and multi-bodies, and (2) the identification of systems and validation of models.

Jacques-Louis Lions College de France and Centre National d' Etudes Spatiales, Paris

Friday, May 19, 8:45 AM Invited Presentation 8 Feedback Control of Nonlinear Systems

In the last two decades, there has been an ever-increasing interest in the control of systems modeled by nonlinear ordinary differential equations. After an earlier phase of research addressed to the understanding of certain fundamental issues like controllability and observability, most of the attention was focused on the analysis and design of feedback structures, in which a control law based on information about the internal state of the system is implemented in order to achieve prescribed performances.

The contribution of some relevant differentialgeometric concepts was instrumental in successfully solving problems such as transformation (via feedback and the changing of coordinates) into a linear controllable system, disturbance rejection, noninteracting control with internal stability, and matching of prescribed reference trajectories.

More recently, important progress is being made in developing systematic methods for asymptotic stabilization and output regulation. In addition, the problem of rendering a nonlinear control strategy adaptive with respect to plant parameter variations is being addressed. The first practical implementations of these newly developed design procedures, which include, for example, the control of high performance aircraft, elastic robots, and distillation plants, show definite improvement versus the results obtained by standard design techniques based on linear approximation around operating points.

The speaker will review the recent developments in nonlinear feedback design, and provide a perspective of open problems and trends that are driving the field.

Alberto Isidori

Dipartimento di Informatica e Sistemistica Universita degli Studi di Roma, Italy

Friday, May 19, 1:15 PM Invited Presentation 9 Identification and Control of Fluid Flow Systems

During the past ten years, several events have combined to produce an unusual opportunity for research in the areas of identification and control of fluid flow systems. In addition to the breakthroughs in computer technology, there have been remarkable developments in both theoretical and computational aspects of control theory. These technological advances have already had considerable impact on many areas of science, such as computational fluid dynamics, combustion, structural analysis and computational physics. Moreover, the ability to perform fast large scale computations provides the possibility of developing practical control and estimation algorithms for a variety of complex fluid-structural interaction problems. These developments along with the emergence of several new applications, provided a unique opportunity for modeling, active control and estimation of fluid dynamic systems.

The speaker will discuss potential applications of fluid flow control to active flutter suppression, acoustics, supermaneuverable aircraft and turbomachinery, and review some preliminary experimental and computational work. He will consider several problems unique to development of mathematical models for control design.

John A. Burns

Interdisciplinary Center for Applied Mathematics Department of Applied Mathematics Virginia Polytechnic Institute and State University

MINISYMPOSIA

- Stabilization of Distributed Parameter Systems
 John E. Lagnese
 Georgetown University
- Symbolic Algebra, The Lie Theory of Differential Equations and Control John Baras
- University of Maryland, College Park
 3. Optimization and Design 1

Elijah Polak University of California, Berkeley; and Roger J-B Wets University of California, Davis

- Complicated Dynamics and Control: Fluids, Circuits, and Feedback Systems
 Anthony M. Bloch and David F. Delchamps
 Cornell University
- 5. Singular Systems
 Angelika Bunse-Gerstner
 Universitat Bielefeld, West Germany
- Adaptive Control: A Panel Discussion Panganamala R. Kumar University of Illinois, Urbana
- 7. Geometric Methods in Linear Control Theory 1 Joyce O'Halloran Portland State University
- 8. Optimization and Design 2
 Elijah Polak
 University of California, Berkeley; and
 Roger J-B Wets
 University of California, Davis
- 9. Feedback Control of Distributed Parameter Systems
 K. Ito and H. Thomas Banks
 Brown University
- Geometric Methods in Linear Control Theory 2 Joyce O'Halloran Portland State University
- Robustness of Nonlinear and Adaptive Control Petar V. Kokotovic University of California, Santa Barbara
- Applications of Set Valued Calculus to Problems of Control M. I. Krasovski Institute of Automatic Control, Sverdloski, U.S.S.R.; and A. Kurzhanski Arizona State University
- Structured Matrix Eigenproblems in Signal Processing and Control Gregory S. Ammar Northern Illinois University
- 14. Singular Stochastic Control Wendell H. Fleming, Brown University; and Steve Shreve, Carnegie-Mellon University
- Robust Stability of Parametrized Linear Systems
 L. Saydy, University of Maryland, College Park; and B.R. Barmish, University of Wisconsin, Madison
- 16. Numerical Methods for Optimal Control Problems Ekkehard W. Sachs University of Trier, West Germany (now visiting at North Carolina State University and Rice University)
- Equivalence, Control, and the Calculus of Variations
 Robert B. Gardner
 University of North Carolina, Chapel Hill

MINISYMPOSIA

18. Current Research in Discrete Event **Dynamical Systems**

Steven I. Marcus, University of Texas, Austin; and Peter J. Ramadge, Princeton University

19. Stochastic Dynamic Optimization 1 Pravin Varaiya, University of California, Berkeley, and

Roger J-B Wets, University of California, Davis

20. Numerical Optimization Over Stable Systems 1

William Helton University of California, San Diego

21. Nonsmooth Analysis Approach to Control **Problems**

H. Frankowska Universite Paris-Dauphine, France

22. Adaptive Control: Recent Results Kostas S. Tsakalis Arizona State University

23. Challenges and Future Directions in Discrete **Event Dynamical Systems**

Steven I. Marcus University of Texas, Austin; and Peter J. Ramadge Princeton University

24. Stochastic Dynamic Optimization 2 Pravin Varaiva University of California, Berkeley; and Roger J-B Wets

University of California, Davis

25. Numerical Optimization Over Stable Systems 2

William Helton University of California, San Diego

26. Numerical and Experimental Aspects of Distributed Parameter Control Goong Chen Texas A&M University

27. Robustness of Adaptive Controllers . . Kostas S. Tsakalis Arizona State University

28. Global Methods in Control Efim A. Galperin

Universite du Quebec a Montreal, Canada 29. Stabilization of Nonlinear Systems

W. P. Dayawansa Texas Tech University

30. Sequential and Parallel Matrix Computations in Control Biswa N. Datta

Northern Illinois University

31. Observability: Theory and Numerical Practice Clyde F. Martin Texas Tech University

32. Combinatorial Aspects of Control Algorithms Robert Grossman University of Illinois, Chicago

33. Problems in Flow Control and Related Areas 1

Max D. Gunzburger Los Alamos National Laboratory; and Thomas P. Svobodny Virginia Polytechnic Institute and State University

34. Dynamics and Stability of Deformable Bodies John Baillieul and John H. Maddocks University of Maryland, College Park

35. New Algebraic Trends in Nonlinear Control Theories

Michel Fliess Laboratoire des Signaux et Systems C.N.R.S.-ESE, France

36. Optimization-Based Design of Control

Andre Tits and Michael Fan University of Maryland, College Park

37. Challenges in Time Varying System Theory Bijoy K. Ghosh Washington University, St. Louis, MO

38. Problems in Flow Control and Related

Max D. Gunzburger Los Alamos National Laboratory; and Thornas P. Svobody Virginia Polytechnic Institute and State University

39. Robot Control as a System Control Problem Tzyh-Jong Tarn Washington University, St. Louis, MO

40. Advances in Lie Theoretic Methods Matthias Kawski Arizona State University

41. Nonlinear Differential Algebraic Equations and Control Theory Stephen L. Campbell North Carolina State University

42. Reciprocal and Noncausal Processes Arthur J. Krener University of California, Davis; and M. Clark Imperial College of Science and Technology, U.K.

43. Computational Methods in Parameter Identification John Lund Montana State University

SPECIAL EVENTS

Welcoming Reception

Tuesday, May 16, 1989 7:00 PM - 9:00 PM Mezzanine Cash Bar

Beer Party

Wednesday, May 17, 1989 6:45 PM - 8:30 PM Mezzanine

The beer party will consist of beer, assorted sodas, make your own tacos, and

mini burritos. Cost: \$15.00

PROGRAM-AT-A-GLANCE

Tuesday, May 16/PM

6:00 PM/Mezzanine **Registration Opens**

7:00 PM/Mezzanine **Welcoming Reception**

9:00 PM/Mezzanine **Registration Closes**

Wednesday, May 17/AM

6:45 AM/Mezzanine **Registration Opens**

7:45 AM/Ballroom **Opening Remarks**

8:00 AM/Ballroom Invited Presentations 1 and 2 Chair: Arthur J. Krener University of California, Davis

8:00 AM

Trends and Opportunities in Control Theory Andrzej Z. Manitius

George Mason University

8:45 AM

State Space Computing: Past, Present, and Future

Alan J. Laub University of California, Santa Barbara

9:30 AM/ Mezzanine Coffee

10:00 AM/CONCURRENT SESSIONS

Minisymposium 1/Ballroom Stabilization of Distributed Parameter **Systems**

Chair: John E. Lagnese Georgetown University

Minisymposium 2/Cathedral Hill A Symbolic Algebra, The Lie Theory of **Differential Equations and Control**

Chair: John Baras

University of Maryland, College Park

Minisymposium 3/Cathedral Hill B **Optimization and Design 1**

Chairs: Elijah Polak, University of California, Berkeley and Roger J-B Wets, University of

California, Davis

Minsymposium 4/E/ Dorado Complicated Dynamics and Control: Fluids, Circuits, and Feedback Systems

Chairs: Anthony M. Bloch and David F. Delchamps Cornell University

Minisymposium 5/Pacific Heights

Singular Systems

Chair: Angelika Bunse-Gerstner Universitat Bielefeld, West Germany

Contributed Presentations 1/Sea Cliff **Applications**

Chair: Manfred Morari

California Institute of Technology

Contributed Presentations 2/Japanese Tea Room

H-Infinity Control Chair: Dennis S. Bernstein Harris Corporation, Melbourne, FL

Contributed Presentations 3/Room 378 **Robust and Adaptive Control**

Chair: A. Stephen Morse

Yale University

Wednesday, May 17/PM

12:00 Lunch

1:15 PM/Ballroom Invited Presentation 3 Chair: Christopher I. Byrnes Arizona State University

Adaptive Control Panganamala R. Kumar University of Illinois, Urbana

Break (no coffee)

2:15 PM/CONCURRENT SESSIONS

Minisymposium 6/Ballroom **Adaptive Control: A Panel Discussion** Chair: Panganamala R. Kumar University of Illinois, Urbana

Minisymposium 7/Cathedral Hill A Geometric Methods in Linear Control Theory I

Chair: Joyce O'Halloran Portland State University

Minsymposium 8/Cathedral Hill B **Optimization and Design 2**

Chairs: Elijah Polak, University of California, Berkeley, and Roger J-B Wets, University of California, Davis

Contributed Presentations 4/El Dorado **Beams**

Chair: Mladen Luksic

Digital Equipment Corporation, Colorado Springs,

Contributed Presentations 5/Pacific Heights **Digital Filters in One or More Dimensions** Chair: David F. Delchamps

Cornell University

Contributed Presentations 6/Sea Cliff Stochastic Systems

Chair: G. Yin

Wayne State University

Contributed Presentations 7/Japanese Tea Room **Networks and Communication Systems**

Chair: Geert Jan Olsder

Delft University of Technology, The Netherlands

Contributed Presentations 8/Room 378 **Singular and Periodic Systems**

Chair: Stephen L. Campbell North Carolina State University

4:15 PM/Mezzanine Coffee

4:30 PM/CONCURRENT SESSIONS

Minisymposium 9/Ballroom Feedback Control of Distributed Parameter

Chairs: K. Ito and H. Thomas Banks **Brown University**

Minisymposium 10/Cathedral Hill A

Geometric Methods in Linear Control Theory 2 Chair: Joyce O'Halloran

Portland State University

Minisymposium 11/Cathedral Hill B **Robustness of Nonlinear and Adaptive Control**

Chair: Petar V. Kokotovic

University of California, Santa Barbara

Minisymposium 12/EI Dorado **Applications of Set Valued Calculus to Problems of Control**

Chairs: M. I. Krasovski, Institute of Automatic Control, Sverdloski, U.S.S.R.; and A. Kurzhanski,

Arizona State University Minisymposium 13/Pacific Heights Structured Matrix Eigenproblems in Signal

Processing and Control Chair: Gregory S. Ammar Northern Illinois University

Contributed Presentations 9/Sea Cliff Stability of Families of Systems

Chair: Dragoslav D. Siljak Santa Clara University

Contributed Presentations 10/Room 378 Identifications

Chair: Peter E. Caines McGill University, Montreal

Thursday, May 18/AM

8:00 AM/Ballroom Invited Presentations 4 and 5 Chair: Jane K. Cullum IBM T. J. Watson Research Center

The Exemplary Behavior of Linear Controllers Jan C. Willems

University of Groningen, The Netherlands

8:45 AM

Trends and Recent Developments in **Stochastic Control Theory**

Wendell H. Fleming **Brown University**

9:30 AM/Mezzanine Coffee

10:00 AM/CONCURRENT SESSIONS

Minisymposium 14/Ballroom Singular Stochastic Control

Chairs: Wendell H. Fleming, Brown University; and Steve Shreve, Carnegie-Mellon University

Minisymposium 15/Cathedral Hill A **Robust Stability of Parametrized Linear** Systems

Chairs: L. Saydy, University of Maryland, College Park; and B.R. Barmish, University of Wisconsin,

Minisymposium 16/Cathedral Hill B **Numerical Methods for Optimal Control Problems**

Chair: Ekkehard W. Sachs

University of Trier, West Germany (now visiting at North Carolina State University and Rice University)

Minsymposium 17/Sea Cliff Equivalence, Control, and the Calculus of Variations

Chair: Robert B. Gardner

University of North Carolina, Chapel Hill

Contributed Presentations 11/El Dorado **Nonlinear Systems 1**

Chair: Alberto Isidori

Universita degli Studi di Roma, Italy

Contributed Presentations 12/Pacific Heights Systems with Delays

Chair: David Gilliam Texas Tech University

Contributed Presentations 13/Japanese Tea Room Flexible Structures

Chair: Raymond C. Montgomery NASA Langley Research Center

Contributed Presentations 14/Room 378 **Decentralized Control and Estimation**

Chair: Tamer Basar University of Illinois, Urbana

Thursday, May 18/PM

12:00 PM/Lunch

1:15 PM/Ballroom Invited Presentation 6 Chair: Biswa N. Datta Northern Illinois University

Modeling and Control of Discrete Event **Dynamical Systems**

Steven I. Marcus University of Texas, Austin

Break (no coffee)

