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Abstract

In molecular biology there is much interest in various types of relationships between
genes. Due to the complexity and rapid development of this field, much of this knowl-
edge exists only in free-text form. A database of relationships between genes may allow
background knowledge to be used in computerised analyses. As far as we know, no com-
prehensive manually cured database of this kind exists, and constructing and maintaining
such a database manually would be very labour-intensive. Efficient automated methods
for extraction and structuring of relationships between genes from free-text would be
valuable. A database named PubGene has previously been created and it contains a com-
prehensive network of human genes created by automated extraction of co-occurrence of
gene terms in over 10 million MEDLINE records. Co-occurring genes were linked to-
gether under the hypothesis that two genes will co-occur only if they have some biologi-
cal relationship. In this paper, we show that for the subset of human genes encoding en-
zymes, pairs of co-occurring enzyme genes are significantly more closely related biologi-
cally than when these genes are compared randomly. Manual inspection, however, shows
that some of the links in PubGene are not correct and it aso indicates how the noise can
be reduced. We propose a complementary method for automated extraction of relation-
ships between genes by use of information from the Science Citation Index (SCI) data-
base. We relate two genes if they have been co-referred, that is, having reference articles
being co-cited in a third article. The aternative approach confirms relationships found in
PubGene, and it aso finds other relevant relationships. Although further experiments are

! K nowledge Systems Group, Department of Computer and Information Science,
Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
tor-kristian.jenssen@idi.ntnu.no, jan.komorowski @idi.ntnu.no.

2 Molecular Biology, AstraZeneca R& D Mélndal, S-431 83 Mélndal, Sweden.

li sa.oberg@astrazeneca.com, magnus.|.andersson@astrazeneca.com.

T These authors contributed equally



required for the SCI approach, the results are encouraging. Furthermore, the two methods
combined can be used to generate networks that have high specificity or high sensitivity
by either requiring that relationships should be found by both methods or by only one,
respectively.

Keywords: Network of genes, text mining, information extraction, term co-occurrence,
article co-citation.

1. Introduction

New discoveries in biomedicine are published at an enormous and constantly increasing
pace. The MEDLINE citation database contains citations including titles and abstracts of
papers from more than 4,000 scientific journals. MEDLINE contains over 10 million ci-
tation records for articles from 1966 to present. The number of indexed articles from the
year 1991 is 386,866, while for 1999 the number has increased to as many as 446,178.
The growth in number of publications related to molecular biology and genetics is even
more impressive. A search in MEDLINE for publications matching ‘gene’ gives 27,372
articles from 1991, while for the year 1999, the same search returns 52,603 articles.

Knowledge of gene interactions and how genes are related to each other are very im-
portant. Such relations may be, for instance, physical interactions between the encoded
proteins, regulatory interactions, chromosomal co-localisation, homology, or other kinds
of similarity. Given the large number of new publications together with the complexity of
this field, it is a challenge to keep updated on new results, even for a handful of genes.
Estimates predict the total number of human genes to be somewhere between 30 and 100
thousand. It is obvious that efficient information retrieval and information extraction will
become very important in order to cope with the large amount of information, and to en-
able scientists to efficiently make use of existing knowledge. Automated methods that
extract and structure information will first of all make knowledge more easily accessible.
Secondly, a structured knowledge representation enables computerised methods to make
use of this information. Information extraction may thus give a vital contribution in the
interpretation of data from high-throughput gene-expression analyses, which with current
technologies allows experiments including tens of thousands of genes.

The PubGene network of human genes [4, 5] is one example of an approach to large-
scale extraction of information. The PubGene network was constructed from co-
occurrences of genes in the title or abstract of MEDLINE citation records. The underly-
ing hypothesisis that two genes appear in the same abstract only if there is some biologi-
cal relationship between the two genes. To include most of the identified human genes, a
database containing gene nomenclature information was compiled by gathering data from
the HUGO Nomenclature Committee®, LocusLink?, The Genome Database’, and
GENATLAS®. The nomenclature information includes primary symbols [16], gene
names, and literature aliases. The key identifier of a gene is its unique primary symbol.
Officia gene symbols follow the guidelines set forth by the HUGO Nomenclature Com-
mittee. According to these guidelines, a gene symbol should consist of a capital letter
followed by letters (preferably capital) and possibly Arabic numerals. Gene symbols are
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generaly short, typically from 2 to 6 characters, although some longer symbols exist.
Gene names can be rather short and specific, e.g. ‘insulin’, or rather long as for example
‘1Q motif containing GTPase activating protein 2'. The network used in this paper con-
tains 14,961 distinct genes. Additional gene symbols will be defined along with the dis-
covery of novel genes. As a consequence, the number of genesin PubGene will increase
with future updates. All references to genes will be by the official gene symbol as defined
by the HUGO Nomenclature Committee, except for the cases where this committee has
not yet included the gene in the nomenclature. Such cases will be explicitly mentioned.
Detailed information on a particular gene can be found on the HUGO Nomenclature
Committee website or by search from this site.

