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Abstract

Dimension reduction in today’s vector space based information retrieval system is essential
for improving computational efficiency in handling massive data. In our previous work
we proposed a mathematical framework for lower dimensional representations of text data
in vector space based information retrieval, and a couple of dimension reduction method
using minimization and matrix rank reduction formula. One of our proposed methods is
CentroidQR method which utilizes orthogonal transformation on centroids, and the test
results showed that its classification results were exactly the same as those of classification
with full dimension when a certain classification algorithm is applied. In this paper we
discuss in detail the CentroidQR, and prove mathematically its classification properties
with two different similarity measures df, and cosine.
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Introduction

To handle today’s massive high dimensional data efficiently, dimension or feature reduc-
tion of data is essential in a information retrieval system. Grouping similar data into one
category through clustering presents more related output for user’s query without much
overhead [12]. Classification is the process of assigning new data to predefined proper
group called class or category. On the other hand, clustering is grouping the data without
any predefined categories, which is usually performed to build categories for classifica-
tion task. The classification problem may be complicated by imperfect class definitions,
overlapping categories, random variations in the new data [1], and nonlinearity of classi-
fier. A common classification system is composed of data collection, feature generation,
feature selection, classifier design, and finally system evaluation and feedback [6, 13, 16].
Among them feature selection is of great importance for the quality of classification and
computational cost of the classifier. Several examples of available classification methods are
k-nearest neighbor, perceptron, and decision tree [9, 16]. Another simple and fast method
we can consider is the one based on centroids of classes which provide useful background
for a couple of dimension method such as discriminant analysis, in addition to Centroid,
CentroidQR methods we proposed in [14] and others [4, 11].

The dimension reduction method that we will discuss in this paper is based on the
vector subspace computation in linear algebra [5]. Unlike other probability and frequency
based methods where a set of representative words are chosen, the vector subspace compu-
tation will give reduction in the dimension of term space where for each dimension in the
reduced space we cannot easily attach corresponding words or a meaning. The dimension
reduction by the optimal lower rank approximation from the SVD has been successfully
applied in numerous applications, e.g. in signal processing. In these applications, often
what the dimension reduction achieves is the effect of removing noise in the data. In case
of information retrieval or data mining, often the data matrix has either full rank or close-to
full rank. Also the meaning oficise in the data collection is not well understood, unlike
in other applications such as signal processing [15] or image processing. In addition, in
information retrieval, the lower rank approximation is not only a tool for rephrasing a given
problem into another one which is easier to solve, but the data representation in the lower
dimension space itself is important [8] in further processing of data.

Several dimension reduction methods have been proposed for clustering and classi-
fication of high dimensional data, but most of them provide just approximation of original
data. One attractive and simple algorithm is one based on the centroids of classes and
minimization [14]. In [14] we proposed a dimension reduction method named CentroidQR
and test results showed it gives exactly identical classification results in full dimensional
space and reduced dimensional space when classification is determined by comparing the
new data to the centroids of the clusters. In this paper, we revisit the CentroidQR method,
and prove mathematically its surprisingly good classification properties with two different
similarity measures of., and cosine. Before CentroidQR method is investigated in de-
tail, lower dimensional representation of term-document matrix and representation of each
cluster will be discussed in the following sections.
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Lower Dimensional Representation of Term-Document
Matrix

To mathematically understand the problem of lower dimensional representation of the given
document sets, we will first assume that the reduced dimension, which we will deriote as

(k << min(m,n)), is given or determined in advance. Term-document matrgx R™*"

is defined as the matrix whose column vector represents each document and each component
of the column vector does a word of the document. Then given a term-document matrix

A € R™*" and an integek, the problem is to find a linear transformatiéd’ ¢ R**™ that

maps each columa; of A in them dimensional space to a vectgrin the k dimensional

space :

GT :a; e R™! gy e RF*¥L 1 < <. Q)

This can be rephrased as an approximation problem where the given mdtes to be
decomposed into two matricésandY” as

A~ BY (2)

where bothB € R™** with rank(B) = k andY” € R**™ with rank(Y") = k are to be found.
This lower rank approximate factorization is not unique since for any nonsingular matrix
7 e kak’

A~ BY = (BZ)(Z7'Y),

andrank(BZ) = k andrank(Z~'Y) = k. The solution for problem (2) can be found by
finding B € R™** with rank(B) = k andY” € R¥*™ with rank(Y") = k in the minimization
problem

min |4 — BY||». @)

For example, when we use centroid vectorsBothe solution vector¥ = (BT B)~1BTA

will be the reduced dimensional representation of data matri¥Vhen the matrix3 has
orthonormal columns, sincB” B = I, we haveY = BT A which shows that; = B. It

is well known that the best approximation is obtained from the singular value decomposi-
tion(SVD) of A. The commonly used latent semantic indexing [2] exploits the SVD of the
term-document matrix. For successful rank reduction scheme, it is important to exploit a
priori knowledge. The incorporation of a priori can be translated to adding a constraint in the
minimization problem (3). However, mathematical formulation of the a priori knowledge
as a constraint is not always easy or even possible. In this paper, we will concentrate on
exploiting clustered structure for dimension reduction.