2:15 PM/CONCURRENT SESSIONS

Minisymposium 18/Ballroom **Current Research in Discrete Event Dynamical Systems**

Chairs: Steven I. Marcus. University of Texas. Austin; and Peter J. Ramadge, Princeton University

Minisymposium 19/Cathedral Hill A Stochastic Dynamic Optimization I Chairs: Pravin Varaiya, University of California, Berkeley; and Roger J-B Wets, University of

California, Davis

Minisymposium 20/Cathedral Hill B **Numerical Optimization Over Stable** Systems 1

Chair: William Helton University of California, San Diego

Minisymposium 21/Pacific Heights Nonsmooth Analysis Approach to Control

Chair: H. Frankowska Universite Paris-Dauphine, France

Minisymposium 22/Sea Cliff **Adaptive Control: Recent Results** Chair: Kostas S. Tsakalis Arizona State University

Contributed Presentations 15/El Dorado Nonlinear Systems 2 Chair: William M. Boothby

Washington University, St. Louis, MO

Contributed Presentations 16/Room 378 **Optimal Control of Distributed Parameter Systems**

Chair: John Burns

Virginia Polytechnic Institute and State University

Poster Session/Mezzanine (Set up 12:00 PM-I:15 PM)

4:15 PM/Mezzanine Coffee

4:30 PM/CONCURRENT SESSIONS

Minisymposium 23/Ballroom

Challenges and Future Directions in Discrete **Event Dynamical Systems**

Chairs: Steven I. Marcus, University of Texas, Austin and Peter J. Ramadge, Princeton University

Minisymposium 24/Cathedral Hill A **Stochastic Dynamic Optimization 2** Chairs: Pravin Varaiya, University of California, Berkeley and Roger J-B Wets, University of California, Davis

Minisymposium 25/Cathedral Hill B **Numerical Optimization Over Stable** Systems 2

Chair: William Helton

University of California, San Diego

Minisymposium 26/Pacific Heights Numerical and Experimental Aspects of **Distributed Parameter Control**

Chair: Goong Chen Texas A&M University

Minisymposium 27/Sea Cliff **Robustness of Adaptive Controllers**

Chair: Kostas S. Tsakalis Arizona State University

Minsymposium 28/Room 378 **Global Methods in Control** Chair: Efim A. Galperin

Universite du Quebec a Montreal, Canada

Contributed Presentations 17/El Dorado **Nonlinear Dynamics**

Chair: Wolfgang Kliemann Iowa State University

6:45 PM/Mezzanine **Beer and Taco Party**

Friday, May 19/AM

8:00 AM/Ballroom Invited Presentations 7 and 8 Chair: H. Thomas Banks Brown University

8:00 AM

Controllability, Stabilization, and Identification of Distributed Systems

Jacques-Louis Lions

College de France and Centre National d' Etudes Spatiales, Paris

8:45 AM

Feedback Control of Nonlinear Systems

Alberto Isidori

Universita degli Studi di Roma, Italy

9:30 AM/Mezzanine

10:00 AM/CONCURRENT SESSIONS

Minisymposium 29/Ballroom Stabilization of Nonlinear Systems

Chair: W. P. Dayawansa Texas Tech University

Minisymposium 30/Cathedral Hill A

Sequential and Parallel Matrix Computations in Control

Chair: Biswa N. Datta Northern Illinois University

Minisymposium 31/Sea Cliff
Observability: Theory and Numerical Practice

Chair: Clyde F. Martin Texas Tech University

Minisymposium 32/Room 378
Combinatorial Aspects of Control Algorithms

Chair: Robert Grossman University of Illinois, Chicago

Contributed Presentations 18/Cathedral Hill B Algebraic and Topological Methods

Chair: Robert L. Foote Texas Tech University

Contributed Presentations 19/El Dorado

Numerical Methods Chair: Alan J. Laub

University of California, Santa Barbara

Contributed Presentations 20/Pacific Heights

Chair: Richard E. Mortensen University of California, Los Angeles

Contributed Presentations 21/Twin Peaks Nonsmooth and Convex Approaches

Chair: J.P. Aubin University of Paris, France

Contributed Presentations 22/Telegraph A Robotics

Chair: Tzyh-Jong Tarn

Washington University, St. Louis, MO

Contributed Presentations 23/Telegraph B Distributed Parameter Systems

Chair: R.E. Fennell Clemson University

Friday, May 19/PM

12:00 PM/Lunch

1:15 PM/Ballroom Invited Presentation 9 Chair: Alan Willsky

Massachusetts Institute of Technology

Identification and Control of Fluid Flow Systems

John A. Burns

Virginia Polytechnic Institute and State University

2:00 PM/ Break (no coffee)

2:15 PM/CONCURRENT SESSIONS

Minisymposium 33/Ballroom

Problems in Flow Control and Related Areas I Chairs: Max D. Gunzburger, Los Alamos National Laboratory; and Thomas P. Svobodny, Virginia Polytechnic Institute and State University

Minisymposium 34/Cathedral Hill A

Dynamics and Stability of Deformable Bodies

Chairs: John Baillieul and John H. Maddocks,
University of Maryland, College Park

Minisymposium 35/Cathedral Hill B
New Algebraic Trends in Nonlinear Control
Theories

Chair: Michel Fliess Laboratoire des Signaux et Systems,

C.N.R.S.-ESE, France

Minisymposium 36/El Dorado

Optimization-Based Design of Control

Systems
Chairs: Andre Tits and Michael Fan, University of Maryland, College Park

Minisympoisum 37/Pacific Heights
Challenges in Time Varying System Theory

Chair: Bijoy K. Ghosh Washington University, St. Louis, MO

Contributed Presentations 24/Sea Cliff
Qualitative and Stochastic Decision Theory
Chair: M. Clark

Imperial College of Science and Technology, U.K.

Contributed Presentations 25/Twin Peaks
Discrete Event Systems

Chair: Alan Willsky

Massachusetts Institute of Technology

Contributed Presentations 26/Room 378 Algorithms

Chair: Roberto Horowitz University of California, Berkeley

4:I5 PM/Mezzanine Coffee

4:30 PM/CONCURRENT SESSIONS

Minisymposium 38/Ballroom

Problems in Flow Control and Related Areas 2 Chairs: Max D. Gunzburger, Los Alamos National Laboratory and Thomas P. Svobodny, Virginia Polytechnic Institute and State University

Minisymposium 39/Cathedral Hill A
Robot Control as a System Control Problem

Chair: Tzyh-Jong Tarn

Washington University, St. Louis, MO

Minisymposium 40/Cathedral Hill B
Advances in Lie Theoretic Methods

Chair: Matthias Kawski Arizona State University

Minisymposium 41/Pacific Heights
Nonlinear Differential Algebraic Equations
and Control Theory

Chair: Stephen L. Campbell North Carolina State University

Minisymposium 42/Sea Cliff
Reciprocal and Noncausal Processes

Chairs: Arthur J. Krener, University of California, Davis and M. Clark, Imperial College of Science and Technology, U.K.

Minisymposium 43/Room 378
Computational Methods in Parameter Identification

Chair: John Lund Montana State University

Contributed Presentations 27/El Dorado New Frequency Domain Methods Chair: Clyde Martin

Texas Tech University

Contributed Presentations 28/Twin Peaks
Optimal Control

Chair: Pierluigi Zezza Universita de Firenze, Italy

6:30 PM Conference Adjourns Wednesday, May 17, 10:00 AM Minisymposium 1/Ballroom STABILIZATION OF DISTRIBUTED PARAMETER SYSTEMS

This minisymposium will focus on the design and analysis of feedback controls which stabilize systems modelled by partial differential equations, and the construction of open-loop controls to exactly control such systems. The presentation will address the following topics: (a) design of ad hoc stabilization feedbacks, both linear and nonlinear, and a detailed analysis of the asymptotic behavior of the closed-loop system (Lasiecka and Triggiani); (b) design of optimal feedback stabilizing operators and the analysis of the associated Riccati equation (Da Prato); and (c) geometrical optics methods and the use of microlocal analysis in stabilization and exact control problems (Littman). Strengths and limitations of each approach will be discussed.

Organizer: John E. Lagnese Georgetown University

Stabilization and Controllability of Waves and Plates with Semilinear Boundary Conditions Irena Lasiecka, University of Virginia, Charlottesville

The Role of Geometric Optics in Exact Controllability

Walter Littman, University of Minnesota, Minneapolis

Periodic Distributed and Boundary Control Problems for Parabolic Equations G. Da Prato, Scuola Normale Superiore, Pisa, Italy

Uniform Stabilization of Waves and Plates by Dissipative and Non-Dissipative Feedback Operators

Roberto Triggiani, University of Virginia, Charlottesville

Wednesday, May 17, 10:00 AM
Minisymposium 2/Cathedral Hill A
SYMBOLIC ALGEBRA, THE LIE THEORY OF
DIFFERENTIAL EQUATIONS AND CONTROL

Organizer: John Baras
University of Maryland, College Park
(Speakers and titles of presentations will be listed in the Final Program)

Wednesday, May 17, 10:00 AM Minisymposium 3/Cathedral Hill B OPTIMIZATION AND DESIGN 1

This series of lectures is intended to illustrate the use of optimization techniques in engineering design. We touch on a variety of issues that arise in applications (production engineering, circuitry design, structural optimization, control of chemical processes), in software development and related algorithmic procedures.

Organizers: Elijah Polak, University of California, Berkeley; and Roger J-B Wets, University of California, Davis

(Title to be announced)

R. Brayton, University of California, Berkeley

Problem Formulation Techniques for Structural Optimization

G. Vanderplaats, Engineering Design Optimization, Inc.

Optimal Transistor Sizing in VLSI Circuits as a Non-Differentiable Optimization Problem Alberto Sangiovanni-Vincentelli, University of California, Berkeley Exact Tradeoffs in LTI Controller Design: An Example

Craig Barratt and Stephen Boyd, Stanford University

Wednesday, May 17, 10:00 AM
Minisymposium 4/E/ Dorado
COMPLICATED DYNAMICS AND CONTROL:
FLUIDS, CIRCUITS, AND FEEDBACK
SYSTEMS

During the last fifteen years, interest has been increasing rapidly among engineers and applied scientists in complicated dynamical behavior that can occur in nonlinear systems arising in applications. It is important that control engineers understand not only how such behavior arises, but also how to develop techniques that facilitate the effective implementation of feedback controllers in its presence. This minisymposium includes presentations on a number of practical systems in which complicated dynamical phenomena appear, along with discussions of how and to what extent the behavior of these systems can be controlled. Two presentations address problems in turbulence and fluid dvnamics, while the other two consider chaotic behavior in nonlinear electrical and mechanical systems

Organizers: Anthony M. Bloch and David F. Delchamps, Cornell University

The Sights and Sounds of Chaos Leon O. Chua, University of California, Berkeley

The Turbulent Boundary Layer: Modeling the Wall Region and Control

N. Aubry, CCNY and Cornell University; P.J. Holmes, J.L. Lumley, and E. F. Stone, Cornell University

Dynamic Instabilities and Chaos in the Flyball Governor

Steven Shaw, Michigan State University

Transport and Mixing Due to Chaotic Advection: Parameter Dependence and Control

Stephen Wiggins and Anthony Leonard, California Institute of Technology

Wednesday, May 17, 10:00 AM Minisymposium 5/Pacific Heights SINGULAR SYSTEMS

Time invariant linear continuous or discrete time systems of the form $E\dot{x} = Ax + Bu$, y = Cx or $Ex_{k+1} = Ax_k + Bu_k$, $y_k = Cx_k$, where E can be singular, are called singular systems or semistate systems or descriptor systems. In applications, the traditional approach to such systems is to apply a transformation which separates the dynamic state equations from the algebraic equations. Such methods usually destroy sparsity or other structures which the original system may exhibit. Moreover, the transformation can be highly sensitive to numerical error. In the past few years there has been an increasing interest in developing reliable techniques for treating singular systems. Some concepts and methods for the standard systems have already been carried over or have been modified to apply to descriptor systems. It has been shown, however, that some properties of the sinquiar systems are not shared by the well-known state systems. This minisymposium presents some recent results in this area.

Organizer: Angelika Bunse-Gerstner Universitat Bielefeld, West Germany

On Stability of Descriptor Systems
Ralph Byers, University of Kansas; and Nancy
Nichols, University of Reading, UK

Selective Modal Analysis of Large Singular Systems

<u>George Verghese</u>, Massachusetts Institute of Technology; Ignacio Perez-Arriaga, Luis Rouco, and Luis Pagola, Universidad Pontificia Comillas, Madrid, Spain

Improving the Structure of Descriptor Systems by Derivative Feedback

Angelika Bunse-Gertsner, Volker Mehrmann, Universitat Bielefeld, W. Germany; and Nancy Nichols, University of Reading, UK

Applications of Derivative Feedback for Descriptor Systems

Angelika Bunse-Gertsner, Volker Mehrmann, Universitat Bielefeld, W. Germany; and Nancy Nichols, University of Reading, UK

Wednesday, May 17, 2:15 PM
Minisymposium 6/Ballroom
ADAPTIVE CONTROL: A PANEL
DISCUSSION

This minisymposium will deal with adaptive control in areas of its problems and prospects. There will be a brief discussion by each of the panelists, followed by a seventy-five minute panel discussion with audience participation. The agenda will be as follows with each speaker giving a 10–15 minute opening statement:

Moderator: Panganamala R. Kumar, University of Illinois, Urbana

Adaptive Control: Problems and Prospects Peter S. Caines, McGill University, Montreal

Adaptive Control: Why, When and How Petar Kokotovic, University of California, Santa Barbara

Adapting to the Continuously Evolving
Methodologies of Parameter Adaptive Control
A. Stephen Morse, Yale University

Interaction with audience

Wednesday, May 17, 2:15 PM Minisymposium 7/Cathedral Hill A GEOMETRIC METHODS IN LINEAR CONTROL THEORY 1

Geometric methods have proved invaluable in approaching problems about canonical forms, equivalences, and feedback, among others. A linear invariant control system $E\dot{x}=Ax+Bu,\ y=Cx$ is given by the 4-tuple of matrices (E,A,B,C) and so the set of all such systems of a given dimension may be identified with the manifold $K^{n\times(2n+m+p)}$ where K is either $\mathbb R$ or $\mathbb C$. Taking this global viewpoint, we can realize perturbations, feedback, and equivalences in terms of subsets of this manifold. In many cases, such considerations involve Lie group or algebraic group actions on $K^{n\times(2n+m+p)}$ and properties of the resulting orbit spaces.