Gene associations for PubGene were identified by an automated indexing procedure
where all MEDLINE records, titles and abstracts, from 1966 to present’ were scanned for
occurrences of gene symbols and short gene names. Wherever a symbol or a name for a
gene was found, this was noted as a match for the gene associated with the symbol or
name. The short gene names used were those that consisted of a single word, possibly
followed, by a variant designation, such as, for instance, ‘insulin’, ‘cadherin 1' and ‘ cad-
herin 2'. In total, more than 10 million MEDLINE records were used in the construction
of PubGene. When two genes were found together in an article record, they were linked
together and in the end each link was given a weight equal to the number of times the
specific pair of genes had co-occurred. As an example, Figure 1 shows the PubGene net-
work surrounding the gene PPARA. Due to limited amount of space, the algorithms used
to construct PubGene are not described in more detail in this paper. For more informa-
tion, see[4, 5] or contact the authors.

The approach used in the construction of PubGene may be characterised as smplistic.
As a consequence, the implementation is efficient and has scaled well to make processing
of all of MEDLINE citation records feasible on a single PC within a few days of compu-
tation time. More sophisticated approaches to term detection, using natural language or
statistical models do not scale as well, and, to the best of our knowledge, PubGene is the
only database of this kind at this level of comprehensiveness. The PubGene network is
already in full scale, in the sense that it includes most identified human genes and is
based on amost all articlesin MEDLINE. One of the primary uses of the PubGene data-
base is as a summary of the published literature. For this purpose, or as a foundation for
analysis of gene-expression data, it is important that the extracted associations are bio-
logically relevant, or at least that the signal to noise ratio is sufficiently high. It is aso
important that all essential relationships between genes are reflected in the resulting net-
work.

In this paper, we report a comprehensive study of the nature of gene associations
found in the PubGene database and in particular, we propose and assess notions of cor-
rectness and completeness. Precision and recall are standard measures for evaluation in
information retrieval. In order to avoid confusion with the standard definitions of these
terms, we will rather use the related concepts of correctness and completeness in the
evaluation of the PubGene network. We will not provide formal definitions of these
terms, but rather use them in a general sense. Intuitively, the network can be said to be
correct if al the associations are biologicaly relevant and complete if al biologically
relevant associations are present. We present a three-way evaluation of the PubGene net-
work. First, a partial manual evaluation with the use of detailed background knowledge
on asmall subset of genesis given, see Section 2. Then, in Section 3, we use the enzyme

" Asincluded in MEDLINE by November 1999. Note that only MEDLINE records from
1975 or later contain abstracts.



classification system to investigate the correspondence between proximity in PubGene
and enzyme similarity. In Section 4 information from the Science Citation Index (SCI)
database is used to analyse co-reference relationships between genes and we also com-
pare it with the co-occurrence relationships in PubGene. In Section 5 we discuss the re-
sults and implications for PubGene and related approaches.
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Figure 1. A partial view of the PubGene network around the gene PPARA is given in
this figure. The related genes PPARA, PPARD, and PPARG can be seen connected to
each other in the middle of the network. For each link, the figure, or weight, denotes
the number of times the two genes connected have appeared together in MEDLINE
citation records.

2. PubGene neighbour s of PPARA and PPARD

Gene associations in PubGene are based simply on extraction of word patterns from texts,
and therefore we suspected that erroneous associations might be present. For example,
merging information from the four databases described above may have introduced am-
biguity of gene symbols and aliases. Another problem is that some gene symbols and
gene names coincide with ordinary words or as acronyms used in other contexts. To be-
gin with, we therefore manually examined abstracts underlying a number of gene asso-
ciationsin PubGene.

