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Abstract

The discovery of preferences in space and time is important in a variety of applications. In this
paper we first establish the correspondence between a set of preferences in space and time and density
estimates obtained from observations of spatial-temporal features recorded within large databases.  We
perform density estimation using both kernel methods and mixture models.  The density estimates
constitute a probabilistic representation of preferences.  We then present a point process transition density
model for space-time event prediction that hinges upon the density estimates from the preference
discovery process.   The added dimension of preference discovery through feature space analysis enables
our model to outperform traditional preference modeling approaches. We demonstrate this performance
improvement using a criminal incident database from Richmond, Virginia. Criminal incidents are human-
initiated events that may be governed by criminal preferences over space and time. We applied our
modeling technique to breaking and entering crimes committed in both residential and commercial
settings. Our approach effectively recovers the preference structure of the criminals and enables one-week
ahead forecasts of threatened areas.  This capability to accommodate all measurable features, identify the
key features, and quantify their relationship with event occurrence over space and time makes this
approach applicable to domains other than law enforcement.

1.  Introduction

The concept of evaluating a decision, product, or service as a function of the attributes of
alternatives is a rather universally accepted approach, which has been implemented in such fields as
economics (McFadden, 1973, 1980; Theil, 1970), transportation (Currim, 1982), finance (Slovic et al.,
1972), medicine (Huber et al., 1969), and marketing (Gensch, 1979; Rust and Donthu, 1995). The goal of
the research is to analyze the individuals’ decision making process and predict the actual choice of
particular individuals. Some research, especially in the fields of economics, transportation and marketing
have used the analysis of choice behavior, which is first introduced by Luce (1959). The research
analyzes and predicts the decision of individuals by their preference on the attributes of alternatives.

Criminal incidents, like many other human-initiated events, are frequently linked with the
decision making process and preferences that event initiators (i.e., offenders) have for specific sites and
specific time slots in terms of certain spatial and temporal attributes (or features1) of those sites and time
slots, respectively. A number of researchers have documented and formulated descriptions for spatial
decision-making by criminals (see, for example, Brantingham and Brantingham, 1975; Molumby, 1976;
Newman, 1972; Repetto, 1974; Scarr, 1973). Some have looked specifically at the question of distance
                                                          
1 We use the term features as a synonym for terms such as predictor or independent variables, which are commonly
used in regression and linear modeling.
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from home to crime location (for example, Amir, 1971; Baldwin and Bottoms, 1976; Capone and
Nichols, 1976; LeBeau, 1987; Rossmo, 1993; Rossmo, 1994). Taken together this impressive body of
research shows that “target selection is a spatial information processing phenomenon.” (Brantingham and
Brantingham 1984, p.344).

It is rather safe to say that offenders’ preferences constitute an important piece of information to
inform future site selection decisions by criminals. Predictive models that fail to look into the feature data
to address incident initiation preferences are inevitably not as intuitive and, quite possibly, do not predict
as well as what we expect. They ignore feature data and basically map out the locations of past incidents
and their vicinities as predicted criminal “hot spots,” based on certain assumptions on spatial dependence.
In this paper, we describe a space-time prediction model that we recently developed based on the theory
of point patterns and multivariate density estimation. The model itself and the formal analysis that we
propose for building the model establish an approach for discovering and representing criminal
preferences as the functional relationships between demographic, economic, social, victim, and spatial
variables and numerous measures of criminal activity.

The remainder of this paper is organized as follows: In the next section, we take a closer look at
the distributions of criminal incidents in temporal, geographic, and feature spaces, respectively, and
explain intuitively how we may capture the incident initiation preferences in feature space. In Section 3
we give a formal account of the criminal incident prediction problem and describe the assumptions and
technical details of our model for solving the problem. In Section 4 we present a real-world application of
our proposed model and the evaluation and comparison of our model against the traditional “hot spot”
approach. Section 5 summarizes our modeling approach and the contributions of this approach to law
enforcement and to solving space-time prediction problems in other domains.

2.  Preference Discovery in Feature Space

Criminal incident prediction is usually carried out within a specified geographic region (e.g., a
jurisdiction) and within a specified time range (e.g., a month) for a specified crime type. We term the

geographic region of interest a study region or geographic space 2ℜ⊂D , and the time ranges a study

horizon +ℜ⊂T . To formally capture the criminal incident prediction problem, we regard the locations
and times of the incidents of a specific type as vectors ( )11 , ts , ( )22 , ts , ... , ...0 210 <<<= ttt  , where

Di ∈s  is the two dimensional location of incident i and ti is the time of this incident.  The incidents also

have corresponding features (or marks) 1x , 2x , ... that describe the attributes of the incidents. Suppose

that initially we have p measurable features pfff ,...,, 21  that are known or believed to be relevant to the

occurrence of the incidents. Then the hyperspace formed by these p features is a (p-dimensional) feature

space pℜ⊂χ . A subset of the initial feature set defines a feature subspace. Mathematically, taken
together the locations, times, and features of all incidents constitute a realization of a marked space-time
shock point process.

We have mentioned in the introductory section that for many human-initiated events, one primary
behavioral assumption is that event initiators (e.g., offenders in crime scenario) choose the site and time
of an event based upon a set of preferences over the values of the attributes (features) at alternative sites
and times. Suppose that the initial set of features contains those attributes that the event initiators actually
factor into their decision-making. For a specific group of event initiators, if we knew their set of
preferences (i.e., the subset of features and the partial order for the feature subset), we would examine all
location-time combinations for their feature values and score them accordingly. However, without its
knowledge, we must “discover” it from the data, more specifically, from the point pattern in feature
space.