Organizer: Joyce O'Halloran, Portland State University

Orbit Spaces of Generalized State Space Systems

(To be presented by the Organizer)

Hessenberg Varieties on Semisimple Lie Groups

Filippo De Mari, Universitat Bremen, W. Germany

(Title to be announced)

Clyde Martin, Texas Tech University

Generic Multivariable Zeros and Geometric Control Theory

Wednesday, May 17, 2:15 PM Minisymposium 8/Cathedral Hill B OPTIMIZATION AND DESIGN 2

This series of lectures is intended to illustrate the use of optimization techniques in engineering design. We touch on a variety of issues that arise in applications (production engineering, circuitry design, structural optimization, control of chemical processes), in software development and related algorithmic procedures.

Organizer: Elijah Polak, University of California, Berkeley; and Roger J-B Wets, University of California, Davis

Problems and Challenges in Chemical Process Control

Brad Holt, University of Washington, Seattle

Scheduling Turbofan Engine Control Set Points by Semi-Infinite Optimization Daniel Stimler, Philips Laboratorties, Briarcliff Manor, NY

Ban Optimal Control Algorithm for Slewing Flexible Structures Subject to Control and State Space Constraints

Theodore Baker and Elijah Polak, University of California, Berkeley

Extended Linear-Quadratic Optimal Control R. T. Rockafellar, University of Washington, Seattle

Wednesday, May 17, 4:30 PM
Minisymposium 9/Ballroom
FEEDBACK CONTROL OF DISTRIBUTED
PARAMETER SYSTEMS

In this minisymposium we address the topics of stabilization of distributed parameter systems through feedback. Both direct stabilization through dissipative mechanisms and LQR stabilization will be discussed. The relationship between stabilization and exact controllability through boundary forces and moments for elastic systems will be explored. For LQR problems, approximations leading to computational techniques for the operator Riccati equations for feedback gains are discussed for both continuous time and discrete time systems.

Organizers: K. Ito, and H.T. Banks, Brown University

On the Convergence of Sampled-time Approximations for Infinite Dimensional LQG Control and Estimation Problems

I. G. Rosen and C. Wang, University of Southern California, Los Angeles

Approximation of the LQR-problem in Hilbert Space

F. Kappel, University of Graz, Austria

Approximation Techniques for Parabolic Control Systems: A Variational Approach H. T. Banks and K. Ito, Brown University

Uniform Stabilization/Exact Controllability from the Boundary of Thermoelastic Plates John E. Lagnese, Georgetown University

Wednesday, May 17, 4:30 PM
Minisymposium 10/Cathedral Hill A
GEOMETRIC METHODS IN LINEAR
CONTROL THEORY 2

Geometric methods have proved invaluable in approaching problems about canonical forms, equivalences, and feedback, among others. A linear time invariant control system Ex = Ax + Bu, y = Cx

is given by the 4-tuple of matrices (E,A,B,C) and so the set of all such systems of a given dimension may be identified with the manifold K^{n×(2n+m+p)} where K is either $\mathbb R$ or $\mathbb C$. Taking this global viewpoint, we can realize perturbations, feedback, and equivalences in terms of subsets of this manifold. In many cases, such considerations involve Lie group or algebraic group actions on K^{n×(2n+m+p)} and properties of the resulting orbit spaces.

Organizer: Joyce O'Halloran Portland State University

(Title to be announced)

Mark Shayman, University of Maryland, College Park

(Title to be announced)
Daniel Cobb.

University of Wisconsin, Madison

The Relationship Between Invariants of Pfaffian Systems and Feedback Equivalence Robert B. Gardner,

University of North Carolina, Chapel Hill

Sufficient Conditions for Strong D-Stability E. H. Abed, and C-F. Kuen, University of Maryland, College Park

Wednesday, May 17, 4:30 PM
Minisymposium 11/Cathedral Hill B
ROBUSTNESS OF NONLINEAR AND
ADAPTIVE CONTROL

Analysis of the effects of parametric and dynamic uncertainties on nonlinear dynamic systems is needed to reveal whether nonadaptive feedback linearization design will guarantee robustness, and when an adaptive feedback linearization approach is more appropriate. In nonadaptive high-gain designs the phenomenon of controller and/or observer peaking may interfere with uncertain nonlinearities and result in a drastic decrease of the stability region. Adaptive parameter updates reduce the effects of parametric uncertainties and avoid the need for high-gain loops.

New problem formulations in this area motivate the development of a geometric- asymptotic-adaptive methodology. Trade-offs between adaptive and nonadaptive designs are to be made vis-a-vis unmodeled dynamics, which are known to cause instabilities in some linear adaptive systems. Nonlinear adaptive designs may benefit from algorithm modifications based on current research in linear adaptive control.

Organizer: Petar V. Kokotovic University of California, Santa Barbara

(Titles to be announced)

S. S. Sastry, University of California, Berkeley

P. Ioannou, University of Southern California

R. Marino, Second University of Rome, Italy

L. Praley, Ecole de Mines, Paris, France

Wednesday, May 17, 4:30 PM
Minisymposium 12/EI Dorado
APPLICATIONS OF SET VALUED CALCULUS
TO PROBLEMS OF CONTROL

Organizers: M. I. Krasovski, Institute of Automatic Control, Sverdloski, U.S.S.R.; and A. Kurzhanski, Arizona State University

Wednesday, May 17, 4:30 PM
Minisymposium 13/Pacific Heights
STRUCTURED MATRIX EIGENPROBLEMS
IN SIGNAL PROCESSING AND CONTROL

A variety of problems in systems and control theory and signal processing involve the computation of the eigenvalues and possibly the invariant subspaces of matrices with certain special structures. It is therefore of interest to develop and analyze efficient algorithms that take advantgage of the particular structure of a given problem. This session will focus on numerical algorithms for the solutions of some of these structured eigenproblems. Specifically, eigenproblems for Hamiltonian matrices, and the related antiquaternion matrices, will be considered. We will also consider some recently developed algorithms for the eigenproblem for orthogonal matrices and its applications in signal processing.

Organizer: Gregory S. Ammar Northern Illinois University

Hermitian Antiquaternion Jacobi Matrices William B. Gragg, Naval Postgraduate School

A Jacobi-Like Method for the Solution of the Algebraic Riccati Equation

Angelika Bunse-Gerstner, and Frank Klapper, Universitat Bielefeld, W. Germany

Fast Approximation of Dominant Harmonics by Solving an Orthogonal Eigenproblem Lothar Reichel, Bergen Scientific Centre, Norway and University of Kentucky, Lexington

An Algorithm for the Orthogonal Eigenproblem (To be presented by the Organizer)

Thursday, May 18, 10:00 AM

Minisymposium 14/Ballroom
SINGULAR STOCHASTIC CONTROL

Singular stochastic control is concerned with problems of ontimal control of Markov diffusion pro-

Singular stochastic control is concerned with problems of optimal control of Markov diffusion processes, in which no upper bound or control rates is imposed. The optimal accumulated control up to time t is generally a continuous, bounded variation function of t, but not absolutely continuous. Typically, there is an associated free boundary problem for a variational inequality, and the control actions occur to keep the system state at the free boundary. There are a variety of applications, including queueing systems under heavy traffic and financial economics. The theory gives rise to interesting problems about multidimensional reflected diffusions.

Organizers: Wendell H. Fleming, Brown University (Chair); and Steve Shreve, Carnegie-Mellon University

Regulated Brownian Motion

J. Michael Harrison, Stanford University

Probabilistic Aspects of Singular Stochastic Control

1. Karatzas, Columbia University

Singular Control in Heavy Traffic Problems Harold J. Kushner, Brown University

(Title to be announced)

H. M. Soner, Carnegie-Mellon University

Thursday, May 18, 10:00 AM Minisymposium 15/Cathedral Hill A ROBUST STABILITY OF PARAMETRIZED LINEAR SYSTEMS

A fundamental problem which arises in the analysis and synthesis of control systems is the recognition that the mathematical model assumed for the system is always inexact, and that the parameters of the system may deviate away from their nominal values. The question of interest is then to determine to what extent a nominal system remains stable when subjected to a given class of perturbations. The goal of the minisymposium is to present some of the latest results on robust stability of parametrized linear systems.

Organizers: L. Saydy, University of Maryland, College Park; and B. R. Barmish, University of Wisconsin, Madison

Properties of Robust Stability Margin as a Function of Frequency

B. R. Barmish, Z. C. Shi, and R. Tesio, University of Wisconsin, Madison

Generic Property of Uncertain Polynomials Multilinear in the Parameters

A. Sideris, M. K. H. Fan, R. Sanchez Pena, and J. C. Doyle, University of Southern California

When is the Image of a Multilinear Mapping a Polytope?

C. V. Hollot, University of Massachusetts, Amherst

Guarding Maps and the Robust Generalized Stability Problem

L. Saydy, A. L. Tits, and E. H. Abed, University of Maryland, College Park

The Largest Stability Rectangle for Families of Polynomials with Linear Uncertainty T. Djaferis, University of Massachusetts, Amherst

On the Robust Stabilization of Linear Uncertain Systems

R. K. Yedavalli, Ohio State University

Thursday, May 18, 10:00 AM
Minisymposium 16/Cathedral Hill B
NUMERICAL METHODS FOR OPTIMAL
CONTROL PROBLEMS

The numerical solution of optimal control problems often involves the use of techniques from mathematical programming. This minisymposium focusses on applications of optimization algorithms in control theory. Some of the distinctive features of control problems in optimization are the infinite-dimensional nature of the variables and the infinitely many constraints. This leads to various effects for the formulation of the numerical methods and their convergence analysis.

Organizer: Ekkehard W. Sachs University of Trier, W. Germany (now visiting at North Carolina State University, and Rice University)

(Title to be announced)

Eugene F. Cliff, Virginia Polytechnic Institute and State University

Formal Newtonian Projection Methods for Continuous-Time Input-Constrained Optimal Control Problems

Joseph C. Dunn, North Carolina State University

Multiplier Methods for Nonlinear Optimal Control

William W. Hager, University of Florida, Gainesville

Sequential Quadratic Programming Methods and Optimal Control Problems (To be presented by the Organizer)

Thursday, May 18, 10:00 AM
Minisymposium 17/Sea Cliff
EQUIVALENCE, CONTROL, AND THE
CALCULUS OF VARIATIONS

This minisymposium addresses equivalence, control and the calculus of variations, which have been found not only to interface, but to be intimately interrelated. This has resulted in a constructive technique for producing time critical closed loop controls in certain sufficiently nonlinear control systems.

The reports show some of the consequences of this approach, including the generalization of the classical Brunovsky normal forms to a completely nonlinear and surprisingly computable setting, the existence of invariantly attached metrics for which the geodesics are time-critical solutions, the detailed analysis of scalar controls in the case of three state variables, and a report on the relationships with symplectic geometry.

Organizer: Robert B. Gardner University of North Carolina, Chapel Hill

Symmetry Groups and Normal Forms for Control Systems

William F. Shadwick, University of Waterloo, Canada

Metric Geometries in Feedback Control George Rudolph Wilkens, Jr., University of Hawaii, Manoa

Equivalence of Scalar Control Systems
David Thompson, University of South Alabama

Symplectic Foliations and Control Robert Hermann, Mathematical Science Press, Brookline, MA

Thursday, May 18, 2:15 PM
Minisymposium 18/Ballroom
CURRENT RESEARCH IN DISCRETE EVENT
DYNAMICAL SYSTEMS

In the recent past, there have been exciting new research efforts into a number of different approaches to the modeling and control of discrete event dynamical systems (DEDS). These approaches bring to bear tools from queueing theory and various aspects of computer science, but in ways that have uniquely control-theoretic flavor. The talks in this minisymposium concentrate on selected aspects of the current research in this area, including the supervisory control of DEDS, real time discrete event processes, stability of stochastic DEDS models, and some aspects of perturbation analysis for DEDS.

Organizers: Steven I. Marcus (Chair), University of Texas, Austin; and Peter J. Ramadge, Princeton University

Multiobjective Control Tasks for Discrete-Event Systems

Peter J. Ramadge, Princeton University

An Algebra of Discrete Event Processes Michael Heymann, NASA-Ames Research Center, and Technion-Israel Institute of Technology

Stability of Stochastic DEDS Models Jean Walrand, University of California, Berkeley

On the Constructability of Parameterized Sample Path Families of Discrete Event Systems

Christos G. Cassandras, University of Massachusetts, Amherst; and Stephen G. Strickland, Harvard University

Thursday, May 18, 2:15 PM Minisymposium 19/Cathedral Hill A STOCHASTIC DYNAMIC OPTIMIZATION 1

This series of lectures is devoted to various approaches to numerical solution procedures for the optimization of stochastic dynamical systems. The techniques include stochastic optimal control, Markov decision processes, stochastic programming and simulation.

Organizers: Pravin Varaiya, University of California, Berkeley: and Roger J-B Wets, University of California, Davis

Multigrid Algorithms for Nonlinear Stochastic Control

John Baras, University of Maryland, College Park

Dynamic Scheduling of Manufacturing Systems

P. R. Kumar, University of Illinois, Urbana

Almost Sure Convergence of a Stochastic Approximation Algorithm with Application to Adaptive Control

Armand Makowski, University of Maryland, College Park; and Adam Schwartz, Technion, Israel Institute of Technology

Monte Carlo Methods for Optimization of Stochastic Systems

Peter W. Glynn, Stanford University

Thursday, May 18, 2:15 PM
Minisymposium 20/Cathedral Hill B
NUMERICAL OPTIMIZATION OVER STABLE
SYSTEMS 1

Organizer: William Helton University of California, San Diego

On the Direct Computation of the H_{∞} -Norm and the μ -Norm of a Transfer Matrix Andre L. Tits and Michael K. H. Fan, University of Maryland, College Park, MD

Computing the Optimally Scaled Norm of a Transfer Matrix

Stephen P. Boyd, Stanford University

(Titles to be announced)
Boyd Pearson, Rice University; William Helton,
University of California, San Diego; and Elijah
Polak, University of California, Berkeley

Thursday, May 18, 2:15 PM
Minisymposium 21/Pacific Heights
NONSMOOTH ANALYSIS APPROACH TO
CONTROL PROBLEMS

Nonsmooth analysis brought new tools to investigate different issues arising in control theory. In particular those allowing to study classical control problems, where nonregularities and set-valued character do arise in a natural way: as for instance in control systems with state dependent controls, state constraints, nonregularity or uncertainty of dynamics, in descriptor and implicit control systems. Beside such "nonregular" problems, nonsmooth issues may also occur in very regular problems: for example in construction of optimal feedback lows or investigation of the value function

MINISYMPOSIA

or more generally, solutions of the Hamilton-Jacobi equations. Dealing with new settings, nonsmooth analysis develops new basic theorems and new techniques which, in several cases, simplify the earlier approaches to smooth problems.

