
mannilas
2001/2/1
page 1

✐

✐

✐

✐

✐

✐

✐

✐

Finding similar situations
in sequences of events
via random projections

Heikki Mannila∗ and Jouni K. Seppänen†

1 Introduction
Sequences of events occur in several applications, such as mobile services (the re-
quests made by each user), telecommunication network alarm handling, user inter-
face studies, etc. Such a sequence can be denoted (〈ei, ti〉), where i = 1, . . . , n, and
for each i, ei ∈ E is an event type and ti is the occurrence time.

As an example, consider the following excerpt from a sequence of 46662 events
(alarms) from a telecommunications network. Here the first field is the alarm type,
and the second is the occurrence time.

Type Time

7279 881423
7277 881799
7277 881839
1940 881951
1940 882841
1568 883830
1585 883918
1940 883959
7404 883979
2535 884810

In several data analysis applications on sequences of events, we face the prob-
lem of finding “similar” situations. This is needed, e.g., for predicting the next

∗Nokia Research Center and Laboratory of Computer and Information Science, Helsinki Uni-
versity of Technology. Email: Heikki.Mannila@nokia.com

†Laboratory of Computer and Information Science, Helsinki University of Technology. Email:
Jouni.Seppanen@cis.hut.fi

1

mannilas
2001/2/1
page 2

✐

✐

✐

✐

✐

✐

✐

✐

2

events, and for understanding the dynamics of the process producing the sequence.
More formally, the problem of finding similar situations can be defined as

follows. Given a time t and a window width w, find another time s such that the
windows of the sequence occurring in intervals (t − w, t) and (s − w, s) are similar.
The similarity between two slices can be defined using an edit distance notion [16],
i.e., the distance is defined as the cost of the cheapest possible sequence of operations
that transforms one slice to another. The operations are insertion and deletion of
an event and moving an event in time; each operation has an associated cost. The
edit distance can be computed using a dynamic programming algorithm, but the
computation is slow. Furthermore, assigning costs to the edit operations is quite
problematic [17].

The uses of similarity search in event sequences are at least twofold. First, we
are interested in showing to the human analyst previous situations that resemble
the current one. That is, we want to be able to pinpoint certain cases in the past
that might contain useful information for the human. Second, we would like to use
the similarity criterion to predict the future events: if slices similar to the current
one have in the past been followed by certain types of events, we might expect
to see them again. In this paper we are mostly concerned with the first type of
application. This means that an occasional false match is not really a problem, and
that the method should be fast enough to be used even for searching long sequences.

In this paper we describe a simple and fast way of mapping a sequence of
events into points in k-dimensional Euclidean space using a random function, and
show how this mapping can be used as a preprocessing method for finding similar
situations. We contrast the accuracy and performance of our method with the
dynamic programming approach, but the real validation of the method is in the
experimental results.

We close this introduction by considering related work. Similarity between
objects is a fundamental notion whose definition is crucial to various data mining
and information retrieval methods. In order to look for patterns or regularities
in data, it is often necessary to be able to quantify how far from each other two
data objects are. Once similarity has been defined, we can use, e.g., distance-based
clustering or nearest neighbor techniques to search for interesting information from
the data. Recently, there has been considerable interest in defining intuitive and
easily computable measures of similarity between complex objects and in using
abstract similarity notions in querying databases [13, 14, 22, 11, 15, 7].

Most of the above work has concentrated on similarity notions in unordered
data. The sequential aspect of data is important also in the analysis of time se-
ries data occurring in, e.g., several financial and scientific applications, such as
stock price indices, the volume of product sales, telecommunications data, one-
dimensional medical signals, audio data, and environmental measurement sequences.
While there is a vast body of statistical literature on time series, similarity notions
appropriate for data mining applications such as described above have not been
studied much. Time series similarity concepts have been studied in [1, 2, 9, 20].

An interesting recent solution for a somewhat similar problem is based on
generative models instead of distance measures [8]. This paper considers real-valued
time-series data and presents a way of constructing waveform models from the data.

mannilas
2001/2/1
page 3

✐

✐

✐

✐

✐

✐

✐

✐

3

Our work concerns sequences of events. They could be considered to be time-series
data where the values are discrete events, and this means waveform models are not
applicable. To apply the model-based approach, one would apparently need some
other kind of prior assumptions on relationships in the data.

