
PNrule: A New
Framework for Learning
Classifier Models in Data
Mining (A Case-Study in
Network Intrusion
Detection)

Ramesh Agarwal∗ and Mahesh V. Joshi†

1 Introduction and Motivation
Learning classifier models is an important problem in data mining. Observations
from the real world are often recorded as a set of records, each characterized by
multiple attributes. Associated with each record is a categorical attribute called
class. Given a training set of records with known class labels, the problem is to
learn a model for the class in terms of other attributes. The goal is to use this
model to predict the class of any given set of records, such that certain objective
function based on the predicted and actual classes is optimized. Traditionally, the
goal has been to minimize the number of misclassified records; i.e. to maximize
accuracy. Various techniques exist today to build classifier models[11]. Although
no single technique is proven to be the best in all situations, techniques that learn
rule-based models are especially popular in the domain of data mining. This can
be contributed to the easy interpretability of the rules by humans, and competitive
performance exhibited by rule-based models in many application domains.

∗IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 (agar-
wal@watson.ibm.com).

†IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598
(joshim@us.ibm.com) and Department of Computer Science, University of Minnesota, Min-
neapolis, MN 55455.

1

2

General form of a rule-based model is a disjunction (or union) of rules, such
that each rule is a conjunction (or intersection) of conditions imposed on different
attributes. Learning rule-based models directly from the training data has been
studied in great detail in past couple of decades. The goal is to discover small
number of rules (low cardinality), which cover most of the positive examples of the
target class (high coverage or recall) and very few of the negative examples (high
accuracy or precision).

Among the two broad categories of learning methods, specific-to-general tech-
niques are not usually computationally tractable for problems with large high-
dimensional data-sets that we are interested in. General-to-specific techniques are
better suited for our purposes. Existing methods of this categogy usually follow a
sequential covering strategy. Disjuncts in the DNF model are discovered iteratively.
In each iteration, a high accuracy conjunctive rule is discovered. Then the records
supported by this rule are removed, and next iteration starts with the remaining
examples. These methods have found widespread use in rule-based modeling. How-
ever, they face a problem. As the algorithm proceeds, the data from which the rules
are learned decreases in size. Hence, the coverage1 of the rules decreases, which in
turn causes the support2 of the discovered rules to decrease because of the high ac-
curacy requirements on each rule. If the support is allowed to reduce substantially
then the discovered rules may be too specific to the training data, thus running
into the problem of overfitting, or they may be overly general, because of various
kinds of attribute and class noise present in the data [15, 5]. This leads to a greater
generalization error when the model is applied to unseen cases. This problem is
referred to as the problem of small disjuncts, a term first coined in [8].

Some remedies exist today to solve this problem. Some are reactive solutions.
One is to stop the rule generation after the dataset size falls below some threshold.
But, as noted in [8], this may miss some of the rare yet important signatures of class.
Another solution, proposed by [2], is to assign probabilistic measures to the rules
discovered in the hope of assigning lower measures to small disjuncts. Some other
solutions proposed [13, 14, 4] are based on estimating a generalization capability
using the training data and use it to decide whether to retain or remove a rule. One
such estimate is based on minimizing the description length (MDL principle) [14, 4].
Looking at the formula for computing MDL [14], small disjuncts tend to have longer
lengths because of their small support. Hence, they have a higher chance of getting
removed from the final rule-set, thus possibly losing on some rare signatures.

Some proactive solutions try to avoid overfitting by pruning the rules. Existing
pruning procedures in C4.5rules [14] or in RIPPER [4] work by first learning a set
of most specific rules, and then generalizing each individual rule by removing some
conjunctive conditions in it. In each iteration, RIPPER splits the remaining data-
set into two random similar parts. One is used to grow the most specific rule and
the other is used to generalize this rule immediately. As the remainder dataset size
reduces, this approach may face two problems. First, the amount of training data
reduces, so support of the rule decreases even further. Second, the estimates of

1number of positive target-class examples covered
2total number of examples covered, positive as well as negative

3

error obtained from the small pruning set may not be reliable. The strategy used
by C4.5rules starts with rules obtained from an overfitted decision tree, and then
uses the entire training set for generalization of each rule. Generalization is guided
by pessimistic error rate estimates. However, the estimate for a small disjunct may
not be reliable because of its low support. So, any decision made by comparing this
estimate to the estimate of its generalized version, may be unreliable.

All these solutions can be thought of as workarounds that do not attack the
root cause of the problem. We believe that the problem is caused by the low,
statistically insignificant support of the small coverage rules. Having small coverage
is an outcome of the presence of inherent rare subclasses and the nature of the
sequential covering technique. So, it cannot be avoided. Relatively tight accuracy
constraints in all the algorithms almost always cause small coverage rules to also
have small support, and this causes the rules to lose their generalization ability.
The key idea to overcome this problem is to allow a trade-off between support and
accuracy. We believe that if accuracy constraints are relaxed gradually in later
iterations, then we can keep finding rules with sufficiently large support until most
of the positive examples are covered. The false positives supported during this
process can be collectively removed later. Looking at it from another perspective,
the problem appears because existing algorithms try to simultaneously optimize on
recall (total coverage of the target class) as well as precision (accuracy with respect
to false positives). We believe that separately conquering the two objectives of recall
and precision will help in learning a model that has better generalization ability.
This belief forms the foundation of our proposed approach.