The aim of this minisymposium is to present some applications of the results obtained so far to the issues of optimal control, controllability observability, the value function and construction of optimal feedback.

Organizer: H. Frankowska Universite Paris-Dauphine, France

(Title to be announced)

J.P. Aubin, Universite Paris-Dauphine, France

Hamiltonian Trajectories and Duality in Optimal Control

R. T. Rockafellar, University of Washington, Seattle

(Title to be announced)

R. Vinter, Imperial College London, UK

(Title to be announced)

To be presented by the Organizer

Thursday, May 18, 2:15 PM
Minisymposium 22/Sea Cliff
ADAPTIVE CONTROL: RECENT RESULTS

This minisymposium emphasizes on recent results, approaches and techniques in the theory and application of adaptive control. The presentations will discuss present and future trends, implementation issues and theoretical advancements in the field of adaptive control, in an effort to improve the performance as well as enlarge the range of applications of adaptive controllers.

Organizer: Kostas S. Tsakalis Arizona State University

Adaptive Control of A Chaotic System R. Kosut, Integrated Systems, Inc., and Stanford University

Hierarchical Adaptive Control System and Its Robustness to Uncertainties

Z. J. Chen, Beijing University, China

Adaptive Control of Linear Systems with Rapidly Varying Parameters

E. W. Kamen, University of Pittsburgh; T. E. Bullock, and C. H. Song, University of Florida, Gainesville

Design of Estimators for Robust Adaptive Control

(To be presented by the organizer)

Thursday, May 18, 4:30 PM
Minisymposium 23/Ballroom
CHALLENGES AND FUTURE DIRECTIONS
IN DISCRETE EVENT DYNAMICAL SYSTEMS

The area of discrete event dynamical systems represents a challenging new research area for applied mathematicians and control theorists. The speakers in this minisymposium will present viewpoints on the challenges and future research directions in this area. This will be a less formally structured minisymposium, in which there will also be time for audience participation.

Organizers: Steven I. Marcus, University of Texas, Austin; and Peter J. Ramadge (Chair), Princeton University

Architectural Issues in the Control of Discrete Event Systems

W. M. Wonham, University of Toronto

Logic Control Systems and Al Peter E. Caines, McGill University, Canada

Real-Time Finitely Recursive Processes
Randall A. Cieslak, and Pravin Varaiya, University
of California, Berkeley

Recent Results in Perturbation Analysis Y. C. Ho, Harvard University

Thursday, May 18, 4:30 PM
Minisymposium 24/Cathedral Hill A
STOCHASTIC DYNAMIC OPTIMIZATION 2

This series of lectures is devoted to various approaches to numerical solution procedures for the optimization of stochastic dynamical systems. The techniques include stochastic optimal control, Markov decision processes, stochastic programming and simulation.

Organizers: Pravin Varaiya, University of California, Berkeley; and Roger J-B Wets, University of California. Davis

Numerical Methods for Stochastic Control Problems

Harold Kushner, Brown University

(Titles to be announced)

I. Karatzas, Columbia University

Jean Walrand, University of California, Berkeley

A Heuristic Scheduling Policy for Multi-Item Single Machine Production Systems with Time-Varying, Stochastic Demands

Robert C. Leachman, University of California, Berkeley

Thursday, May 18, 4:30 PM
Minisymposium 25/Cathedral Hill B
NUMERICAL OPTIMIZATION OVER STABLE
SYSTEMS 2

Organizer: William Helton University of California, San Diego

State Space Formulas for the Solution of the Standard H°-Problems

Joseph A. Ball, Virginia Polytechnic Institute and State University

4-Block Problem for Multivariable Distributed Systems

Allen Tannenbaum, University of Minnesota, Minneapolis

New Methods in Optimal Control
John C. Doyle, California Institute of Technology

(Titles and additional speakers to be announced)

Thursday, May 18, 4:30 PM
Minisymposium 26/Pacific Heights
NUMERICAL AND EXPERIMENTAL
ASPECTS OF DISTRIBUTED PARAMETER
CONTROL

In this minisymposium we will address the directions, methods, theory and results in the numerical and experimental study of distributed parameter control systems.

Due to the advent of high power computers and advanced experimental equipments, we now have an excellent opportunity to build, test and verify the models of various distributed parameter control systems and to compute their numerical solutions. Such results are interesting theoretically and useful in applications.

The speakers will present results on shape optimization algorithms, viscoelasticity, and the boundary element method. Also the comparison of laboratory experimental and numerical results will be discussed.

Organizer: Goong Chen Texas A&M University

Numerical and Experimental Aspects of Distributed Parameter Control

David L. Russell, Virginia Polytechnic Institute and State University

Numerical Aspects in Shape Optimization and Control

Michel Delfour, Universite de Montreal, Canada

Feedback Stabilization in Systems with Viscoelastic Damping

Kenneth B. Hannsgen and Robert L. Wheeler, Virginia Polytechnic Institute and State University

Application of the Boundary Element Method to Boundary Control Problems

J. Zhou, L. Ji and Goong Chen, Texas A&M University

Thursday, May 18, 4:30 PM Minisymposium 27/Sea Cliff ROBUSTNESS OF ADAPTIVE CONTROLLERS

The emphasis of the minisymposium is on the robustness and performance properties of adaptive controllers. The recent results that will be presented, cover a wide range of topics on the robustness of adaptive controllers in an attempt to put into perspective the potential advantages as well as drawbacks of adaptive control. The discussions will stimulate new ideas and provide valuable insight for the successful development of adaptive control systems for practical use.

Organizer: Kostas S. Tsakalis Arizona State University

Recent Results in Robust Adaptive Control G. C. Goodwin, University of Newcastle, New South Wales

Adaptive Proportional Controller: Boundedness of Solutions

L. Praly, Ecole Nationale Superieure d'Ingenieurs Electriciens de Grenoble, France

Unacceptable Transients in Adaptive Controllers

C. E. Rohrs, and R. Younce, Tellabs Research Center; and S. Harvey, University of Notre Dame

Robust Design of an Implicit LQG Self Tuner Q. Song and M. J. Grimble, University of Strathclyde, Glasgow

Thursday, May 18, 4:30 PM
Minisymposium 28/Room 378
GLOBAL METHODS IN CONTROL

Global solutions of nonconvex optimal control problems are the matter of principal interest and importance in aerospace sciences, in economics and in engineering applications. Classical variationbased methods (the maximum principle, the Hamilton-Jacobi-Bellman equation, etc.) cannot deliver global solutions of nonconvex problems because of essentially local considerations used to establish one or another variational optimality condition. Hence, to develop a global method, one has to abandon local considerations, that is, to abandon the use of the calculus of variations and related techniques. Certain new ideas and approaches will be presented at the minisymposium. The subsequent panel discussion is aimed at the exchange of opinions about these entirely new ideas.

Organizer: Efim A. Galperin Universite du Quebec a Montreal, Canada

Stabilizing Management of Fluctuating Resources

Veijo Kaitala and <u>George Leitmann</u>, University of California, Berkeley

Global Solution of Nonconvex Differential Games

Efim A. Galperin, Universite du Quebec a Montreal and Quan Zheng, Shanghai University of Science and Technology, China

The Delta Algorithm for Global Optimal Control

(To be presented by the Organizer)

Foundations of Fuzzy Logic Control Lotfi A. Zadeh, University of California, Berkeley

Nonconvex Global Optimal Control: Methods and Perspectives (Panel Discussion)

Panelists: E. Galperin, G. Leitmann, Q. Zheng, L. Zadeh, and the audience

Friday, May 19, 10:00 AM Minisymposium 29/Ballroom STABILIZATION OF NONLINEAR SYSTEMS

We plan to bring together the authors of some significant contributions on stabilization of nonlinear systems in the recent past. The work of C. I. Byrnes alongside with A. Isidori has set the standard in this direction. The works of M. Kawski and of C. Martin and W. Dayawansa have been directed towards obtaining necessary and sufficient conditions for asymptotic stability in low dimensional situations. The work of B. K. Ghosh is directed towards the stabilization of a class of nonlinear systems using techniques from time-varying linear systems theory.

Organizer: W. P. Dayawansa Texas Tech University

Stabilization of Singular Systems M. Kawski, Arizona State University

Bounded Input-Bounded Output Stabilization of Nonlinear Systems

Christopher Byrnes, Arizona State University

Some New Methods in the Problem of Compensating a Discrete Time-Varying and Nonlinear Systems

Bijoy K. Ghosh, Washington University, St. Louis

 $\ensuremath{\text{C}^{0}}\xspace$ and $\ensuremath{\text{C}^{1}}\xspace$ - Stabilization of Two-Dimensional Systems

Clyde F. Martin and W. P. Dayawansa, Texas Tech University Friday, May 19, 10:00 AM
Minisymposium 30/Cathedral Hill A
SEQUENTIAL AND PARALLEL MATRIX
COMPUTATIONS IN CONTROL

The design and analysis of linear time-invariant control systems give rise to a variety of interesting linear algebraic problems such as; eigenvalue and eigenstructure assignment, matrix equation (Sylvester, Lyapunov, Riccati, etc.), frequency response, stability and inertia, etc. In last few years, numerically reliable techniques have been developed for several of these problems. However, most of these techniques do not apply to large scale sequential computations and furthermore, parallel algorithms for even small and dense problems virtually do not exist presently.

The speakers of this session will discuss how some of the existing sophisticated computational techniques for large scale and parallel matrix computations can be gainfully employed to design algorithms for parallel and large scale computations of several of the above-mentioned problems.

Organizer: Biswa N. Datta Northern Illinois University

Solving Algebraic and Discrete Riccati Equations by Nonsymmetric Jacobi Iteration Ralph Byers, University of Kansas

Parallel Algorithms for Single-Input and Multi-input Eigenvalue Assignment Problems (To be presented by the Organizer)

A Survey of Methods for Computing Decentralized Fixed Modes

R. V. Patel, Concordia University; and P. Misra, Wright State University

Parallel Algorithms for Riccati Equations
Using Matrix Sign Functions
Judy Gardiner, Ohio State University

Friday, May 19, 10:00 AM
Minisymposium 31/Sea Cliff
OBSERVABILITY; THEORY AND
NUMERICAL PRACTICE

The session will contain two talks concerning the pathology of observability, and two devoted to the numerical implementation of algorithms developed over the last two years. The numerical experience indicates that real-world problems can be solved using the theory of observability.

Organizer: Clyde F. Martin Texas Tech University

(Titles to be announced)
Clyde Martin and W. Dayawansa, Texas Tech
University

David Gilliam and **Bernard Mair**, Texas Tech University

D. I. Wallace, Dartmouth College

Parameter Identification in Parabolic Systems Via Sinc Method

John Lund and Curt Vogel, Montana State University

Friday, May 19, 10:00 AM
Minisymposium 32/Room 378
COMBINATORIAL ASPECTS OF CONTROL
ALGORITHMS

This session brings together researchers who work on the combinatorial aspects of control theory. This area is important in designing algorithms in nonlinear control theory and in the symbolic computation of control trajectories. Techniques such as the use of shuffle products, coproducts, Chen series, generating functions, and trees have been found useful in this work. There are several means of packaging the combinatorial computations that arise in nonlinear control theory, and it is an open problem to relate them. In this session, these computations are attacked through shuffle products, through coalgebra coproducts, and through free Lie algebras.

Organizer: Robert Grossman University of Illinois, Chicago

The Shuffle Product and Some Differential Identities in Systems Theory

P. E. Crouch, Arizona State University; and F. Lamnabhi-Lagarrigue, C.N.R.S.-E.S.E., France

Vector Fields Which Generate Free, Nilpotent Lie Algebras

Matthew A. Grayson, University of California at San Diego, La Jolla

Higher Order Derivations and Trees (To be presented by the Organizer)

Friday, May 19, 2:15 PM
Minisymposium 33/Ballroom
PROBLEMS IN FLOW CONTROL AND
RELATED AREAS 1

The control of flow fields plays an important role in many areas of applications and such problems come in many guises. Here, we bring together scientists working on various aspects of flow control problems or on problems which have a direct bearing on their solution. For example, some of the speakers will address issues in shape optimization, while others will look at value optimization. Quantities such as the viscous drag and the deviation from desired flow fields are optimized. Incompressible, compressible, inviscid and viscous flow problems will be discussed in deterministic and stochastic settings. The speakers will address questions of existence, uniqueness and regularity of solutions, and also of obtaining approximate numerical solutions.

Organizers: Max D. Gunzburger (Chair), Los Alamos National Laboratory; and Thomas P. Svobodny, Virginia Polytechnic Institute and State University

Effect of Domain Shape on the Spectrum of the Biharmonic Operator

Robert Acar, and Luther W. White, University of Oklahoma. Norman

Control Problem for the Burger's Equation Sungkwon Kang, Virginia Polytechnic Institute and State University

Shape Estimation and Control in Aeroelastic Systems

Patricia Lamm, Michigan State University

Viscous Drag Reduction by Suction and Blowing Through the Boundary: Formulation, Analysis and Approximation of a Mathematical Model

Max D. Gunzburger, Los Alamos National Laboratory; Lisheng Hou, Carnegie-Mellon University; and <u>Thomas Svobodny</u>, Virginia Polytechnic Institute and <u>State University</u> Friday, May 19, 2:15 PM Minisymposium 34/Cathedral Hill A DYNAMICS AND STABILITY OF DEFORMABLE BODIES

This session does not explicitly concern control. Rather the lectures will address problems from mechanics of a type that give rise to questions in control. The formulation of complicated dynamical problems, such as coupled rigid and flexible bodies will be discussed. Particular emphasis will be given to stability properties.

