
A Fourier Analysis Based
Approach to Learning
Decision Trees in a
Distributed Environment

Byung-Hoon Park∗, Rajeev Ayyagari†, and Hillol
Kargupta†

Abstract

Spurred by advances in communication technologies, mobile computing and databases that

are distributed have become widespread. Such a computing environment involves data that

is stored at geographically dispersed locations, and the so-called “slim” computing devices

such as palmtops and wearable computers. The decentralized nature of data storage and

this new paradigm in computing give rise to several issues, such as security, communication

overhead, computational load demands and scalability, that are not adequately addressed

by traditional centralized data mining techniques. It is essential that algorithms designed

for distributed data mining scenarios mitigate some of these issues. This paper attempts

to adapt one centralized data mining technique, decision tree learning, to such an envi-

ronment. It presents a scalable algorithm that can be used to build decision trees from

a distributed, heterogeneous database while minimizing communication overheads. This

paper also shows how a decision tree may be represented in terms of its Fourier spectrum.

It uses this Fourier spectrum based technique to aggregate decision trees built at the vari-

ous distributed sites, simplifying the model built during the data mining stage, and notes

some additional advantages of the Fourier spectrum approach.

∗School of Electrical Engineering and Computer Science, Washington State University, Pull-
man, WA 99164-2752, USA, bhpark@eecs.wsu.edu

†Department of Computer Science and Electrical Engineering, University of Maryland Balti-
more County, 1000 Hilltop Circle, Baltimore, MD 21250 {arajeev, hillol}@cs.umbc.edu.

1

2

1 Introduction
Information gathering infrastructures have grown steadily in pervasiveness and
power in recent years, giving rise to large electronic data storage stations. Large
volumes of data are gathered from myriad sources, stored, and utilized for researches
into a wide spectrum of disciplines. Reflecting the plethora of fields for which the
data is collected, and the distributed nature of the data gathering systems, its stor-
age is highly decentralized in nature at locations that are often widely dispersed.

For example, The NASA Earth Observing System (EOS)1 generates more
than 100 gigabytes of image data per hour, that are stored, managed, and dis-
tributed by the EOS data and information system (EOSDIS). The data managed
by EOSDIS are available primarily from eight EOSDIS Distributed Active Archive
Centers (DAACs). Each of the eight NASA DAACs provides data pertaining to a
particular earth science discipline. These DAACs collectively provide a physically
distributed but logically integrated database to support interdisciplinary research.

The Internet provides another example of a source of distributed data. A
prime source of financial data is financial news stories regularly posted on the Inter-
net, which include announcements regarding new products, quarterly revenue, legal
battles and mergers. In addition, sites such as Yahoo finance and CNN finance offer
company financial profile data. The websites of various companies and online stock
quotes form other sources of such data.

The ability to extract meaningful information from such data is of paramount
importance in today’s world. Managerial or strategic decision making often de-
pends on the ability to extract such information in a timely manner, without too
many restrictions on the type of computing or communication resources immedi-
ately available to the decision maker. This paper makes the case that these goals
can be achieved by using the paradigm of Distributed Data Mining (DDM). In par-
ticular, it develops a distributed decision tree learning algorithm. The algorithm
builds a model at various distributed sites, and transmits the model and a modest
amount of data to a central site. The data to be transmitted is determined using
boosting, a technique that was used to help enhance the appropriateness of the
information transmitted to the central site. It is noted that the model built in this
fashion was too complicated, and Fourier analysis techniques are developed to help
mitigate the problem. The paper shows how the Fourier analysis techniques can be
used to simplify the model built, and indicates how to mine data effectively in a
way that distributes computational load and reduces communication costs.

Section 2 presents an abstraction of the problem and the motivation behind
our approach. It also provides an introduction to decision trees. Section 3 describes
the algorithm for building a distributed decision tree model. Section 4 shows how
Fourier analysis techniques can be used in conjunction with decision trees and de-
scribes a method for simplifying the model built. Section 5 describes experimental
verification of the techniques proposed. Finally, section 6 describes avenues for
future research and concludes this paper.

1http://eospso.gsfc.nasa.gov

http://eospso.gsfc.nasa.gov

3

2 Background
We use the relational model of data storage in this paper. That is, each “piece of
data” (also called an instance, record, row or individual) is a collection of features,
also called attributes or records. Attributes may be discrete or continuous. There
is a collection of features that, taken together, uniquely identify an individual.
This is known as the key. Relational data collected and stored in a distributed
fashion may be homogeneous, where each site stores the same features, but different
individuals. However, it is often the case that the data is heterogeneous, with
the sites storing different features of the same individual. The former method of
data storage is also called horizontally partitioned data storage, whereas the term
vertically partitioned is sometimes used to describe the latter. A common or key
attribute at the sites that identifies an instance can usually be constructed for
heterogeneous data. In this paper, we consider the problem of supervised learning
over distributed, heterogeneous data sets. Given a classification of each instance in
the data, supposed to be the “correct” classification, we try to determine a function
of the features that places each instance into a “class”.

Many researchers have developed techniques for analyzing distributed data.
Some existing techniques have been adapted to homogeneous data [3, 6, 42]. Several
new techniques have also been developed [8, 7, 33, 41, 28, 17, 45, 10, 27, 21, 20, 9, 32,
20, 11]. Of late, algorithms for the analysis of distributed heterogeneous have excited
interest. Some of the work in this field includes [34, 1, 44, 31, 18, 19, 24, 23, 22, 25,
43]. A large fraction of the existing research into distributed, heterogeneous data
sites concerns unsupervised learning [23, 19, 31, 22]. More recently, the problem of
supervised learning on heterogeneous data has been investigated [18, 25, 43]. This
paper extends earlier work reported in [25].

We illustrate the problem and the difficulties that arise with an example based
on toy data. We consider a medical insurance company which wishes to determine
whether a particular client is a high-risk patient before offering insurance against
medical expenses. In our simplified scenario, the company bases its predictions
on data at two different agencies that store medical records and financial records.
Sample data is shown in Figure 1.