In order for an association between two genes to be regarded as correct, we would
reguire there to be some biological relationship between the two genes. A weaker crite-
rion for correctness would be to ease the requirement to only require that the MEDLINE
abstracts that have contributed to the association actually refer to the two associated
genes. In the evaluation of the correctness of the PubGene network, we chose two genes
and manually checked the correctness of most of their PubGene neighbours. First, we



checked if the abstracts actually referred to the genes in question, and then if this was the
case, whether there was a hiological relationship. The two genes were peroxisomal pro-
liferator-activated receptor alpha, with the symbol PPARA, and peroxisomal proliferator-
activated receptor delta, with the symbol PPARD. These two genes were selected due to
prior knowledge on the PPAR gene family. The PPAR genes encode transcription factors
involved in the regulation of storage and catabolism of dietary fats [17]. There is also a
third PPAR gene, namely PPARG, but this gene was not included in the analysis as we
expected it to behave similarly to the other PPAR genes.

The PPARA and PPARD genes have 213 and 41 neighbours, respectively, in Pub-
Gene. By reading abstracts we determined whether the association was correct in the
sense that both genes were actually referred to in the text. When that was true and the
abstract did not give sufficient information to determine the type of relationship, the full
text of the articles, when available, was consulted. For PPARD we examined all neigh-
bours, while for PPARA we examined all neighbours with weight higher than 1 aswell as
a selection of the neighbours with weight 1. The results are shown in Table 1.

Category of PubGene neighbour PPARA PPARD
Association weight 1 >2 1 >2

Correct 13 58 8(7) 6 (5)

Partially correct 8 4

Incorrect 6 29 21 (9) 6 (3)

Synonym ambiguity, to other gene 3 14 3 3
Synonym ambiguity, to other concept 2 13 18 3
Other 1 2
Sum 27(122° 91 29 (16) 12(8)

Table 1. This table gives some statistics on PubGene neighbours of PPARA and
PPARD. For both genes, neighbours with weight 1 and neighbours with weight =2
were examined separately. PPARA has 122 neighbours with weight 1 and as it was
considered too time-consuming to examine each one, 27 sample neighbours were ran-
domly selected (*). Each of the PubGene neighbours investigated was categorised as
‘Correct’, ‘Partially correct’ and ‘Incorrect’. The category ‘Incorrect’” was further bro-
ken down into sub-categories explaining the reason of incorrectness in more detail.
The ‘Partially correct’ category only relates to the PPARA gene. Genesin this category
were found mentioned with the PPARG gene, but incorrectly associated with the
PPARA gene. Numbers in paranthesis for the PPARD gene relates to the situation
where the NUC1 cases are removed from the comparision.

First of all, we would like to point out that in all cases where the symbols or names
actually referred to the correct genes, there also existed a relevant underlying biological
relationship. We see that for the PPARD gene, only 14 out of 41 (34%) of the neighbours
were correct. Note, however, that as many as 15 of the 27 wrong associations to PPARD
could be traced back to the ‘NUC1’" synonym. ‘NUC1’ or ‘NUC-1' has also often been
used to refer to a particular type of cell-line. Moreover, only 2 of the correct associations
were found with ‘NUCY’ referring to PPARD. Thus, by disregarding this synonym very
much of the noise can be removed, while still keeping aimost all of the correct associa-
tions.

Many other incorrect associations were caused by gene symbols that are equa to
other common abbreviations. For instance, ‘DR-1", and ‘DR-5', have been used to abbre-



viate ‘direct repeat 1' and ‘direct repeat 5, as well as been used as gene symbols. Incor-
rect associations are also extracted because severa gene symbols have been used for sev-
eral different genes. As the current algorithm is not capable of resolving the ambiguity,
occurrences of such symbols are mapped to all the genes that are associated with the
symbol. We see that the extent of this type of incorrect associations is comparable to the
other category of symbol ambiguity.

It is interesting to see that the proportion of incorrect (or partially incorrect) associa-
tions is considerably lower for associations with higher number of co-occurrences (2 or
more) than for the associations that were found only once. For PPARD, the improvement
isfrom 0.72 to 0.50, or from 0.53 to 0.38 if we exclude the associations picked up by the
‘NUC1" symbol. For PPARA, the improvement is from 0.52 to 0.36. This means that we
can use the weight of the association as an indicator of the expected correctness.

3. Estimation of correctness using enzyme classification

Manual inspection of all gene associations in PubGene, as described in Section 2, was not
considered feasible. In order to estimate correctness on a larger scale, we wanted to in-
vestigate whether two genes directly linked in PubGene tend to be more closely related
biologically than random pairs of genes. Unfortunately, there is no complete database
with ‘biological distance’ for all human genes. In fact, had such a database existed, much
of the purpose of constructing PubGene would have vanished.