Organizers: John Baillieul and John H. Maddocks (Chair), University of Maryland, College Park

Nonlinear Stability of Relative Equilibria by the Energy-Momentum Method Juan C. Simo, Stanford University

Bifurcation Behavior in Rotating Beams Anthony M. Bloch, Cornell University, and OhioState University

Nonlinear Stability of Relative Equilibria by Lyapunov-Type Methods

John H. Maddocks, University of Maryland, College Park

(Title and speaker to be announced)

Friday, May 19, 2:15 PM
Minisymposium 35/Cathedral Hill B
NEW ALGEBRAIC TRENDS IN NONLINEAR
CONTROL THEORIES

Since the works of R. E. Kalman and many others, algebraic methods are certainly the main mathematical tools for understanding linear systems. For nonlinear systems the situation looked quite different until recently. The aim of this minisymposium is to show that algebra is beginning to gain more popularity in nonlinear control, since it is now offering an alternative approach which often greatly enlighten various problems.

Organizer: M. Fliess Laboratoire des Signaux et Systemes, C.N.R.S.-ESE, France

Controllability is Harder to Decide Than Accessibility

Eduardo D. Sontag, Rutgers University

(Titles to be announced)

J. W. Grizzle, University of Michigan, Ann Arbor

C. H. Moog, Laboratoire d'Automatique, ENS 17, France

(To be presented by the Organizer)

Panel Discussion: The Future of Algebraic Methods

Panelists: M. Fliese, E. D. Sontag, J. W. Grizzle, C. H. Moog, and the audience

Friday, May 19, 2:15 PM
Minisymposium 36/El Dorado
OPTIMIZATION-BASED DESIGN OF
CONTROL SYSTEMS

With the recent dramatic increase in available computing power, numerical optimization has become an attractive tool for the design of complex engineering systems. Yet, generalized use of numerical optimization techniques in design has been

hindered by (i) the difficulty to translate in a faithful manner the actual design problem into any kind of rigid mathematical optimization problem, (ii) the inability of classical optimization tools to efficiently take into account the many distinctive features of optimization problems arising in a design context, and (iii) the unavailability of software tools offering to the designer a powerful as well as congenial environment supporting such capabilities. The minisymposium will focus on some aspects of these questions.

Organizers: Andre Tits and Michael Fan, University of Maryland, College Park

A Barrier Function Method for Minimax Problems

E. Polak, J. E. Higgins, University of California, Berkeley; and D. Q. Mayne, Imperial Collége, UK

Design of Linear Controller via Nondifferential Optimization

Stephen Boyd, Stanford University

Highlights of CONSOLE, an Optimization-Based Design System

Michael Fan, and Andre Tits, University of Maryland, College Park

Friday, May 19, 2:15 PM
Minisymposium 37/Pacific Heights
CHALLENGES IN TIME VARYING SYSTEM
THEORY

This minisymposium addresses an important problem area in system theory—that of studying the effect of time variation on the parameters of a dynamical system described by ordinary differential equations in the continuous time and difference equations in the discrete time. Time varying systems arise as a result of uncertain parameter variation or as a result of modelling a control system for which the performance specification varies in real time. The control system therefore adaptively changes in real time to match the desired performance.

Presently, our understanding of a time varying system is restricted to parameters that are slowly varying in time. The main approach in the past had been to generalize the "time invariant" thinking. This obviously is restrictive.

This minisymposium focuses attention on four pioneers in this field. They have analyzed time varying systems from apparently distinct viewpoints, yet their overall objectives are related. We hope that their techniques would come under a much broader general framework which in my view is also a challenge in the 90's.

Organizer: Bijoy K. Ghosh Washington University, St. Louis, MO

Stability and Modes of a Linear Time Varying System

E. W. Kamen, University of Pittsburgh

Robust Performance in Sampled Data Control System

P. Kabamba, University of Michigan, Ann Arbor

A Theory of Fractional Representation for Time Varying and Nonlinear Systems M. Verma, University of Texas, Austin

Simultaneous Stabilization of Discrete-Time Multi-Input Multi-Output Linear Time Varying Systems by Time Varying Dynamic Compensation

Paul R. Bouthellier, Washington University, St. Louis, MO

Friday, May 19, 4:30 PM Minisymposium 38/Ballroom PROBLEMS IN FLOW CONTROL AND RELATED AREAS 2

The control of flow fields plays an important role in many areas of applications and such problems come in many guises. Here, we bring together scientists working on various aspects of flow control problems or on problems which have a direct bearing on their solution. For example, some of the speakers will address issues in shape optimization. while others will look at value optimization. Quantities such as the viscous drag and the deviation from desired flow fields are optimized. Incompressible, compressible, inviscid and viscous flow problems will be discussed in deterministic and stochastic settings. The speakers will address questions of existence, uniqueness and regularity of solutions, and also of obtaining approximate numerical solutions

Organizers: Max D. Gunzburger, Los Alamos National Laboratory; and Thomas P. Svobodny (Chair), Virginia Polytechnic Institute and State University

Optimal Design for the Drag of a Body in a Viscous Fluid

Jacques Simon, Universite Pierre et Marie Curie et CNRS, France

Singular Perturbation for Stochastic Control Problems Involving Semilinear Parabolic Equations

Panagiotis E. Souganidis, Brown University

(Title to be announced)
J. Zolesio, C.N.R.S., France

Finite Element Approximations of Optimization Problems for the Navier-Stokes Equations with Distributed or Boundary Controls

Max D. Gunzburger, Los Alamos National Laboratory; Lisheng Hou, Carnegie-Mellon University; and Thomas Svobodny, Virginia Polytechnic Institute and State University

Friday, May 19, 4:30 PM
Minisymposium 39/Cathedral Hill A
ROBOT CONTROL AS A SYSTEM CONTROL
PROBLEM

This session is expected to show applications of modern nonlinear control theory to the control of robot arms from system point of view. The list of speakers are top researchers in the robotics and control theory areas who are now exploring the application of systems theory to the control of robot arms.

Organizer: Tzyh-Jong Tarn Washington University, St. Louis, MO

Task Space Control of Robot Arms A. K. Bejcyz, Jet Propulsion Laboratory

The Nonlinear Control Theory of Linearly Uncontrollable Mechanical Systems
John Baillieul, Boston University

Adaptive Control of Flexible Joint Robots Mark W. Spong, University of Illinois, Urbana

The Role of Zero Dynamics in Robotic Systems Alessandro De Luca, Universita di Roma "La Sapienza", Italy Friday, May 19, 4:30 PM
Minisymposium 40/Cathedral Hill B
ADVANCES IN LIE THEORETIC METHODS

Starting in the early 70's, roughly speaking, with an extension of Nagano's theorem on transitive Lie algebras; the use of Lie theoretic methods for the description of properties of smooth nonlinear control systems on a manifold has been overly successful, and evolved into several different directions. E.g., it is known that the relations satisfied by the iterated Lie brackets determine as important properties as accessibility, (small-time) local controllability, the structure of time-optimal trajectories, etc. and very likely also the maximal smoothness of asymptotically stabilizing feedback laws. A major ongoing research object is to decipher the code in which these properties are encoded in the Lie brackets --- a problem which so far has been solved completely only for accessibility, and partially solved for the other properties.

This minisymposium is intended to give a survey of some of the latest achievements and challenges for future work regarding the richness of the information that can explicitly be extracted from the iterated Lie brackets,

Organizer: Matthias Kawski Arizona State University

(Title to be announced)

Klaus Wagner, Mathematisches Institut der Universität, W. Germany

Stabilizing Feedback Controls Henry G. Hermes, University of Colorado, Boulder

(Title to be announced)

Gianna Stefani, Universita Degli Studi, Firenze, Italy

The Structure of Small-Time Reachable Sets and Time Optimal Feedback Control Laws Heinz Schattler, Washington University, St. Louis

Friday, May 19, 4:30 PM
Minisymposium 41/Pacific Heights
NONLINEAR DIFFERENTIAL ALGEBRAIC
EQUATIONS AND CONTROL THEORY

Many control systems are first modeled as differential algebraic equations. Traditionally, it has been necessary to rewrite the equations in an explicit form before analyzing the system. In the last decade there has been an increasing interest in working with the original implicit models if possible. The motivations for doing this have included: easier variation of models in simulation studies; obtaining numerical results directly from computer generated models; preservation of useful properties such as sparsity, system structure, and physically meaninoful variables; solution of problems not easily put in explicit form; solution of wider classes of models; and shortening the time it takes the scientist and engineer to go from initial model formulation to numerical results. This minisymposium will present both recent results and future directions of research. Talks will cover numerical methods, applications to control and mechanical systems, and the theory of nonlinear differential algebraic control systems

Organizer: Stephen L. Campbell North Carolina State University

The Numerical Solution of Initial Value Problems in Trajectory Control

Kathryn E. Brenan, The Aerospace Corporation, Los Angeles

(Titles to be announced)
Kenneth D. Clark, Bell Northern Research, RTP,
North Carolina

N. Harris McClamroch, University of Michigan, Ann Arbor

Parameter Estimation of Mechanical Systems with Constraints

Peter C. Muller, University of Wuppertal, W. Germany

Friday, May 19, 4:30 PM
Minisymposium 42/Sea Cliff
RECIPROCAL AND NONCAUSAL
PROCESSES

Organizers: M. Clark, Imperial College of Science and Technology, U.K.; and Arthur J. Krener, University of California, Davis

Estimation of Noncausal Processes Bernard Levy, University of California, Davis

The Self-Adjoints of Gaussian Reciprocal Processes

Ruggero Frezza, University of California, Davis

(Title to be announced)

M. Clark, Imperial College of Science and Technology, U.K.

Reciprocal Diffusions, the Non-Gaussian Case Arthur J. Krener, University of California, Davis

Friday, May 19, 4:30 PM
Minisymposium 43/Room 378
COMPUTATIONAL METHODS IN
PARAMETER IDENTIFICATION

This minisymposium addresses computational methods for identification in time-dependent distributed parameter systems. The focus is on fully Galerkin approaches. This is in contrast to more standard time stepping schemes. Various choices of basic functions are addressed for both spatial and temporal expansions. An overview of sinc methods of approximation and new analytic expressions for these approximations will be presented, including treatment of both second and fourth order spatial operators. In particular, efficient fully Galerkin procedures to recover the diffusion coefficient in parabolic problems will be discussed with accompanying numerical results.

Organizer: John Lund And Montana State University

New Analytic Expressions for Approximations in the Frequency and Time Domains

Frank Stenger, University of Utah

A Sinc-Galerkin Method for Flexible Structures

Ralph Smith, Montana State University

Fully Galerkin Methods for Parabolic Problems: Computational Techniques for Parameter Identification

Curtis R. Vogel, Montana State University, and lowa State University

Fully Galerkin Methods in Parabolic Problems: Sinc Discretization and Solution of Nonlinear Problems

Ken Bowers, Montana State University

Wednesday, May 17/10:00 AM Contributed Presentations 1/Sea Cliff **APPLICATIONS**

Robust Controller Design for a Nonlinear CSTR

Francis J. Doyle, Andrew K. Packard and Manfred Morari, California Institute of Technology

Optimal Production of Secreted Protein in Fed-Batch Reactors

W. Fred Ramirez and Seujeung Park, University of Colorado, Boulder

Optimal Control and Identification for Optical Lithography

W. Fred Ramirez and Tom A. Carroll, University of Colorado, Boulder

Periodic Output Controllers for Tubular Packed-Bed Reactors

Scott Kendra and Ali Cinar, Illinois Institute of Technology

Mathematical Modeling and Perfusion **Assessment During Local Hyperthermia** Miriam Siegler, Villanova University

Realizations and Identifications of Multimodels Application to the Control of a **Heat Exchanger**

Guy Bornard and Li Ping Hu, Ecole Nationale Superieure d'Ingenieurs Electriciens de Grenoble, France

Wednesday, May 17/10:00 AM Contributed Presentations 2/Japanese Tea Room H-INFINITY CONTROL

Computation of the Minimal Order H_∞ **Optimal Compensator**

Douglas P. Looze, University of Massachusetts,

Generalized Riccati Equations for Robust H. **Control Design**

Dennis S. Bernstein, Harris Corporation, Melbourne, FL

Optimal Diagonal Scalings for State Feedback Problems

Andy Packard, University of California, Santa Barbara; and Kemin Zhou, California Institute of Technology

A Simple Derivation of All Optimal Solutions to the Four-Block General Distance Problem Athanasios Sideris and Davut Kavranoglu,

California Institute of Technology, Pasadena H[∞] In The Time Domain: The Standard Four

Blocks Problem

Gilead Tadmor, University of Texas at Dallas,

Convergence Inequalities for Four-Block y-Iteration in H^o Optimization Problems Y.K. Foo, Nanyang Technological Institute,

Singapore

Wednesday, May 17/10:00 AM Contributed Presentations 3/Room 378 **ROBUST AND ADAPTIVE CONTROL**

Stochastic Robustness

Robert F. Stengel and Laura E. Rvan, Princeton University

Perfect Robust Recovery via Proportional Integral Observer

Bahram Shafai and Stuart R. Beale, Northeastern University

Convergence Analysis of a Class of Self-**Tuning Predictors and Controllers** Rahbar Maghsoodi, St. Mary's University

Adaptive Control with Input Constraints Jean-Claude Hennet, Centre National de Recherche Scientifique, France

Robust Stabilization of Systems with Simultaneous Real Poles Uncertainties J.M. Amillo and F.A. Mata, Universidad Politecnica de Madrid, Spain

Wednesday, May 17/2:15 PM Contributed Presentations 4/El Dorado **BEAMS**

On the Shape of the Strongest Beam Steve Cox and Michael L. Overton, Courant Institute of Mathematical Sciences, New York

Exact Boundary Controllability for a Hybrid System Involving an Euler-Bernoulli Beam with Variable Physical Characteristics Steven Taylor, University of Minnesota.

