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1 Introduction
Data mining is an interdisciplinary field, having applications in diverse areas like
bioinformatics, medical informatics, scientific data analysis, financial analysis, con-
sumer profiling, etc. In each of these application domains, the amount of data
available for analysis has exploded in recent years, making the scalability of data
mining implementations a critical factor. To this end, parallel versions of most of
the well-known data mining techniques have been developed in recent years. How-
ever, the expertise and effort currently required in implementing, maintaining, and
performance tuning a parallel data mining application is a severe impediment in
the wide use of parallel computers for scalable data mining.

In this paper, we present the design and initial performance evaluation of a
middleware for enabling rapid development of parallel data mining applications.
This middleware can help exploit parallelism on both shared memory and dis-
tributed memory configurations, while allowing efficient processing of disk resident
data.

Our middleware is based on the observation that parallel versions of several
well-known data mining techniques share a relatively similar structure. We have
carefully studies parallel versions of apriori association mining [4], bayesian network
for classification [14], k-means clustering [25], k-nearest neighbor classifier [24], and
artificial neural networks [24]. In each of these methods, parallelization can be done
by dividing the data instances (or records or transactions) among the nodes. The
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computation on each node involves reading the data instances in an arbitrary order,
processing each data instance, and performing a local reduction. The reduction
involves only commutative and associative operations, which means the result is
independent of the order in which the data instances are processed. After the local
reduction on each node, a global reduction is performed. This similarity in the
structure can be exploited by the middleware system to execute the data mining
tasks efficiently in parallel, starting from a relatively high-level specification of the
technique.

Our middleware is particularly suited for a cluster of SMP workstations, which
have emerged as a cost-effective and common parallel computing environment in re-
cent years. Our middleware performs parallelization on different nodes of a cluster
(which use message passing for communication) and on different processors on a
node (which share a common memory). It enables high I/O performance by min-
imizing disk seek time and using asynchronous I/O operations. Thus, it can be
used for rapidly developing efficient parallel data mining applications that oper-
ate on large datasets. I/O, communication, and synchronization optimizations can
be implemented in such a middleware, enabling different parallel data mining ap-
plications to benefit from these. If the middleware is successfully ported on a new
parallel configuration, all applications developed on top of it can be executed on the
new configuration, without requiring any extra effort. Finally, such a middleware
can also be used as a framework for experimenting with different parallelization
strategies for data mining techniques.

We particularly focus on application domains where the datasets are stored
as flat files, and not on top of a relational database. Our middleware is based upon
the Active Data Repository (ADR) developed at the University of Maryland [8, 9].
ADR could only be used on a cluster of single-processor workstations, and is not
tailored for data mining techniques. Our middleware has been tailored for data
mining, and runs on a cluster of SMPs.

So far, we have used this middleware for parallelizing the apriori association
mining algorithm [4] and the k-nearest neighbor algorithm [24]. In both cases,
starting from a sequential version that assumed that all transactions were in main
memory, we could develop an efficient parallel version using this middleware.

The rest of this paper is organized as follows. Section 2 reviews parallel
versions of apriori association mining, bayesian networks, k-means clustering, k-
nearest neighbors, and artificial neural networks. The interface to the middleware
is presented in Section 3. The details of the runtime support are presented in
Section 4. Experimental results are presented in Section 5. We compare our work
with related research efforts in Section 6 and conclude in Section 7.

2 Parallel Data Mining Algorithms
In this section, we describe how parallel versions of several commonly used data
mining techniques share a relatively similar structure. We focus on five important
techniques: apriori associating mining [4], bayesian networks [14], k-means cluster-
ing [25], k-nearest neighbors [24], and artificial neural networks [24]. For each of
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these techniques, we describe the basic problem and then the parallelization strat-
egy.

2.1 Apriori Association Mining

Given a set of transactions1 (each of them being a set of items), an association rule
is an expression X → Y , where X and Y are the sets of items. Such a rule implies
that transactions in databases that contain the items in X also tend to contain the
items in Y . Association data mining is the process of analyzing a set of transactions
to extract association rules.