Representation of Each Cluster

First we will assume that the data set is cluster structured and already grouped into certain
clusters. This assumption is not a restriction since we can cluster the data set if it is not
already clustered using one of the several existing clustering algorithms such as k-means



[4, 9]. Also especially when the data set is huge, we can assume that the data has a cluster
structure and it is often necessary to cluster the data first to utilize the tremendous amount
of information, in an efficient way.

Suppose we are given a data matdxwhose columns are grouped intoclusters.
Instead of treating each column of the matdxequally regardless of its membership in a
specific cluster, which is what is done in the SVD, we want to find the matfcasdY
with & columns andk rows, respectively, so that theclusters are represented well in the
space with reduced dimension. For this purpose, we want to choose each coléhso of
that it represents the corresponding cluster. To answer the question of which vector can
represent each cluster well, we first consider an easier problem with scalar data. For any

given scalar data set;, as, - - - , ., themean value
1 n
Ma = z; a; (4)
1=

is often used to represent the data set. The use of mean value is justified since it is the
expected value of the data or the one that gives the minimum variance

n n

A 2 _ i N2 —mi _ 2
;(az Me) Iglelﬂgi,l(al 6) Iggﬁ”(al an) —o(1 D2 ()

The mean value is often extended to the data sets in a vector space as follows. Suppose

ai,as,- - ,an € R™*1. Then itscentroid defined as
I 1
o= — i=—A 6
whereA = [a1az - - -a,] ande = (1,1,--- ,1)T € R"*!, is used as a vector that represents

the vector data set. The centroid is the vector which achieves the minimum variance in the
following sense:

n n
D llai—call3 = min Y fla; — 2[5 = min [|A—ze" |7 @)
i=1 i=1 eelnx

rERnX1 4

It is clear from (7) that the centroid vector gives the smallest distance in Frobenius norm
between the matrid and the rank one approximatiare” wherez is to be determined.
Since one of the vectors in this rank one approximation is fixed tq thés distance cannot

be smaller than the distance obtained from rank one approximation from the SVD: the rank
one approximation from the SVD would chodse vectorsy € R™*! andz € R**! such
that||A — y2T|| ¢ is minimized, and

min ||A — y27||p < min ||A — zeT || .
Y,z x

However, the centroid vector has the advantage that for each cluster, we camefirattor
in R™*! to represent it instead ofvo vectors.
For other alternatives for representatives, suchetoid, see [14].



Minimization with an Orthogonal Basis of the Cluster
Representatives

If the factor B has orthonormal columns in a rakkapproximationA ~ BY, then the
matrix Y by itself can give a good approximation fdrin the sense that the correlation of
A can be well approximated with the correlation}of

ATA~YTBTBY =YTY, where BTB=1.

)

In addition, most of the common similarity measures can directly be inherited from the full
dimensional space to the reduced dimensional space, since for anyyecif*!,

1Byll2 = llyll2;

where B has orthonormal columns. Accordingly, for any two vecterg € R™*! and
their projectionsi, ¢ € R**! via B,

lla —qll2 ~ |[Ba — Bql[2 = [|a — g]|2.

and
Cos(a,q) = Cos(Ba, B§) = Cos(a, §),
where for any two vectors andy in the space of same dimension,
T
Y
Cos(z,y) = 7———.
’ zll2[yll2

Therefore, for comparing two vectors in the reduced space, the niattoes not need to be
involved. No matter how the matricésandY” are chosen, this can be achieved by computing
the reduced) R decomposition of the matriB if it does not already have orthonormal
columns. In the following theorem, we summarize the well known QR decomposition
[3, 5] to establish our notations.

Theorem 1 (QR Decomposition) Let B € R™*% m > k be any given matrix. Then there
is an orthogonal matrix Q € R™*" such that

where R € R*** isupper triangular.