Enzymes are proteins that catalyse chemical reactions. A comprehensive classifica-
tion does exist for this large class of proteins, namely the Enzyme Classification system®.
Since, essentially, there is a one-to-one correspondence between the proteins and the
genes that code for the proteins, the enzyme classification system can be used to assess
the biological relatedness of genes that code for enzymes. The enzyme classification
system has existed for a long time, it is well established among scientists, and contains
few ambiguities. Enzymes are hierarchically classified into 6 broad categories, which are
further subdivided into finer subgroups on 3 levels. EC- (Enzyme Commission) numbers
thus consist of 4 numbers, where at each level, the number denotes to which category the
enzyme belongs. A review of the development of the enzyme nomenclature and classifi-
cation can be found in Tipton and Boyce [14]. For future reference, we will make a few
definitions. Genes that are directly linked in the PubGene network are called PubGene
neighbours. A gene with an associated EC-number is called an enzyme gene and two en-
zyme genes that are PubGene neighbours are called enzyme neighbours.

In order to be able to see whether enzyme relationship is reflected in the PubGene
network, we introduce a notion of distance between enzymes. The hypothesis is that
genes encoding enzymes and that are also neighbours in PubGene will have, on average,
shorter enzyme distance than random pairs of enzymes. We define the enzyme distance,
d(ec,, ecy), between two EC-numbers ec, and ec, as follows. Assume ec, = a;.a,.az.a4
and ec, = by.b,.bs.by. Let iy be the smallest i such that g is different from by, and if ec, =
€Cy, let i, = 5. Then let d(ec,, €Ch)=5-imn- ASan illustration, Table 2 shows pairs of en-
zyme genes, their EC-numbers, and the corresponding enzyme distances.

To extract EC-numbers for genes encoding enzymes, we used the protein databases
SWISSPROT and TrEMBL. For each primary gene symbol in PubGene, we searched the
Gene Name field of these databases to link to a protein, if found. Then, from the De-
scription field we extracted the EC-number(s), if any. Each gene that encodes a multi-
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functional enzyme was assigned all EC-numbers of the enzyme, thus giving rise to multi-
ple enzyme distances. Next, all enzyme neighbours in PubGene were identified and the
associated enzyme distance(s) for each pair was determined. To get the distribution of
enzyme distances between enzyme genes in general, al enzyme genes in PubGene were
combined in al possible ways. In both cases, a gene pair was considered only once, and
genes were not compared to themselves. For genes with multiple EC-numbers, each EC-
number was treated separately, and therefore there may be more than one enzyme dis-
tance between a pair of enzyme genes.

Enzyme pair EC1 EC2 Enzyme distance
FUT1-FUT2 2.4.1.69 2.4.1.69 0
NDUFB3-CRYZ 1653 1655 1
TPI1-HSD3B1 5311 5331 2
ENPEP-BST1 3.4.11.7 3.2.25 3
IARS-AHCY 6.1.1.5 3.3.11 4

Table 2. Examples of pairs of enzyme genes and the corresponding enzyme distances.
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Figure 2. Distributions of enzyme distances between enzyme neighbours and between
enzyme genesin general are given in thisfigure. The two distributions are significantly
different, p<10®. The numbers of enzyme distancesin the distributions are 9,735 and
1,197,253, respectively.

In PubGene we identified 1,438 (10%) enzyme genes and in total there were 1,548
EC-numbers associated with those genes. Out of these enzyme genes, 947 (66%) have
one or more enzyme neighbours. Figure 2 shows the enzyme distance distributions. We
can see that there is an overrepresentation of shorter enzyme distances among enzyme
neighbours compared to the random distribution and the two distributions are signifi-
cantly different (p<10"® on a x?test). Comparing the average distance, the average taken
over al enzyme pairs was 3.59, while the average over the enzyme neighbours found in
PubGene was 2.67. As the background distribution is known, the probability of observing
such an average can be computed by assuming that the mean is normally distributed. This



gives a z-statistic of less than —108, which is extremely significant (the two-tailed p-value
of observing |z[>5 is less than 10°). Also, if we look at the probability of finding a very
closely related pair of enzymes, that is a pair where the distance is 0 or 1, the expected
probability of such a pair is 0.048. This gives an expected number of O- or 1-distance
pairs among 9,735 of 456, while the actual number is 2,823. Using the normal approxi-
mation to the binomial distribution we get a z-statistic of over 113, which is also ex-
tremely significant.