In this paper, we propose PNrule, a two stage general-to-specific framework
of learning a rule-based model. It is based on finding rules that predict presence
of a target class (P-rules) as well as rules that predict absence of a target class
(N-rules). The key idea is to learn a set of P-rules that together cover most of the
positive examples such that each rule covers large number of examples to maintain
its statistical significance. Initially, highly accurate rules are selected, but later
accuracy is compromised in favor of support. This relaxation of accuracy causes
some negative examples or false positives to be supported. Now, we combine all
the true positives and false positives collectively supported by the union of all the
P-rules, and learn N-rules on this reduced data-set to remove the false positives.
This two-phase approach is the first novel feature of our technique. We believe that
the existence of second stage helps in making our algorithm less sensitive to the
problem of small disjuncts. Another novel feature of our technique is its scoring
mechanism. Using the statistics of P- and N-rules on training data, we develop a
method to score each decision of each binary classifier. This method weighs the
effect of each N-rule on each P-rule. This allows PNrule to avoid overfitting and
gives it a modeling flexibility. Along with these two primary distinguishing features,
PNrule is also naturally suited to take into account different costs of misclassifying
different classes. We use the scores generated by individual binary classifiers and the
misclassification cost matrix, to arrive at predictions according to Bayes optimality
rule for minimum expected cost.

In order to validate our proposed framework, we present a case-study in which
we applied PNrule to a real-life dataset from the network intrusion detection appli-

4

cation. Data-set was supplied as a part of KDDCUP’99 classifier contest [7]. Unique
features such as the large size, very wide distribution of class populations, and mis-
classification cost based evaluation, made this contest challenging. We present two
sets of results. The first set illustrates PNrule’s performance on the overall multi-
class classification problem as stated in the contest. We compare our results with
those of 23 other participants. For the subset of test-data containing subclasses
present in the training data-set, our technique performs the best in terms of accu-
racy as well as misclassification cost. Especially, our technique does substantially
better for a class that is present in very small proportion and also carries high mis-
classification penalty. The second set of results illustrates PNrule’s performance for
binary classification of rare target classes. For this dataset, we use a more auto-
mated version of PNrule. We chose 4 rare classes from KDDCUP’99 dataset, and
compared PNrule’s results to those of RIPPER and C4.5rules, two state-of-the-art
rule-based classifiers of its class. We show that PNrule performs significantly bet-
ter on the counts of recall as well as precision, for two rare classes which benefit
from the presence of second stage. For other two classes, it is as good as the best
technique.

2 PNrule Classification Framework
PNrule framework is a two-stage process of rule-induction from training data start-
ing with the most general rule, an empty rule. Given a misclassification cost matrix
and a training data set with multiple class labels, it learns multiple binary classifier
models, one for each class. The model for each class is represented using two kinds
of rules: P-rules and N-rules. P-rules predict presence of the target class, whereas
N-rules predict absence of the target class. We start this section by illustrating the
concept behind our two-stage learning approach. Later, we give detailed algorithms
for various steps of the framework.

2.1 Conceptual Illustration of Learning Method

Consider a binary classification problem. Given a training data-set, T , and target
class C, a rule is found using the records of T . The rule is of the form R : A → C,
where A is a conjunction of conditions formed by different attributes and their
values. Let S denote the subset of T where R applies; i.e. where A is true. R is
said to cover S. Let S′ denote the subset of S where the class label is C. Support
of the rule is defined as |S|/|T | (|S| denotes the cardinality of set S). Accuracy is
defined as |S′|/|S|.

Given this set of definitions, we will conceptually illustrate our framework
using Figure 1. Part (a) shows the entire training data-set, among which the target
class is distributed as shown in the shaded region. Our framework operates in two
stages. The first stage starts with the entire training set, and finds a rule that has
the highest combination of support and accuracy (to be defined later). Let the rule
found be indicated by P0. As part (b) of the figure shows, P0 covers a good portion
of the shaded area, with very small portion of the unshaded region. Now, we remove
the set that is supported by P0, and repeat the process on the remaining set [part

5

positive examples
stagefor second

(a) (b) (c)

(d)

P0

P2

q2q1

P1

negative examples

positive
examples

examples
removed

negative
examples

N0

(e)

Figure 1. How PNrule works. (a) Original training set, (b) Discover first
P-rule, (c) Discover Second P-rule on remaining examples (d) Choice of Third P-
rule. P2 chosen over q1 or q2, because of its support. (e) Starting data-set for
second stage.

(c)]. Let P1 be found on this dataset. P1 still has high support and fairly high
accuracy. As the process continues, it becomes increasingly difficult to find rules
that have high support as well as high accuracy. In such cases, we give preference to
the support as illustrated in part (d), where P2 is preferred over q1 or q2. We stop
the process when we are able to capture a sufficiently large portion of the original
shaded region [part (a)] or we start running into rules which have very low accuracy.
If the accuracy threshold is set lower, then we might proceed beyond P2 to cover
the remaining positive examples. Assume that we decide to stop after P2, because
we have covered sufficiently large fraction of positive examples.