Applications of Finite Element Analysis in the Control of Complex Mechanical Systems Mladen Luksic, Digital Equipment Corporation, Colorado Springs, CO

Pointwise Stabilizability of Coupled Elastic **Beam Systems**

You Yuncheng, Purdue University

Minneapolis

Exponential Stabilization of a Plate Richard Rebarber, University of Nebraska, Lincoln

General Input Elements for Distributed Control Systems

Scott Hansen, Virginia Polytechnic Institute and State University

Wednesday, May 17/2:15 PM Contributed Presentations 5/Pacific Heights DIGITAL FILTERS IN ONE OR MORE **DIMENSIONS**

A Variational Method for Electric Impedance Tomography

Robert V. Kohn and Alan McKenney, Courant Institute of Mathematical Sciences, New York University

Recent Developments in Control of 2D Systems

M. Bisiacco, E. Fornasini, and G. Marchesini, University of Padova, Italy

Information and Uncertainty in Feedback Systems with Measurement Quantization David F. Delchamps, Cornell University

Time and Lag Recursive Computation of **Cumulants From a State Space Model** Ananthram Swami and Jerry M. Mendel, University of Southern California

On the Analysis of Jump Detection Filters Chun Yang, P. Bertrand, and M. Mariton, Centre National de Recherche Scientifique, France

Wednesday, May 17/2:15 PM Contributed Presentations 6/Sea Cliff STOCHASTIC SYSTEMS

The Synthesis Problem in Optimal Control **Existence of a Solution**

U.G. Haussmann, University of British Columbia

Exact Solutions for Some Partially Observed **Optimal Stochastic Control Problems** Kurt Helmes, University of Kentucky

Optimal Control of Systems Subject to Stochastic and Deterministic Disturbances Altug Iftar, University of Toronto, Canada

Some Recent Developments on Parallel **Stochastic Approximation Methods** G. Yin, Wayne State University

Finite Time Observers

Matthew R. James, Brown University

Sensitivity Analysis of Stochastic Systems Using Likelihood Ratio (LR) Method Bin Zhang, Harvard University

Wednesday, May 17/2:15 PM Contributed Presentations 7/Japanese Tea Room NETWORKS AND COMMUNICATION **SYSTEMS**

Optimal Control of Hierarchical Inventory Systems

Fouzia Kabbaj and Edmundo Rofman, INRIA-Rocquencourt, France; Roberto Gonzalez, CONICET and U.N. Rosario, Argentina; and Claudia Sagastizabal, IMAF, National University, Cordoba, Argentina

Optimal Scheduling Control in a Multi-Class Fluid Network

Hong Chen, New Jersey Institute of Technology: and David D. Yao, Harvard University

Performance Analysis of Data-Driven Networks

Geert Jan Olsder, Delft University of Technology, The Netherlands

Optimal Control of a Telephone Network-Centralized and Decentralized Approach Edward Chlebus, University of Mining and Metallurgy, Poland

Wednesday, May 17/2:15 PM Contributed Presentations 8/Rm 378 SINGULAR AND PERIODIC SYSTEMS

On the Structure and Pole Placement of Discrete Linear Periodic Systems

Baeil P. Park and Erik I. Verriest, Georgia Institute of Technology

Study of Discrete Singularly Perturbed Linear Control Problems by a Bilinear Transformation Xue-Min Shen and Zoran Gajic, Rutgers University

On Dead-beat Control of Linear Discrete-time **Descriptor Systems**

Essam Y. Ibrahim, Clarkson University

Controllability of Singular Decentralized Systems

Xu Kai Xie and Gue Shan Zhang, Northeast University of Technology, China

Structural Controllability of Parametrized **Descriptor Systems**

Qingling Zhang, Northeast University of Technology, People's Republic of China

Further Results on the Design of Multirate **Control Systems**

Patrizio Colaneri and Nicola Schiavoni, Politecnico di Milano, and Riccardo Scattolini, Universita di Pavia, Italy

Wednesday, May 17/4:30 PM Contributed Presentations 9/Sea Cliff STABILITY OF FAMILIES OF SYSTEMS

Polytopes of Positive Polynomials
Dragoslav D. Siljak, Santa Clara University

Simultaneous Performance Satisfaction For Several Plants Via A Single Controller W.E. Schmitendorf, University of California, Irvine

Strict Positive Realness Condition for Interval Plants with Applications

S.P. Bhattacharyya, Herve' Chapellat and $\underline{\text{M.}}$ $\underline{\text{Dahleh}}$ Texas A&M University

Structured Eigenstructure Assignment
L. H. Keel, Tennessee State University; and S.P.
Bhattacharya, Texas A&M University, College
Station

Computation of Maximal Stability Domains for Control Systems

Herve' Chapellat and S.P. Bhattacharyya, Texas A&M University

A Stability Test for Polynomials with Linear Dependence on Uncertain Parameters, Minimizing the Number of Corners and Edges to be Checked

Anders Rantzer, Royal Institute of Technology, Sweden

Wednesday, May 17/4:30 PM Contributed Presentations 10/Room 378 IDENTIFICATIONS

An Optimal Parameter Discretization Scheme for Multiple Model Adaptive Estimators Stuart N. Sheldon and Peter S. Maybeck, Air Force Institute of Technology

A Once-per-Transient Process and Disturbance Identification Method Archibald G. Hill, and Worachat Raksakij, University of Southwestern Louisiana

Development and Application of Generalized Kalman and LMS Filters for Multi-Step Identification

Stephen A. Jacklin, NASA Ames Research Center

Determination of Maximum Parameter Uncertainty in Output Feedback-Stabilized Discrete-Time Dynamic Systems

<u>John H. Mott</u> and Mario E. Magana, University of Alabama, Tuscaloosa

A Stable Method to Compute the Elements of a Linear System

Daniel Chuo Chin, Johns Hopkins University

On the Use of Asymptotic Observers for the Parameter Estimation

Antonio Tornambe, Fondazione Ugo Bordoni, Roma, Italy

Thursday, May 18/10:00 AM
Contributed Presentations 11/El Dorado
NONLINEAR SYSTEMS 1

State University

On the Estimation of Sliding Domains and Stability Regions of Variable Structure Control Systems with Bounded Controllers S. Mehdi Madani-Esfahani and Stanislaw H. Zak, Purdue University; and Stefen Hui, San Diego

Feedback Compensation of Discontinuous Nonlinearities

Wenceslao Cebuhar, Virginia Polytechnic Institute and State University

Bound-Optimal Stabilization of Unknown Nonlinear Stochastic Systems

Engin Yaz, University of Arkansas, Fayetteville

Nonlinear PI Controller for Mimo Nonlinear Systems with Nonlinear Output

H. Chris Tseng, Santa Clara University

A Tracking Problem for Uncertain Vector Systems

J.W. Macki, University of Alberta, Canada; P. Nistri and P. Zecca, Universita di Firenze, Italy

Variable Structure Control System Design with Performance Enhancements
Stephen Gardner, Polytechnic of Wales, U.K.

Thursday, May 18/10:00 AM
Contributed Presentations 12/Pacific Heights
SYSTEMS WITH DELAYS

Stabilization of Linear Control Systems with Infinite Delays

A.S.C. Sinha, Purdue University, Indianapolis

Optimal Feedback Control of Linear Delay Systems with Terminal Constraint: A Dynamic Programming Approach Ali Hedayat, Solano College, Oakland, CA

Optimal and Suboptimal Control of Differential-Difference Systems Rafael T. Yanushevsky, University of Maryland, and University of the District of Columbia

An Iterative Optimal Feedback Synthesis Algorithm for Plants with Transmission Delays

N. Eva Wu, State University of New York, Binghamton

Variational Approach for Linear-Quadratic Optimal Control Problem of Time-Varying System with Delay

Roberto M. Sales, Universidade de Sao Paulo, Brazil

Incomplete State Feedback Laws for Systems with Internal Time-Delays Guy Bornard and Li Ping Hu, Ecole Nationale Superieure d'Ingenieurs Electriciens de Grenoble,

France

Thursday, May 18/10:00 AM
Contributed Presentations 13/Japanese Tea Room
FLEXIBLE STRUCTURES

Optical Processing Techniques for the Estimation and Control of Flexible Structures Michael F. Barsky and Douglas K. Lindner, Virginia Polytechnic Institute and State University;

lan T. Gallimore, North Carolina State University; and Douglas G. Thayer, NASA Langley Research Center

Application of a Distributed Optical Sensor and Processor to the Control of a Flexible Beam

Sharon S. Welch, NASA Langley Research Center

Control of Large Flexible Spacecraft Using Optical Distributed Sensing and Computation Raymond C. Montgomery and Sharon S. Welch, NASA Langley Research Center

Stabilization and Energy Decay in Viscoelastic Structures

Kenneth B. Hannsgen and Robert L. Wheeler, Virginia Polytechnic Institute and State University

A Self-Tuning Regulator Approach to the Control of Large Space Structures Donald A. Kelly and Gordon Lee, Colorado State University IMSC Using Piezoelectric Transducers as Sensors and Actuators

Chin Chung Won and Sathya V. Hanagud, Georgia Institute of Technology

Thursday, May 18/10:00 AM
Contributed Presentations 14/Room 378
DECENTRALIZED CONTROL AND
ESTIMATION

Optimum Design of Communication Channels and Control Strategies for Linear-Quadratic Stochastic Systems

Tamer Basar, University of Illinois, Urbana; and Rajesh Bansal, AT&T Bell Laboratories, Columbus, OH

On Decentralized Control System Design Vasilios Manousiouthakis, University of California, Los Angeles

Finite-Dimensional Nonlinear Estimators for Distributed Estimation Systems

John A. Gubner, University of Wisconsin, Madison

On Algebraic Equivalences Between
Decentralized and Centralized Linear Control
M. de la Sen, Universidad del Pais Vasco, Spain

Design of Robust Decentralized Controllers for Interconnected Systems

Christophe Pillou, Ecole Nationale Superieure d'Ingenieurs Electriciens de Grenoble, France

Thursday, May 18/2:15 PM Contributed Presentations 15/El Dorado NONLINEAR SYSTEMS 2

On Local and Global Controllability
Rosamaria Bianchini, Universita Degli Studi,
Firenze, Italy; and Gianna Stefani, Universita Degli
Studi, Napoli, Italy

A Solution of the Model Matching Problem and the Factorization Problem for Nonlinear Systems

G. Conte, University of Genova, Italy; A.M.
Perdon, University of Padova, Italy; and C.H.
Moog, Laboratory Automatique de Nantes, France

Dynamical Systems in the Plane: Classical Theorems and Smooth Stabilizability
Andrea Bacciotti, Polytechnico of Torino, Italy

Stability on Nonlinear Observers In Closed Loop Setting

Carl Hedrick, University of California, Berkeley

Global Observability of Systems with Complex Dynamics

Lance D. Drager and Robert L. Foote, Texas Tech University

Stability Aspects of Exact-linearization Methods: A Hybrid Approach

Michael Nikolaou and Vasilios Manousiouthakis, University of California, Los Angeles

Thursday, May 18/2:15 PM
Contributed Presentations 16/Room 378
OPTIMAL CONTROL OF DISTRIBUTED
PARAMETER SYSTEMS

Approximation Techniques for Nonatomic Neutral Control Systems

Janos Turi, Worcester Polytechnic Institute

Optimal Nonlinear Control System Design in a Lipschitz-Normed Banach Space Setting Rui J. P. de Figueiredo and Guanrong Chen, Rice University

The Linear Quadratic Gaussian/Loop Transfer Recovery Technique for a Class of Distributed Parameter Systems

Randall N. Paschall, Air Force Institute of Technology

Optimal Feedback Control Theory of Linear Neutral Systems

Ethelbert N. Chukwu, North Carolina State University

Direct Methods for Nonlinear Problems in Optimal Control of Distributed Systems Srdjan Stojanovic, University of Cincinnati

On the Optimality of Stabilization Feedbacks Enrike Zuazua, Universidad Autonoma, Spain

Thursday, May 18/4:30 PM
Contributed Presentations 17/El Dorado
NONLINEAR DYNAMICS

The Spectrum of Nonlinear Control Systems Fritz Colonius, University of Bremen, West Germany; and Wolfgang Kliemann, Iowa State University

Linear Feedback and Bifurcation Control

Jyun-Horng Fu, Wright State University; and Eyad

H. Abed, University of Maryland, College Park

Determination of All the Zeros of a Vector Function via Dynamical System Theory
Pedro J. Zufiria and Ramesh S. Guttalu, University of Southern California

The Scanning Normal Form Method and Stability Problem in Nonlinear Control Systems

Mark A. Pinsky, Boston, MA

Topological Dynamics and Observability and Controllability of Systems

Mahesh Nerurkar, Rutgers University

Stability of Nonlinear Systems via Invariant Manifolds. Applications to Stabilizability Problems

Peter Seibert and Rodolfo Suarez, Universidad Autonoma Metropolitana-Iztapalapa, Mexico

Friday, May 19/10:00 AM
Contributed Presentations 18/Cathedral Hill B
ALGEBRAIC AND TOPOLOGICAL METHODS

The Global Topology of Observable, Controllable Linear Systems Benjamin M. Mann and R. James Milgram,

Benjamin M. Mann and R. James Milgram, Stanford University

Controllability of Linear Systems, Differential

Geometry of Curves in Grassmannians and Generalized Grassmannians, and Riccati Equations

Lance D. Drager, <u>Robert L. Foote</u>, and <u>Clyde F. Martin</u>, Texas Tech University; and <u>James</u> Wolper, Hamilton College

Riccati Equations, Algebras, Invariant Systems

Arthur A. Sagle, University of Hawaii, Hilo; and Hyo Chul Myung, University of Northern Iowa

Algebraic Geometry Design of Linear Multivariable Control Systems with Structural and Robustness Constraints Joe H. Chow, Rensselaer Polytechnic Institute

Explicit Solutions of Two-point Boundary Value Problems for Second Order Difference Matrix Equations

Lucas Jodar, Universidad Politecnica de Valencia, Spain Mathematical Morphology for Solving Difference Equations

Charles R. Giardina, City University of New York

Friday, May 19/10:00 AM
Contributed Presentations 19/E/ Dorado
NUMERICAL METHODS

Optimal Numerical Techniques Applied to a Soft Landing Re-entry Space Vehicle David D. Stokebrand, Honeywell, Inc.,

Albuquerque; and <u>A. John Boye</u>, University of Nebraska, Lincoln

Survey of Practical Trajectory Optimization Techniques

Craig A. Phillips, Naval Surface Warfare Center

Numerical Solutions of Optimal Control Problems

John Gregory, Southern Illinois University, Carbondale

Optimal Controllers and Systolic Implementations

Jorge L. Aravena, Louisiana State University, Baton Rouge

Eigenstructure Assignment Using State Feedback

George Miminis, Memorial University of Newfoundland

SINAI — 16 Numerical Software: An Example of a Methodology

Dalcidio Moraes Claudio and Tiaraju Asmuz Diverio, Universidad Federal do Rio Grande, Brazil

Friday, May 19/10:00 AM
Contributed Presentations 20/Pacific Heights
QUEUES

Stochastic Optimal Control of Production in a Two-Machine Flowshop

Sheldon Lou and Suresh Sethi, University of Toronto, Canada; and Michael Taksar, State University of New York, Stony Brook

Infinitesimal Perturbation Analysis for an Equivalent Representation of the M/M/m Queue

Jian-Qiang Hu, Harvard University

Resequencing in Parallel Queues with Bernoulli Loading

Levent Gun, University of Maryland, College Park; and Alain Jean-Marie, INRIA, France and University of Maryland, College Park

Pricing Control of Customer Usage Patterns as a Stochastic Control Problem

Richard E. Mortensen, University of California, Los Angeles

Effective Solution of the Constrained Markov Decision Problem in the Finite Case

Bach Ngoc Bui and <u>Hayri Korezlioglu</u>, Ecole Nationale Superieure des Telecommunications, France

Optimal Control of a Processor Sharing Queue Peter de Waal, Center for Mathematics and Computer Science, Amsterdam, The Netherlands

Friday, May 19/10:00 AM
Contributed Presentations 21/Twin Peaks
NONSMOOTH AND CONVEX APPROACHES

The Adjoint Arc in Nonsmooth Optimization Philip D. Loewen, University of British Columbia, Canada; and R.T. Rockafellar, University of Washington

Discrete Optimal Control Problems with State and Control Constraints

Alvaro Bolano de la Hoz, University of Puerto Rico

Pontryagin Maximum Principle Without Conjugate Equations

Barbara Kaskosz and S. Lojasiewicz, Jr., University of Rhode Island

An Optimal Control Problem L[∞]
Paolo Nistri and <u>Pietro Zecca</u>, Universita de Firenze. Italy

How Difficult Constrained Control Problems Are?