Partitioning@ as

Q = (Qk?QT)7 Qk S Rka, Qr c Rmx(m—k)7

we have

B =(Qx Q) (ff) = QuR. (8)



Algorithm 0.1 CentroidQR

Given a data set € R™*" with k clusters, it computes fadimensional representatign
of a given vectoy; € R™*1,

1. Compute the centroitd of theith clusterl < i < k
2. SetB=[by by -+ by
3. Compute the reduced QR decompositioBofwvhich isB = Qx R.

4. Solvemin, [|Qxg — ql|2 (in fact,§ = Q¥ q).

The right-hand side of Eqn. (8) is called the reducg® decomposition ofB, where
Range) = Range). Premultiplying(Qs, Q,)” onto both sides of Eqn. (8) gives

Qf\ 5 _ (QEBY _ (R
where we se€’ B = R andQ? B = 0. With the reduced QR decomposition Bfshown

in Eqn. (8), wher&)” Q. = I}, andR is upper triangular, the-dimensional representation
of A is the solution for

min||QZ — Allr. (10)

ThenZ = QF A = RY whereY is the solution for
min||BY — Al (11)

where B is the matrix whose columns are the centroids of classes. Eqn. (11) gives the
Centroid method in our previous work [14] by which full dimensional data matriend
centroid matrixB are transformed t&” and/;, in the reduced dimensional matrices, respec-
tively. By the minimization problem (10) the data matrixis transformed taZ, and the
centroid matrixB is transformed tdr, as

Z=QFA and R=QiB. (12)

Above steps are summarized in Algorithm CentroidQR.
It is interesting to note that when the columnsifre the centroids of the classes in the
full dimensional space, the corresponding centroids in the reduced space obtained by the
CentroidQR method are the columns of the upper triangular m&trixhile those reduced
by Centroid method are the columns of the identity mafri14].

There are many algorithms developed for classification [7, 14, 10]. In one of the
simpler but effective algorithms we simply compare the data with each centroid [7, 14],
which is summarized in Algorithm Centroid based classification.

We will show that the dimension reduction by CentroidQR algorithm has a special
property when it is used in conjunction with Centroid based classification.



Algorithm 0.2 Centroid based Classification

Given a data sefl with k clusters and: corresponding centroids;, 1 < ¢ < k, it finds the
indexj of the cluster in which the new vectgmbelongs.

1. Find the index such thatsim(g, b;), 1 < j < k, is minimum, wheresim(q, b;) is
the similarity measure betwegrandb;.
(For example, withL, norm, sim(q, b;) = |l¢g — b;||2 and the index which gives
minimum value is to be found, and with cosinén(q, b;) = cos(g,b;) = Mﬁjﬁ)
which gives maximum value is to be found. '

We now investigate the relationship between classification results from Algorithm
Centroid based Classification in the full dimensional space and the reduced space obtained
by CentroidQR method. It is well known that norm is invariant under orthogonal transfor-
mation. That is

1Q™ (a; — b;)II3 = (a;i — b)TQQ” (a; — b))

whereQTQ = QQ” = I. Our transformation does not hold invariance of norm, since we
useQg, andQ,Q% # I. However we now show that the transformation®y still has
very interesting properties.

Definition 1 (Ordering) Let §q,B) denote an ordering of column indices of B € R™**
which is sorted in an non increasing order of similarity between a vector ¢ € R™*! and
the k& columns of B € R™*F

For example, suppose the matifix = [bl bo b3] € R™*3 and in L, norm similarity,
llg —b1ll2 < llg — bsll2 < [lg — ba|2 the S(gq, B) = (1,3,2).

Theorem 2 (Order Preservingin Ls) The order S(q, B) with L, measure in the full di-
mensional spaceiscompletely preservedinthereduced space obtained with transfor mations
by (12). i.e. S(q, B) = S(§, B) when ¢ = QT ¢ and B = QT B, and the reduced QR de-
composition of B isQxR.

Proof:
Let's startwith norm preserving property of orthogonal transformation (13). $@¢é;|| =
0 from (9), ||¢ — b;||3 can be expressed as

llg = 65113 = 1Q" (a — )13 (13)
= 11Qk (¢ = b))II3 + Q7 (4 = b)) 13 (14)
= 11Qk (¢ = b;)II3 + Q7 all3 (15)

Thus if[lq — byll2 < [lg — bu]l2. then we havél Q7 (q — b)ll2 < Q¥ (¢ — by)]l» since the
term, || Q7 ¢q||3 of (15) does not involvé; norb, and is a constant for any class. This means
that our reduction method preserve the ordetogimilarity in full dimensional space after
dimension reduction.O



Theorem 3 (Order Preserving in Cosine) The order S(g, B) with cosine measure in the
full dimensional spaceiscompletely preserved in the reduced space obtained with transfor-
mations by (12). i.e. S(¢, B) = S(§, B) when § = Q¥q and B = Q7 B, and the reduced
QR decomposition of B is Q. R.