As can be seen, because of our preference for support in later iterations, we
have supported some examples of the negative class, which are commonly referred
to as false positives. These are shown as the shaded area in Figure 1(e). Now, our
goal is to learn rules that will remove most of these false positives. We collect all the
examples supported by all the P-rules in the hope of increasing chances of finding
high support and more general rules, as against learning rules to cover false positives
of individual P-rules. So, on the dataset consisting of records supported by the union

6

of all P-rules, we start an inverse learning process. Our new target class is now the
absence of original target class. In Figure 1(e), the starting data-set is shown as the
restricted universe and shaded area becomes the new target class. Again first rule
N0 tries to capture as much of the positive examples of the new target class with
high accuracy. Iterations progress similar to the first stage. The point to note is
that a 100% accurate rule in this stage strictly removes the false positives supported
by the first stage, while a rule with less than 100% accuracy removes some of the
true positive examples of the original target class (that were captured in the first
stage). We call this phenomenon as introduction of false negatives. All the rules
discovered during this stage are called N-rules.

During each of the stages, higher accuracy large support rules are discovered
in the beginning, and lower accuracy rules are discovered towards the end. We rank
the rules in the order they are discovered. At the end of this two-stage process,
we expect to have captured most of the positive examples of the target class, with
few of the negative examples (false positives). Most of the false positives that are
still supported can be attributed to the lower accuracy P-rules. Similarly, most
of the positive examples missing from the coverage can be attributed to the lower
accuracy N-rules. Based on this observation, we design a scoring mechanism that
allows to recover some of the false negatives introduced by the low ranked N-rules.
Also, the scoring mechanism will try to assign low scores to the negative examples
supported by low accuracy P-rules. Note that we can afford to be more aggressive
by keeping the final accuracy threshold low in each of the stages, because we rely
on our scoring mechanism to correct for the additional errors introduced.

The two-stage learning approach illustrated above and the scoring mechanism,
elaborated in Section 2.3 later, are the two key novel features of our method.

2.2 Main Learning Algorithm and Model Format

We do not describe the detailed algorithm here due to space constraints. It is
given in [1]. Briefly, given a training data-set and the target class, the algo-
rithm learns P- and N-rules using two sequential covering rule-learning stages as
described in previous subsection. This is followed by a step that constructs the
scoring mechanism for P-N rule combinations. The details of rule selection and
how PNrule takes different misclassification costs into account are given in [1].
The points to note here are that we use a different rule evaluation metric (called
Z-number), which is based on the one-sided z-test from statistics, and we use
Bayes optimality rule for combining decisions of individual binary classifiers in
the best cost-effective manner. Following subsection describes a crucial part of
our framework, that assigns scores to the decisions made by each binary classi-
fier. This scoring mechanism is important in yielding PNrule a modeling flex-
ibility. If the scoring mechanism is absent, then the model learned by PNrule
framework will simply mean that if some P-rule applies and no N-rule applies to
a record, then the record belongs to the target class C. Formally, this means C =
(P0∨P1∨...∨PnP−1)∧¬N0∧¬N1∧...∧¬NnN−1, which is equivalently a DNF model
of the form C = (P0∧¬N0∧¬N1∧ ...∧¬NnN−1)∨ (P1∧¬N0∧¬N1∧ ...∧¬NnN−1)
∨ ...∨ (PnP−1∧¬N0∧¬N1∧ ...∧¬NnN−1). As can be seen, this model is restrictive

7

in the sense that all conjunctions have all but one conditions in common. This
might seem to restrict the kinds of functions we can learn using our model.

2.3 PNrule Classification Strategy and Scoring Algorithm

Once we have learned P-rules and N-rules for each class, first we describe how we use
them to classify an unseen record. As indicated in section 2.1, P-rules and N-rules
are arranged in decreasing order of significance, which is the same as their order
of discovery. Given a record consisting of attribute-value pairs, each classifier first
applies its P-rules in their ranked order. If no P-rule applies, prediction is False.
The first P-rule that applies is accepted, and then the N-rules are applied in their
ranked order. The first N-rule that applies is accepted. We always have a default
last N-rule that applies when none of the discovered N-rules apply. The reason for
having the last default N-rule will become clear little later in this section. If our
classifier has to make a simple True-False decision, then we can predict a record
to be True only when some P-rule applies and no N-rule applies. However, this is
not useful, especially in the multi-class framework, where we may need to resolve
conflicts between True decisions of multiple classifiers. We need a mechanism to
assign a score to each decision. Hence, depending on which P-rule and N-rule
combination applies, we predict the record to be True with certain score in the
interval (0%,100%). This score can be interpreted as the probability of the given
record belonging to the target class. Scores from individual classifiers are combined
with the cost matrix to decide the most cost-effective class for the given record.
This is the overall classification strategy.