Closely related genes that belong to the same protein family are often mentioned to-
gether in articles. This is the case, for example, with the genes PPARA, PPARD, and
PPARG in the peroxisome proliferator-activated receptor family. As enzymes from the
same enzyme family often have the same enzyme classification, this may explain why
enzyme neighbours have such an overrepresentation of enzyme distance O compared to
enzyme pairs in general. To better understand the relationships between enzyme neigh-
bours, we further investigated enzyme genes to see what kind of enzyme neighbours they
had. Details for two example genes are shown in Table 3. The example genes are FUT1
and NDUFAS5, which we chose to show because they have many enzyme neighbours.
FUT1® has 125 neighbours in PubGene out of which 26 are enzymes (21%). As can be
seen in Table 3, the enzyme distances from FUT1 to other FUT-enzymes are shorter than
the enzyme distances to other enzyme neighbours. A similar pattern can be observed for
the other example, NDUFA5™, which has 26 enzyme neighbours (of 120 in total). Be-
cause NDUF-enzymes have two EC-numbers, the number of associated enzyme distances
is larger. The fact that close relationship between genes was reflected in the PubGene
network supports our hypothesis that the network is biologically relevant.

Enzyme distance | FUT1to FUT1to NDUFA5 to NDUFA5to
FUTs others NDUFs others

0 1 - 12 -

1 5 2 - -

2 - - 12 -

3 - 11 - 6

4 - 7 - 30

Table 3. Distributions of enzyme distances from FUT1 and NDUFAS5 to their enzyme
neighbours in PubGene. In each case, the distributions for closely related enzymes, 6
FUT- and 6 NDUF-enzymes, respectively, have been separated from the rest of the
enzyme neighbours.

4. Assessment of completeness using SCI citation data

In theory, albeit not very practical, a complete assessment of correctness of PubGene
could be made by examination of all the gene associations that are extracted. Since there
is no complete database to compare with, completeness is even more difficult to assess.
Obviousdly it is easier to examine whether pairs that are given are correct than to identify
associations that are not present. The fact that the kind of gene relationships reflected is
rather vague makes the task even harder. Therefore, our approach was to build an alter-
native network of gene relationships, and then to compare that network to the one in

® Traced to SWISSPROT FUT1_HUMAN, EC 2.4.1.69.
1% Traced to SWISSPROT NUFM_HUMAN, EC 1.6.5.3 and EC 1.6.99.3.



PubGene. We used reference article data from SWISSPROT and TrEMBL and citation
data in the Science Citation Index (SCI) from the Institute for Scientific Information
(1SI)™ to define an alternative relation between two genes. This relation was then used to
get an estimate of the completeness of PubGene.

SCl isan indexed bibliographic database covering a broad range of scientific journals.
For each article, the database stores, for example, the name of the author(s) and the list of
cited references. Therefore, it is also possible to get alist of all articles that cite a specific
work. We exploited the fact that SCI could be viewed as a network of journa articles,
where articles are connected through bibliographic citations. Essentially, what we did
was to establish links between genes in PubGene and appropriate articles. First, we de-
fined an original article of a gene as an article that was found in the SWISSPROT or
TrEMBL entry that was found by search with the primary gene symbols in the Gene
Name field in those protein databases. Then, if SCI could be used to find an article that
cites at least one of the original articles of two genes, the two genes were defined to be
CI neighbours and they were also said to be co-referred, see also Figure 3.

Citing article
Original article Original article
gene A gene B
A A
Protein A Protein B
L L
Gene A Gene B

"

Figure 3. A schematic drawing of how the SCI associations between genes have been
established. For a gene, the corresponding protein is identified and an original article
of that gene is an article found in the record from the SWISSPROT or the TrTEMBL
databases. SCI is then used to find articles that cite more than one original article.
Whenever such an article is identified, an association is established between the genes
behind those original articles.

Through SWISSPROT and TrEMBL we could find original articles, one or more, for
6,579 (44%) of the genesin PubGene. Not al of the genesin PubGene could be traced to
a SWISPROT/TrEMBL record and not al of the protein records contain references to
articles. Most proteins have more than one original article, and the total number of such
articles was 15,577. We only had access to SCI through a web-browser and therefore, it
was not feasible to construct a complete network of SCI neighbours. For a partial estima-
tion of completeness, we chose to create SCI networks for the PPARA and PPARD
genes, the same genes that were used in Section 2. As we will show shortly, a large num-
ber of the SCI neighbours of PPARA and PPARD cannot be found as PubGene neigh-

™ http://www.isinet.com
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bours. In order to compare the relation of being linked as SCI neighbours with that of
being linked by the PubGene network, we will introduce a second measure of distance,
based on PubGene associations. We define the PubGene distance as the minimum num-
ber of links that has to be crossed in the PubGene network to get from one gene to the
other. Thus, the PubGene distance between ‘Gene A’ and any of its direct neighbours is
1, and from ‘Gene A’ to a neighbour of a neighbour is 2, and so on. If it is not possible to
get from a gene to another by traversing links in the network, we define the PubGene
distance as infinite. This notion of distance should not be confused with the previoudy
defined enzyme distance.