The “key” field identifies the patient. A notable aspect is the separation of the
features. The data at the two sites contains different features, although the data
is about the same patients. The specific prediction model used in this paper is a
decision tree, built using the well known algorithm C4.5 [36]. The traditional C4.5
algorithm would produce an accurate decision tree model but would require that
the data be centralized, incurring transmission costs, and possibly unacceptable
security risks. Using a naive approach, we might build two decision trees, one at
each site, by running C4.5 on the data at that site. The three trees obtained using
these methods are shown in Figure 2.

While the tree built after centralizing the data has an error of 0%, the other
two trees have errors of 26.3%! The reason for this is evident when we look at
the centralized decision tree: there is a cross-term, an interaction between Average
Monthly Visits and Average Monthly Expenses, which cannot be captured at either
site. Thus, such naive approaches cannot achieve the objective of accurate predic-

4

Avg Avg Med
Monthly Medical Hi Expenses Hi

Key Visits History Risk Key (Monthly) Income Risk
1 0.8 bad Yes 1 53.00 39600 Yes
2 0.9 bad Yes 2 86.75 45500 Yes
3 1.0 good No 3 23.25 60100 No
4 0.8 good No 4 78.50 55000 No
5 0.7 good No 5 55.00 31300 No
6 0.6 bad Yes 6 65.50 37400 Yes
7 1.4 good No 7 28.25 44200 No
8 1.1 good Yes 8 33.75 28100 Yes
9 1.5 good No 9 14.25 25900 No
10 2.1 good Yes 10 39.75 38200 Yes
11 1.0 good No 11 27.00 35500 No
12 1.6 good Yes 12 31.25 41600 Yes
13 1.3 good Yes 13 29.00 57400 Yes
14 0.8 good No 14 46.00 47100 No
15 1.4 bad Yes 15 27.50 42300 Yes
16 1.0 good No 16 28.25 33000 No
17 1.2 good Yes 17 33.50 36800 Yes
18 1.1 good No 18 26.25 41300 No
19 1.1 good No 19 25.50 33500 No

Figure 1. Sample data for the insurance problem under (left) medical and
(right) financial records.

tion. Clearly, there is a trade-off between the accuracy and the amount of data
transmitted to a central location. This paper explores a technique that allows the
amount of data transmitted and the error rates achieved to be varied in a controlled
fashion. It uses ensembles of decision trees constructed using boosting [37, 14, 16]
to build a model of the data in a truly distributed fashion, as shown in the next
section. It then explores Fourier analysis techniques that can be used to construct
a simpler decision tree from this model.

3 Distributed Decision Tree Learning in a
Heterogeneous Environment

In this paper, we use decision trees as a model of the data. Decision trees are
attractive models, because they are easy to understand and generate simple decision
rules. Decision tree learning algorithms such as ID3 [35] and C4.5 [36] are also fast,
accurate on many data sets, and easily available. This section shows how to build
decision trees in a distributed fashion using boosted ensembles.

Some work has been done on decision tree learning in a distributed, environ-
ment. However, the synchronous tree construction approaches considered before

5

History

Yes

Bad Good

Expenses

No

<= 28.25

Visits

>28.25

NoYes

<= 0.9>0.9

History

Yes

Bad Good

No

Expenses

Yes

> 27 <= 27

No

Figure 2. (left) Decision tree computed by C4.5 for the insurance problem
when all the data is contained at a single site (top right) Decision tree computed by
C4.5 based on partial data from the financial records and (bottom right) from the
medical records.

are not suitable for the problem we consider. In such an approach, all the sites
contribute in selecting a feature at every node of the globally maintained tree. For
example, the ID3 algorithm computes the information gain for every choice of fea-
ture. So all the sites need to be informed regarding the particular subset of data
subsumed at a particular node. Since the complete data set is distributed among all
the nodes at a particular level, at each level the communication cost will be O(ns),
where n is the number of data rows and s is the number of different data sites. If
the tree has a depth bounded by some constant k then the overall communication
cost will be O(nsk). If the table has c columns and n rows then the cost of moving
the complete data sets to a single site is O(nc). When sk > c distributed decision
tree construction using the naive approach is computationally worse than the cen-
tralized approach. For distributed environments with large number of data sites
this may be a major bottle-neck.

To motivate our approach, we return to the example of the medical insurance
company. As shown before, decision trees built locally by C4.5 at each of the sites
have high prediction error. The decision trees output by C4.5 assign a confidence
to each leaf, defined as the proportion of data points falling into that leaf that are
correctly classified. If we now look carefully at the particular instances that were
misclassified (and hence were responsible for the error) at the sites, we find that
they are the ones with the lowest confidence. Indeed, this is how the confidence
is defined. Now, we gather the features from both sites for the instances with the
lowest confidence at a single central site, and run C4.5 on the data thus obtained.
The resulting tree is shown in Figure 3. This tree captures the cross term that was

6

Expenses

<= 28.25

Visits

>28.25

No Yes

<= 1 > 1

No

Figure 3. Tree constructed from instances for which both local sites give
low confidence

missed by the local trees, but was present in the centralized tree, viz. that between
Average Monthly Visits and Average Monthly Expenses. In fact, the conditions
tested in this tree, built from just a small fraction of the data, are almost identical
to those in the centralized tree. This suggests that distributed learning can be
accomplished using little data communication.