In the light of this, we now describe how each classifier determines the scores
to assign to each P-rule, N-rule combination. The motivation behind the design of
scoring mechanism is to weigh the effect of each N-rule on each P-rule. Remember
that the N-rules were learned on a set of records collectively supported by all P-rules.
So, each N-rule is significant in removing the collective false positives. However, a
given N-rule may be effective in removing false positives of only a subset of P-rules.
Moreover, some low accuracy N-rule may be introducing excessive false negatives for
some P-rules, possibly because its primary contribution is to remove false positives
of other lower accuracy P-rules. Such excessive false negatives can be recovered by
assigning them a correspondingly low score. Thus, we need to properly judge the
significance of each N-rule for each P-rule.

The starting point of the scoring mechanism are two matrices, SupportMatrix
and ErrorMatrix. An example of these matrices is shown in Figure 2. In Support-
Matrix, entry (i,j) [j < nN] gives the number of records for which the both P-rule
Pi and N-rule Nj apply. Last entry in row i, SupportMatrix(i,nN) gives the num-
ber of records where Pi applied but no N-rule applied. The ErrorMatrix records
the prediction errors made by each (Pi,Nj) combination. Entries (i,j) [j < nN]
give false negatives introduced by Nj for Pi’s predictions, whereas (i,nN) gives the
number of false positives of Pi that none of the N-rules was able to remove. The
last column effectively corresponds to a rule which states ”no N-rule applies”. In
figure 2, the entries in [P1,N1] location of these matrices imply that among the
records of training dataset supported by rule P1, rule N1 applied to 7 records (Sup-

8

0

3

8

0

7

5

4

5

6

50

27

100

SupportMatrix

N0

P2

N1 N2 N3

P0

P1

ErrorMatrix

0

1

0

2

1

4

2

3 1

4

4

N0

P2

N1 N2 N3

P0

P1

0

Final Result: ScoreMatrix

N0

P2

N1 N2 N3

P0

P1

98.1

81.5

11.1

98.1

28.6

20.0

98.1

90.9

33.3 85.2

92.0

99.0

no N-rule
applies

[46,4,92.0]

[50,5,90.9]

Low Z!
|Z|=2.81

[4,1,80.0]

N3N2

Low Support

N1

[2,5,28.6]

[1,2,33.3]
|Z|=11.85

Parameters:

MinSupport = 5
MinZ = 3.0

Illustration for P-rule P1:

[53,12,81.5]

[52,10,83.9]

Format: [True Positives, False Positives, Accuracy]

N0

A

B

C

Figure 2. Illustration of Constructing the Scoring Mechanism (ScoreMatrix)

portMatrix[P1,N1]), out of which its decision to remove false positives was wrong
for 2 records (ErrorMatrix[P1,N1]). This means that it removed 5 false positives
of P1, and introduced 2 false negatives for P1. Using these matrices, our goal is to
come up with a ScoreMatrix, such that ScoreMatrix(i,j) (j < nN) gives a score to
the record for which both P-rule Pi and N-rule Nj apply, and ScoreMatrix(i,nN)
gives a score when P-rule Pi applies and no N-rule applies.

Detailed algorithm is given in [1]. Here, we illustrate the key concepts behind
it using the example given in Figure 2. A P-rule captures some positive examples
(True Positives, or TP) and a few negative examples (False Positives, or FP), when
it is discovered first. These together give it its initial accuracy, TP/(TP+FP). As
N-rules are applied successively, the accuracy varies depending on how many false
positives are removed and how many false negatives are introduced by each N-rule.
This effect can be conceptually captured in a decision tree, as shown in the Figure
for the P-rule P1. The root node A has all the records where P1 applies. There are
65 such records for P1, out of which 53 are TPs and 12 are FPs (accuracy of 81.5%).
Out of these records, first N-rule N0 applies to 3 records. Now, we determine the
significance of N0 specific to P1, by applying our first criterion, which states that
support of any decision should satisfy a MinSupport threshold. For our example,
this threshold is 5, hence N0 has statistically insignificant support, and we decide

9

to ignore its effect on P1. The decision is reflected in the ScoreMatrix by assigning
the accuracy of the parent node to the [P1,N0] location (81.5%). Now, we recalculate
the TP, FP, and Accuracy statistics for the records where N0 did not apply. We
cannot propagate the statistics of root node to node B, even though we decided to
ignore N0’s effect. The reason is the sequential covering nature of the way N-rules
are learned, which implies that the decisions made by rule N1 (and later rules) are
significant only to the population of records where rule N0 does not apply.

When N1 is applied to the new set of records (52 TP, 10 FP), it applies to 7
of those. It satisfies our support criterion of significance (≥ MinSupport). Now, we
calculate the Z-number of N1 w.r.t P1, given by formula ZN =

√
nP (aN − aP)/σP ,

where nP is the support of parent node (TP+FP). aN and aP are accuracies of
N-rule’s node and parent, respectively, and σP =

√
(aP)(1 − aP) is the standard

deviation of parent’s population. Our second criterion of significance states that
if the absolute value of ZN is sufficiently high (≥ MinZ), then the decision made
by the N-rule is significant w.r.t. the given P-rule. Point to note here is that each
N-rule had a significant Z-number when it was discovered in the learning process
because it was computed over a collection of records supported by all P-rules. What
we are determining here is its significance specific to a given P-rule. In our example,
P1-specific |Z| value of N1 is high (11.85 ≥ MinZ=3.0), so we decide that N1’s effect
on P1 is significant. The decision is reflected in the ScoreMatrix by assigning the
accuracy of N1’s node to the [P1,N1] location (28.6%). So, whenever N1 applies to
a record predicted true by P1, we say that the probability of that record belonging
to the target class is only 28.6%.