Formally, the goal is to compute the sets Lk. For a given value of k, the
set Lk comprises the frequent itemsets of length k. The most commonly used
algorithm for association mining is the apriori mining algorithm [4]. The main
observation in the apriori technique is that if an itemset occurs with frequency f ,
all the subsets of this itemset also occur with at least frequency f . In the first
iteration of this algorithm, transactions are analyzed to determine the frequent 1-
itemsets. During any subsequent iteration k, the frequent itemsets Lk−1 found in
the (k − 1)th iteration are used to generate the candidate itemsets Ck. Then, each
transaction in the dataset is processed to compute the frequency of each member of
the set Ck. k-itemsets from Ck that have a certain pre-specified minimal frequency
(called the support level) are added to the set Lk.

A straight forward method for parallelizing the apriori association mining algo-
rithm is count distribution [4]. Though a number of other parallelization techniques
have been proposed [22, 41], the count distribution method is easy to implement
and very efficient as long as the number of candidates does not become very large
and/or sufficient memory is available on each node.

The outline of the count distribution parallelization strategy is as follows. The
transactions are partitioned among the nodes. Each nodes generates the complete
Ck using the frequent itemset Lk−1 created at the end of the iteration k− 1. Next,
each node scans the transactions it owns to compute the count of local occurrences
for each candidate k-itemset in the set Ck. After this local phase, all nodes perform
a global reduction to compute the global count of occurrences for each candidate in
the set Ck.

2.2 Bayesian Network

Bayesian network is an approach to unsupervised classification [14]. Each trans-
action or data instance Xi is represented as an ordered vector of attribute values
{Xi1, . . . , Xik}. Given a set of data instances, the goal is to search for the best
class descriptions that predict the data. Class membership is expressed probabilis-
tically, i.e., a data instance probabilistically belongs to a number of possible classes.
The classes provide probabilities for all attribute values of each instance. Class
membership probabilities are then determined by combining all these probabilities.

Two most time consuming steps in computing the classification are update wts

and update parameters. update wts computes the weight of each class, which is

1In this paper, we use the terms transactions, data items, and data instances interchangeably.
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the sum of the probabilities of each data instance being in that class. update parameters

uses the weights computed to update the parameters for classification used during
the next phase.

A parallelization strategy that can be used for both of these steps is as fol-
lows [20]. The data instances are partitioned across nodes. In the update wts

phase, each node initially computes the local weight of each class, which is the sum
of the probabilities of each locally owned data instance being in that class. Global
reduction is then performed on each local weight to compute the final weight of each
class.

The sequential version of update parameters is composed of three nested
loops. The outer most loop iterates over all the classes, the next loop iterates over
all attributes, and the inner most loop iterates over the data instances. The inner
most loop uses the values of all data instances to compute the class parameters.
Since the data instances have been partitioned across nodes, parallelization is done
at the inner most loop. On each node, the local sum of the class parameters is
computed, and then a global reduction is performed.

2.3 k-means Clustering

The third data mining algorithm we describe is the k-means clustering technique [25].
This method considers transactions or data instances as representing points in a
high-dimensional space. Proximity within this space is used as the criterion for
classifying the points into clusters.

Three steps in the sequential version of this algorithm are as follows: 1) start
with k given centers for clusters; 2) scan the data instances, for each data instance
(point), find the center closest to it, assign this point to the corresponding cluster,
and then move the center of the cluster closer to this point; and 3) repeat this
process until the assignment of points to cluster does not change.

This method can also be parallelized in a fashion very similar to the previous
two techniques [6, 17, 38]. The data instances are partitioned among the nodes.
Each node processes the data instances it owns. Instead of moving the center of the
cluster immediately after the data instance is assigned to the cluster, the local sum
of movements of each center due to all points owned on that node is computed. A
global reduction is performed on these local sums to determine the centers of clusters
for the next iteration.