Preference discovery in feature space prompts two questions. First, which features are actually
considered by a group of event initiators? We are never going to know with certainty the answer to this
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question. We can just find the smallest feature subset (key feature set) and the key feature space by
feature selection process. The underlying pattern of event occurrences should manifest itself most clearly
in the key feature space. This leads to the second question: What kind of point pattern do we expect to see
in the key feature space?

To answer the second question, we make the following two assumptions: (1) If multiple groups of
event initiators are present, they make site selection decisions based on common set of features, and (2)
preferences remain stable (stationary in probabilistic sense) over the study region and study horizon for
each group of event initiators. The first assumption is inevitable if we want to deal with multiple groups
simultaneously. With the second “stationarity” assumption, we may conclude that given the data of
repeated event initiation decisions by a group, the set of preferences of this specific group (or the
underlying pattern of event occurrences) must manifest itself as a small-variation distribution of values in
the key feature space. This small-variation distribution can be described as a clique in point process
theory (or less formally as a cluster). If multiple groups with distinct preferences are present over the
study region and study horizon, we expect to see a clustering (point) pattern with multiple cliques in the
key feature space.

We illustrate the above observation in Figure 1, where we have assumed that initial feature set is
the key feature set. Although the distribution of events on time axis as well as that in geographic space
could very much lack any systematic pattern, stable and distinct clustering patterns should be observed in
feature space. Each clique in feature space corresponds to a set of preferences. It is often the case that
locations in close geographic proximity have similar feature values. Then neighbors in geographic space
are neighbors in feature space (e.g., 6s  and 7s ). However, proximity in feature space does not necessarily

translate into proximity in the geographic space (e.g., 2s  and 5s ). The merit of integrating feature space

information into space-time event prediction is that potential event areas can be picked out. The same
rationale applies to the analysis of event occurrences in time.

Figure 1.  Event occurrences in three hyperspaces.

3.  The Model

Criminal incidents (and other human-initiated events in a more general context) are random
events in space and time. The quantity of general interest is naturally the likelihood that a future incident
occurs within a study region and a study horizon, given the times, locations, and feature values of past
incidents of the same type bounded by the same region and time range. Formally, this likelihood is the
transition density of the marked space-time shock point process we mentioned earlier. Let

{ }nn tttT ,...,, 21= , { }nnD sss ,...,, 21=  and { }nn xxx ,...,, 21=χ  where ( )21 , iii ss=s  and

]...[ 1 ′= ipii xxx . The transition density is defined as follows.
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Where sn +1 and tn+1 are the location and the time of the next incident, respectively, ( )1+ndsν  is the

Lebesgue measure of 1+nds  and ( )11 , ++ nn dtdN s  counts the incidents that happen within the infinitesimal

region 1+nds  and the infinitesimal time interval 1+ndt . It is the probability that a single future incident

occurs within specified infinitesimal region and specified infinitesimal time interval.
The discussion in this section focuses on two topics surrounding the transition density defined in

(1). First, we give a model of the transition density. Such a model can be used to dynamically generate
density estimates over space and time for the occurrence of future incidents. Second, we present criteria
for evaluating and identifying which of the features have the most predictive or explanatory power. These
two topics are closely related.

3.1. The transition density model
The development of our model involves a multi-step componentization of the transition density

(1) and the estimation of individual model components. This subsection describes the componentization
and the next section deals with density estimation models for the components.

The first step in the process of componentization is to separate spatial and temporal transitions.

( ) ( ) ( )nnnnnnnnnnnnnnn TttTDTDt 1
)2(

11
)1(

11 ,,,,,, +++++ ⋅= ψχψχψ ss (2)

Where ( )11
)1( ,,, ++ nnnnnn tTD χψ s  will be called spatial transition density and ( )nnn Tt 1

)2(
+ψ  temporal

transition density. Equation (2) would be a standard Bayesian decomposition if the second term on the

right-hand side were ( )nnnnn TDt ,,1
)2( χψ + . nD  and nχ  were left out under two assumptions: (1) The

initial set of features does not contain any (inherently) temporal features, and (2) temporal evolution
(transition) of the marked space-time shock point process does not depend on spatial (locational)
evolution (transition). By “(inherently) temporal features,” we mean features that “label” time intervals so
that categorization of time instants can be obtained.  The second assumption mentioned essentially says
that spatial dependence arises from the integration of causal factors over time, but not vice versa. In the
crime analysis scenario, this means that we do not regard the past crime intensity at a site as a direct
factor to influence how soon criminals are going to strike again. However, this past behavior does tell us
about the preferences of site selectors and we directly model these preferences in the subsequent steps of
the componentization below.

The second step of the componentization is concerned with how to model the spatial transition

density ( )11
)1( ,,, ++ nnnnnn tTD χψ s . We assume that the features selected initially are the key features. By

doing so, we postpone the feature selection task until next subsection. Suppose that the set nχ  of feature

vectors is partitioned into C  disjoint subsets { }Cjj
n ,...,2,1:)( =χ , each of which is mapped onto a

clique in key feature space.  Corresponding to { }Cjj
n ,...,2,1:)( =χ , the set nD  ( nT ) of locations (times)

of past events is also partitioned into C  disjoint subsets { }CjD j
n ,...,2,1:)( =  ( { }CjT j

n ,...,2,1:)( = ).