The process continues similarly for N2. Here are some more points to note
about the algorithm, which are not illustrated by the above example. First of all,
if any node’s support falls below MinSupport, we ignore its effect, and assign it the
score of its nearest ancestor having statistically significant support. Second, we do
not allow a perfect decision at any node; i.e. our scores are never exact 100% or
0%. A score of 100% gets adjusted to n/(n + 1) where n = TP , whereas a score of
0% gets adjusted to 1/(n + 1), where n = FP . This is done in order to give less
importance to the perfect decision made on small population as compared to the
perfect decision made on larger population. Finally, the parameters MinSupport
and MinZ can usually be fixed for most problems using statistical arguments.

The essential effect of this scoring mechanism is to selectively ignore effects
of certain N-rules on a given P-rule. At the end of it all, ScoreMatrix reflects an
adjusted probability that a record belongs to the target class, if Pi, Nj combination
applied to it.

3 Case Study: Applying PNrule to Detect Network
Intrusions

In order to validate our PNrule framework, we applied it to a classification problem
from the domain of network intrusion detection. A data-set from the network intru-
sion detection domain was provided as part of the KDDCUP’99 classifier learning
contest [6]. The contest problem was as follows: Given the training data-set of close

10

2883370 (79.3%)
41102 (0.84%)
1126 (0.023%)
52 (0.001%)

dos
probe
r2l
u2r

2
2
2
2
0

2
2
2
0
2

2
2
0
2
2

1
0
1
2
2

0
1
2
3
4

normal
probe
dos
u2r
r2l

(b)

972781 (19.9%)normal smurf (dos)
neptune (dos)
back (dos)
teardrop (dos)
ipsweep (probe)
satan (probe)
warezclient (r2l)
buffer_overflow (u2r)

2807886
1072017
2203
979
12481
15892
1020
30

dos u2r r2lprobenormal

(a)

ac
tu

al
 c

la
ss

predicted class

CountClass Subclasses Count

Table 1. Characteristics of Problem and Training Data. (a) The misclas-
sification cost matrix. (b) Class and subclass distribution in training data.

to 5 million records belonging to five classes and a misclassification cost matrix, learn
a classifier model so as to achieve least total misclassification cost of predicting the
labels of the supplied test-data records. The training- and test-data were collected
from a controlled experiment in which a real-life military network was intentionally
peppered with various attacks that hackers would use to break in. Each record in
the dataset represents a connection between two network hosts. It is character-
ized by 41 attributes: 34 continuous-valued and 7 discrete-valued. Some examples
of the attributes are duration-of-connection, number-of-bytes-transferred, number-
of-failed-login-attempts, network-service-to-which-connection-was-made, etc. Each
record represents either an intrusion (or attack) or a normal connection. There are
four categories of attack: denial-of-service (dos), surveillance (probe), remote-to-
local (r2l), and user-to-root (u2r).

As can be seen, this data-set is quite large and it represents a real-world
problem. There are four other features of the problem and data-set that made
the KDDCUP’99 contest challenging. First, the goal was not mere accuracy, but
misclassification cost. The cost matrix is given in Table 1(a). Second, each attack
category has some subclasses of attacks, and out of total 39 total attack subclasses
that appear in test-data, only 22 were present in the training data. Third, the
distribution of training records among attack categories as well as subclasses varied
dramatically. Tables 1(b) shows the counts for some of the representative classes
and subclasses. Moreover, the misclassification cost penalty was the most for one
of the most infrequent classes, r2l. Finally, it was told that the test-data had a very
different distribution of classes as compared to the training-data.

3.1 Applying PNrule to the contest problem

We describe two sets of results in our case study. This section describes the ap-
plication strategy and results for the multi-class classification problem as stated
in the contest, which strives for a solution with least misclassification cost. Later,
Section 3.2 gives results of using PNrule for binary classification of rare classes.

The PNrule framework proposed in this paper is actually an improved and

11

more automated version of a strategy we had originally developed during the three
week period that was given to submit our results to the KDDCUP’99 contest. Based
on the confusion matrix that we obtained with our original strategy and the original
test data-set labels provided by the contest organizers, we triggered an interesting
controversy and proved that original test-data labels were wrong. Details can be
found in [1].

The sequential covering algorithms, the scoring mechanism, and cost-sensitivity
make PNrule framework of this paper an improved and more automated version of
our original two-stage strategy. Here is how we applied PNrule to the network
intrusion detection data-set of KDDCUP’99 contest:

1. We first developed models for smurf and neptune using the entire training set
T . Then, we removed every record where smurf and neptune were predicted
true with a score greater than 99.9%. We refer to the filtered training data-
set as T1. The filtering is done to increase the relative proportion of smaller
subclasses in the training set. Moreover, the 99.9% threshold removes only
those records which are strongly assured to be smurf or neptune.