2.4 k-Nearest Neighbors

k-Nearest neighbor classifier is based on learning by analogy [24]. The training sam-
ples are described by an n-dimensional numeric space. Given an unknown sample,
the k-nearest neighbor classifier searches the pattern space for k training samples
that are closest, using the euclidean distance, to the unknown sample.

Again, this technique can be parallelized as follows. The training samples
are distributed among the nodes. Given an unknown sample, each node processes
the training samples it owns to calculate the k-nearest neighbors locally. After this
local phase, a global reduction computes the overall k-nearest neighbors from the
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k-nearest neighbors on each node.

2.5 Artificial Neural Networks

An artificial neural network is a set of connected input/output units where each
connection has a weight associated with it. During the learning phase, the network
learns by adjusting the weights so as to be able to predict the correct class labels of
the input samples. A very commonly used algorithm for training a neural network
is backpropagation [24]. For each training sample, the weights are modified so as to
minimize the difference between the network’s prediction and the actual class label.
These modifications are made in the backwards direction.

The straight forward method for parallelizing this techniques is as follows. The
training data (transactions) are distributed among the nodes. Each node processes
the transactions it owns and computes the local shifts in weights for each connection
in the network. Then, a global reduction phase adds the shifts in weights for each
connection calculated on all nodes.

3 Middleware Interface
In this section, we give an overview of the interface our middleware system supports.
The interface exploits the similarity among parallel versions of several data mining
techniques, as described in the previous section. It assumes that data instances
have already been partitioned among the nodes.

The following functions need to be written by the application developer using
our middleware. Most of these functions can be easily extracted from a sequential
version that processes memory resident datasets.
Initial Processing: Many data mining applications involve an initial processing
of the data instances to remove noise or exceptional cases, or modify the format
of certain fields, etc. This processing is performed independently on each data
instance, and therefore, can be performed in parallel and in an arbitrary order on
each processor.
Specifying the Subset of Data to be Processed: In many case, only a subset
of the available data needs to be analyzed for a given data mining task. For exam-
ple, while creating associations rules from customer purchase record at a grocery
store, we may be interested in processing records obtained in certain months, or for
customers in a certain age groups, etc.
Local Reductions: The data instances owned by a processor and belonging to the
subset specified are read. A local reduction function specifies how, after processing
one data instance, a reduction object (declared by the programmer), is updated. This
processing must be independent of the order in which data instances are processed
on each processor. The order in which data instances are read from the disks is
determined by the runtime system. The reduction object is maintained in the main
memory.
Global Reductions: The reduction objects on all processors are combined using
a global reduction function.
Iterator: A parallel data mining application comprises of one or more distinct
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pairs of local and global reduction functions, which may be invoked in an iterative
fashion. An iterator function specifies a loop which is initiated after the initial
processing and invokes local and global reduction functions.

4 Runtime Support
In this section, we describe the basic functionality of our middleware system. This
system has been developed on top of the Active Data Repository (ADR) developed
at University of Maryland [8, 9, 10]. ADR targeted strictly distributed memory
parallel machines. We have implemented a framework for runtime parallelization
on shared memory machines that allows us to use a cluster of SMP workstations.
We are also working on modifying the interface of ADR to make it more suitable
for parallel data mining algorithms.

4.1 Active Data Repository

Active Data Repository (ADR) [8, 9, 10] is a runtime infrastructure that integrates
storage, retrieval and processing of multi-dimensional datasets on a distributed
memory parallel machine. ADR runtime support has been developed as a set of
modular services implemented in C++. ADR allows customization for application
specific processing, while leveraging the commonalities between the applications
to provide support for common operations such as memory management, data
retrieval, and scheduling of processing across a distributed memory parallel ma-
chine. Examples of data intensive applications implemented with ADR include
Titan [11, 12, 35] for satellite data processing, the Virtual Microscope [1, 18] for
visualization and analysis of microscopy data, and coupling of multiple simulations
for water contamination studies [27].

