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Drugs Typically Are…

Small organic molecules that…
Modulate disease by binding to some 
target protein…
At a location that alters the protein’s 
behavior (e.g., antagonist or agonist).
Target protein might be human (e.g., 
ACE for blood pressure) or belong to 
invading organism (e.g., surface protein 
of a bacterium).



Example of Binding
(thanks Brian Kay)



So To Design a Drug:

Identify Target
Protein

Determine
Target Site
Structure

Synthesize a
Molecule that

Will Bind

Knowledge of proteome/genome
Relevant biochemical pathways

Crystallography, NMR
Difficult if Membrane-Bound

Imperfect modeling of structure
Structures may change at binding
And even then…



Molecule Binds Target But 
May:

Bind too tightly or not tightly enough.
Be toxic.
Have other effects (side-effects) in the 
body.
Break down as soon as it gets into the 
body, or may not leave the body soon 
enough.
It may not get to where it should in the 
body (e.g., crossing blood-brain barrier).
Not diffuse from gut to bloodstream.



And Every Body is Different:

Even if a molecule works in the test 
tube and works in animal studies, it 
may not work in people (will fail in 
clinical trials).
A molecule may work for some people 
but not others.
A molecule may cause harmful side-
effects in some people but not others.



Places to Use Data Mining

Finding target proteins
Signaling pathways
Regulatory pathways
Metabolic pathways

Inferring target site structure
Predicting who will respond positively: 
pharmacogenetics, pharmacogenomics



High-Throughput Biological Data

Robotic high-throughput screening of 
molecules for bio activities
Gene Chips (Microarrays)
Single-nucleotide polymorphisms (SNPs)
Proteomics

Detecting proteins in sample
Protein-protein interactions

Metabolomics (metabonomics), lipomics



Low-Throughput Biological Data
(High-Throughput Future?)

Sequencing
Amount of data may seem high-throughput, but…
only haploid sequence, no one knows his/her 
sequence currently (SNPs are surrogate)

Protein complexes, post-translational 
modifications
Protein structures

X-ray crystallography
NMR
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Data Mining Task

Predict active vs. inactive from structure
Why need data mining?

100,000 molecules instead of 4.
Each molecule can take multiple “stable” 
shapes (low-energy conformers) by 
rotating single bonds… only one might 
permit it to bind to target protein.
For each molecule, only a few atoms are 
responsible for activity (don’t know which).



Need Target Proteins, so Need:

More complete knowledge of biological 
pathways for signaling, regulation, 
metabolism, etc.
Which proteins change with disease 
(more or less of the protein, change in 
what it does). 



image from the DOE Human Genome Program
http://www.ornl.gov/hgmis



The “Central Dogma” of Mol Bio



probes

surface

Microarrays (“Gene Chips”)

Specific probes synthesized at
known spot on chip’s surface

Probes complementary to 
RNA of genes to be measured

Typical gene (1kb+) MUCH longer 
than typical probe (24 bases)



Probes (DNA)

Gene Chip Surface

Hybridization

Labeled Sample (RNA)

How Microarrays Work



Example of Microarray Data

 

Person   Gene       A28202_ac     AB00014_at    AB00015_at       . . .     
 
Person  1               P    1142.0      A        321.0    P      2567.2       . . .    
 
Person  2               A     -586.3      P        586.1   P        759.0       . . .    
 
Person  3               A      105.2      A        559.3   P       3210.7      . . .    
 
Person  4               P       -42.8     P        692.1   P        812.0      . . .       
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
 

 



View 1: Data Points are Genes

 

 

Person   Gene       A28202_ac     AB00014_at    AB00015_at       . . .     
 
Person  1               P    1142.0      A        321.0    P      2567.2       . . .    
 
Person  2               A     -586.3      P        586.1   P        759.0       . . .    
 
Person  3               A      105.2      A        559.3   P       3210.7      . . .    
 
Person  4               P       -42.8     P        692.1   P        812.0      . . .       
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
 



View 2: Data Points are Samples

 

 

Person   Gene       A28202_ac     AB00014_at    AB00015_at       . . .     
 
Person  1               P    1142.0      A        321.0    P      2567.2       . . .    
 
Person  2               A     -586.3      P        586.1   P        759.0       . . .    
 
Person  3               A      105.2      A        559.3   P       3210.7      . . .    
 
Person  4               P       -42.8     P        692.1   P        812.0      . . .       
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
 



Supervision: Add Classes

 

 

Person   Gene       A28202_ac     AB00014_at    AB00015_at    . . .    CLASS 
 
Person  1               P    1142.0      A        321.0    P      2567.2    . . .    myeloma 
 
Person  2               A     -586.3      P        586.1   P        759.0    . . .     normal 
 
Person  3               A      105.2      A        559.3   P       3210.7   . . .     myeloma 
 
Person  4               P       -42.8     P        692.1   P        812.0   . . .       normal 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
 



Some Problems

For insight into diseases, say cancer: many 
changes.  Can get nearly 100% accuracy but 
little idea of the key changes and little 
knowledge of succeptibility.
For regulatory networks: much missing 
information… proteins, complexes, post-
translational modifications… hard to get 
insight into causality.