2. Two prominent classes remaining were normal and probe. The other remaining
classes, r2l, u2r, and remaining subclasses of dos, were really tiny. We formed a
10% subset of T1. This subset, refered to as T110%, had every record belonging
to these classes, but only around 10% sample of the records belonging to
normal and probe. The goal was to increase the statistical significance of the
tinier classes. We learned P-rules for normal and probe using entire T1. But,
we learned N-rules for normal and probe, and entire models (P- and N-rules)
for other smaller classes using T110%.

3. We used scores of each of the classifiers along with the misclassification cost
matrix, to make final decisions according to Bayes optimality rule [1].

Note that all the rules in all the models have unit length; i.e., each P-rule
and N-rule has only one condition in it. When these models were applied to the
corrected test-data of the contest, we obtained the results shown in Table 2(a). We
also show the results of the winner[12] and runner-up[10] entries of the contest in
tables 2(b) and 2(c) respectively. As can be seen we are not very far away in
misclassification cost from the winning entry. As a matter of fact, PNrule has the
best detection rate for r2l among all the contestants.

The peculiar thing to observe is the large numbers in the first column of
the confusion matrices. Almost all the contestants seem to have misclassified a
large number of r2l and dos records as normal. This happens because there are 6%
records in the test-data (18,729 out of 311,029) belonging to 17 subclasses that are
completely absent in the training data, and none of the contestants did a good job
of capturing these unknown subclasses 3.

Hence, for a fair comparison, we decided to remove these 18,729 records. For
the remainder of test-data bearing previously known class labels, we show the confu-

3The problem of identifying such novel attacks in the test-data is another important line of
research.

12

sion matrices of three entries in the right half of Table 2. PNrule results are in part
(d). As can be seen, PNrule performs better than other entries in terms of misclas-
sification cost as well as accuracy. The number of records misclassified by PNrule
is almost 3.7% less than the second best (part (f)). PNrule’s misclassification cost
penalty is about 2.2% better than the second best (part (e)).

Since we can safely assume that many contestants have applied many different
techniques to solve the problem, and our PNrule method performs better than the
best two, we can conclude that PNrule certainly has promise to be an effective
classification technique for problems which are of similar nature as the network
intrusion detection problem studied in detail here.

3.2 Improved PNrule for Binary Classification of Rare Classes

From the results in Table 2(d), it can be seen that PNrule performs very well
on one of the rare classes r2l. Its two-phase design has a potential to perform
well on such classes. We decided to validate this further by comparing PNrule’s
binary classification performance to other existing rule-based classifiers, C4.5rules
and RIPPER. We chose to build binary classifiers for four rare classes from the
KDDCUP’99 dataset: probe, dos, r2l, and u2r.

First, we put in some more automations in the PNrule strategy by allowing
it to learn rules with more than one conditions in conjunction. For each phase,
we incorporated some stopping criteria that determine when to stop growing an
individual rule, and when to stop adding more rules [9]. We also allow PNrule to
use a rule-evaluation function of user’s choice. Along with the Z-number described
earlier, some other choices for these functions are the gain and gainratio used by
C4.5 [14], information gain used by RIPPER and FOIL [3], etc. For continuous-
valued attributes, we evaluate one-sided (≤, ≥) as well as range-based decisions,
and choose the one that yields best evaluation measure. There is a choice of not
using range-based decisions.

In the comparative study that we present now, we use the following comparison
metric, which is widely used by the information retrieval community. Let a class C
have p examples in a data-set. Let the classifier predict q out of these p examples
correctly. The classifier also predicts r examples to be of class C whereas they
actually belong to some other class (false positives). Then, recall is defined as
R = q/p and precision is defined as P = q/(q + r). The comparison metric, F -
measure, is defined as F = 2RP/(R + P). This metric has a range of [0,1]. Higher
values indicate that the classifier is doing good on recall as well as precision.

In order to compare the performance, we used a 10% subset of the original
data-set T , which we call T10%. This data-set is a is a representative sample of T ,
and was supplied as a part of the contest. Note that this data-set is different from
the T110% datset defined earlier. The examples for the dos class that we use for this
experiment exclude the examples of its subclasses smurf and neptune, which occur
in a large percentage in T10% (56.8% and 21.7%, respectively). The classes that we
are modeling have following distribution: probe 0.83%, dos 0.70%, r2l 0.23%, and
u2r 0.011%.