Any task is executed in ADR using two phases: task planning and task ex-
ecution. The objective of task planning is to determine a schedule to efficiently
process the computation, based on the amount of available resources in the parallel
machine. A task plan specifies how parts of the final output are computed. The
task execution service manages all the resources in the system and carries out the
task plan generated by the task planning service. The primary feature of the task
execution service is its ability to integrate data retrieval and processing for a wide
variety of applications. This is achieved by pushing processing operations into the
storage manager and allowing processing operations to access the buffer used to
hold data arriving from disk. As a result, the system avoids one or more levels of
copying that would be needed in a layered architecture where the storage manager
and the processing belonged to different layers. To further reduce task execution
time, the task execution service overlaps I/O, interprocessor communication and
processing as much as possible. It does this by maintaining explicit queues for each
kind of operation (data retrieval, message sends and receives, data processing) and
switches between them as required. A dataset in ADR is partitioned into a set of
chunks to achieve high bandwidth data retrieval. A chunk consists of one or more
data items, and is the unit of I/O and communication.
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4.2 Runtime Parallelization on SMPs

We now describe the framework we have implemented for efficiently using multiple
processors available on each node of a SMP workstation for data mining applica-
tions.

We prefer to perform runtime parallelization within a single node for several
reasons. First, it alleviates the need for writing explicitly parallel (threaded) pro-
grams. Second, dynamically assigning the tasks to different processors or threads
allows good load-balancing. In some data mining applications, the amount of pro-
cessing required for a data item can vary considerably, depending upon the values
in that data item. Finally, the structure of data mining algorithms that this mid-
dleware is targeting (Section 2) makes runtime parallelization possible.

The processors available on each node need to perform the following tasks: 1)
Manage disk operations and file I/O, 2) Manage communication with other nodes,
3) Execute the Iterator loop described in Section 3, 4) Perform runtime scheduling,
i.e. assign local reductions on data items being processed by the node to different
processors, and 5) Perform local reductions.

To perform the above tasks, we use one producer thread and one or more
consumer threads. The producer thread is responsible for the tasks 1, 2, 3, and 4 in
the list above. Typically, one consumer thread is scheduled on a single processor,
and perform local reductions (task 5) on the data items assigned to it.

Queue of Input Chunks

. . . .

Producer

Consumer  2Consumer  1 

Disk(s) Network

Output

Figure 1. Producer / Consumer Framework for Runtime Parallelization

The producer/consumer framework is shown in Figure 1. As we mentioned
earlier in this section, the unit for I/O in ADR is a chunk, which is typically one disk
block or a small number of disk blocks. We use the same unit for dividing the local
reductions among processors on a node. The idea is that chunk size can be chosen to
be of sufficiently low granularity to allow effective load balancing at runtime and of
sufficiently high granularity to keep the overhead of runtime scheduling acceptable.

In the set of data mining algorithms we are targeting, the local reductions on
data items are independent operations, except for race conditions in updating the
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same reduction object. In the apriori association mining algorithm [4], counts for
one or more candidates may be incremented after processing a data item. Similarly,
in the k-means clustering algorithm [25], the shift for the center of one of the clusters
is incremented after processing a data item. In the backpropagation based neural
network training algorithm [24], weights associated with one or more connections
are updated after processing a data item.

In each of these algorithms, the particular element(s) in the reduction object
that need to be modified after processing a data item is not known until after
performing the computation associated with the data item. For example, in the
apriori association mining algorithm, the data item read from the disk needs to
matched against all candidates to determine the set of candidates whose counts will
be incremented. In the k-means clustering algorithm, the cluster to which the data
item belongs needs to be determined before it is known which center’s shift will be
updated. Therefore, it is not possible to assign data items to different threads in a
manner that they do not update the same element in the reduction object.

The existing techniques for runtime parallelization cannot be used for data
mining algorithms. Inspector/executor paradigm has been used for runtime paral-
lelization and scheduling of loops [33]. This approach is based on using an inspector
than can examine certain values (typically, contents of an indirection array) at run-
time to determine an assignment of iterations to processors. The inspector must
have a sufficiently low cost for this approach to be practical. For data mining al-
gorithms, the inspector will have to perform almost all the computation associated
with local reductions. The runtime parallelization approach taken by Rauchwerger
and Padua [32] is also not applicable to our target algorithms, because there work
focuses on cross-iteration dependencies.