Proof:
Let cos(q, b;) be cosine between vectayss A andb; € B. Then
(Q"9)"Q"b;
cos(q,b;) = cos(QTq,QTb;) = -2~ J_
(0:0) = cost ) = QI
T
T T Q3 bj
B (q Qk q QT) (szj>
(IQF all3 + 11QFall3)2 1QE b;1
q" QrQLb;

= 1 (16)
(IQFall3 + 1QF qll3) = 1% b2

Thus wherros(g, b;) < cos(g, b;), we have
q" QrQLb; < q"QrQE by
1 — 1 .
(IQ%al3 + 1QFalD)= 1QEb; 2 — (1QEall3 + QT allZ) = [1QF il

When we take out the second common fadt@ ¢|| from the denominator of the above
expression, still holds

7" QrQ}b; < q"QrQ b
1QEallllQEbs1l ~ QFallQF bl
InEqn. (17), since the leftterm represents(q, b;), and the right term represeniss (¢, b; ),

where( is a reduced representation @fand by = Q¥'b; which is thekth dimensional
representation df;, 1 < i < k, the expression (17) is equivalent to

(17)

COS(qAa ZA)]) S COS(qAa l;l)
Thus
cos(q,b;) < cos(q,b;) then cos(d,l;j) < cos(d,l;l). O

The above two theorems show that we can completely recover the orders af batid

cosine similarities when original dimension is reduced to dimenkjdhe number of cat-
egories by Algorithm CentroidQR, and classification is achieved by Algorithm Centroid
based Classification. In other words, we can produce exactly the same classification results
with a reduced data as those with a full dimensional data, whose computational cost saving
is obvious especially for high dimensional data.

Note that the order preserving property of the dimension reduction obtained by Al-
gorithm CentroidQR holdsegardless of the quality of the clustering. This means that no
matter how the clustering in the full dimensional space is obtained, the ordering structure
between any data and the centroids of the clusters is preserved after dimension reduction via
Algorithm CentroidQR. Next section gives some experimental results showing the property
of our algorithm numerically.



Experimental Results

In the first test we use some artificial clustered data which is generated by an algorithm
which is a modified version of what is presented in [9] to examine the relationship between
numerical values of similarity measures in the full dimensional and the reduced dimensional
space expressed in Egns (15) and (16). In generating data set using the program, we can
optionally choose the dimension of the data, total number of data and minimum number of
data for each class. For a simplicity of presentation, we first choose the data set which is
composed of three classes with 20-dimensional data. Each class has 5, 5 and 3 items, and
thus total 13 number of data are selected. The matrix form of the test data is a dense matrix
of size20 x 13 . Since it has three classes, the data vectors are reduced to dimension 3 from
20 by the CentroidQR algorithm. Then we compare classification in the full and reduced
space. Detailed values are shown in the Table 1 and Table 2.

Table 1 shows classification in the full dimensional space and the reduced space
with L, measure, and their numerical relationship. First column of the table contains the
label of each data, the numerical values in the next three columns are Euclidean distances
between data; and centroid$; in full dimensional space, the next three columns represent
those in reduced space, and the last column deesorms of components which are
orthogonal toQ7 (a; — b;) of the full dimensional datd§Q” (a; — b;)||. From Eqgn. (15)
we know that Euclidean distance in full dimensional space is decomposed into Euclidean
distance in reduced space and constant value which is independent of centroid vectors. For
example, distances betweegp andb,, b, andbs in full dimensional space are 3.39, 4.71
and 6.05 respectively, which are decomposed into the constant 3.29 and 0.85, 3.38 and
5.08 of distances in reduced space, respectively. That38,= 1/0.852 + 3.292,4.71 =
V/3.382 4+ 3.292 and6.05 = /5.082 + 3.292. Those classification results exactly follow
the Theorem 1.

Similarly, Table 2 shows the cosine values between data vectors and centroid vectors
in full dimensional space and reduced space. With the cosine measure, item 9 is misclassi-
fied in full dimensional space, and also is is misclassified in reduced space too.