Now we turn our attention to the question of how these “bad” training in-
stances may be detected. Several techniques were tried. It was found that boosting
gave the best selection in terms of the appropriateness of the rows transmitted, as
gauged by the cross terms that are evaluated at the central site from this data.
Boosting [37, 14, 16] is a technique that improves the performance of any weak
learner by modifying the distribution according to which training data is sampled,
while leaving the underlying algorithm unaltered. AdaBoost, proposed by Freund
and Schapire in [16], is a boosting algorithm that has been studied in a theoretical
framework [4, 5, 13, 30, 39] as well as an empirical one [2, 30, 12]. It has been
proved that the training error of the AdaBoost algorithm decreases with the num-
ber of classifiers in the ensemble. Boosting (and in particular, AdaBoost) has the
property that it identifies training instances that are difficult to classify. In this
paper, we define a measure for each site, the confidence of that site, which is closely
tied to the boosting distribution. Thus, a low confidence identifies the “bad” rows.
The connection between the confidence measure (defined below) and the boosting
distribution is shown in Appendix. The following subsection describes the algorithm
in detail.

3.1 The Algorithm

The proposed algorithm offers a way to balance the transmission cost and the error
by identifying the training instances which have the most information about cross-
terms. This is done using the confidence defined below. The technique involves

7

setting a threshold for the confidence. Instances classified with confidence lower
than the threshold are transmitted, along with the local models, to a central site.

The specific decision tree algorithm used is the C4.5 algorithm [36]. AdaBoost
is used to build an ensemble of decision trees at each local site. The AdaBoost
algorithm is used in conjunction with C4.5, as in [15]. At the end of the boosting,
each site has an ensemble of decision trees. When presented with an example, each
of these trees will return a real number in [0, 1]. This number represents both the
prediction and the confidence of the tree in that prediction. (If it is closer to one,
the confidence that the instance is a positive one is higher.) The confidence values
contain more information than a binary classification [40].

The algorithm proceeds as follows. First, AdaBoost is used with C4.5 to
build an ensemble at each site. Suppose the trees obtained after boosting are
Tij , i = 1, ..., k, j = 1, ...,mi, where mi is the number of boosting iterations at site
Si. Given an example x, tree Tij returns a prediction/classification pij .

The confidence of predicting 0 at site Si is defined as

c0i =
∑

2pij−1<0

αt |2pij − 1| ,

and the confidence of predicting 1 at Si is similarly defined as

c1i =
∑

2pij−1>0

αt(2pij − 1),

where αt refers to the boosting weight. [38] suggests using

αt = 1/2 ln ((1− εt)/εt)
where εt = PrDt

(ht(xi) �= yi) is defined to be the error made by the weak learner.
This is evaluated as εt =

∑
i:ht(i) �=yi

Dt(i). The prediction of site Si as a whole is

given by pi = 0 if c0i > c1i and 1 otherwise.
The confidence of this prediction at site Si is ci =

∣∣c0i − c1i ∣∣. As shown in
Appendix, this confidence is closely related to the boosting distribution, and hence
gives an idea of how easy or hard it is to classify a particular training instance.

The idea used in the algorithm is that the instances that are difficult to classify
correctly should be sent to the central site during the model-building stage. Thus,
the model at the global site is based on those instances that are difficult to classify.
At the classification stage, the instances that are determined as difficult to classify
are similarly sent to the global site.

The boosting can be used to determine which instances are difficult to classify.
In particular, a row which is classified with very low confidence by every site is
difficult, since the boosting would improve the confidence with which that row is
classified if it were not.

A training row x is considered “bad” if maxi=1,...,k ci < γ1, where γ1 is a
threshold that is set externally. (The ci values are, of course, dependent on the
training example x.)

If a row is determined to be bad, features for that row from all the local sites
are sent to the global site. At the end of this procedure, the global site has complete

8

information about a fraction of all the training instances. The size of this fraction
is determined by the threshold γ1.

Another boosted model is then built at the global site based on all the trans-
mitted instances, resulting in an ensemble T1, T2, ..., Tm. This completes the model-
building stage of the algorithm.

3.2 Decision Tree Aggregation: Classification of Unseen
Instances

This section explores techniques for classifying unseen instances using the local and
global models built as above. The exact method used to combine the models is
important, as discussed below. Three different techniques were tried. The weighted
average and the linear OLS scheme failed to perform satisfactorily. The Tournament
scheme performed significantly better than the other two.

The weighted average scheme assigns weights to each local site, computed as
wi = − log((1 − εi)/εi), where εi is the training error at site i. We then calculate
the vote for the classifications 0 and 1 as w0 =

∑
i:pi=0 wi and w

1 =
∑

i:pi=1 wi. If∣∣w0 − w1
∣∣ is above a threshold γ2, the local sites are used for the prediction. The

prediction is 0 if w0 − w1 > 0 and 1 otherwise. If this overall confidence is below
the threshold γ2, the prediction made by the global site model is used.

While the voting or weighted average scheme performs better than the naive
approaches (such as using the estimates of the local sites without any kind of ag-
gregation), we found that it failed to perform as well as the Tournament scheme on
both datasets presented in the experimental section as well as several others. The
Tournament aggregation scheme performs significantly better. This may be because
the vote of a local model that is performing consistently well may be “damped” by
other poorly performing models in an averaging scheme such as this one. Thus,
even if a local partition is the most significant one, the instance may be referred to
the global model for classification, leading to incorrect classifications.

The OLS scheme is a variation on weighted averaging. Instead of determining
the weights based on the error of the local sites, the predictions of the local sites
and the global site for the training instances are treated as independent variables,
with the correct prediction being the dependent variable. Linear regression is used
to determine the weights assigned to each site, as well as a constant.

Assume that xi, i = 1, ..., N are the training instances. The model at site
Sj predicts the value pij for training example xi, and the model at the global site
predicts gi. The model used is Y = Xβ + ε,where Y is the N × 1 vector of true
classifications, X is the N × (k+ 2) matrix [((pij)) : ((gi)) : 1], β is the (k+ 1)× 1
vector of coefficients (βk+2 is the regression constant and the remaining βis represent
the coefficients for each site), and ε is the error vector. β is estimated using OLS.

Given an unseen instance x, it is classified as follows. Let pi be the prediction
of site Si for x and let g be the prediction of the global site. Then the final prediction
is p = βk+2 +

∑k
i=1 βipi + βk+1g.