Let 1+nx  be the estimated feature vector at location sn +1 and instant tn+1.  Conditional on 1+nx , the spatial

transition density is assumed to take the form

( ) ( )nnnnnnnnn tTD χψαχψ 1
)11(

11
)1( ,,, +++ ⋅= xs

( ) { }∑ = +++ ∈⋅ C

j

j
nnn

j
n

j
nnn tTD

1

)(
11

)()(
1

)12( Pr,, χψ xs (3)
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Where ( )nnn χψ 1
)11(

+x  is termed the first order spatial transition density2 and reflects event intensity (i.e.,

first order effects) at 1+nx  in feature space. ( )1
)()(

1
)12( ,, ++ n

j
n

j
nnn tTDsψ , j = 1,2,...,C , are termed second

order spatial transition densities, which reflect interaction (i.e., second order effects) of new event

location 1+ns  with past event locations in each )( j
nD , respectively. { })(

1Pr j
nn χ∈+x , j = 1,2,...,C , are

spatial interaction probabilities or the probabilities that 1+nx  and each )( j
nχ  form a clique in the feature

space. α  is a normalizing constant.
Model (3) incorporates all elements of site selection behavior and puts them into a formal

framework   spatial point process theory. We do not consider second order effects in feature space
because we assume that the spatial point process in the key feature space is Markovian over a small
range. This assumption ensures that in the key feature space, there are no second order effects (i.e.,
dependence or interaction) between cliques, and since the range (or clique radius) is small, only first order
effects are important within each clique.

The second order effects are modeled in geographic space. Due to the uncertainty associated with
assigning a new event to a specific clique (or claiming that a specific group is responsible for a new
event), we weigh second order effects pertaining to individual cliques by the probabilities that quantify
this uncertainty (i.e., spatial interaction probabilities).

The spatial transition density model (3) needs “prior” adjustment when the predicted feature
values ( 1+nx ’s) for all locations within the study region (D) do not form a uniform distribution. Let

( )1+nn xκ  denote the probability density function of 1+nx  over all predicted feature values for locations

Dn ∈+1s . We adjust (3) as follows.

( ) ( )( ) ( )nnnnnnnnnnn tTD χψκβχψ 1
)11(

111
)1( 1,,, ++++ ⋅⋅= xxs

( ) { }∑ = +++ ∈⋅ C

j

j
nnn

j
n

j
nnn tTD

1

)(
11

)()(
1

)12( Pr,, χψ xs (4)

Where β  is a normalizing constant. When ( )1+nn xκ  is uniform, (4) reduces to (3). ( )1+nn xκ  can be

easily estimated if all features are static over the study horizon. We use (3) when we do not have
knowledge of ( )1+nn xκ . We term ( )1+nn xκ  the geographic-space feature density.

3.2.  Density estimation

The equations (2), (3) and (4) collectively define our transition density model   a new
framework for spatial-temporal event prediction that takes advantage of preference discovery in feature
space. For our purpose, the estimation of the individual components involves the following four tasks:
(1)� In the key feature space, partition the data into the “best” number (C) of clusters.
(2)�Estimate the first order spatial transition density and the spatial interaction probabilities in the key

feature space.
(3)�Estimate the second order spatial transition densities in the geographic space.
(4)�Estimate the geographic-space feature density where appropriate and feasible.

We do not give space-time prediction in our case due to the two assumptions we made when we
separated spatial and temporal transitions (see Equation (2)). Therefore, we can safely ignore any
components in the transition density model that do not depend on locations. These also include the
normalizing constants in Equations (3) and (4), respectively.

Intuitively, the number C of the clusters in the key feature space corresponds to the number of
distinct sets of preferences. Unless we have this information a priori, we have to “discover” it from the
data. To accomplish this first task, we use a hierarchical clustering algorithm to generate partitions and

                                                          
2 This is a probability mass function in the case of a discrete feature space. We shall use the term “density” in both
continuous and discrete cases.



6

employ a “stopping” rule to determine which partition is the “best.” For a data set of n instances, a
hierarchical clustering algorithm generates a succession of n partitions 110 ,...,, −nPPP , where

110 ,...,, −nPPP  contain n, n-1, …, 1 clusters, respectively. It merges two “closest” clusters in jP  to

generate 1+jP  at each step. What we mean by “closest” obviously depends on the definition of cluster-to-

cluster distance. We will not delve into the details and the interested reader is referred to Everitt (1991)
for a quick introduction. The “stopping” rule that we use is either the one proposed by Mojena (1977) or a
revised version of it as stated below. Let jα  be the shortest distance between any two clusters in the

partition jP  ( 1,..,1,0 −= nj ). Then revised rule is to stop merging clusters further and select the first

partition jP  satisfying

jjj sk ααα ⋅+>+1 (5)

Where jα  and jsα  are the mean and unbiased standard deviation of jααα ,...,, 10 , and the constant k is

usually set to 1.25, as recommended by Milligan and Cooper (1985).
We consider two classes of models for estimating the first order spatial transition density. The

first class is called finite mixture distributions (e.g., Everitt and Hand, 1981; Titterington et al., 1985;
McLachlan and Basford, 1988). A finite mixture probability density function (or mass function in the case
of discrete sample space) has the form

( ) ( )∑ =
= C

j jjj ff
1

;,; xx π (6)

Where 0>jπ , Cj ,...,2,1= , 1...21 =+++ Cπππ , ]...[ 1 ′= Cππ , ]...[ 1 C= .

);( jjf x  is the jth component density with the set j  of parameters and Cπππ ,...,, 21  are mixing

weights.  is the collection of all component parameters. To fit a finite mixture distribution one needs to
find the number C of component densities first. In our case this is done by task (1)   partitioning the
feature data { }nii ,..,2,1: =x .