The rest of this paper is organized as follows. Section 2 describes the random
mapping method somewhat abstractly, and Section 3 shows how the mapping can
be used for similarity search in practice. Section 4 discusses why we expect the
method to meet our goals in theory, and Section 5 describes how we have tested it
with real data. Section 6 is a short conclusion.

2 Random mappings for event sequences

In this section we describe how sequences of events are mapped to real quantities.
We use ideas stemming from the Johnson-Lindenstrauss lemma [12], which recently
has attracted lots of interest: see, e.g., [6, 5, 19, 21, 3].

In our application, the events have occurrence times, and this has to be taken
into account in the definition of the random projection. The projection is defined
in two phases as follows.

For each event type e ∈ E and for each j = 1, . . . , k let ρ(e, j) be a normally
distributed random variable with mean 0 and variance 1. In other words, we asso-
ciate with each event type a random k-dimensional vector. This defines a random
mapping from the set of event types into k-dimensional space.

Let f be a function from [0, w] to [0, 1]. This function will be used to extend
the mapping defined above to slices of events. To do this, we first define some
notation. Given an event sequence S = (〈e1, t1〉, . . . , 〈en, tn〉) and a time t, denote
by S(t, w) the subsequence of S consisting of those events that happen within the
(half-open) interval (t−w, t]. We call S(t, w) a slice of S. Let this sequence consist
of the events 〈d1, s1〉, . . . , 〈dm, sm〉.

Now, the random mapping for slices maps S(t, w) to the k-dimensional vector
r(t, w) = (y1, . . . , yk), where

yj =
m∑

i=1

f(t − si)ρ(di, j).

That is, for dimension j we sum the variables ρ(di, j) corresponding to the event
types occurring in the slice, weighted by the function f on the distance of the event
from the end point of the slice.

In our experiments, we have chosen f to be linear, i.e., f(x) = x/w. In
this case, there is a simple incremental algorithm to compute the k-dimensional
representations r(ti, w) of all the slices in the sequence. The algorithm slides a
window of width w through the data and keeps the “current” k-vector in an array
variable current and the unweighted sum of the vectors corresponding to events
within the window in another variable sum. When the position of the window
changes from t to t′, current can be updated by adding the value of sum scaled
by f(t′− t). When events enter and exit the window, current and sum are updated
accordingly.

mannilas
2001/2/1
page 4

✐

✐

✐

✐

✐

✐

✐

✐

4

Another possibility would be to choose an exponential function f(x) = e−x.
The incremental algorithm would be even simpler: as the window position changes,
it suffices to multiply current by f(t′−t). If the incremental-computation property
can be sacrificed, we might choose functions that give different weight to different
parts of the slice.

Thus the mapping is quite easy to compute; in practice, the computation is
very fast. For example, even a naive awk implementation that doesn’t take advan-
tage of the incremental nature of the task but computes the mapping separately
for each window, took 19 minutes on an SGI O2 (195 MHz MIPS R10000 proces-
sor) to compute the vectors for the 46662-event alarm data used in our examples
with w = 1000 and k = 10. Thereafter, it took about 40 seconds per window to find
the closest match for a window, i.e., to produce a single data point for Figure 1. An
implementation of the incremental method in, say, C, would of course be orders of
magnitude faster.

3 Using the mapping in searching for similar
situations

Suppose we have accumulated a long sequence of events (or a set of sequences), and
we are given a slice of events that have happened during the last w time units. Our
task is to find the situations from the past which resemble the current situation as
much as possible.

The trivial method using edit distance definitions would be to compute the
edit distance between the query slice and all other slices. However, this will in
practice be very slow. The edit distance computations take time O(nm) for slices
of lengths n and m, with fairly large constant factors. An additional problem with
the use of the edit distance framework is that, as mentioned above, we need to
specify lots of parameters. These parameters are seldom available and hence the
relatively intuitive fingerprinting approach can be more useful.