We assume here that there is a linear relationship between the predictions of
the local and global sites and the true classifications. This turns out to be an invalid

9

assumption. The OLS scheme failed to perform on both the datasets used in the
experiments. The errors for both datasets was close to 50%, i.e. this scheme is not
much better than random guessing.

The Tournament scheme attempts to address some of the problems that arise
with the other two schemes presented in this section. By using only the best of
the local classifiers, the Tournament scheme ensures that any highly significant
local partitions get high votes and are not damped out by other partitions. Thus,
the chances that unseen instances that should be classified by the local models
are referred to the global model are reduced. This scheme also seems to be more
amenable to the binary class label situation than the OLS scheme is.

Under the tournament scheme, we use only the best local classifier instead of
a linear function of all the local classifiers. If the local prediction is found to be
unsatisfactory, the global classifier is used.

To classify a new example x, we find the values c0i and c1i , i = 1, ..., k. Let

c = maxi=1,...,k;j=0,1 c
j
i , and (Ip, Jp) = argmaxi=1,...,k;j=0,1 c

j
i . If c > γ2, where γ2 is

a preset threshold, then the final prediction is Jp. If not, this row is identified as a
”difficult” row to classify, and the ensemble T1, ..., Tm built at the global site is used
to classify this row. This was found to be the best technique in our experiments.

The techniques described in this section show how to build a model comprising
a multitude of decision trees. In doing so, we lose one of the primary benefits of
using decision trees: simplicity. A large collection of decision trees aggregated using
a tournament scheme does not lend itself to easy comprehension. The next section
attempts to address this problem by using the Fourier transform of the decision
trees to simplify the model built.

4 Fourier Analysis of Decision Trees and its
Applications

In this section we describe the tools used to create a single, unified model at the
global site from the many models created at the local and global sites. In particular,
we describe how compute the Fourier spectrum of a decision tree, and how to build
a decision tree efficiently from its Fourier spectrum. We also show how to aggregate
the Fourier spectra of several models, that is, how to calculate the Fourier spectrum
of an ensemble classifier from the spectra of its individual models. The approach
to simplification of the model taken in this section is motivated primarily by the
observation, made in [26], that the Fourier spectrum of a decision has an exponential
decay property, which has the consequence that only a few of the coefficients in the
Fourier spectrum need to be computed. We first need to establish notation and set
up a mathematical framework under which the aforementioned analysis is carried
out.

4.1 The Fourier Spectrum of a Decision Tree

We start with a description of the Fourier basis of the linear space of all real-valued
functions on the set of all l-bit boolean feature vectors. Of course, boolean decision

10

trees fall into this category. The Fourier basis is comprised of 2l Fourier functions,
defined as ψj(x) = (−1)x·j, where j,x ∈ {0, 1}l. The notation x · j represents the
inner product of the two vectors j and x, modulo 2. ψj(x) can either be equal to 1
or -1. The string j is called a partition. The order of a partition j is the number of
1-s in j. A Fourier basis function depends on some xi only when ji = 1. Therefore
a partition can also be viewed as a representation of a certain subset of xi-s; every
unique partition corresponds to a unique subset of xi-s. If a partition j has exactly
α number of 1-s then we say the partition is of order α since the corresponding
Fourier function depends on only those α number of variables corresponding to the
1-s in the partition j. A function f : Xl → �, that maps an l-dimensional space of
binary strings to a real-valued range, can be written as

f(x) =
∑
j

wjψj(x),

where wj is the Fourier Coefficient corresponding to the partition j;

wj =
1

2l

∑
x

f(x)ψj(x).

We note that
∑

x∈X ψj(x) = 0. The Fourier coefficient wj can be viewed as the
relative contribution of the partition j to the function value of f(x). Therefore, the
absolute value of wj can be used as the “significance” of the corresponding partition
j. If the magnitude of some wj is very small compared to other coefficients then we
may consider the j-th partition to be insignificant and neglect its contribution.

We are now ready to describe the exponential decay property and a method
for calculating the Fourier coefficients efficiently from a decision tree. In this paper,
we indicate how the exponential decay property may be proved for decision trees
with non-boolean features. The techniques for calculating the Fourier spectrum are
described for boolean decision trees, but can be modified easily to suit the non-
boolean case. Following the notation introduced above, the Fourier transform can
be represented as

wj =
1

|Λ|
∑
x∈Λ

f(x)ψj(x) =
1

|Λ|
n∑

i=1

∑
x∈Sl1

f(x)ψj(x) =
1

Λ

n∑
i=1

|Sli |f(hi)ψj(hi),

where Λ denotes the instance space, Sli is the subset of Λ whose points fall into the
ith leaf node and hi is the schema defined by a path to li. This simply means that
we have a schema in which the features that are not fixed on the path to the leaf
nodes have ∗-s in their place.

The following properties were first stated, in a different form, in [29]. Firstly,
if a feature in a partition j is non-zero, and the same feature has a ∗ or don’t-care
value in the schema of a leaf li, then

∑
x∈Sli

ψj(x) = 0. Among the implications of

this is that Fourier coefficients corresponding to schemata with order greater than
the depth of the tree are zero. This result eliminates a great deal of computation.
Secondly, the energy, or the sum of squared coefficients, of the coefficients decreases

11

exponentially with their order. A stronger result is proved in [29], viz.
∑

|j|≥k w
2
j <

g(k) where g(k) is decreases exponentially in k. That paper also gives a closed form
for g(k). To indicate how the results of this section adapt to the non-binary case,
we extend this result to the non-binary case below. As mentioned above, the other
results will be stated only for the binary case.