J. Kogan, University of Maryland, Baltimore County

The Hyperplane Method for Reachable State Estimation

Timothy J. Graettinger, Carnegie Mellon University

Friday, May 19/10:00 AM
Contributed Presentations 22/Telegraph A
ROBOTICS

Optimal Control of Robotic Manipulators with Obstacles Avoidance

Jyhshing Jack Wang, M.W. Kellogg Company, Houston

Is it Time to Re-think Robot Control?

Vassilios D. Tourassis, University of Rochester

Task-Based Robot Control
Marcelo H. Ang, Jr., University of Rochester

Robust Adaptive Control of Flexible Robot

Manipulators
K. Khorasani, Concordia University, Canada

Control Strategies for Flexible Link Robots Bruno Siciliano, Universita di Napoli, Italy

An Optimization Approach to the Resolution of the Inverse Kinematic Problem of Redundant and Nonredundant Manipulators Yasmina Bestaoui, Universite de Tiemcen, Algeria

Friday, May 19/10:00 AM Contributed Presentations 23/Telegraph B DISTRIBUTED PARAMETER SYSTEMS

Simulation of Stochastic Linear Hereditary Systems

R.E. Fennell, R.E. Haymond, and J.A. Reneke, Clemson University

Solution of a Generalized Stefan Problem by Reduction to a Parabolic Inverse Problem Barbara Bekins, University of California, Santa Cruz; Igr Malyshev, Hedley Morris, and Vladimir Naroditsky, San Jose State University

Linear System Identification as an Inverse Heat Flow Problem

Alfred S. Carasso, National Institute of Standards and Technology

Vibrational Control of Infinite Dimensional Systems

Joseph Bentsman, University of Illinois, Urbana

Langrange Multipliers in Dual Pairs of Banach Spaces

Rudolf Schmid, Emory University, Atlanta

Gap Metic Applications in Systems and Control Theory

Siquan Zhu, Eindhoven University of Technology, The Netherlands

Friday, May 19/2:15 PM Contributed Presentations 24/Sea Cliff QUALITATIVE AND STOCHASTIC **DECISION THEORY**

Information Structures and Causality Mark S. Andersland, University of Iowa; and Demosthenis Teneketzis, University of Michigan,

Statistical Independence in Stochastic

Decision Theory

Jalel Zrida and J. Douglas Birdwell, University of Tennessee, Knoxville

Qualitative Reasoning in Fault-Tolerant Control of Large-Scale Systems

George Vachtsevanos, Georgia Institute of Technology

Qualitative Control Theory: Qualitative Transformation and Semiotics Approach to Control

Behrouz Homayoun Far, Matsuroh Nakamichi, and Mitsuii Sampei, Chiba University, Japan

An Interpretation of Stochastic Discrete-**Event Systems As Chaotic Deterministic**

Stephen G. Strickland, Harvard University

Iconics: The Use of New Morphisms to Give an Exact Definition to a Network of Icons John Brode, SimuLogics, Cambridge, MA

Friday, May 19/2:15 PM Contributed Presentations 25/Twin Peaks **DISCRETE EVENT SYSTEMS**

Input-Output Structure of Discrete Event **Systems**

Kemal Inan, University of California, Berkeley

Analysis and Control of Discrete Event Dynamic Systems: A State Space Approach Cuneyt M. Ozveren and Alan S. Willsky, Massachusetts Institute of Technology

Supervisory Control of Discrete Event Systems with Blocking

Stephane Lafortune and Enke Chen, University of Michigan, Ann Arbor

Supervisory Control of Stochastic Discrete Event Systems

Feng Lin, Wayne State University

Condition/Event Nets for Timed Discrete **Event Systems**

Bruce H. Krogh, Carnegie Mellon University

A Stochastic Approximation Algorithm for Optimization of Discrete Event Dynamical **Systems**

Yorai Wardi, Georgia Institute of Technology

Friday, May 19/2:15 PM Contributed Presentations 26/Room 378 **ALGORITHMS**

New Adaptive Learning Rules Roberto Horowitz, William Messner, and Wei-Wen Cao, University of California, Berkelev

Suboptimal Control of Constrained Discrete Time Linear Systems

Mario Sznaier and Mark J. Damborg, University of Washington, Seattle

Adaptive Nonlinear Scalings in Optimization Richard G. Carter, NASA Langley Research Center

Trajectory Thinning for Low Observables via Multicriteria Dynamic Programming

Eric De Jong and Lawrence H. Frank, Pacific Missile Test Center, Point Mugu, CA; Harriet H. Kagiwada and Robert E. Kalaba, Infotec Development, Inc., Camarillo, CA

Advanced Computational Stochastic Dynamic Programming for Continuous Time Problems

Floyd B. Hanson, University of Illinois, Chicago

Conical Hull and Numerical Range Techniques for Some Symmetric Matrix Problems from Control

John C. Allwright, Imperial College, London, U.K.

Friday, May 19/4:30 PM Contributed Presentations 27/El Dorado **NEW FREQUENCY DOMAIN METHODS**

Linear Control Systems Redesign --- a **Generalized Fourier Series Approach** Dieter Franke, Universitat der Bundeswehr Hamburg, West Germany

Recent Development on Pole-Zero Synthesis Chia-Chi Tsui, CUNY Staten Island College

Friday, May 19/4:30 PM Contributed Presentations 28/Twin Peaks **OPTIMAL CONTROL**

Optimal Control and Differential Games with **Maximum Cost**

Emmanuel N. Barron, Loyola University of Chicago

An Optimal Technique for Estimating the Reachable Set of a Controlled n-Dimensional Linear System

Danny Summers and Gary C.W. Sabin, Memorial University of Newfoundland, Canada

On Optimal Control of Linear State-space Systems Containing Input Derivatives S. Harris, E.Y. Ibrahim, V. Lovass-Nagy and R.J. Schilling, Clarkson University

Solution of a Singular Time Invariant Stochastic Linear Optimal Regulator Problem Pinhas Barak, GMI Engineering & Management Institute, Flint, MI

Sufficient Conditions for Calculus of Variations Problems With Variable Endpoints Vera M. Zeidan, University of Waterloo, Canada

The Jacobi Necessary Condition in the Calculus of Variations and in Optimal Control PierLuigi Zezza, Universita de Firenze, Italy; and Vera Zeidan, University of Waterloo, Canada

POSTER SESSION

Thursday, May 18/2:15 PM Poster Session|Mezzanine

Digital Filtering of Noise from an Aperiodic **Pulse Function**

B.S. Tan and P.R. Krishnaswamy, National University of Singapore

Robust Decentralized Control Using the Quasi-Block Diagonal Dominance Concept Huang Shu and Chang-ji Huang, Southwestern Jiaotong University, People's Republic of China

General Theorems on the Stability of Large Scale Systems

Zhongzhou Shu, Southwestern Jiaotong University, People's Republic of China

Towards a Systems Theory for Repetitive **Processes**

E. Rogers, D.H. Owens and K.J. Smyth, University of Strathclyde, Scotland

On the Stabilization of Nonlinear Systems by State Feedback

William M. Boothby, Washington University, St. Louis; and Riccardo Marino, Seconda Universita di Roma "Tor Vergata", Italy

Identification and Control Using Discrete Decision Theory

J. Douglas Birdwell, University of Tennessee,

Predictive Transform Control Erlan H. Feria, College of Staten Island of City

University of New York

Delta Traffic Problem Lere Shakunle, Matran Software International, West Germany

The Underlying Semiring Module Structure of **Discrete Event Dynamical Systems**

Edouard Wagneur, Ecole des Hautes Etudes Commerciales, Canada

On a Frequency Domain, Quadratic, Optimal Control Problem with Tracking/Disturbance **Rejection Constraints**

Gilberto O. Correa, Laboratorio National de Computação Científica, Rio die Janeiro, Brasil; and Marcos A. Silveira, Department of Electrical Engineering, Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brasil

Special Notice to Contributed Presentation Authors and Chairs of Contributed Presentation Sessions:

Twenty minutes are allowed for each contributed presentation. Presenters are requested to spend a maximum of seventeen minutes for their presentation, and three minutes for questions and answers.

For presentations with more than one author, an underlineation is used to denote the author who will present the paper.

Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits

Edited by Fathi M.A. Salam and Mark L. Levi

The proceedings of the Second Engineering Conference on Qualitative Methods for the Analysis of Nonlinear Dynamics focuses on sample works and approaches of dynamical systems useful in treating nonlinear circuits and systems in engineering and the physical sciences.

Contents. General Analytical Methods:

Reversibility, Homoclinic Points, and the Henon Map; The Applicability of Mel'kinov's Method to (Highly) Dissipative Systems; Transversal Heteroclinic Intersections in Slowly Varying Systems; Stochastically Perturbed Hopf Bifurcation; The LaSalle Invariance Principle in Infinite Dimensional Hilbert Space; Damping in Nonlinear Solid Mechanics: General Simulation Methods: Three-Dimensional Rotation Instrument for Displaying Strange Attractors; A Double Strange Attractor; Forced Two-Well Potential Duffing's Oscillator; A Chaotic Saddle Catastrophe in Force Oscillators; On the Simulation of a Paradigm of Nonlinear Dynamics; Electrical Engineering: Nonlinear Circuits and Systems: An Experimental Investigation of Chaos in an RF Driven Josephson Junction; Soliton Experiments in Annular Josephson Junctions; Control Systems: Smoothing and Linearization of Discontinuous Control Systems; Some Qualitative Aspects of Power Systems Dynamics; Applications of Nonlinear Theory to Control Design; Local Bifurcation Control; Stabilization of Nonlinear Systems with Uncontrollable Linearization; Stability

Analysis of Hybrid Composite Dynamical Systems; Mechanical Engineering: Solids and Vibrations: Chaotic Dynamics in Solid Mechanics; Rolling of Ships in Large-Amplitude Waves; Chaotic Motions in Parametrically Excited Systems with Quadratic Nonlinearities: On the Effects of Asymmetries on a System Near a Codimension Two Point; Bifurcations in Flow-Induced Oscillations in Tubes Carrying a Fluid; Periodic and Chaotic Motions of a Buckled Beam Experiencing Parametric and External Excitation: Mechanical Systems: The Dynamics of Two Coupled Rigid Bodies; Control of Constrained Hamiltonian Systems and Applications to Control of Constrained Robots; Robust Nonlinear Computed Torque Control for Robot Manipulators.

January 1988 xvi + 413 pages, Hardcover ISBN 0-89871-218-1

List Price: \$44.50

SIAM Member Price: \$35.60

Order Code PR31

Linear Algebra in Signals, Systems, and Control

Edited by Biswa Nath Datta, Charles R. Johnson, Marinus A. Kaashoek, Robert J. Plemmons, and Eduardo O. Sontag

The design of signal processing and control systems has long served as a prime example of a fruitful synergism between engineering problems, mathematical analysis, and computational methods. Advances in control and systems theory, in parallel with advances in computational methods, have brought linear algebra to the leading edge of this synergism, as illustrated by these Proceedings. Forty-six papers present results on analytical and computational linear algebra and its application to mathematical systems theory; geometric theory of multivariable control; signal processing; estimation, filtering and prediction; and robust, adaptive and stochastic control.

Contents. Topics discussed include: algorithms for spectral estimation, digital filtering, discretetime periodic Riccati equations, interpolation, system realization, parallel processing in adaptive control, and a discussion of integrating different symbolic and numeric tools for linear system analysis. Discusses numerical methods for Toeplitz matrices, ill-posed control problems, singular value decompositions, preconditioned conjugate-gradient methods, subspace computation applied to signal processing, and leastsquare methods. Theoretical topics in control and systems theory include bilinear descriptor control systems, noninteracting decomposition, absolute tracking of Lurie systems, robust stabilization, reachability with constraints, highgain stabilization and adaptive control. Papers on linear algebra discuss inertia theorems for Lyapunov and Riccati equations, root-clustering criteria, algebraic curves, centrosymmetric matrices, 1, norms of matrices, and matrix continued fractions.

May 1988 xiv + 667 pages, Hardcover ISBN 0-89871-223-8

List Price: \$58.50 SIAM Member Price: \$46.80

Order Code PR32

ICIAM '87: Proceedings of the First International Conference on Industrial and Applied Mathematics

Editors: James McKenna and Roger Temam

Eighteen hundred applied mathematicians, computer and computational scientists, statisticians, and users of mathematics in engineering and the bio- and physical sciences from 51 countries gathered in Paris in June 1987. The conference demonstrated the cohesiveness of the applied mathematics community in the western world and conclusive evidence that this community works across international boundaries. Most impressive was the high quality of the work being done by this very large international community.

ICIAM '87 includes presentations of the 16 internationally known applied mathematicians, who were the invited speakers of the conference; summaries of the 69 minisymposia; and the titles and speakers of those minisymposia and the approximately 1,000 contributed papers; the opening presentations by Paul Germain, Secretary of the French Academy of Sciences, the welcoming addresses by the sponsoring

societies—GAMM, IMA, SIAM, and SMAI—and a multi-page collection of pictures taken at the conference. This collection of material provides a broad view of applied and computational mathematics around the world.