60 54
50 -

40 + mPPARD
30 24 O PPARA

20 | 16 18
Y li\ r
0,

1 2 3 infinite

PubGene Distance

Genes, in %

Figure 4. The distributions (in percentage) of PubGene distance from PPARA and
PPARD, respectively, to the SCI neighbours of the same. PubGene distance 1 means
that the SCI neighbour was also found as a direct neighbour in PubGene. The total
numbers of SCI neighbourswere 119 for PPARA and 187 for PPARD.

PPARD only has one original article™. According to SCI there are 198" articles that
refer to this article, but we could only obtain reference lists for 154 of them. In these
154 reference lists, we identified 187 unique original articles and each of them represents
one gene symbol that has been co-referred with the original article of PPARD. Of the 187
genes identified, only 6 (3%) were found at PubGene distance 1 from PPARD. For
PPARA, which has two origina articles™, an identical procedure was used to identify
119 SCI neighbours. Figure 4 shows how the 187 SCI neighbours of PPARD and the 119
SCI neighbours of PPARA are distributed over PubGene distance from PPARD and
PPARA, respectively. For both genes, PubGene associated fewer genes directly than
were related to them through SCI. But, as Figure 4 shows, 84% and 82% of the SCI
neighbours of PPARD and PPARA, respectively, are found at PubGene distance 1, 2, or
3.

12 schmidt A., et al, Mol. Endocrinol, 6:1634-1641 (1992).

3 1n May 2000.

1 The remaining ones are published earlier than 1995.

1> Sher T., et al, Biochemistry 32:5598-5604 (1993); Mukherjee R., et al, J. Seroid Bio-
chem. Mol. Biol. 51:157-166 (1994).
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We further analysed the SCI neighbours of PPARA and PPARD to see what caused
them to be co-referred with PPARA and PPARD, respectively. Table 4 shows how these
genes fall into 14 categories, the PubGene distance is also considered. The choice of
categories is based on the kind of genes that appear as SCI neighbours of PPARA and
PPARD and also on the reason of co-citation. The first 9 categories refer to genes that
have arather specific relationship to PPARs and the following 3 categories refer to genes
that have a more general relation to PPARS. Genes with relationships to PPARs that are
harder to explain, were referred to the group ‘ Other’.

Category of SCI neighbour PPARA PPARD
PubGenedistance] 1 2 3 Inf.|1 2 3 Inf

Another PPAR 2 2

Expression is regulated by PPAR 4 3 2 1

Regulates expression of PPAR 2

Interacts physically/functionally with PPAR 3 3 1 6

Co-activated/regulated with PPAR 1 2

Binds a similar response element as PPARs 1 1

Close chromosome localisation with PPARD 11 5 3

Peroxisomal 2 3 5

Fat metabolism 1 6 2 17 4 4

NHR, transcription factor 12 20 4 36 5 6

Expressionisregulated by other NHR 2 3

Interacts with NHR 3 12 2 15 12 5 13

Refer to a method, not a gene 1 1

Other 2 16 2 1 22 12 2

Table 4. The SCI neighbours of PPARA and PPARD have been categorised into 14
groups depending on the kind of relationship these genes have to the PPAR genes.
Furthermore, the table indicates how the PubGene distances affect the distribution.

As Table 4 shows, many of the genes have a quite specific relation to the PPAR gene.
For example, PPARA heterodimerises with RXRA [1], and the PPARA/RXRA dimer
regulates the expression of the CAT gene. PPAR/RXR dimers further regulate the ex-
pression of other genes such as, the UCP2 and the CD36 genes [17]. UCP2 is found at
PubGene distance 2 from both PPARA and PPARD and CD36 at PubGene distance 2
from PPARD. The gene WISP2 is co-regulated with PPARD [3] but in PubGene it is
found at infinite PubGene distance from PPARD. Among the SCI neighbours of PPARD
we also found a large number of genes that are found in the same chromosomal region as
PPARD [15], and these genes are found at various PubGene distances, see Table 4. Ex-
amples of genes localised close to the PPARD gene are the MAPK 11 and TULPL1 genes
that are found at PubGene distance 2 from PPARD, the ZNF76 and WNT2B genes at
PubGene distance 3, while the SFRS3 and RPL10A genes cannot be found by traversing
links in the PubGene network.