The component densities );( jjf x ( Cj ,...,2,1= ) are assumed to be fitted by Gaussian mixture

models (GMM) for continuous feature space, and fitted by Latent Class Models (LCM) (see Everitt,
1984) for the case of discrete feature space. When mixed variable types are present, it is trivial to combine
GMM and LCM provided that the numeric dimensions are independent of the categorical ones. For the
set of parameters ]...[ 1 C= , we use a numeric maximum likelihood algorithm known as

Expectation-Maximization (EM) algorithm (see, for example, Dempster, Laird and Rubin, 1977). The
second class of techniques that we use to estimate the first order spatial transition density are
nonparametric models and was introduced by Marchette et al. (1996). They are collectively called filtered
kernel estimators (FKE) and take the form

( ) ( )( )∑ ∑=
−

=
−= n

i ij

C

j
j

ij K
n

f
1

1

1 ||

)(1ˆ xxH
H

x
x

ρ
(7)

Where )(⋅K  is termed a kernel function, jH , Cj ,...,2,1= , are C pp ×  nonsingular local bandwidth

matrices and ( )xjρ , Cj ,...,2,1= , which satisfy

( ) 10 ≤≤ xjρ     and    ( ) 1
1

=∑ =

C

j j xρ  (8)

for all x, are filtering functions. We only consider a special case of (7) for our purpose where we set
]...diag[ 1 jpjj hh=H , Cj ,...,2,1= , where jlh  ( Cj ,...,2,1= , pl ,..,2,1= ) is a local bandwidth

for the lth dimension l][x  of  the jth locally varied region. We call these special class of estimators
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filtered product kernel (FPK) estimators. The underlying assumption for FPK estimators is that all
dimensions are mutually independent.

In this paper we assume that the kernel function is standard multivariate Gaussian. To generate a
density estimate by (7), we need to specify the filtering functions as well as the local bandwidths.
Suppose the data { }nii ,..,2,1: =x  have been partitioned into C clusters CΩΩΩ ,...,, 21 . Let jn  be the

number of instances in cluster jΩ . We derive the filtering functions in one of the following two ways:

• � Fit a finite mixture model ( ) ( )∑ =
= C

j jj gg
1

xx π  to the data. Set

( ) ( ) ( )xxx gg jjj πρ = ,  Cj ,...,2,1= . (9)

• � Let the indicator { }jΩ∈x1  be 1 if { }jΩ∈x  and 0 otherwise. Set

( ) { }jj Ω∈= x1xρ ,  Cj ,...,2,1= . (10)

We term the FPK estimators with the filtering functions defined by (10) weighted product kernel (WPK)
estimators. The local bandwidths are estimated by using local data in each cluster. To wit,

( )
( )41

41

ˆ
2

4ˆ +−
+







+

= p
jjl

p

jl n
p

h σ , pl ,...,2,1= , Cj ,...,2,1= . (11)

Where jlσ̂  is the standard deviation of the lth variable l][x  estimated from

{ }nijili ,...,2,1,:][ =Ω∈xx . Notice that these bandwidth estimates are optimal in the AMISE sense

assuming we were to fit Gaussian product kernel estimators to the local data sets which are in fact
samples of multivariate Gaussian distributions (see Scott, 1992).

When a finite mixture distribution is involved to model first order spatial transition density,
spatial interaction probabilities are given as

( ){ } ( ) ( )xxx ,;;Pr 111 +++ =∈ njnjj
j

nn ffπχ ,  Cj ,...,2,1= . (12)

When a filtered kernel estimator is used, spatial interaction probabilities are given as
( ){ } ( ) ( )111

ˆˆPr +++ =∈ nnj
j

nn ffx xxχ ,  Cj ,...,2,1= (13)

Where

( ) ( )( )∑ = +
−

+ −= n

i inj
j

ij
nj K

n
f

1 1
1

1 ||

)(1ˆ xxH
H

x
x

ρ
,  Cj ,...,2,1= . (14)

The third task on our list is to model second order spatial transition densities. Two models
developed by Fiksel (1984), known as the order model and the instant model are used. Both models
incorporate the “journey to event” assumption (event initiators are in favor of the geographically closer
location to start the next event). At the same time, the instant model also takes into account the
assumption regarding “lingering period to resume act” (event initiators tend not to wait long before the
act again). We give these models below.

Let the number of data units in cluster j be m. Let )( j
nD ={ msss ,...,, 21 } and )( j

nT ={ mttt ,...,, 21 }

where mttt <<< ...21  and msss ,...,, 21  are ordered by mttt ,...,, 21 . Adapting Fiksel’s order model to

our case, we postulate the following function for the second-order spatial transition density for cluster j

( ) ( ) ∑ =
−−== m

imm
j

n
j

nn
ie

m
tTD

1

2

1
)()()12(

2
,...,,, ssssss λ

π
λϕψ (15)

Where mtt >  is a future event’s time of occurrence and iss −  the distance from that future event’s

location s to an older event location is  ( mi ,...,2,1= ). This is called an order model since only the

temporal order of the events is considered.
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The instant model actually utilizes the values of the series mttt ,...,, 21 . Based on this model, we

postulate that the second order spatial transition density for cluster j takes on the form

 ( ) ( )
( )

( )∑
∑ =

−−−−

=
−−

== m

i

tt

m

i

ttmmm
j

n
j

nn
ii

i

e
e

ttttTD
1

1

2

11
)()()12(

2
,,...,,,...,,, τλ

τπ
ληψ ssssss . (16)

For both (15) and (16), we can numerically solve for the maximum likelihood estimates of the parameters
(i.e., λ  in (15), λ  and τ  in (16)). The interested reader is referred to Fiksel (1984).