October 1988 xx + 376 pages, Hardcover ISBN 0-89871-224-6 List Price: \$56.50 SIAM Member Price: \$45.20 Order Code PR35

Handbook for Matrix Computations

Thomas F. Coleman and Charles Van Loan

Frontiers in Applied Mathematics 4

Handbook for Matrix Computations is the first volume that provides the user with a step-by-step introduction to FORTRAN 77, BLAS, LINPACK, and MATLAB. The authors have written a reference that spans several levels of practical matrix computations with a strong emphasis on examples and "hands on" experience.

This volume can be used as a second text for scientific computing courses that involve a significant amount of algebraic computation. It is ideal for a one-semester introductory numerical methods course or a graduate-level numerical analysis course. The only prerequisites are a one-semester course in matrix algebra and some experience with a high-level programming language such as Pascal.

September 1988
vii + 264 pages, Softcover
ISBN 0-89871-227-0
List Price: \$24.00
SIAM Member Price: \$19.20
Order Code FR4

TO ORDER BOOKS, call toll-free (800) 447-SIAM or fill out the coupon below and mail Billing address:*	l to: SIAM, D	ept. BCCT89,	P.O. Box 7260, Phila.,	, PA 19101-7260	.
Name	_ Organization	l			
Address				······································	
CityState				Zip	
<u>-</u>					
Country Tel. Shipping address (if different):*		/			
Daipping adda 600 (in directions).					
Name	_ Organizatioi	l			
Address					
CityState				_ Zip	
CountryTel.)			
*Note: If you are a SIAM member, your order must be billed and shipped to your m					
Indicate method of payment:	Indicate y	our selection	:	· · · · · · · · · · · · · · · · · · ·	
☐ Check enclosed		Order			
□ VISA □ Mastercard □ AMEX	Quantity	Code	Author	Price	Total
Card no					
Exp. date					
Signature					
☐ Bill my organization ☐ Bill me					
Purchase order no					
Shipping/handling charges:	-				
☐ Your books will be sent at 4th class book rate at no extra charge (applies to US and foreign orders). If you want your books shipped UPS, please add \$2.50 for the first book and \$.50 for each additional book (available for US orders only)		<u> </u>		Subtotal Invoicing charge	
☐ If you are not enclosing payment and your order totals less than	Optional priority shipping charge				
\$30, add an invoicing charge of \$3.				TOTAL	

TRANSPORTATION INFORMATION

BY AIR

American Airlines has been chosen as the official carrier for this conference. You can fly to San Francisco and save on travel from May 14–22, 1989 inclusive.

In a special arrangement with SIAM, American Airlines is offering you the services of their toll free convention reservation desk, along with a complement of discounts

 5% off any fare for which you qualify, including First Class and Ultra Saver fares. THE DIS-COUNTS CAN RANGE FROM 40% – 70% OFF NORMAL COACH FARESI

OR . . . for those of you who do not qualify for the above discounts

 AMERICAN AIRLINES will offer a minimum of 45% off regular coach fares. Those passengers originating in Canada will be offered a 35% discount off of full coach fares. Both of these rates require a 7 day advance purchase.

To make reservations for one of the above discounted fares:

- Call American Airlines Convention Desk, at 1-800-433-1790, seven days a week 8:00 AM to 11:00 PM Eastern Time. Be sure to mention the SIAM account number: \$16090. American Airlines will arrange to mail your tickets to your home or office.
- For those of you having to use a corporate or university travel agent, you may still purchase your ticket through the local agents, just be sure to mention to the agent the above discounts. Your local agent can call the American Airlines Convention Desk to make your reservation. Make sure that the agent uses the SIAM account number: \$16090.

BY CAR

From the Airport

Take 101 North until the freeway splits. Go left towards the Golden Gate Bridge. Follow the Golden Gate Bridge signs to the end of the freeway until it becomes Franklin Street. Proceed five blocks to Post Street and turn right. Continue to the intersection of Van Ness Avenue and turn right. The Cathedral Hill Hotel garage entrance is in the middle of the block on Van Ness.

From Los Angeles

Take highway 5 North to 580 West to the Bay Bridge. Take the Main Street exit on the right. Proceed to Market Street and turn left, and then take the first right onto South Van Ness to Van Ness Street. Follow Van Ness to Geary Street. The Cathedral Hill Hotel is on Van Ness at Geary Street.

PUBLIC TRANSPORTATION FROM THE AIRPORT

A number of airport shuttle vans stop at the island on the arrival level of the airport. Lorries Airport Service and Super Shuttle depart every twenty minutes and cost approximately \$10.00. A local taxi will cost \$25.00.

CAR RENTAL

DOLLAR RENT-A-CAR has been selected as the official car rental agency for this conference. The following rates will apply:

Type of Car	Daily Rate		Weekly Rate
Economy	(3) Day \$26	(4) Day \$24	\$119
Compact	\$28	\$26	\$129
Intermediate	\$30	\$28	\$149
Standard	\$34	\$32	\$159
Premium	\$40	\$38	\$199

- We encourage you to make an advance reservation as on-site availability cannot be guaranteed. Make reservations by calling: 1-800-421-6878. When making your reservations, be sure to give the SIAM account number CCSIA3. You should also mention that you are attending the SIAM Conference on Control in the 90's:, May 17-19, 1989 in San Francisco, in order to receive the discounted rates.
- Cars may be picked up at the San Francisco Airport at the Dollar Car Rental Desk located in the baggage claim area of the airport. You may also use some Downtown locations, as well as San Jose and Oakland Airport locations.
- Cars must be picked up and dropped off at the same location.
- You must be 21 years of age and have a valid U.S. or International Driver's License. There is a \$3.00 per day surcharge for drivers under 25 years of age.
- You will be given unlimited free mileage.
- You must have one of the following credit cards to rent a car: AMEX, Master Card, VISA, or Diners Club.
- The prices quoted do not include refueling services, tax optional collision damage waiver, and personal accident insurance.

HOTEL INFORMATION

Cathedral Hill Hotel Van Ness at Geary Street San Francisco, CA 94109 (415) 776-8200

SIAM is holding a block of rooms at the Cathedral Hill Hotel. These rooms are being held on a first come, first served basis at \$76/Single and \$89/Double. These rooms will be held for our exclusive use only until April 20, after which date reservations will depend on availability.

We urge you make your reservations as soon as possible. You may do so by telephoning (415) 776-8200, or by mailing in the Hotel Reservation Form located in the back of this program. When making your reservation via phone, please be certain to identify yourself as an attendee at the SIAM Conference on Control in the 90's to receive the discounted rate.

Late Arrival Policy: If you plan to check-in after 6:00 PM, you must guarantee your room for late arrival by making payment in advance for one night. Payment can be made by either AMEX, MC, Visa, Diner's Club or check.

Check-In: Check-in time is 3:00 PM and checkout time is 1:00 PM. If you need to change or cancel your reservation, be certain to contact the hotel by 1:00 PM Eastern Time on your stated date of arrival to avoid any unnecessary charges.

Weather: San Francisco is blessed with a temperate marine climate and enjoys mild weather year-round. Temperatures seldom rise above 70 or fall below 40. Morning and evening fogs roll in during the summer months, but rarely persist. Women are most comfortable with a light jacket or coat, or in a suit. Men's attire requires only light-to-medium-weight suits or sports clothes. An all-weather coat will take the chill off cool evenings. Light-weight summer clothes are seldom practical in San Francisco. Bring comfortable walking shoes.

About the Hotel: There is one restaurant in the hotel which specializes in fine dining and continental cuisine. The restaurant is called the Hilltop Room and is open Tuesday thru Saturday from 5:30 PM-10:30 PM. The prices range between \$14 and \$17. There is also a coffee shop which is open 7 days a week from 6:00 AM until 11:00 PM. They serve breakfast, lunch and dinner. The prices range between \$3.50 for breakfast to \$15.00 for dinner. There are many restaurants which offer a variety of cuisines within walking distance of the hotel. The hotel is also equipped with an outdoor pool.

Parking: The Cathedral Hill Hotel offers complimentary parking for those attendees who will be staying at the hotel. However, those attendees not staying in the hotel can expect to pay an average of \$15 per day for parking.

REGISTRATION INFORMATION

Please complete the Advance Registration Form found on the back page of this brochure and return it in the envelope provided in the middle section of this program. We urge attendees to register in advance, as the registration fee is lower for advance registrants. The advance registration deadline is May 9, 1989. The registration desk will be located in the Mezzanine and will be open at the following

6:00 PM-9:00 PM Tuesday, May 16 Wednesday, May 17 7:00 AM-6:30 PM Thursday, May 18 7:30 AM-6:30 PM 7:30 AM - 2:30 PM Friday, May 19

SPECIAL EVENTS

Welcoming Reception

Tuesday, May 16, 7:00 PM-9:00 PM Mezzanine Cash Bar

Beer Party

Wednesday, May 17, 6:45 PM-8:30 PM Mezzanine

Cost: \$15 consists of beer, assorted sodas, make your own tacos and mini burritos

REGISTRATION FEES:

Advance registration deadline: May 9, 1989

	SIAG/CST*	SIAM Member	Non Member	Student
Advance	\$100	\$105	\$135	\$20
On-Site	\$130	\$135	\$165	\$20

^{*} This represents a \$5.00 discount for members of the SIAM Activity Group on Control and Systems Theory

Non SIAM Members

Non-member registrants are encouraged to join SIAM in order to obtain the member rate for conference registration and enjoy all the other benefits of SIAM membership. You can join SIAM by filling out a membership form at the SIAM Registration Desk located in the Mezzanine of the Cathedral Hill Hotel. If you join for this conference, SIAM will retroactively give you the member rate for registration.

SIAM Corporate Members

Non-member attendees who are employed by the following institutions are entitled to the SIAM memher rate:

Aerospace Corporation Amoco Production Company AT&T Bell Laboratories **Bell Communications Research** The Boeing Company **BP** America Cray Research, Inc. E.I. DuPont de Nemours & Company Eastman Kodak Company Exxon Research and Engineering Company General Motors Corporation GTE Laboratories, Inc. Hollandse Signaalapparaten B.V. IBM Corporation

ICASE-NASA Langley Research Center IMSL, Inc. MacNeal-Schwendler Corporation Marathon Oil Company

Martin Marietta Energy Systems Mathematical Sciences Research Institute Schlumberger Industries

Supercomputing Research Center, a division of Institute for Defense Analyses Texaco Inc.

1. 15

United Technologies Corporation

Special Note

There will be no prorated fees. No refunds will be issued once the meeting has started.

If SIAM does not receive your Advance Registration Form by the stated deadline, you will be asked to give us a check or a credit card number at the conference. We will not process either until we have ascertained that your registration form has gone astray. In the event that we receive your form after the conference, we will destroy your check or credit card slip.

Telephone Messages

The telephone number at the Cathedral Hill Hotel is 1-415-776-8200. The Cathedral Hill will either connect you with the SIAM registration desk or forward a message.

Credit Cards

SIAM is now accepting VISA, Master Card and AMEX for payment of registration fees and special functions. When you complete the Advance Registration Form, please be certain to indicate the type of credit card, the number and the expiration date.

UPCOMING CONFERENCES

July 17-21, 1989 **SIAM Annual Meeting** Sheraton Hotel

San Diego, CA

September 25-28, 1989

SIAM Conference on Mathematical and Computational Issues in Geophysical Fluid and Solid Mechanics

Stouffer Greenway Plaza Hotel Houston, TX

November 6-10, 1989 **SIAM Conference on Geometric Design**

Sheraton Mission Palms Hotel Tempe, AZ

December 11-13, 1989 Fourth SIAM Conference on Parallel **Processing for Scientific Computing**

Hyatt Regency Hotel Chicago, IL

March 5-7, 1990 SIAM Conference on Applied Probability in Science and Engineering Clarion Hotel

New Orleans, LA

May 7-10, 1990 SIAM Conference on Applications of

Dynamical Systems Marriott Hotel

Orlando, FL

July 16-20, 1990 SIAM Annual Meeting

Hyatt Regency Hotel Chicago, IL

HOTEL RESERVATION FORM

SIAM Conference on Control in the 90's: Achievements, Opportunities and Challenges

May 17-19, 1989 Cathedral Hill Hotel San Francisco, CA

PLEASE	SEND	ME A	CON	FIRM	ATION
--------	------	------	-----	------	-------

Specially discounted rooms are being held for our exclusive use until April 20, 1989. After that date, reservations will depend on availability. Your reservation is not confirmed until acknowledged in writing by the hotel or verified by phone. When making reservations by phone, be certain to identify yourself as an attendee at the SIAM Conference on Control in the 90's. Telephone: 1-415-776-8200.

Please Print			
Name		Phone	
First Las			
City	State	Zip	
Please reserve [] Single (\$76) [] Double (\$89) Arrival Date			
Arrival Time	Check Out Date		
Guarantee my room for late arrival (after 6:00 PM) [] Yes [] No			
I choose to pay by:* [] AMEX [] Visa [] Master Card [] Check			
Credit Card Number			
Expiration Date		Deposit \$	(Late arrival only)
Signature	mail to: Reservations, The	Cathedral Hill Hotel, Van Ness at	Geary Street, San Fran-
* You only need to list your credit card number if you want to guarante	e your room for late arrival		

ADVANCE REGISTRATION FORM

SIAM Conference on Control in the 90's: Achievements, Opportunities and Challenges

Advance registration form must be received at the SIAM office by May 9, 1989. If paying by check, please make check payable to SIAM.

REGISTRATION FEES:

	SIAG/CST*	SIAM Member	Non- Member	Student
Advance	\$100	\$105	\$135	\$20
On-Site	\$130	\$135	\$165	\$20

* Members of the SIAM Activity Group on Control and Systems Theory

Registration Fee:

Conference	\$ \$	\$ \$
Beer Party \$15	\$ \$	\$ \$
Total:	\$ \$	\$ \$

Detach card and enclose with payment in the envelope provided (domestic mail only), or mail to: SIAM, 117 South 17th Street, 14th floor, Philadelphia, PA 19103-5052. Telephone: 215-564-2929.

Please Print

Name .

Affiliation

Department

Address

City.

State.

Telephone Number ...

Local Address in San Francisco _

I wish to pay by [] AMEX [] VISA [] Master Card [] Check Credit Card # _

[] Please send me information about SIAM Membership