Among the SCI neighbours we also observe many genes that have a less specific re-
lationship to the PPAR genes. We often observe co-references to other nuclear hormone
receptors, NHRs, for example, the ESRRA gene [7], and to genes that have a relationship
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to other NHRs as, for example, the co-activator TIF1 that interacts with ESR1 (‘ estrogen
receptor 1') [6] or the gene PS2™ that is regulated by the ESR1 [6]. The co-reference
method can incorrectly associate genes when the original article is cited not because of
the gene, but because of a method described in the article. However, this does not occur
very frequently, for PPARA and PPARD only one such example was found. The original
article of the POR gene is cited in an article about expression of the PPARA gene [8]
because it describes a method of an RNase protection assay and not because there is a
relation between PPARs and POR.

Among the 187 SCI neighbours of PPARD there are 29 (16%) that have infinite Pub-
Gene distance to PPARD. The reasons of co-reference of these 29 genes and PPARD do
not differ from the reasons discussed above. For example, there are severa genes that
code for NHRs and co-factors of NHRs. It is also interesting to note that there are genes
that function in the fatty acid [3-oxidation, a part of the degradation of fat, because PPARs
are key regulators of the fat metabolism. The gene EPHX2 discussed above is also found
in this group with infinite PubGene distance. The same observation can be made for
PPARA where 22 (18%) of the SCI neighbours have infinite PubGene distance to
PPARA.

Further investigation of the PubGene neighbours of PPARA and PPARD shows that
at the same time as the SCI network contains many relevant associations that are not
found by PubGene, the same observation can be made for PubGene versus SCI. This
means that the two methods together are able to find a large number of possibly related
pairs of genes that are not found by either method alone. Furthermore, looking at the in-
tersection of neighbours of PPARA and PPARD from PubGene and SCI, we see that
there are 28 and 6 genes, respectively, that are found by both methods. We have seen that
both methods alone connect pairs of genes whose biological relationships are either very
weak or non-existing. Therefore, it is interesting to notice that out of the genes that are
found to be related to PPARA and PPARD by both methods, each one have a relevant
biological relationship to the PPAR gene.

5. Discussion

The PubGene network of 14,961 human genes is based on co-occurrence of gene termsin
more than 10 million MEDLINE records. Our results show that although there is a con-
siderable amount of noise present, the underlying hypothesis that two genes that have
been mentioned together also are biologically related is clearly supported. Occasionaly,
two genes may be mentioned together without a clear biological relationship, but thisis
rare. However, negative results are sometimes reported, such as, for instance a statement
like ‘Gene A does not upregulate expression of Gene B’. Nevertheless, in order for such a
statement to be put in an abstract, at some level there would usually be some kind of re-
lationship between the two genes.

Stapley and Benoit [11] reported a similar network of Saccharomyces cerevisiae
(yeast) genes. There are two important differences between their work and the PubGene
database. Firgt, the genome of the yeast organism is much better characterised than the
human genome, and therefore the nomenclature of yeast genes is more specific and it
contains fewer ambiguities. Another difference compared to PubGene is the
comprehensiveness since Stapley and Benoit reported a prototype system applied to a
small set of 2,524 MEDLINE records published between 1997 and 1998. More sophisti-

'8 This symbol is from the Genome Database.
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cated attempts to extract specific types of relationships between genes or proteins have
also been reported. These approaches have typically used some kind of natural language
processing [10, 13, 9]. So far, these methods have not scaled as well and are likely to be
vulnerable to the same problems as PubGene when it comes to extraction of gene names.
These methods will aso have to resolve the problems related to ambiguous gene symbols
and names.

The manual inspection of sample genes in the PubGene network revealed that am-
biguous gene symbols caused the PubGene network to include noise in the form of erro-
neously associated genes. To determine to which of severa genes an occurrence of a
gene symbol should be assigned is a difficult problem. Incorrect links can also be gener-
ated when a gene symboal is identical to an abbreviation used in another context. One
likely problem with extraction of gene names is that different authors may write one and
the same gene differently. For example, the gene peroxisome proliferator-activated re-
ceptor gamma is also referred to as PPARG, PPAR gamma, PPAR-gamma. This causes
obvious problems for any algorithm relying on string matching. Another problemisthat a
single gene can be found under several different names, most often because different sci-
entists working with different problems in different contexts have discovered it without
knowledge about each other. These observations should be taken into account when de-
signing new symbols and they also highlight the urgent need of a standardised human
gene ontology. However, since there are aready many ambiguous symbols used in the
literature this problem with ambiguity will remain. Therefore, it is important to improve
specificity of the indexing procedure, for instance, by incorporation of Natural Language
Processing for term recognition, for example, as reported by Fukuda[2].