The fourth and last task on our list is to estimate the geographic-space feature density when
appropriate and possible. In general, this needs sampling over the study region. For example, we may
obtain feature values for the locations on a regular grid over the study region. We may then fit a density
function to these sample values using either finite mixture or filtered kernel method. This is the approach
we take in the example that we give in Section 4.

3.3.  Feature selection
So far we have assumed that our initial feature set coincides with the key feature set. By doing so,

we have skipped the feature selection step to be described in this subsection. A feature selection problem
can generally be specified by a triplet (F, c, s), where F is the initial feature set, c is a criterion function
defined for subsets of F, and s is a subset search or selection procedure. For the selection procedure,
oftentimes we can just compare the scores of individual features and rank them accordingly. This is
known as feature ranking and will be the approach we apply to the example in next section.

In Section 2, we have said that we should observe a distinct clustering (or cohesive) pattern
consisting of small and well-separated cliques in the key feature space. The question then becomes how to
gauge the cohesiveness of a point pattern in the feature subspace specified by a given set of features.

In this paper we look at a class of cohesiveness measures that do not require any partitioning in
advance. These measures are functions of inter-event distances (or similarities). We define one of such
measures in the following. Let dij be the distance between two data points i and j in the feature subspace
defined by the feature subset to be evaluated. We transform the distance into the similarity sij by letting

ij
ij d

s
α+

=
1

1
, (17)

Where d1=α  and d  is the averaged inter-event distance. Define the Gini index between these two
events as follows.

gij = 4sij(1− sij) . (18)

Notice that gij  attains its maximum of 1.0 when sij = 0.5 (or ddij = ) and its minimum of 0.0 when

0.0→ijs  (or 1>>ijd ) or sij = 1.0 (or 0=ijd ). For a data set of n events, the averaged Gini index

defined by (19) is a suitable cohesiveness measure.

)1(

2
1

1 1

−
=

∑ ∑−

= +=

nn

g
I

n

i

n

ij ij

g . (19)

Smaller gI  corresponds to higher level of cohesiveness of the point pattern or a better set of features.

  We note several caveats when using Ig for feature selection in practice. First, Ig is not intended
for addressing a single-cluster pattern. It is only evaluated if every dimension of the data set for feature
selection exhibits enough variation in values relative to the full range of that dimension over the entire
region of interest. Domain knowledge is critical to determine whether these features are among the most
predictive ones or the most irrelevant ones to the problem at hand. It is not necessary to include such a
feature in a multivariate density estimation model because its contribution to the density score will
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dominate the contributions of other selected features anyway3. Second, the Ig score obtained for a set of
features based on an event feature data set could be severely skewed by the prior distribution of these
features. To single out the effect that the set of features has on the event of interest, the Ig score should be
adjusted to eliminate the influence of the prior feature distribution as long as that distribution is not
uniform.

Suppose that we can sample feature variables at locations on a regular grid, which is fine enough
to represent all the locations within the study region. As opposed to the event feature data set we use to
calculate an unadjusted Ig, we call the set of the feature values at the grid points the prior feature data set.
We calculate an Ig score for the prior feature data set and let the score be Ig

p. Then we may adjust the Ig

score for an event feature data set (or a feature subset to be evaluated) as follows.
Adjusted gI   = (unadjusted) gI  / Ig

p (20)

4.  Model Evaluation

In this section, we give a real-world application of our proposed transition density model. Based
on this application, we compare statistically the results of our model with those obtained from the
traditional space-time prediction methodology of using “hot-spots”. Traditional space-time prediction
models do not include feature data and criminal preferences over this feature data.  The most
sophisticated law enforcement agencies model criminal incidents as “hot-spots” or clusters in space and
time.  They then predict that future incidents will continue to occur in the observed or discovered clusters.

The space-time events of interest in our application are both commercial and residential
“breaking & entering” (B&E) incidents that occurred in Richmond, Virginia. A total of 579 such
incidents happened between July 1, 1997 and August 31, 1997 and that is the time range for our study.
Table 1 summarizes the weekly counts of the B&E incidents in the study horizon. Notice that the crime
rate rose to a steady level starting the second week of July and did not drop until the second to last week
of August. Since the reason for the changes in crime rate is not clear, we choose not to use the data from
the first week of July and the last two weeks of August for model building in the sequel.

Week No. of Incidents Week No. of Incidents
July 1 – 6 50 August 4 – 10 69
July 7 – 13 74 August 11 – 17 72
July 14 – 20 71 August 18 – 24 54
July 21 – 27 72 August 25 – 31 49

July 28 - August 3 68

Table 1.  Weekly counts of Breaking and Entering criminal incidents between July 1, 1997 and
August 31, 1997 in Richmond, Virginia.

Figure 2 shows the locations of the B&E incidents on the map of Richmond. The subregions on
the map are block groups, which are the smallest areas for which census counts are tallied. We consider
three types of features related to B&E incidents. The demographic and consumer expenditure features
data are converted from the 1997 estimates of certain census categories recorded in “CensusCD+maps”
(1998). The distances from crime locations to geographic landmarks are generated by the GIS component
of the ReCAP system, a crime-fighting decision support software being built by the researchers at the
University of Virginia. We assume that the feature values at any given location in the study region remain
unchanged within the study horizon.