Suppose that we have computed for each slice S(ti, w) the corresponding k-
dimensional vector r(ti, w). Then we compute the k-dimensional vector for the
query slice Q; let this be q. Now we search (using normal linear search or more
advanced data structures) for the vector r(ti, w) such that it and q are close to
each other, i.e., ‖r(ti, w) − q‖ is small. After we find such vectors r(ti, w), we
verify the closeness of the corresponding slice S(ti, w) to Q by using edit distance
computation. That is, the mapped slices r are used as fingerprints of the original
slices.

Thus our method avoids the full search in the space of slices of event sequences
by doing first a search in k-dimensional Euclidean space. Such fingerprinting meth-
ods are, of course, quite often used; see, e.g., [18]. The complexity of the method is
linear in the size of the data: in practice the method is very fast, even with naive
implementation. The precomputed k-dimensional vectors r(ti, w) could be stored
in, e.g., an R-tree [10], to further speed up the search.

Here we just give two examples of what the method finds. In these examples,
the parameter k was set to 9. Consider the fragment of sequence displayed in

mannilas
2001/2/1
page 5

✐

✐

✐

✐

✐

✐

✐

✐

5

Table 1(a). The events shown are all the events occurring at most 1000 seconds
prior to the event 7260 573169 occurring as event number 1730 of the example
sequence. We have included also the position in the sequence, and the time is
relative to the end of the slice. The slice having the smallest distance to this query
window occurred at position 29212 at time 2369304 and is shown in Table 1(b).
Note the intuitive similarity between these two slices.

Another example is the sequence occurring at position 38000 of the original
sequence. The query slice is shown in Table 2(a). The minimum distance to query
window was 0.107156 at position 37988, see Table 2(b). It can be seen that the
sequences have a strong resemblance to each other.

4 Properties of the random mapping
Given two identical slices S(t, w) and S(t′, w), the random vectors r(t, w) and
r(t′, w) are obviously identical. Also, if the slices S(t, w) and S(t′, w) are quite
close to each other in the sense of edit distance computed by dynamic program-
ming, then the distance between r(t, w) and r(t′, w) as vectors in k-dimensional
space is small.

To see this, consider first the case S(t, w) = (〈d1, t1〉, 〈d2, t2〉, . . . , 〈dm, tm〉)
and S(t′, w) = (〈d2, t2〉, . . . , 〈dm, tm〉), i.e., the slices are identical except that the
latter doesn’t have the element 〈d1, t1〉. For simplicity, assume that f(t− ti) = 1 for
all ti. Then, the squared distance between r(t, w) and r(t′, w) is d2 =

∑k
i=1 r(d1, i)2.

Since the variables ρ(d1, i) are i.i.d., the expected value of the squared distance is
E(d2) = kE(ρ(d1, 1)2) = k. The variance is E(d4)− E(d2)2 = k(3 − 12) = 2k.

In contrast, consider the squared distance from the origin to a vector obtained
by mapping a random m-event slice S(t, w) = (〈d1, t1〉, . . . , 〈dm, tm〉). Every element
of the vector r(t, w) is a sum of m random variables, ri(t, w) =

∑m
j=1 f(t−tj)ρ(dj , i).

Assuming they are independent, i.e., that no event is repeated in the slice, the
expected value of ri(t, w)2 is E(ri(t, w)2) =

∑m
j=1 E(ρ(dj , i)2) = mE(ρ(d1, i)2) =

m, so the expected squared distance from origin to the vector is km. For the
variance, we get E(ri(t, w)4)−E(ri(t, w)2)2 =

∑m
j=1[E(ρ(dj , i))4 −E(ρ(dj , i)2)2] =

m[3 − 12] = 2m, so the variance of the squared distance is 2km.
Thus, the editing operations of inserting and deleting one event have a small

expected effect on the distance, compared to arbitrary vectors in the k-space. In the
previous analysis, we assumed that all the events have equal weight. In practice,
the effects of these editing operations will be even smaller for events towards the
low-weight end of the slice. Also, assuming a continuous f , the editing operation of
moving an event in time has an effect proportional to the length of the time change,
just as in the notion of editing distance. Therefore, the approximated distance is
small when a slice is subjected to a small number of editing operations.