We have implemented four different approaches for avoiding race conditions as
different consumer threads may want to update the same elements in the reduction
object. These techniques are, full locking, fixed locking, full replication, and partial
replication.
Full Locking: One obvious solution to avoiding race conditions is to associate
one lock with every element in the reduction object. After processing a data item,
the consumer thread needs to acquire the locks associated with all elements in the
reduction object it needs to update. For example, in the apriori association mining
algorithm, there will be a lock associated with the count for each candidate, which
will need to be acquired before updating that count. If two consumer threads
need to update the count of the same candidate, one of them will need to wait
for the other one to release the lock. In apriori association mining, the number of
candidates considered during any iteration is typically quite large, so the probability
of one thread needing to wait for another one is very small. Supporting such a large
numbers of locks, however, results in significant overheads. For example, with large
number of locks, operations for acquiring and releasing locks result in cache misses,
slowing down the overall computation.
Fixed Locking: To alleviate the overheads associated with the large number of
locks required in the full locking scheme, we designed the fixed locking scheme. As
the name suggests, a fixed number of locks are used. The number of locks chosen
is a parameter to this scheme. If the number of locks is l, then the element i in



9

the reduction object is assigned to the lock i mod l. So, in the apriori association
mining algorithm, if a consumer thread needs to update the support count for the
candidate i, it needs to acquire the lock i mod l.
Full Replication: The total size of the reduction object is typically not very large
in data mining algorithms. For some of the techniques like k-means clustering and
k-nearest neighbors, depending upon the value of k, it can be extremely small.
Therefore, one simple way of avoiding race conditions is to replicate the reduction
object and create one copy for every consumer thread. The copy for each consumer
thread needs to be initialized in the beginning. After the local reduction has been
performed using all the data items on a particular node, the increments made in all
the copies are merged. The global reduction function specified by the user can be
used to perform this merge. After this merge, the global reduction still needs to be
performed across the nodes.
Partial Replication: Full replication has the benefit of not requiring any locks and
not requiring any thread to wait to acquire a lock. The disadvantages are memory
requirements, the need for initializing the elements in the beginning, and performing
the merge in the end. Consider the apriori association mining algorithm. Even if
a consumer thread does not increment the count of a candidate in a particular
iteration, the count of the candidate needs to be initialized to zero in the beginning,
and needs to be copied during the merge phase.

To avoid this overhead, we designed the partial replication scheme. Instead of
creating copies of the reduction object for each consumer thread, we create a buffer
for every consumer thread. The consumer thread stores the updates to elements
of the reduction object in this buffer. To keep the memory overhead low, there
is a fixed maximum size associated with each buffer. A separate thread works on
updating the reduction object using the values from the buffers. Only a single lock
is associated with the entire reduction object, so values from only one buffer can be
copied into the reduction object at any time.

5 Experimental Results
In this section, we evaluate our middleware and the set of runtime techniques we
have presented here by a series of experiments. We have so far implemented two
data mining algorithms using our middleware. The first is the apriori association
mining algorithm [4], and the second is the k-nearest neighbors algorithm [24].

5.1 Experimental Platform

The experiments were conducted on a cluster of SMP workstations. We used 8
Sun Microsystem Ultra Enterprise 450’s, each of which has 4 250MHz Ultra-II
processors. Each node has 1 GB of main memory which is 4-way interleaved. Each
of the node have a 4 GB system disk and a 18 GB data disk. The data disks are
Seagate-ST318275LC with 7200 rotations per minute and 6.9 milli-second seek time.
The nodes are connected by a Myrinet switch with model number M2M-OCT-SW8.
We believe that our cluster represents a common parallel processing configuration
using off-the-shelf nodes and network.
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5.2 Evaluating Shared Memory Parallelization Techniques
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Figure 2. Comparing the Four Strategies for SMP Parallelization: 2 nodes,
800 MB dataset