To select the key feature set, we calculate the Ig score for each initial feature (shown in tables 2, 3
and 4) with the feature data pertaining to the B&E incidents between July 7, 1997 and July 20. We adjust

                                                          
3 Technically, as long as the observed variance of a feature is not zero, the inclusion of the feature in a density
estimation model will not cause singularity or infinite density score.
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the score with the Ig score obtained based on the feature data pertaining to 2517 locations placed evenly
over the Richmond. Before we computed the Ig scores, we have first examined the ratio of the observed
range (calculated from the event feature data set) to the full range (calculated from the prior feature data
set) for each initial feature to see whether there are any features that do not exhibit enough variations in
the event feature data set. It turns out that this ratio is greater than 0.2 for every initial feature in our
example. We deem this an indicator that there is enough variation in every feature dimension.

Figure 2. B &E criminal incidents between July 1, 1997 and August 31, 1997 in Richmond, Virginia.

Feature Ig Adj. Ig Feature Ig Adj. Ig

Population, General Housing Structure
FAM_DST 0.795109 0.971294 HSTR9_DST 0.209613 0.430049
FEM_DST 0.780887 1.017172 HSTR6_DST 0.578788 0.971377
HH_DST 0.766205 1.019083 HSTR1_DST 0.779776 1.037161
POP_DST 0.77807 1.022192 HSTR4_DST 0.603965 1.095686
MALE_DST 0.77391 1.037627 HSTR10_DST 0.511243 1.171066
Work Force HSTR2_DST 0.513737 1.33525
CLS12_DST 0.762812 0.99573 HSTR3_DST 0.442481 1.543366
CLS67_DST 0.71836 1.013683 Housing, Miscellaneous
CLS345_DST 0.755043 1.020015 COND1_DST 0.28449 0.249759
Income OCCHU_DST 0.766194 1.019019
PCINC_97 0.746605 1.093547 MORT1_DST 0.778619 1.034395
MHINC_97 0.74147 1.100745 HUNT_DST 0.764804 1.035979
AHINC_97 0.700613 1.16912 OWN_DST 0.77991 1.051672
Householder Age RENT_DST 0.691134 1.054123
AGEH12_DST 0.689906 0.979065 OCCHU_PC 0.755908 1.070385
AGEH56_DST 0.758949 1.017699 HUNT_PC 0.762469 1.072405
AGEH34_DST 0.776586 1.047537 MORT2_DST 0.74747 1.075255
Household Size VACHU_DST 0.689763 1.088101
PPH1_DST 0.698101 0.999252
PPH2_DST 0.774179 1.019169
PPH3_DST 0.770058 1.019687
PPH6_DST 0.648417 1.096216

Table 2.  Demographic features evaluation result.

(:
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Feature Ig Adj. Ig Feature Ig Adj. Ig

Per Household Per Capita
P_CARE_PH 0.778652 0.886927 P_CARE_PC 0.804807 0.958234
TRANS_PH 0.748267 0.961544 EDU_PC 0.802809 0.978819
MED_PH 0.791697 0.969762 HOUSING_PC 0.806986 0.980284
ET_PH 0.789273 0.97886 APPAREL_PC 0.813909 0.99788
HOUSING_P
H

0.697043 1.005566 ET_PC 0.816095 0.998878

REA_PH 0.784346 1.015941 TRANS_PC 0.821257 1.001076
APPAREL_PH 0.784296 1.018549 ALC_TOB_PC 0.816618 1.007928
EDU_PH 0.759107 1.02109 MED_PC 0.813172 1.012766
ALC_TOB_P
H

0.784793 1.025226 FOOD_PC 0.804328 1.013596

FOOD_PH 0.748634 1.044432 REA_PC 0.798631 1.015429

Table 3.  Consumer expenditure features evaluation result.

Feature Ig Adj. Ig

D_HIGHWAY 0.80264 0.99483
D_PARK 0.798587 1.003996
D_SCHOOL 0.756689 1.0291
D_CHURCH 0.795715 1.032549
D_HOSPITAL 0.79801 1.036391

Table 4.  Distance features evaluation result.

We select one feature from each table to form the key feature set so as to avoid strong correlation
between any two features in the key feature set. The features that we pick based on adjusted Ig are
FAM_DST (Families per square mile), P_CARE_PH (Per household annual expenditure on personal
care, personal insurance and pension) and D_HIGHWAY (Shortest distance to the nearest highway). We
bypass two features COND1_DST and HSTR9_DST, which have lower adjusted Ig than FAM_DST for
both technical and practical reasons. Technically, these two features have unusually low Ig scores on
the prior feature data set (as compared with other features), which indicate that the prior feature
data set for either feature is highly clustered or the prior distribution of either feature is far from
uniform. This intuitively makes sense since out of the 207 block groups in Richmond there are
only several that have occupied trailer homes or owner occupied condominiums. Even with
adjustment we still cannot completely eliminate the influence of the prior patterns on the event
feature data for both features. This is reflected in their very low adjusted Ig scores. Practically,
we eliminate these features because when working with crime analysts we find them unwilling to
claim that the lack of trailer homes or condominiums is linked to higher rate of B&E incidents.

We evaluate three versions of our model against their counterparts’ comparison models. The three
versions are named GMM, WPK and FPK. The GMM version of the proposed model uses Gaussian
mixture models for estimating both the first order spatial transition density and the geographic-space
feature density.  The GMM version of the comparison model also uses a Gaussian mixture model for
estimating the spatial transition density. The WPK version replaces Gaussian mixture estimation with
weighted product kernel estimation and the FPK version uses filtered product kernel estimation. We build
the three versions of the proposed model on four training data sets and for each version we test it and
compare it with the corresponding comparison model under the test scenarios of predicting out one week
into the future (weekly prediction). The training sets are the data sets associated with the B&E incidents
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that occurred during these four fortnights, July 7 to 20, July 14 to 27, July 21 to August 3, and July 28 to
August 10, respectively.