An inverse relationship can also be shown. That is, if two slices are far from
each other, then the corresponding random vectors are far from each other with
high probability. Details are omitted in this version.

mannilas
2001/2/1
page 6

✐

✐

✐

✐

✐

✐

✐

✐

6

Event Alarm Relative
number type time

1730 7260 0
1729 7277 29
1728 1585 224
1727 1940 821

(a)

Event Alarm Relative
number type time

29212 7277 0
29211 7260 1
29210 1585 205
29209 1940 536
29208 7403 646
29207 1903 825
29206 7711 915
29205 7705 982

(b)

Table 1. A query slice and the closest answer slice

Event Alarm Relative
number type time

38000 1553 0
37999 1553 0
37998 1553 300
37997 1553 300
37996 7002 313
37995 7701 489
37994 7002 553
37993 1553 600
37992 1553 600
37991 1553 900
37990 1553 900

(a)

Event Alarm Relative
number type time

37988 1553 0
37987 1553 0
37986 7002 72
37985 1553 300
37984 1553 300
37983 1553 600
37982 1553 600
37981 7701 621
37980 7002 692
37979 1553 900
37978 1553 900

(b)

Table 2. Another query slice and the closest answer slice

mannilas
2001/2/1
page 7

✐

✐

✐

✐

✐

✐

✐

✐

7

5 Experiments

In this section we describe the experimental studies we have used to verify the
operation of our method. Recall that our primary goal is to locate previously
occurring situations that resemble the current one. To test how well this goal is
met, we performed the following experiments.

We conducted some experiments on telecommunications alarm data (which is
also the source of the examples above) and the Entree Chicago data from the UCI
KDD Archive [4]. The alarm data consists of 46662 alarms over a period of a month.
The time values seen on the x-axis of several figures are in seconds, and they range
from about half a million to three million. The figures show only a subset of the
full range for reasons of legibility. There are 180 types of alarms occurring in the
data.

The Entree Chicago data comes from the log of an application which provides
restaurant recommendations on the Web. We consider only the final recommenda-
tion made by the system for a single user. We converted the date/time information
to seconds since the beginning of 1970 (a popular way of expressing time in some
operating systems), so the time values vary from about 842 million to 924 million,
and again the figures show a smaller range. The sequence contains 50672 events of
619 types.

We first describe the experiments on the telecommunications alarm data, and
then show some results on the Entree Chicago data.

5.1 Alarm data

First, to get some feel for the data, we computed all closest slices for every 10th
window with w = 1000 using the random mapping approximation. Figure 1 shows
the location for the closest match for each slice. Some temporal locality can be
observed.

We then created an artificial query window of width 1000 consisting of 37
events of 20 types. None of the event types occurred in the original sequence. We
pasted 50 copies of this query window onto the alarm data. The pasting was made
transparently, i.e., the original events were left into the sequence. Thus the modified
sequence contains some clear copies of the query window, but most of the copies
contain also other events. The query window was constructed by copying a part of
the sequence and renaming the events.

We ran our mapping algorithm with several values of the parameter k, and
performed queries using the following rule: list all windows in the order of approxi-
mate distance to the query window, but when a window S is listed, forget about all
subsequent windows that overlap S. So, if (9000, 10000] is listed as one of the re-
sulting windows, none of the windows (9000+ i, 10000+ i] for i = −999, . . . , 999 are
listed. Otherwise, we would get several spurious results, since heavily overlapping
windows are naturally similar.

Figure 2 shows the distances of some of the resulting windows for k =
5, 10, 15, 30. The x-axis gives the location in the sequence, and the y-axis gives
the approximated distance, i.e., the Euclidean distance in k-space. The plots have

mannilas
2001/2/1
page 8

✐

✐

✐

✐

✐

✐

✐

✐

8

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Figure 1. The location (index to the sequence) of the closest slice to the
query slice, for every 10th event in the sequence and for W=1000 sec. Here, k = 10.

been truncated at a point slightly above the median distance for scaling purposes,
since some windows have extremely high distances. For legibility, the horizontal axis
shows only a part of the full time scale. The vertical lines indicate the positions of
the inserted windows.