Before comparing the three techniques, we varied some parameters of each of

13

60244
458
5595
177
14994

Contest Runner-up

Contest Winner Contest Winner

Contest Runner-up

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 74058, Accuracy = 92.59%

Acc

175

57
3
12

normal

60316
889
6815
195
14440

75
26
222874
0
1

13
3
106
15
6

r2l

14
206
1
15
1730

99.5%
73.2%
96.9%
6.6%
10.7%

FP-rate 27.0% 7.5% .05% 89.5% 12.0%

3042

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 72500, Accuracy = 92.71%

Acc

FP-rate

normal r2l

25.4% 35.2% 0.1% 28.6% 1.2%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 18338, Accuracy = 98.28%

Accnormal r2l

FP-rate 7.2% 8.3% .04% 71.0% 1.3%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 18734, Accuracy = 98.19%

Accnormal r2l

FP-rate 6.7% 26.0% .03% 33.3% 0.9%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 73243, Accuracy = 92.92%

Accnormal r2l

FP-rate 29.3% 21.6% 73.1% 36.4% 1.7%

normal
probe
dos
u2r
r2l

probe dos u2r

Misclassification Cost = 19790, Accuracy = 98.22%

Accnormal r2l

FP-rate 7.4% 9.6% .04% 41.9% 1.5%

60316
25
392
22
4248

175
2349
24
1
12

75
3
222874
0
1

13
0
7
9
2

14
0
1
7
1730

99.5%
98.8%
99.8%
23.1%
28.9%

60262
0
2
15
4339

243
2374
304
0
289

78
3
222992
0
0

4
0
0
18
5

6
0
0
6
1360

60262
511
5299
168
14527

243
3471
1328
20
294

78
184
223226
0
0

4
0
0
30
8

6
0
0
10
1360

99.5%
83.3%
97.1%
13.2
8.4%

239
3521
227
18
4

85
187
224029
4
0

9
0
2
27
6

16
0
0
2
1185

99.4%
84.5%
97.5%
11.8%
7.3%

60244
4
10
19
4804

239
2370
10
0
3

85
3
223278
0
0

9
0
0
18
4

16
0
0
2
1182

99.4%
99.7%
99.9%
46.2%
19.7%

99.5%
99.9%
99.9%
46.2%
22.7%

(a) (d)

(b) (e)

(f)(c)

PNrule PNrule

Results on subset of test-data with known subclassesResults with entire test-data

Table 2. Comparing PNrule results with the winner and runner-up of the
KDDCUP’99 contest.

the technique, and chose the model that yielded best results on the test data. We
varied following parameters of PNrule: the length of the P-rules and N-rules (1 or
unlimited as decided by the stopping criterion), rule evaluation metric (Z-number,
or information gain as in RIPPER), use of range-based decisions on continuous
attributes. For RIPPER and C4.5, we used their default settings. However, we
tested them with two training sets: as-is and stratified. In the stratified set, the
total weight on the examples of the target class was made equal to the total weight
on the examples of the non-target class.

14

Class C4.5rules RIPPER PNrule
Rec Prec F Rec Prec F Rec Prec F

probe 99.76 99.81 0.9978 100.0 99.37 0.9968 99.61 99.56 0.9959

dos 99.94 99.94 0.9994 100.0 99.83 0.9991 100.0 99.88 0.9994

r2l 99.11 99.47 0.9929 99.47 99.56 0.9951 99.20 97.47 0.9833

u2r 42.31 61.11 0.5000 98.08 89.47 0.9358 90.38 94.00 0.9216

Table 3. Results of binary classification on the rare classes on the T10%

data-set. Rec is recall in %, Prec is precision in %.

Class C4.5rules RIPPER PNrule
Rec Prec F Rec Prec F Rec Prec F

probe 73.04 86.38 0.7915 81.16 77.92 0.7951 89.01 82.11 0.8542

dos 15.50 95.55 0.2667 22.06 95.75 0.3586 21.74 96.68 0.3549

r2l 5.23 96.36 0.0993 8.33 81.85 0.1512 13.05 82.37 0.2252

u2r 4.82 64.71 0.0898 11.84 55.10 0.1949 11.40 53.06 0.1877

Table 4. Results of binary classification on the rare classes on the test
data-set. Rec is recall in %, Prec is precision in %. The bold-faced values indicate
the best or comparably best results (highest F-measure) for each class.

The test data used here is the test-data with all the examples. So this dataset
has some examples with subclasses that are not present in T10%. The results of best
models learnt by each technique are tabulated in Table 3 for the T10% data-set,
and in Table 4 for the test data-set.

Except for the class dos, PNrule yielded best results when range-based de-
cisions were allowed for continuous attributes. All the best PNrule models used
information gain criterion for evaluating the rules. The length of the P-rules was
restricted to 1 for probe and r2l. It was unrestricted; i.e., the stopping criterion was
trusted, for the other two classes. For all the classes, length of N-rule was set to be
unrestricted.

For C4.5rules, except for u2r, the best model was obtained when unit-weight
training examples were used. For RIPPER, probe and dos needed stratified training
set to yield better models, whereas r2l and u2r needed unit-weight training set.

As the test-data results in Table 4 indicate, the F-measure for PNrule is sub-
stantially better for the two classes probe and r2l. For dos and u2r, they are com-
parable to the best of the other two techniques (RIPPER). For dos, we observed
that PNrule did not need any N-rules (i.e. no second phase). So, the fact that
it performs comparably to RIPPER is not surprising. For u2r, although PNrule
and RIPPER are comparable, PNrule’s model was slightly less complex than RIP-
PER’s, if the total number of conditions in the rules is used as the criterion. PNrule

15

model consisted of 5 P-rules and 5 N-rules with 23 conjunctive conditions overall.
RIPPER’s model consisted 6 rules with 31 conditions overall. As a matter of fact,
for probe and r2l also, PNrule yielded a less complex model (31 and 38 conditions,
respectively) as compared to RIPPER (59 and 51 conditions, respectively).