To compare the performances of different models, we convert the density estimates into
percentile scores which are on a common scale of 0 to 100. The percentile score sp  at location s is

defined by

( ) { }∑ =
≥= N

i g
i

ddNp
1

100
sss 1 (21)

where 2157=N ; g
is  is the location of the ith grid point; { }g

i
dd

ss1 ≥  is 1 if  g
i

dd
ss ≥  and 0 otherwise.

Assuming that the grid is fine enough to represent the study region well, percentile scores are nothing but
re-scaled density estimates.

Basic model evaluation statistics are given in terms of mean predicted percentile score and its
standard deviation for three versions of the proposed model and three versions of the comparison model
calibrated on the four aforementioned training data sets in tables 5, 7, 9, 11, respectively. The “best
model” is referred to as the version of a model with the highest mean percentile score out of the three
versions of that model. It is clearly seen from these tables that the proposed model outperforms the
comparison model in terms of mean percentile score. But is this result statistically significant?

Two hypothesis tests are performed to answer this question. Assume that the test data set contains
m incidents that occurred at the locations msss ,...,, 21 , respectively. For the incident at is , let the

percentile score given by the proposed model be p

i
ps  and that given by the comparison model be c

i
ps . Let

δ  be the probability that the proposed model outperforms the comparison model on a single prediction.
We perform the hypothesis test

H0: 5.0=δ ,

Ha: 5.0>δ  (if 5.0ˆ >δ ; otherwise, test against Ha: 5.0<δ ).

The test statistic δ̂  for the first hypothesis test is given as follows.

( ) { }∑ =
>= m

i

cp

ii
ppm

1
1ˆ

ss1δ . (22)

The second hypothesis test is built around µ  which denotes the mean of the difference between the
percentile score given by the proposed model and that given by the comparison model on a single
prediction. We perform the hypothesis test

H0: 0=µ ,

Ha: 0>µ (if 0ˆ >µ ; otherwise test against Ha: 0<µ ).

The test statistic µ̂  based on a test set of m incidents is straightforward. To wit,

( ) ( )∑ =
−= m

i

cp

ii
ppm

1
1ˆ ssµ . (23)

The standard deviation of the difference cp

iii
ppq sss −=  is estimated by

( )( ) ( )∑ =
−−= m

i i
qm

1

2ˆ11ˆ µσ s . (24)

The results of these tests are reported in tables 6, 8, 10, and 12, in which “Prob.”, “Mean” and “Std. Dev.”

correspond to δ̂ , µ̂  and σ̂ , respectively. These tables show that

• � for all but one comparison, our model statistically performs better than the comparison model at the
90% confidence level according to the result of at least one hypothesis test;

• � for the one comparison that both hypothesis tests fail at the 90% confidence level (“Best vs. Best”
under weekly prediction in Table 6), the performances of the two models are statistically
indistinguishable since the two hypothesis tests are set up against opposite alternative hypotheses but
neither test can reject the null in favor of the alternative.
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Training set: July 7-20 (145 incidents)
Weekly prediction - Test set: July 21-27 (72 incidents).

Proposed Model Comparison Model
Model Type Mean Std. Dev. Mean Std. Dev.
GMM 76.2956 26.2846 56.4876 22.7824
WPK 75.9381 25.2531 73.9604 26.5926
FPK 75.8023 25.2659 73.9604 26.5926
Best Model GMM WPK or FPK

Table 5.  Basic statistics for models calibrated on July 7-20 data.

Training set: July 7-20 (145 incidents)
Weekly prediction - Test set: July 21-27 (72 incidents).

Test 1 Test 2
Comparison Prob. z-Statistic p-Value Mean Std. Dev. z-Statistic p-Value
GMM vs. GMM 0.7500 4.2426 <0.0002 19.8081 32.5387 5.1655 <0.0002
WPK vs. WPK 0.5833 1.4142 0.0793 1.9777 10.9967 1.5260 0.063
FPK vs. FPK 0.5972 1.6499 0.0495 1.8419 10.9029 1.4335 0.0764
Best vs. Best 0.4444 0.9428 0.1736 2.3352 19.3500 1.0240 0.1539

Table 6.  Hypothesis tests results for models calibrated on July 7-20 data.

Training set: July 14-27 (143 incidents)
Weekly prediction - Test set: July 28-August 3 (68 incidents).

Proposed Model Comparison Model
Model Type Mean Std. Dev. Mean Std. Dev.
GMM 76.3117 21.6247 59.2512 27.6379
WPK 72.6162 25.2771 70.1436 27.1039
FPK 72.2990 25.2911 70.1436 27.1039
Best Model GMM WPK or FPK

Table 7.  Basic statistics for models calibrated on July 14-27 data.

Training set: July 14-27 (143 incidents)
Weekly prediction - Test set: July 28-August 3 (68 incidents).

Test 1 Test 2
Comparison Prob. z-Statistic p-Value Mean Std. Dev. z-Statistic p-Value
GMM vs. GMM 0.8088 5.0932 <0.0002 17.0605 27.7049 5.0780 <0.0002
WPK vs. WPK 0.6029 1.6977 0.0446 2.4726 8.3534 2.4409 0.0073
FPK vs. FPK 0.5882 1.4552 0.0721 2.1553 8.5092 2.0887 0.0183
Best vs. Best 0.5441 0.7276 0.2327 6.1681 14.7758 3.4423 0.0003

Table 8.  Hypothesis tests results for models calibrated on July 14-27 data.
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Training set: July 21-August 3 (140 incidents)
Weekly prediction - Test set: August 4-10 (69 incidents).