The best 50 non-overlapping windows in the case k = 15 are listed in Table 3
(p. 13). The first column gives the computed distance to the query window; in the
first three cases, there were no extra events intermingled with the target, so the
distance was zero. The second column indicates the position (i.e., time in seconds)
of the window, and the third one gives the position of the closest target window,
if there is one within the window width 1000. The fourth column is simply the
difference of the second and third ones.

Of the 50 target windows, 22 are found exactly, and 20 more overlap one of
the best 50 windows. Note how all the distances below 13 correspond to windows
close to the targets, and distances up to about 5 are all exact hits (cf. Figure 2).

It seems from the figures, especially from the case k = 30, that there is no
way the method can find all of the inserted windows. Indeed, even with k = 100,
some of the inserts remain indistinguishable from other windows. This is because
sometimes the target window is inserted at a place where there are lots of events
already, and the resulting window is not very similar to the target.

mannilas
2001/2/1
page 9

✐

✐

✐

✐

✐

✐

✐

✐

9

0

5

10

15

20

1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

k=5

0

5

10

15

20

1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

k=10

0

5

10

15

20

1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

k=15

0

5

10

15

20

25

30

35

1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

k=30

Figure 2. Distances to selected windows, alarm data

This is illustrated in Figure 3, where the approximated distances of the in-
serted target windows are plotted against the “density ratio” |I ′|/|I|, where |I| is
the number of inserted events and |I ′| is the actual number of events within the
1000-width target window, counting both inserted events and those that were part
of the original sequence.

For each target window W , either W appears or one or two windows overlap-
ping W appear in the sorted list where overlaps have been omitted. We call the
“rank” of W in this listing the rank of the first listed window W ′ for which W∩W ′
=
∅. Ties are resolved arbitrarily to give each window a unique rank. Figure 4 shows
the ranks of target windows against the density ratio defined earlier. Ranks greater
than 100 are shown as 100.

Note the effect of k: with a larger number of dimensions, the targets stand
out better in Figure 2, but the number of targets within the best windows doesn’t
increase very much. With this data, it seems that values of k around 5 or 10 are
sufficient.

5.2 Entree Chicago data

In the case of the Entree Chicago data, we again inserted 50 windows in the se-
quence. Since the time scale is different, we used 10000 seconds as the window
width. In contrast to the previous experiments, the inserts contain mostly event
types that also appear in the original sequence: of the 24 events in the insert, 10 are

mannilas
2001/2/1
page 10

✐

✐

✐

✐

✐

✐

✐

✐

10

0

10

20

30

40

50

1 1.5 2 2.5 3 3.5

k=5

0

10

20

30

40

50

60

1 1.5 2 2.5 3 3.5

k=10

0

10

20

30

40

50

60

70

1 1.5 2 2.5 3 3.5

k=15

0

10

20

30

40

50

60

70

80

90

1 1.5 2 2.5 3 3.5

k=30

Figure 3. Distances of target windows against the density ratio, alarm data

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5

k=5

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5

k=10

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5

k=15

0

20

40

60

80

100

1 1.5 2 2.5 3 3.5

k=30

Figure 4. Ranks of target windows against the density ratio, alarm data

mannilas
2001/2/1
page 11

✐

✐

✐

✐

✐

✐

✐

✐

11

0

2

4

6

8

10

12

14

16

18

8.7e+08 8.8e+08 8.9e+08 9e+08

k=10

0

2

4

6

8

10

12

14

16

8.7e+08 8.8e+08 8.9e+08 9e+08

k=15

0

5

10

15

20

8.7e+08 8.8e+08 8.9e+08 9e+08

k=20

0

5

10

15

20

25

8.7e+08 8.8e+08 8.9e+08 9e+08

k=30

Figure 5. Distances to selected windows, Entree Chicago data

artificial (ones that don’t appear in the unmodified sequence). This makes the tar-
gets a bit harder to recognize, but they should still be quite far away from other
windows. As in the previous case, the insert was obtained by taking a part of the
sequence and renaming some events.