We designed a detailed experiment to both evaluate the overall efficiency of
our producer/consumer framework and compare the four techniques for SMP paral-
lelization. We used our implementation of apriori association mining in this exper-
iment, because the k-nearest neighbor algorithm is I/O bound and has very little
computation. We used a dataset with 8 million transactions, each with 20 items
(on the average). The total number of distinct items in the dataset is 1000. The
total size of the dataset is 800 MB. Because our focus in this experiment is on
evaluating SMP parallelization techniques, we choose a dataset that could fit in the
main memory of a single node.

The association mining implementation developed on top of our middleware
was executed using each of the four techniques, on 1, 2, 4, and 8 nodes of the cluster
and using 1, 2, 3 or 4 consumer threads per node. The performance comparison on
2 nodes is shown in Figure 2 and the performance comparison on 8 nodes is shown
in Figure 3. The sequential version took 1639 seconds. The threads per node listed
in the Figures are consumer threads performing actual computations. In each case,
there is a separate producer thread per node.

On 2 nodes and 1 thread per node, the speedups are 1.97 with full replication,
1.67 with partial replication, 1.07 with full locking, and 1.27 with fixed locking.
The performance of full replication shows that distributed memory parallelization
is working very well and resulting in almost perfect speedups. The performance
of the other three schemes shows that there are significant overheads with shared
memory parallelization using these schemes, even though only 1 thread is used on
every node. The overhead of full locking is very high because of the large number of
locks that need to be used. The performance of fixed locking (using 1024 locks) is
significantly better, though not comparable with the performance of full replication
or partial replication. With only 1 thread, the fixed locking scheme reduces the
overhead associated with supporting a large number of locks in the system, but
does not loose any parallelism.
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On 2 nodes and 2 threads per node, the speedups are 3.63 with full replication,
2.9 with partial replication, 1.85 with full locking, and 1.87 with fixed locking. All
the versions have significant speedups compared to the 1 thread versions, using the
same scheme, on 2 nodes. The relative speedups compared to 1 thread versions are
1.83 with full replication, 1.73 with partial replication, 1.72 with full locking, and
1.47 with fixed locking. The performance of full replication version with 2 threads
shows that the dynamic work assignment as part of the producer/consumer frame-
work is working without any significant overheads. The partial replication version
incurs some overheads for updating the main buffer and looses some performance.
Its performance is still significantly better than the two locking versions. One main
observation from the results with 2 threads per node is that the performance of fixed
locking and full locking is very similar. Though fixed locking has lower overhead
for supporting the locks, it also results in some loss of parallelism.
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Figure 3. Comparing the Four Strategies for SMP Parallelization: 8 nodes,
800 MB dataset

On 2 nodes and 3 threads per node, the speedups are 4.94 with full replication,
3.6 with partial replication, 2.52 with full locking, and 2.5 with fixed locking. The
trends are very similar to the 2 threads per node case. All the schemes are success-
fully exploiting the extra thread to improve performance. Fixed locking actually
performs worse than full locking in this case, though the difference is less than 1%.

On 2 nodes and 4 threads per node, the speedups are 5.5 with full replica-
tion, 3.71 with partial replication, 2.9 with full locking, and 2.81 with fixed locking.
The relative performance improve because of adding an extra thread per node is
relatively small for each of the versions. This is because each node has 1 pro-
ducer thread, in addition to the 1, 2, 3 or 4 consumer threads. When 4 consumer
threads are used, the total number of threads on 4 processors is 5, resulting in some
contention. The fourth consumer thread still results in some additional speedups,
which shows that the producer thread is not active all the time.