To prove this result for the non-boolean case, consider the function κ : [λ]l →
R, where the notation [λ] stands for the set {0, 1, ..., λ − 1}. For the purposes of
this section, assume further that λ = 2q, so that each non-binary variable can be
represented using q bits. Let b : [λ]l → [2]ql be the canonical map from the non-
boolean feature space to the boolean feature space. The Fourier basis functions for
the non-boolean case are

φj(x) =

l∏
m=1

exp
2πi
λ xmjm

We have ∑
j∈[λ]l

ηjφj(x) =
∑

j∈[2]ql

wjψj(b(x)).

Here ηj are the non-boolean Fourier coefficients. Taking the inner product of both
sides of this equation with φi yields

ηi =
∑

j∈[2]lq

wj

∑
x∈[λ]l

ψj(b(x))φi(x).

Now, the expression
∑

x∈[λ]l ψj(b(x))φi(x) equals zero whenever |j| < |i|, where
|·| denotes the order of the partition, because a nonzero partition corresponding
to a non-boolean feature must map to a non-zero partition in the boolean case.
(Analytically, this is because the sum will add over all λ roots of unity for each
value of ψj(b(x)).)

Thus, we have

∑
|i|≥k

|ηi|2 =
∣∣∣∣∣∣
∑
|j|≥k

wj

∑
x∈[λ]l

ψj(κ(x))φi(x)

∣∣∣∣∣∣
2

≤
∑
|j|≥k

w2
j

∣∣∣∣∣∣
∑

x∈[λ]l

ψj(κ(x))φi(x)

∣∣∣∣∣∣
2

≤ K
∑
|j|≥k

w2
j ≤ Kg(k)

where K is a constant that bounds the inner sum. (g is the bounding function
defined in [29].) Thus, the non-boolean Fourier spectrum also has the exponential
decay property.

4.2 Decision Tree Aggregation Using the Fourier Spectrum

The results mentioned thus far show that the Fourier spectrum can be computed
efficiently. The exponential decay property tells us that the magnitude of the high-
order coefficients drops off rapidly, so that it is enough to calculate a few lower
order coefficients. These results also provide us with a technique for calculating the
Fourier coefficients. The results in this section explain how we can use the Fourier

12

1 Function Detect(input: Decision Tree T)
2 for each possible enumeration path i to leaf nodes of T
3 wi ← Calculate(wi)

4 end

5 end

Figure 4. Algorithm for obtaining Fourier spectrum of a decision tree.

spectrum to simplify the decision tree model by reducing the number of decision
trees.

We first note that the final classification output by each local site, the boosted
classification, is a weighted average of the individual trees at that site. Thus, the
Fourier spectrum of the combined classifier can be obtained simply as a weighted
linear combination of the spectra of the individual trees. The algorithm for calcu-
lating the Fourier spectrum of a tree is shown in Figures 4 and 5. The algorithm
shown calculates all non-zero coefficients. Alternatively, a cut-off for the order of
the coefficients could be selected, based on the energy, to reduce the number of co-
efficients evaluated further. We can calculate the Fourier spectrum of the combined
classifier as

f(x) =

n∑
i=1

aifi(x) =

n∑
i=1

ai
∑
j∈Ji

wjψj(x),

where fi(x) and ai are the i-th decision tree and its weight and Ji is set of all its
non-zero coefficients.

In order to build a single tree that is equivalent to the local classifier, we
need an efficient technique to build a decision tree from its Fourier spectrum. The
algorithm we propose does this by simulating the working of the ID3 algorithm,
which selects the attribute ai with maximum information gain. In other words, to
select an attribute ai for the next node, we need to measure entropy of each subtree
branched by ai. Since each such subtree can be denoted as a schema, evaluation of
entropy reduction by choosing ai can be measured by calculating the average of all
those schemata with ai at the node. This schema average is essentially a measure of
the distribution of class labels. Therefore, the entropy is considered to be low if the
average is close to either one or zero. A more detailed description of the efficient
calculation from the Fourier coefficients is provided in Kargupta et al [25]. Figures
6 and 7 give the algorithm for constructing a decision tree from its Fourier spectra.

This simplifies the local model at each site. The advantage is that we have a
more comprehensible model than the one we had before. However, we still do not
have a single decision tree that is equivalent to the entire model. To do this, we
need to be able to efficiently aggregate Fourier spectra across the heterogenous sites
and the global site. The following sketches a global decision tree building algorithm
which is currently under development.

Under the tournament-based distributed classifier system, a classification of an
instance x is chosen based on the highest confidence f(x) among all classifier sites.
Following the same rationale, the algorithm estimates the entropy of an schema

13

1 Function Calculate(input: Fourier Coefficient wi)

2 wi ← 0;
3 for each leaf node lj
4 hl ← a schema defined by a path to lj
5 wi ← wi + |Slj | × label(lj)× ψi(hl)
6 end

7 wi ← wi/|Λ|
8 end

Figure 5. Algorithm for calculating a Fourier coefficient. Λ denotes the
instance space, Slj is the subset of Λ whose points fall into the jth leaf node

1 Function BestAttribute(input: Schema h)
2 for each attribute attrl
3 for each possible value of attrl
4 hl ← update h with attrl
5 el ← 0
6 for each Fourier spectrum FTi
7 el ← el + ai × average(FTi, hl)
8 end

9 end

10 el ← min(el, 1− el)
11 end

12 best attr ← attribute attrl with minimum el
13 return (best attr, el)
14 end

Figure 6. Algorithm for Choosing the Best Attribute. ai is the weight
of ith decision tree and average(FTi,hl) returns the average of schema hl using i

th

Fourier spectrum.

h by choosing the minimum among those returned by all classifier sites. If the
entropy of h is minimum at classifier site Ci, it indicates that we can predict the
classification of h with probability of schema average at site Ci. It also ensures that
every data instance x ∈ h is likely to be assigned the classification from Ci with
high probability since a schema average is the expected confidence.