Proposed Model Comparison Model
Model Type Mean Std. Dev. Mean Std. Dev.
GMM 73.3315 23.8760 54.3498 25.3288
WPK 69.3522 28.3111 67.2620 29.6937
FPK 69.2837 28.2384 67.2620 29.6937
Best Model GMM WPK or FPK

Table 9.  Basic statistics for models calibrated on July 21-August 3 data.

Training set: July 21-August 3 (140 incidents)
Weekly prediction - Test set: August 4-10 (69 incidents).

Test 1 Test 2
Comparison Prob. z-Statistic p-Value Mean Std. Dev. z-Statistic p-Value
GMM vs. GMM 0.7971 4.9358 <0.0002 18.9816 29.8703 5.2786 <0.0002
WPK vs. WPK 0.5652 1.0835 0.1401 2.0901 10.8363 1.6022 0.0548
FPK vs. FPK 0.5797 1.3242 0.0934 2.0216 10.9703 1.5308 0.063
Best vs. Best 0.5797 1.3242 0.0934 6.0695 19.2327 2.6214 0.0044

Table 10.  Hypothesis tests results for models calibrated on July 21-August 3 data.

Training set: July 28-August 10 (137 incidents)
Weekly prediction - Test set: August 11-17 (72 incidents).

Proposed Model Comparison Model
Model Type Mean Std. Dev. Mean Std. Dev.
GMM 81.6696 20.4393 38.5341 25.9068
WPK 76.2355 25.0248 75.4734 24.9736
FPK 75.9855 25.0196 75.4734 24.9736
Best Model GMM WPK or FPK

Table 11.  Basic statistics for models calibrated on July 28-August 10 data.

Training set: July 28-August 10 (137 incidents)
Weekly prediction - Test set: August 11-17 (72 incidents).

Test 1 Test 2
Comparison Prob. z-Statistic p-Value Mean Std. Dev. z-Statistic p-Value
GMM vs. GMM 0.8889 6.5997 <0.0002 43.1356 36.0015 10.1667 <0.0002
WPK vs. WPK 0.5972 1.6499 0.0495 0.7620 5.9915 1.0792 0.1401
FPK vs. FPK 0.6111 1.8856 0.0294 0.5121 5.9684 0.7280 0.2327
Best vs. Best 0.5278 0.4714 0.3192 6.1962 17.9847 2.9234 0.0018

Table 12. Hypothesis tests results for models calibrated on July 28-August 10 data.

Density maps generated by the three versions of the proposed model built on the training data of
the 145 incidents between July 7 and July 20 are given in Figures 3. The criminal incidents occurring
within the immediate following week (i.e., the test sets) are plotted on the density maps to enable visual
examination of how well the proposed model performs under weekly prediction scenario. Similar density
maps can be generated for the models built on other training data sets. It is easily seen on these maps that
most of the test incidents indeed happened around the predicted “hot spots” (i.e., predicted high-density
areas). Also by visual inspection, the GMM version of the proposed model seems to have captured more
details than the WPK version and the FPK version. This is confirmed in Tables 5, 7, 9 and 11 where the
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GMM version is indeed picked as the “best model” for every weekly prediction scenario. The WPK and
FPK versions seem to have equivalent performances. The density maps obtained for these versions look
smoother than those obtained for the GMM version.

Figure 3.  GMM (left), WPK (middle) and FPK (right) versions of the proposed model
calibrated on July 7-20 data and tested on July 21-27.

5. Conclusion

The development of predictive models of criminal activity is of tremendous value to law
enforcement. The use of these models in support of tactical decision making in law enforcement is
obvious: the better we forecast criminal activity then the better we can allocate law enforcement resources
to combat it. However, the usefulness and significance of these models goes beyond tactical decision-
making. They effectively support community policing, problem-oriented policing, and cooperation among
agencies.

In this paper, we have described a newly developed space-time prediction model and evaluated it
on real-world data sets from the domain of regional crime analysis. The presented model is shown to be
more effective than the traditional “hot-spot” methods, especially for predicting the occurrence of space-
time events characteristic of human intelligence and preferences, as exemplified by the Richmond
breaking and entering incidents. Distinctive from other methods in the literature, our modeling approach
• � accommodates all measurable features useful for prediction,
• � identifies which of the features have the most predictive or explanatory power, and
• � generates probability density estimates over space and time for the occurrence of future events.

Specific to the law enforcement domain, this approach provides the basis for theory development,
since it shows how community and law enforcement data relate over space and time. It also provides a
vehicle for theory evaluation or testing, since it can show which theoretical relationships lead to accurate
predictions and which do not. For instance, for the Richmond Breaking and Entering crime application,
we have found that such features as family density, disposable income (as indicated by per household
personal care expenditure), and proximity to highways could jointly play a role in crime initiation
decisions. The proposed model quantifies the form of correlation between these features and occurrence
of B&E incidents.

Obviously, the applicability of our approach to preference discovery is not confined to law
enforcement. For example, in military actions, one may want to predict the future location of an enemy
target (e.g., a tank) moving over terrain based on its past locations (observed over predefined sampling
intervals) and terrain features. In an urban development, developers are interested in predicting consumer
behavior toward a new shopping mall using data from past behavior toward existing malls.  They would
also use data regarding surrounding neighborhoods and the physical infrastructure in the area (e.g., major
highways, schools, and bridges). In this sense, our model provides a generic framework for space-time
event forecasting.
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