The results from comparing the 4 schemes on 8 nodes, with 1, 2, 3, and 4
threads per node, are shown in Figure 3. The trends are very similar to those on 2
nodes.
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5.3 Performance of Apriori Association Mining
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Figure 4. Performance of Apriori Association Mining: 2GB dataset

In this subsection, we focus on the overall performance achieved on the imple-
mentation of apriori association mining. We have used two large datasets for this
purpose. The first dataset, which is referred to as the 2GB dataset in our presen-
tation, has 32 million transactions, each with (on the average) 20 items, and with
1000 distinct items. The total size of the dataset is 2.8 GB. Thus, this dataset
does not fit in the main memory when the code is executed on 1 or 2 nodes. The
second is referred to as the 8GB dataset. This dataset has 64 million transactions,
with an average of 30 items per transaction. The total number of distinct items is
1000. The support and confidence levels used in our experiments are 1% and 90%,
respectively, for both the datasets. Since we wanted to see the best performance
than can achieved using our system, we have used the full replication scheme in all
the experiments presented in this subsection.

The performance on the 2GB dataset is shown in Figure 4. Results from 1,
2, 4 and 8 nodes and 1, 2, 3, and 4 threads per node are presented. This dataset
results in 8 iterations of the outer-loop in the apriori association mining algorithm.
The number of candidates whose support is counted is 1,000, 278,735, 43,144, 4,354,
8,373, 949, 35, and 1, for the first through eighth iterations, respectively. Therefore,
each node needs to send a total of nearly 1.3 MB of data (broken over 8 messages)
to every other node, and needs to receive the same amount of data from every other
node.

The middleware achieves high parallel efficiency for both distributed memory
and shared memory parallelization. Using only 1 thread per node, the speedups
on 2, 4, and 8 nodes are 1.93, 3.94, and 7.8, respectively. Note that the dataset
owned by each node becomes main memory resident in going from 2 to 4 nodes.
This results in a superlinear speedup in going from 2 to 4 nodes.

The shared memory parallelism is also exploited well on up to 3 threads per
node. Using 3 threads per node, the speedups on 1, 2, 4, and 8 nodes are 2.43, 4.61,
9.31, and 19.32, respectively. Because of the producer thread, the fourth consumer
thread does not result in significantly better performance. Using 4 threads per node,
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Figure 5. Performance of Apriori Association Mining: 8GB dataset

the speedups on 1, 2, 4, and 8 nodes are 2.53, 4.80, 9.35, and 21.04, respectively.
The parallel efficiency in using 8 nodes and 3 threads per node is 81%, and the
parallel efficiency in using 8 nodes and 4 threads per node is 66%.

The performance on the 8GB dataset is presented in Figure 5. This dataset
resulted in 9 iterations of the outer-loop of the apriori association mining algorithm.
The number of candidate whose support is counted during these iterations is 1,000,
344,912, 858,982, 25,801, 22,357, 14,354, 6,257, 55, and 1, for the first through
ninth iterations, respectively. Each node has to broadcast and receive 5.1 MB of
data (broken over 9 messages) during the course of the execution.

Again, high distributed memory and shared memory parallel efficiency is
achieved. With the use of 1 thread per node, the speedups on 2,4, and 8 nodes
are 1.99, 4.05, and 8.07, respectively. Note that for this dataset, the data is not
memory resident even on 8 nodes. However, as the data is distributed over multiple
nodes, the amount of I/O needed on each node reduces, and helps achieve high
speedups.

Use of up to 3 threads per node results in almost linear performance improve-
ments. With 3 threads per node, the speedups on 1, 2, 4, and 8 nodes are 2.77,
5.50, 11.08, and 21.98, respectively. The parallel efficiency on 8 nodes with 3 thread
per node is 91.6%. With 4 threads per node, the speedups on 1, 2, 4, and 8 nodes
are 3.0, 6.5, 13.03, and 25.50, respectively. As the I/O requirements per node de-
crease, the producer thread consumes fewer cycles, resulting in more substantial
performance gains with the use of the fourth consumer thread.

5.4 Performance of k-Nearest Neighbor

We now present experimental results from parallelization of k-nearest neighbors
algorithm using our middleware. We used a 2.7 GB dataset with points in a 3-
dimensional space for evaluating our implementation. The value of k used is 10,
i.e., 10 nearest neighbors to a given point are searched by the algorithm.