So far, this section has presented the Fourier spectrum approaches as tools
for simplifying the decision tree model built. We would like to point out that this
is by no means the only use for the Fourier spectrum in distributed learning. The
exponential decay property of the Fourier spectrum ensures that transmitting the
Fourier coefficients directly from the local sites would not be too costly an operation.
Fourier coefficients can be estimated directly from the data [25]. This is particularly
true if the data is uniformly distributed over the domain of the function we are
trying to learn. An accurate Fourier representation can be built up easily in this

14

1 Function Construct(input: Schema h,Threshold δ)
2 Create a root node

3 (best attr, entr)← BestAttribute(h)
4 root← best attr
5 if (entr < δ)

6 return root
7 end

8 for each possible branch bri of root
9 hi ← update h with bri
10 Construct(hi, δ)
11 end

12 end

Figure 7. Algorithm for Constructing a Decision Tree Using Fourier Spectrum.

case. Since the Fourier representation is concise, it proves cost-effective to transmit
the coefficients directly to the central site. Once this is done, the Fourier coefficients
of cross-terms can be estimated by transmitting a pre-determined number of data
instances to the central site and estimating the cross-terms based on these (using a
technique like linear regression).

5 Experiments
This section describes experimental verification of the techniques discussed in this
paper. The exponential decay property and the validity of the Fourier techniques
described in Section 3 are demonstrated. The performance of the model-building
and aggregation techniques described in Sections 4 and 5 are investigated.

5.1 Datasets

The experiments were performed on two datasets: Quest and Promoter Gene Se-
quence. Both datasets had binary class labels.

The Gene Sequence data was artificially generated using a decision tree built
by C4.5 when it was executed on the original Promoter Gene Sequence data set
obtained from the UCI Machine Learning Repository2. The data used to build
the tree had 76 instances with 57 attributes. Each attribute had 4 four possible
values: a,c,g,t. The decision tree thus obtained was then queried repeatedly for the
classification of 55000 randomly generated gene sequences, and random noise was
added to the classifications. Of the 55000 instances generated, 50000 were used for
training and 5000 for testing.

The Quest Data Generator3 was used to synthetically generate 20000 training
and 2000 test instances with 40 attributes. The attributes were all taken to be

2http://www.ics.uci.edu/~mlearn/MLRepository.html
3http://www.almaden.ibm.com/cs/quest/syndata.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.almaden.ibm.com/cs/quest/syndata.html

15

continuous and no discretization was performed.

5.2 Results

The results of the experiments are shown in the graphs in Figure 8. The first two
graphs are for experiments performed on the Quest data. The next two graphs are
for 0 on the Promoter Gene Sequence data. Both datasets were split into 5 sites,
selecting the features at random for each site. This represents a high degree of
fragmentation. The fifth graph demonstrates the exponential decay property of the
Fourier coefficients of a decision tree. The last graph shows the behaviour of a the
Fourier representation of the entire model when coefficients of a certain order are
used.

For the Quest and Gene Sequence data, the model-generating algorithm and
the Tournament aggregation technique were run for various values of the thresholds
γ1 and γ2. Graphs a. and c. show the accuracy of the algorithms for various values
of the transmission rate, for the two data sets. Both show an almost linear trend.

Graphs b. and d. give an indication of how well the boosting-based technique
identifies the cross terms (i.e. the badly classified rows). Note that the local sites
perform very well on the instances that they classify, but comparatively poorly
on the set of all training instances. These graphs are not intended to indicate any
convergence of the performance of the local sites as the fraction of data they classify
increases. They emphasize the difference in performance of the local sites when they
are used to classify all the rows and just the “good” rows, or the ones that are not
determined as bad. This indicates that those training instances that are being sent
to the global site for classification are the ones that should be classified by the global
model. The appropriate instances are being detected as bad instances.

Graph e. shows the energy of the Fourier coefficients for the Gene sequence
problem. The decision trees for this graph were obtained by splitting the data into
two sites and running decision tree algorithm on it. The Fourier spectrum of the
decision trees so constructed was calculated using techniques described in Section
3. The graph shows a clear exponential decay.

Graph f. shows the accuracy when predicting using the spectrum computed
from these decision trees directly. The estimation was done for various orders of
coefficients and the accuracy for each order of coefficients used is shown. The graph
shows that after a stage, which is reached for even small order coefficients, there is
not much improvement in the accuracy. This is a consequence of the exponential
decay property of the coefficients. It indicates that accurate learning can be done
using only a few lower order coefficients.

The experimental results that the Fourier analysis techniques proposed in
Section 3 do indeed perform well on actual data. The boosting-based method for
detecting the partitions which need to be estimated at the global site is also shown
to be working well. Thus, these techniques form a promising suite of methods for
analysis of distributed data in a consistent fashion.

16

6 Conclusions and Future Work
A scalable, robust approach for the analysis of distributed heterogeneous data has
become essential in the field of DDM. The paper presents a method for learning
ensembles of decision trees in such an environment. It notes that boosting provides
one method of determining which instances contain most cross-term information.
The observation that the model built was too complicated to be understood easily
drove the next section, which showed how to calculate the Fourier spectrum of a
decision tree and indicated how it could be used to simplify the model built. The
experimental results showed that the techniques proposed are indeed effective in
reducing data communication with acceptable increases to the error.

The Fourier analysis techniques of this paper have a wide variety of potential
applications. Some of these applications involve improvements to other algorithms,
as demonstrated in this paper. The Fourier coefficients can also be used to test
the correlations among certain attributes of data without constructing a whole tree.
This may find applications in many areas in a mobile computing environment, where
building the entire decision tree may not be feasible. These and other applications
of the Fourier techniques outlined in this paper need to be explored in greater detail.
In addition to the applications of the Fourier analysis techniques, work needs to be
done on improving techniques for aggregation of the decision trees.

Acknowledgments
This research is supported by the United States National Science Foundation grant
IIS-0093353.