Observing Table 3 indicates that the performance of all the techniques is
similar on training data-set except for u2r, where only RIPPER and PNrule are
similar. This fact can be used to infer that the models which do not perform
well on the test data-set are running into the problem of poor generalization error
because of overfitting or small disjuncts problem.

C4.5rules in general seems to be striving for good precision without giving
much attention to the recall, hence its F-measure suffers substantially for all the
rare classes.

These observations and results illustrate that PNrule indeed outperforms ex-
isting state-of-the-art techniques of its class, for the modeling of rare classes, at
least in the situations similar to those of the case-study data-set.

4 Concluding Remarks and Future Research
We proposed a new framework, PNrule, for multi-class classification problem. The
key novel idea used in PNrule is that of learning a rule-based model in two stages:
first find P-rules to predict presence of a class and then find N-rules to predict ab-
sence of the class. We believe that this strategy helps in overcoming the problem of
small disjuncts often faced by other sequential covering based algorithms. The sec-
ond novel idea in PNrule is the mechanism used for scoring. It allows to selectively
tune the effect of each N-rule on a given P-rule.

We have shown via a case-study in network intrusion detection, that the pro-
posed PNrule framework holds promise of performing well for real-world multi-
classification problems with widely varying class distributions. We have also shown
that especially for rare target classes, PNrule significantly outperforms other rule-
based techniques. Results also illustrated that PNrule tries to avoid overfitting by
yielding higher generalization capability and learning less complex models.

The proposed framework opens up many avenues for further research. We
are currently in the process of analyzing the precise situations in which PNrule’s
two-phase approach is indeed a necessity for obtaining good classifier models. We
have obtained some good insights that we will soon write about. Here are some
other possibilities of future research: evaluating various stopping criteria for grow-
ing rules, automating selection of support and accuracy thresholds in each stage,
adding some pruning mechanisms to further protect the N-stage from running into
overfitting, improving scoring mechanism to reflect close-to-true probabilities, and
finally, extending the two-phase approach to a multi-phase approach.

Bibliography

[1] Ramesh Agarwal and Mahesh V. Joshi. PNrule: A new framework for learn-
ing classifier models in data mining (a case-study in network intrusion de-
tection). Technical Report RC 21719, IBM Research Report, Computer Sci-
ence/Mathematics, April 2000.

[2] Kamal Ali and M. Pazzani. Reducing the small disjuncts problem by learn-
ing probabilistic concept descriptions. In T. Petsche, S. J. Hanson, and
J. Shavlik, editors, Computational Learning Theory and Natural Learning Sys-
tems in Knowledge Discovery and Data Mining. MIT Press, Cambridge, Mas-
sachusettes, 1992.

[3] R. M. Cameron-Jones and J. Ross Quinlan. FOIL: A midterm report. In
ECML-93, Springer-Verlag Lecture Notes in Computer Science, number 667,
Vienna, Austria, 1993.

[4] William W. Cohen. Fast effective rule induction. In Proc. of Twelfth Interna-
tional Conference on Machine Learning, Lake Tahoe, California, 1995.

[5] Andrea Danyluk and Foster Provost. Small disjuncts in action: Learning to
diagnose errors in the local loop of the telephone network. In Proc. of Tenth In-
ternational Conference on Machine Learning, pages 81–88. Morgan Kaufmann,
1993.

[6] Charles Elkan. KDD’99 classifier learning competition. In
http://www.epsilon.com/kdd98/harvard.html, September 1999.

[7] Charles Elkan. Results of the KDD’99 classifier learning contest. In
http://www-cse.ucsd.edu/˜elkan/clresults.html, September 1999.

[8] Robert C. Holte, L. Acker, and B. Porter. Concept learning and the problem
of small disjuncts. In Proc. of Eleventh International Joint Conference on
Artificial Intelligence (IJCAI-89), pages 813–818, 1989.

[9] Mahesh V. Joshi, Ramesh Agarwal, and Vipin Kumar. Mining needles in
a haystack: Classifying rare-classes via two-phase rule induction. Technical
report, IBM Research Report, Computer Science/Mathematics, under prepa-
ration.

16

http://www.epsilon.com/kdd98/harvard.html
http://www-cse.ucsd.edu/~elkan/clresults.html

17

[10] Itzhak Levin. Kernel miner takes second place in KDD’99 classifier learning
competition. In http://www.llsoft.com/kdd99cup.html, October 1999.

[11] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[12] Bernhard Pfahringer. Results on known classes. In private communication with
authors, October 1999.

[13] J. Ross Quinlan. Improved estimates for the accuracy of small disjuncts. Ma-
chine Learning, 6(1):93–98, 1991.

[14] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[15] Gary M. Weiss. Learning with rare cases and small disjuncts. In Proc. of
Twelfth International Conference on Machine Learning, pages 558–565, Lake
Tahoe, California, 1995.

http://www.llsoft.com/kdd99cup.html