Figure 5 shows the distances of windows selected as in the case of alarm data.
The values of k shown are 10, 15, 20 and 30. The plots indicate that several of the
targets can be found in this case as well. With this data and this insert, the density
ratio of the targets was higher than in the previous case. This is nicely shown in
Figures 6 and 7, plotted for the cases k = 10 and k = 30.

6 Concluding Remarks
We have described a simple method for similarity search in sequences of events.
The method is based on the use of random projections. We have shown some
simple theoretical properties of the method and evaluated its performance on real
data. The experiments show that the method is quite good in recognizing similar
situations. There are cases where it fails to find a pasted occurrence of the query
window, but then there are so many other events mixed within the window that
the pasted window would not be considered to be close to the original in the edit
distance sense either, assuming some reasonable assignment of costs to the editing
operation of inserting events.

mannilas
2001/2/1
page 12

✐

✐

✐

✐

✐

✐

✐

✐

12

Some open problems remain. The theoretical properties of the random map-
ping applied to sequences of events are largely unexplored. The choice of a linear
weighting function f in this paper is somewhat arbitrary, since also other functions
admit an incremental algorithm. Another line of research that we are currently
pursuing is the use of the similarity metric in the prediction of future events.

Acknowledgement
The Entree Chicago data was taken from the UCI KDD Archive [4].

mannilas
2001/2/1
page 13

✐

✐

✐

✐

✐

✐

✐

✐

13

Dist Window Closest Offset

0.00 1461230 1461230 exact
0.00 2157420 2157420 exact
0.00 1032800 1032800 exact
1.02 2210970 2210970 exact
1.26 497272 497272 exact
1.32 711484 711484 exact
2.10 872143 872143 exact
2.59 3067820 3067820 exact
3.55 1568330 1568330 exact
3.61 2425180 2425180 exact
3.68 604378 604378 exact
4.00 657931 657931 exact
4.04 1247010 1247010 exact
4.55 1300570 1300570 exact
4.57 925696 925696 exact
4.57 3121370 3121370 exact
4.58 1086360 1086360 exact
4.79 2532290 2532290 exact
5.27 1407670 1407670 exact
5.64 2371432 2371630 -198
5.70 1139910 1139910 exact
5.82 2585840 2585840 exact
6.13 1354120 1354120 exact
7.17 1621733 1621880 -147
7.95 1996493 1996760 -267

Dist Window Closest Offset

8.11 1675060 1675440 -380
8.41 3014113 3014260 -147
8.57 2799882 2800050 -168
8.58 979102 979249 -147
9.32 1193557 1193460 97

10.18 818800 818590 210
10.26 2639124 2639390 -266
10.42 1942820 1943200 -380
10.49 2853333 2853600 -267
11.02 2478783 2478730 53
11.02 1889383 1889650 -267
11.33 2103614 2103860 -246
12.17 2692793 2692940 -147
12.41 1835763 1836100 -337
12.91 2906893 2907160 -267
13.14 2264140 2264520 -380
13.75 3059438 missed
13.77 1428734 missed
14.08 2959387 missed
14.17 755127 missed
14.43 1961635 missed
14.59 2053796 missed
14.88 1729345 1728990 355
15.01 1116290 missed
15.26 2087183 missed

Dist=Distance to query window
Window=Position (time) of window found
Closest=Position of closest target window, if closer than 1000
Offset=Difference of this window and closest target

Table 3. Distances of fifty closest selected windows, k = 15, alarm data

mannilas
2001/2/1
page 14

✐

✐

✐

✐

✐

✐

✐

✐

14

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

k=10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

k=15

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

k=20

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

k=30

Figure 6. Distances of target windows against density ratio, Entree Chicago data

0

20

40

60

80

100

1 2 3 4 5 6 7 8

k=10

0

20

40

60

80

100

1 2 3 4 5 6 7 8

k=15

0

20

40

60

80

100

1 2 3 4 5 6 7 8

k=20

0

20

40

60

80

100

1 2 3 4 5 6 7 8

k=30

Figure 7. Ranks of target windows against the density ratio, Entree Chicago data

mannilas
2001/2/1
page 15

✐

✐

✐

✐

✐

✐

✐

✐

Bibliography

[1] R. Agrawal, C. Faloutsos, and A. Swami, Efficient similarity search in
sequence databases, Proc. Fourth Intl. Conf. on Foundations of Data Organi-
zation and Algorithms (FODO), 1993.