Another interesting fact is that with both similarity measures, the values determining
the class of data becomes more pronounced after reduction of dimension. In Table 1 for
dataa; the minimum distance is 2.90 tg, and next shortest distance is 4.1340 In the
reduced dimensional space, they are 0.74 and 3.04, respectively. With cosine measure in
Table 2 corresponding values in the full dimensional space are 0.77 and 0.43, and 0.98 and
0.55 in the reduced dimensional space. Thus the dimension reduction by CentroirQR makes
class-deciding measure difference clearer.

In the next test, a bigger and higher dimensional data set is tested for classification
in the full and reduced dimensional space. This data set consists of 5 categories, which are
all from the MEDLINE* database. Each category has 500 documents, and total number
of terms are 22095 after preprocessing with stopping and stemming algorithms [12]. The
categories have many common words related to a cancer. By Algorithm CentroidQR the
dimension 22095 is dramatically reduced to 5, the number of classes, classification of the
full dimensional data is completely preserved in this 5 dimensional space. Table 3 presents
as expected from Eqns. (15) and (16), the classification results are identical in the full and

Lhttp:/iwww.ncbi.nlm.nih.gov/PubMed
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Table 1. L, norm similarity between data and centroids

lla; — byl Q% (ai — b)I || 1Q7 ail]

data| b
ay 290| 4.13| 545 0.74| 3.04| 4.68 2.80
as 25| 5.46 | 5.68| 0.83| 3.54| 3.87 4.16
as 61| 485|593 0.49| 3.28| 4.74 3.57
as || 3.42| 4.66| 4.93 .85| 3.28 | 3.65 3.31
as 3.39| 4.71| 6.05| 0.85| 3.38| 5.08 3.29
ae 5.10| 3.72| 5.78 || 3.84| 1.61 | 4.70 3.36
a7 || 5.26| 4.10| 5.39| 3.60| 1.43| 3.77 3.84
as 6.48| 4.88 | 6.14 || 4.66| 1.90| 4.18 450

ag || 5.57]5.01|5.13| 3.72| 2.82| 3.02 4.15

2.98
3.33
4.71
5.50

aio | 452 3.98 | 6.44 2.06| 5.47| 3.40
ann | 455 | 4.49] 3.29 325| 1.10| 3.10
a1 || 5.23| 4.60| 2.63 4.00| 1.30|| 2.28
a3 || 6.87 | 6.33| 4.50 481 1.83| 4.11

Table 2. cosine similarity between data and centroids

cos(a;, b;) cos(QF a;, QTb;)
data by bo b3 b1 by b3
ay 0.771 0.43| 0.23 || 0.98 | 0.55| 0.29
> || 0.64| 024|034 097 0.36| 0.52
as 66| 0.23| 0.14 || 0.99| 0.35| 0.21
ay 701 0.29| 040 0.97| 0.41| 0.56
as 0.69| 0.23| 0.07 || 0.97 | 0.33| 0.10
a; | 0.34]0.75| 0.25] 0.45| 0.99 | 0.33
a7 || 0.01] 0.26| 0.15 | 0.03 | 0.88 | 0.49
as || 0.16 | 0.66 | 0.34 | 0.24| 0.98 | 0.50
ay || 0.01]0.01] 0.29 | 0.03| 0.02| 0.86
aro || 0.44 | 0.59| 0.00 || 0.62| 0.82 | 0.00
4, | 039]031]0.73] 052] 0.42] 0.98
4 | 0.10] 0.17] 0.81 | 0.12| 0.20] 0.95
a3 || 0.31] 0.48| 0.80| 0.38 | 0.59| 0.98

reduced dimensional space for both measures. Classification results of each data are not
shown in the table, but they are completely identical.



Table 3. Misclassification Rate

Data from MEDLINE
class category no. of data
1 heart attack 500
2 colon cancer 500
3 diabetes 500
4 oral cancer 500
5 tooth decay 500
Misclassification Rate (in %
Full CentroidQR
Dimension|| 22095 x 2500 5 x 2500
Ly 11.76 11.76
Cosine 7.80 7.80

Concluding Remarks

In this paper we presented mathematical proof of what we observed in the Experimental
results of our previous research [14] regarding Algorithm CentroidQR. For the centroid
based classification, Algorithm CentroidQR gives a dramatic reduction of dimension without

losing any information on the class structure.

Currently, we are studying relationship between classifications in the full dimensional
and reduced space using criteria such as traces of scatter matrices . What is also remarkable
is that the ordering structure between any data and the centroids based on casjne or
norm similarity measures is completely preserved after dimension reduction through our

CentroidQR algorithm regardless the cluster quality.
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