Appendix: Confidence and the Boosting Distribution
This appendix establishes a connection between the confidence used in this paper
and the boosting distribution. Following [40], we first make the following definitions.
Let T0 = {(x1, y1), ..., (xm, ym)} be a set of training examples. The weak learner
accepts a set of training examples T0 and returns a hypothesis h. In general, h is a
function h : X → Y, where X is the instance space and Y is the classification space.
For convenience purposes, we consider the function h defined by h(xi) = 2pi − 1,
where pi is the prediction of the i-th weak learner (tree, in our case). Thus, h
returns either -1 or 1 and our classification space Y is transformed to {−1, 1}. In
AdaBoost, an initial uniform distribution D over the training examples is assumed.
The distribution is updated using the update rule:

Dt+1(i) =
Dt(i)e

−αtyiht(xi)

Zt

where Zt is a normalization factor, chosen so that Dt+1 will be a distribution, and
αt is a weight. The final hypothesis is

H(x) = sgn

(
K∑
t=1

αtht(x)

)

17

As mentioned in [15], the boosting distribution Dt gives higher weight to those
instances which are hard to classify and lower weight to those instances which are
hard to classify. It is easy to see that

DT+1(i) =
exp(−yi

∑T
t=1 αtht(xi))

m
∏T

t=1 Zt

.

Now we define the confidence of the ensemble of classifiers to be p =
∣∣∣∑T

t=1 αtht(xi)
∣∣∣.

Thus, we have

DT+1(xi) =

{
exp(−p)/K if classification = yi
exp(p)/K otherwise

Here K = m
∏T

t=1 Zt does not depend on the training instance and can be taken as
a constant for the current discussion. Thus, for instances that are correctly classified
by the ensemble of trees, the boosting distribution is an exponentially decreasing
function of the confidence. However, as proved in [40], the training error is low if
AdaBoost is run for sufficiently many iterations. Thus, the boosting distribution
and confidence are related as above for most of the training examples.

18

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
c
c
u
r
a
c
y

Fraction of Data Transmitted

Aggregated classifier accuracy

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
c
c
u
r
a
c
y

Fraction of Data Classified Using Local Classifiers

Points classified using locals
All points

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

A
c
c
u
r
a
c
y

Fraction of Data Transmitted

Aggregated classifier accuracy

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
c
c
u
r
a
c
y

Fraction of Data Classified Using Local Classifiers

Points classified using locals
All points

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20

E
ne

rg
y

Coefficient Order

Local Site 1
Local Site 2
Central Siet

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5

A
cc

ur
ac

y

Coefficient Order

Figure 8. The Figures (left to right and top to bottom) are: a. Accuracy
vs. transmission for Quest data, b. Accuracy of local models vs. 0 classified by
them, c. Accuracy vs. transmission for Gene data, d. Accuracy of local models vs.
instances classified by them, e. Energy of coefficients vs. their order, f. Accuracy
of Fourier Representation based model vs. order of coefficients used.

Bibliography

[1] J. Aronis, V. Kulluri, F. Provost, and B. Buchanan. The WoRLD: Knowl-
edge discovery and multiple distributed databases. In Proceedingd of Florida
Artificial Intellegence Research Symposium (FLAIRS-97), page Not available,
1997.

[2] E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1–2):105–
139, 1999.

[3] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[4] L. Breiman. Bias, variance and arcing classifiers. Technical Report 460, Statis-
tics Department, University of California at Berkeley, 1996.

[5] L. Breiman. Prediction games and arcing classifiers. Technical Report 504,
Statistics Department, University of California at Berkeley, 1997.

[6] L. Breiman. Pasting small votes for classification in large databases and on-line.
Machine Learning, 36(1–2):85–103, 1999.

[7] P. K. Chan and S. Stolfo. Experiments on multistrategy learning by meta-
learning. In Proceeding of the Second International Conference on Information
Knowledge Management, pages 314–323, November 1993.

[8] P. K. Chan and S. Stolfo. Toward parallel and distributed learning by meta-
learning. In In Working Notes AAAI Work. Knowledge Discovery in Databases,
pages 227–240. AAAI, Princeton, NJ, 1993.

[9] D. W. Cheung, V. Ng, A. Fu, and Y. Fu. Efficient mining of association rules in
distributed databases. IEEE Transaction on Knowledge and Data Engineering,
8(6):911–922, December 1996.

[10] V. Cho and B W’́uthrich. Toward real time discovery from distributed infor-
mation sources. In Xingdong Wu, Ramamohanarao Kotagiri, and Kevin B.
Korb, editors, Research and Development in Knowledge Discovery and Data
Mining, number 1394 in Lecture Notes in Computer Science : Lecture Notes in
Artifical Intelligence, pages 376–377, New York, 1998. Springer-Verlag. Second
Pacific-Asia Conference, PAKKD-98, Melbourne, Australia, April 1998.

19

20

[11] V. Crestana and N. Soparkar. Mining decentralized data repositoies. Technical
Report CSE-TR-385-99, Ann Arbor, MI, 1999.

[12] T. G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting and randomization. Machine
Learning, 40(2):139–158, 2000.

[13] P. Domingos. Why does bagging work? a bayesian account and its implications.
In Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining, pages 155–158, Newport Beach, CA, 1997. AAAI Press.

[14] Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

[15] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm.
In Machine Learning: Proceedings of the Thirteenth International Conference,
pages 148–156, Murray Hill, NJ, 1996.

[16] Y. Freund and R. E. Schapire. A decision theoretic generalization of online
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):97–119, August 1997.

[17] Y. Guo and J. Sutiwaraphun. Distributed learning with knowledge probing:
A new framework for distributed data mining. In Advances in Distributed and
Parallel Knowledge Discovery. MIT Press, 2000.

[18] D. Hershberger and H. Kargupta. Distributed multivariate regression using
wavelet-based collective data mining. Technical Report EECS-99-02, School of
EECS, Washington State University, 1999. To be published in the Special Issue
on Parallel and Distributed Data Mining of the Journal of Parallel Distributed
Computing, Guest Eds: Vipin Kumar, Sanjay Ranka, and Vineet Singh.