[2] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim, Fast similarity
search in the presence of noise, scaling and translation in time-series databases,
Proc. 21st Intl. Conf. on Very Large Data Bases (VLDB), 1995, pp. 490–501.

[3] R. I. Arriaga and S. Vempala, An algorithmic theory of learning: Robust
concepts and random projection, Proc. 40th Foundations of Computer Science,
New York, 1999.

[4] C. L. Blake and C. J. Merz, UCI repository of machine learning databases,
1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html, University of Cal-
ifornia, Irvine, Dept. of Information and Computer Sciences.

[5] S. Dasgupta, Learning mixtures of Gaussians, IEEE Symp. on Foundations
of Computer Science, New York, 1999, pp. 634–644.

[6] S. Dasgupta and A. Gupta, An elementary proof of the Johnson-
Lindenstrauss lemma, Technical Report TR-99-006, International Computer
Science Institute, Berkeley, CA, 1999.

[7] G. Das, H. Mannila, and P. Ronkainen, Similarity of attributes by ex-
ternal probes, Proc. 4th Intl. Conf. on Knowledge Discovery and Data Mining
(KDD), 1998, pp. 23–29.

[8] X. Ge and P. Smyth, Deformable Markov model templates for time-series
pattern matching, Proc. 6th Intl. Conf. on Knowledge Discovery and Data
Mining (KDD), 2000, pp. 81–90.

[9] D. Q. Goldin and P. Kanellakis, On similarity queries for time-series
data: Constraint specification and implementation, Intl. Conf. on Principles
and Practices of Constraint Programming, 1995.

[10] A. Guttman, R-trees: A dynamic index structure for spatial searching, SIG-
MOD’84, Proceedings of Annual Meeting, ACM Press, Boston, MA, 1984,
pp. 47–57.

15

http://www.ics.uci.edu/~mlearn/MLRepository.html

mannilas
2001/2/1
page 16

✐

✐

✐

✐

✐

✐

✐

✐

16

[11] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher, Clustering based
on association rule hypergraphs, Workshop on Research Issues on Data Mining
and Knowledge Discovery, 1997.

[12] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz maps into a
Hilbert space, Contemporary Mathematics, 26 (1983), American Mathematical
Society, pp. 189–206.

[13] H. V. Jagadish, A. O. Mendelzon, and T. Milo, Similarity-based queries,
Proc. 14th Symp. on Principles of Database Systems (PODS), 1995, pp. 36–45.

[14] A. J. Knobbe and P. W. Adriaans, Analyzing binary associations, Proc.
2nd Intl. Conf. on Knowledge Discovery and Data Mining (KDD), 1996,
pp. 311–314.

[15] Y. Karov and S. Edelman, Similarity-based word sense disambiguation,
Computational Linguistics, 24 (1998), pp. 41–59.

[16] H. Mannila and P. Moen, Similarity between event types in sequences, Proc.
First Intl. Conf. on Data Warehousing and Knowledge Discovery (DaWaK’99),
Florence, Italy, 1999, pp. 271–280.

[17] P. Moen, Attribute, Event Sequence, and Event Type Similarity Notions for
Data Mining, Ph.D. thesis, Department of Computer Science, University of
Helsinki, Finland, 2000.

[18] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Uni-
versity Press, United Kingdom, 1995.

[19] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, La-
tent semantic indexing: A probabilistic analysis, Proc. 17th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, ACM Press,
1998.

[20] D. Rafiei and A. Mendelzon, Similarity-based queries for time series data,
SIGMOD Record, 26 (1997), pp. 13–25.

[21] S. Vempala, Random projection: A new approach to VLSI layout, Proc. 39th
Foundations of Computer Science, Palo Alto, CA, 1998.

[22] D. A. White and R. Jain, Algorithms and strategies for similarity retrieval,
Technical Report VCL-96-101, Visual Computing Laboratory, UC Davis, 1996.