Preliminary investigations of the PubGene neighbours of the PPARA, PPARD, and
PPARG revealed that many associations for these genes were missed due to incomplete
lists of literature aliases (data not shown). Incomplete lists of literature aliases will natu-
rally cause relevant associations to be missed. This problem can be reduced by manually
editing the alias lists prior to indexing. This would require a lot of resources and, so far,
nomenclature information for PubGene was collected from external databases and com-
piled without any editing. However, in order to distribute the cost of editing the alias in-
formation, it would be interesting to create an interactive user interface where it should
be possible to add relevant aliases for a gene and then upgrade the network. Similarly, it
should be possible to remove, or rather inactivate some synonyms that obviously cause
problems such as false connections. Clearly, the ‘NUC1’ synonym of PPARD is a candi-
date for elimination.

Statistical analyses support our hypothesis that enzyme neighbours are more closely
related than general pairs of enzymes. Three different, but related, analyses show that the
distances between neighbours in PubGene are very different from what one would expect
from a random sampling of enzyme pairs. The distribution of distances between enzyme
pairs in PubGene is considerably skewed to the left (towards lower values) in Figure 2
compared to the background distribution. Consequently, the average distance is lower
and the proportion of O- or 1-distance pairs is higher. We interpret this as evidence that
the PubGene network captures biologically relevant information.

It is clear that PubGene is not complete with respect to the definition of SCI neigh-
bours. Since many of the missing SCI neighbours had relevant biological relationships,
we see that the co-occurrence relationship is not capable of detecting all such relation-
ships. A plausible reason is that in an abstract there is only a limited amount of space
available and therefore, all interesting results cannot be mentioned there. This indicates
that it may be beneficial to combine the information from SCI with that of PubGene to
get amore biologically complete network of genes.
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In this paper, we have used the definition of SCI neighbours to evaluate the PubGene
network, but to create and evaluate a complete SCI network is an interesting direction for
future work. However, it should be kept in mind that although we have sketched how we
could create a complete SCI network, we have only examined two genes and their SCI
neighbours. Clearly, more examples should be assessed before a general conclusion can
be drawn. Furthermore, it should be noted that the definition of original articles excludes
many of the genes in PubGene because not all genes can be related to a protein entry in
SWISSPROT or TrEMBL, and also because not all such entries have literature refer-
ences.

The ideas underlying the PubGene and SCI networks are related to those implemented
in the ARROWSMITH system [12]. The ARROWSMITH system has been used to ana-
lyse article titles to relate what Swanson and Smalheiser call ‘complementary and nonin-
teractive’ sets of articles. Their approach is to ‘discover’ implicit relationships between,
for instance, a disease D, such as Alzheimer’'s disease and an agent A, such as estrogen.
Such an implicit relationship is said to be found if there exists a set of terms B such that
A has been mentioned with one term in B, and D has been mentioned with onetermin B,
but A and D has not been mentioned together. Although our intention is not primarily to
discover new relationships, but rather to extract those that already are known, the Pub-
Gene network as well as the SCI network contains associations that have not been ex-
plicitly mentioned by the authors. It would be interesting to explore how the PubGene
network and the SCI approach could be used to create hypotheses about possible interac-
tions.

A formal definition of correctness and completeness is difficult because there is no
clear-cut definition of what is to be regarded as biologically relevant. It is obvious that
many different types of relationships between two genes may exist, and biologically rele-
vant in one context, is not necessarily biologically relevant in another. For instance, if
regulatory interactions are of interest, it is not correct to associate two genes only because
they code for proteins that belong to the same protein family. In fact, one type of relation
may be very abundant, which may have the effect that other associations become hard to
distinguish. As there are different notions of relevance, completeness at one level may
only be attained if correctness at another level is given up. Ideally, one would have dif-
ferent networks reflecting different relationships. For example, one network that reflects
functional similarity and a different network that reflects regulatory or metabolic path-
ways.

Even though our results demonstrate that improvements to PubGene would give a
more correct and complete network, they also indicate that many biologically relevant
associations have already been captured. By presenting a comprehensive summary of
published knowledge, both explicitly and implicitly stated, the PubGene network may be
used as atool for generation of ideas and hypotheses. As such, PubGene is useful even if
it is only partialy correct and partially complete. Furthermore, our results have given a
better understanding of what kinds of relationships are reflected by abstract co-
occurrence. This way, our work contributes to a better interpretation of the information in
PubGene, as well asinformation in similar databases.
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