[19] E. Johnson and H. Kargupta. Collective, hierarchical clustering from dis-
tributed, heterogeneous data. In Lecture Notes in Computer Science, volume
1759. Springer-Verlag, 1999.

[20] H. Kargupta, I. Hamzaoglu, and B. Stafford. Scalable, distributed data min-
ing - an agent architecture. In D. Heckerman, H. Mannila, D. Pregibon, and
R. Uthurusamy, editors, Proceedings Third International Conference on Knowl-
edge Discovery and Data Mining, pages 211–214, Menlo Park, CA, 1997. AAAI
Press.

[21] H. Kargupta, I. Hamzaoglu, B. Stafford, V. Hanagandi, and K. Buescher.
PADMA: Parallel data mining agent for scalable text classification. In Pro-
ceedings Conference on High Performance Computing ’97, pages 290–295. The
Society for Computer Simulation International, 1996.

[22] H. Kargupta, W. Huang, S. Krishnamrthy, H. Park, and S. Wang. Collec-
tive principal component analysis from distributed, heterogeneous data. In

21

D. Zighed, J. Komorowski, and J. Zytkow, editors, Proceedings of the Princi-
ples of Data Mining and Knowledge Discovery Conference, volume 1910, pages
452–457, Berlin, September 2000. Springer. Lecture Notes in Computer Sci-
ence.

[23] H. Kargupta, W. Huang, S. Krishnamurthy, and E. Johnson. Distributed clus-
tering using collective principle compent analysis. In Workshop on Distributed
and Parallel Knowledge Discovery, Boston, MA, USA, 2000.

[24] H. Kargupta, E. Johnson, E. Riva Sanseverino, H. Park, L. D. Silvestre, and
D. Hershberger. Scalable data mining from distributed, heterogeneous data, us-
ing collective learning and gene expression based genetic algorithms. Technical
Report EECS-98-001, School of Electrical Engineering and Computer Science,
Washington State University, 1998.

[25] H. Kargupta, B. Park, D. Hershberger, and E. Johnson. Collective data min-
ing: A new perspective toward distributed data mining. In H. Kargupta and
P. Chan, editors, Advances in Distributed and Parallel Knowledge Discovery,
pages 133–184. AAAI/ MIT Press, Menlo Park, California, USA, 2000.

[26] S. Kushilevitz and Y. Mansour. Learning decision trees using fourier spectrum.
In Proc. 23rd Annual ACM Symp. on Theory of Computing, pages 455–464,
1991.

[27] W. Lam and A. M. Segre. Distributed data mining of probabilistic knowledge.
In Proceedings of the 17th International Conference on Distributed Computing
Systems, pages 178–185, Washington, 1997. IEEE Computer Society Press.

[28] W. Lee, S. Stolfo, and K. Mok. A data mining framework for adaptive intru-
sion detection. In Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 1999.

[29] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier trans-
form, and learnability. Journal of the ACM, 40:607–620, 1993.

[30] R. Maclin and D. Opitz. An empirical evaluation of bagging and boosting.
In Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence, pages 546–551, Cambridge, MA, 1997. AAAI Press / MIT Press.

[31] S. McClean, B. Scotney, and Kieran Greer. Clustering heterogeneous dis-
tributed databases. In Workshop on Distributed and Parallel Knowledge Dis-
covery, Boston, MA, USA, 2000.

[32] D. Pokrajac, T. Fiez, D. Obradovic, S. Kwek, and Z. Obradovic. Distri-
bution comparison for site-specific regression modeling in agriculture. Pub-
lished in the 1999 International Joint Conference on Neural Networks,
http://www.cas.american.edu/ medsker/ijcnn99/ijcc99.html, July 1999.

http://www.cas.american.edu/medsker/ijcnn99/ijcc99.html

22

[33] A. L. Prodromidis, S. J. Stolfo, and P. K. Chan. Effective and efficient prun-
ing of meta-classifiers in a distributed data mining system. Technical Report
CUCS-017-99, Department of Computer Science, Columbia University, 1999.

[34] F. J. Provost and B. Buchanan. Inductive policy: The pragmatics of bias
selection. Machine Learning, 20:35–61, 1995.

[35] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[36] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman,
1993.

[37] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

[38] R. E. Schapire. Theoretical views of boosting. In Computational Learning
Theory: Fourth European Conference, EuroCOLT’99, pages 1–10, 1999.

[39] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A
new explanation for the effectiveness of voting methods. In Machine Learning:
Proceedings of the Fourteenth International Conference, 1997.

[40] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-
rated predictions. Machine Learning, pages 297–336, 1999.

[41] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and P. K.
Chan. JAM: Java agent to meta-learning over distributed databases. In David
Heckerman, Heikki Mannila, Daryl Pregibon, and Ramasamy Uthurusamy, ed-
itors, Proceedings on the Third International Conference on Knowledge Discov-
ery and Data Mining, pages pages 748–1, Newport Beach, CA, August 1997.
AAAI Press.

[42] K. M. Ting and B. T. Low. Model combination in the multiple-data-base
scenario. In Machine Learning: ECML-97, number 1224 in Lecture Notes in
Computer Science : Lecture Notes in Artificial Intelligence, pages 250–265, New
York, 1997. Springer-Verlag. 9th European Conference on Machine Learning.

[43] K. Tumer and J. Ghosh. Robust order statistics based ensemble for distributed
data mining. In Advances in Distributed and Parallel Knowledge Discovery,
pages 185–210. AAAI/ MIT Press, Menlo Park, California, USA, 2000.

[44] A. L. Turinsky and R. L. Grossman. A framework for finding distributed data
mining strategies that are intermediate between centralized strategies and in-
place strategies. InWorkshop on Distributed and Parallel Knowledge Discovery,
Boston, MA, USA, 2000.

[45] K. Yamanishi. Distributed cooperative Bayesian learning strategies. In Pro-
ceedings of COLT 97, pages 250–262, New York, 1997. ACM.