The performance on 1, 2, 4, and 8 nodes, with 1 thread per node, is shown in
Figure 6. This code is I/O bound, i.e., there is very little computation and most of
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Figure 6. Performance of k-Nearest Neighbor

the time is spent performing I/O. Therefore, no performance gains are possible by
using additional threads for computation. The speedups on 2, 4, and 8 nodes are
1.93, 4.04, and 7.70, respectively. A superlinear speedup is observed in going from
2 to 4 nodes. This is consistent with what we observed from apriori association
mining on the 2GB dataset, and is because data owned by each processor becomes
memory resident in going from 2 to 4 nodes.

To verify that this algorithm is I/O bound, we measured the time taken by
a version of the code that only performs I/O and no computation. The amount of
time taken by that version is shown by a separate set of bars in Figure 6. The ratio
of the time taken by I/O only version to the total time is 93.2%, 92%, 95.3%, and
93.5%, on 1, 2, 4, and 8 nodes, respectively. This clearly shows that the code is I/O
bound and cannot benefit from additional threads for computation.

6 Related Work
We now compare our work with related research efforts.

Significant amount of work has been done on parallelization of individual
data mining techniques that can be parallelized through our approach. Most of
the work has been on distributed memory machines, including association min-
ing [4, 7, 22, 23], k-Means clustering technique [6, 17, 38], and bayesian networks [20].
Our work is significantly different, because we offer an interface and runtime support
to parallelize each of these algorithms. Shared memory parallelization of associa-
tion mining rules has also been an area of attention. Parthasarathy et al. have
developed a number of modifications to the basic apriori algorithm for improving
shared memory parallelization [29, 30]. The runtime parallelization techniques used
in our middleware are significantly different, because we focus on techniques that
can be used across a number of parallel data mining algorithms, or data intensive
reduction operations in general.

One effort somewhat similar to our work is from Becuzzi et al. [7]. They
use a structured parallel programming environment PQE2000/SkIE for developing
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parallel implementation of data mining algorithms. Darlington et al. [16] have also
used structured parallel programming for developing data mining algorithms. Our
work is distinct at least two important ways. First, they only target distributed
memory parallelism (while they report results on an SMP machine, it is using MPI).
Second, I/O is handled explicitly by the programmers in their approach.

The similarity among parallel versions of different data mining techniques
has also been observed by Skillicorn [37, 36]. Our work is different in offering a
middleware to exploit the similarity, and ease parallel application development.
The challenges in scalable and parallel data mining we listed in Section 1 have also
been observed by a number of other authors [5, 13, 21, 26, 28, 31, 36].

Several runtime support libraries and file systems have been developed to
support efficient I/O in a parallel environment [15, 34], most noticeable among
these is the PASSION library designed by Alok Choudhary’s group [39, 40]. They
usually provide a collective I/O interface, in which all processing nodes cooperate
to make a single large I/O request. With these collective I/O interfaces, the I/O
requests still need to be inserted by the programmers, and data processing usually
cannot begin until the entire collective I/O operation completes. The middleware
we have presented is significantly different, because the computation is an integrated
part of the specification.

7 Conclusions
In this paper, we have presented a middleware system for enabling rapid develop-
ment of parallel data mining implementations. The salient features of our middle-
ware are:
A. Our system exploits both shared memory and distributed memory parallelism.
Thus, it is particularly well suited for clusters of SMP workstations. Such clusters
have emerged as a cost-effective and common parallel processing configuration, but
have not been targeted much in the current parallel data mining efforts.
B. The parallel data mining implementations developed using our middleware can
process disk resident datasets, thus enabling data mining on large and realistic
datasets.
C. Experimental results have clearly shown the effectiveness of our middleware.
Specifically, we have shown that 1) distributed memory parallelization achieves
very high efficiency, and 2) shared memory parallelization achieves good efficiency
if the application is not I/O bound.
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