Not Succeptible or Not Responding

Succeptible to Disease D or Responds to Treatment T

One day we all will know our 
sequences (if we wish)…



Single-Nucleotide Polymorphisms

SNPs: Individual positions in DNA where
variation is common

Now 1.8 million known SNPs in humans

Easier/faster/cheaper to measure SNPs
than to completely sequence everyone



Example of SNP Data

 

Person   SNP               1                       2                     3             . . .    CLASS 
 
Person  1                  C      T            A        G          T         T       . . .     old 
 
Person  2                  C      C           A        G          C         T       . . .     young 
 
Person  3                  T       T           A        A           C         C       . . .     old 
 
Person  4                  C       T          G       G           T          T       . . .     young 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 
.             .         .             .      .             .       . . .           . 
 

 



Phasing (Haplotyping)



Advantages of SNP Data

Person’s SNP pattern does not change 
with time or disease, so it can give 
more insight into susceptibility

Easier to collect samples (can simply 
use blood rather than affected tissue)



Challenges of SNP Data

Unphased
Algorithms exist for phasing (haplotyping), 
but they make errors and typically need 
related individuals, dense coverage

Missing values are more common 
than in microarray data
More expensive than microarray data if 
we want similar level of completeness



Example Task from SNP Data

Distinguish disease from normal by SNP 
pattern.
Probably cannot do this near 100% 
accuracy, because SNP pattern does not 
change with disease or with time.
But if can do this significantly better 
than chance, it suggests a genetic 
predisposition to the disease.



Proteomics

Microarrays are useful primarily because 
mRNA concentrations serve as surrogate for 
protein concentrations
Like to measure protein concentrations 
directly, but at present cannot do so in
same high-throughput manner
Proteins do not have obvious direct 
complements
Could build molecules that bind, but binding 
greatly affected by protein structure



Time-of-Flight (TOF) 
Mass Spectrometry

Laser

+V
Sample

Measures the time for an 
ionized particle, starting 
from the sample plate, to 
hit the detector

Detector



Time-of-Flight (TOF) 
Mass Spectrometry 2

Laser

+V
Sample

Matrix-Assisted Laser 
Desorption-Ionization
(MALDI) 
Crystalloid structures 
made using proton-
rich matrix molecule
Hitting crystalloid with 
laser causes molecules 
to ionize and “fly” 
towards detector

Detector



Time-of-Flight Demonstration 0
(thanks Sean McIlwain)

Sample Plate



Time-of-Flight Demonstration 1

Matrix Molecules



Time-of-Flight Demonstration 2

Protein Molecules



Time-of-Flight Demonstration 3

Laser
Detector

+10KV Positive Charge



Time-of-Flight Demonstration 4

+10KV

+

Proton kicked off matrix 
molecule onto another 
molecule

Laser pulsed directly 
onto sample



Time-of-Flight Demonstration 5

+10KV

+
+

+
+ +

Lots of protons kicked 
off matrix ions, giving 
rise to more positively 
charged molecules



Time-of-Flight Demonstration 6

+10KV

+
+

+
+ +

The high positive 
potential under sample 
plate, causes 
positively charged 
molecules to 
accelerate towards 
detector



Time-of-Flight Demonstration 7

+10Kv

+

+

+

+

+

+

Smaller mass 
molecules hit detector 
first, while heavier 
ones detected later



Time-of-Flight Demonstration 8

+10KV

+

+

+

+

+

+

The incident time
measured from 
when laser is 
pulsed until 
molecule hits 
detector



Time-of-Flight Demonstration 9

+10KV

++ + + ++

Experiment repeated a 
number of times, counting 
frequencies of “flight-times”



Example Spectrum

M/Z
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Challenges of Proteomics Data

Noise
M/Z values may not align exactly across 
spectra (resolution ~0.1%)
Intensities not calibrated across spectra

Must identify proteins from “signatures” 
… best results if proteins broken down
Cannot get all proteins… typically 
several hundred



Tasks from Mass Spec Data

Determine which proteins are present in 
a sample.
Distinguish samples based on spectra, 
e.g. distinguish disease from normal 
based on spectrum.



Metabolomics

Measures concentration of each low-
molecular weight molecule in sample

These typically are “metabolites,” or 
small molecules produced or consumed 
by reactions in biochemical pathways

These reactions typically catalyzed by 
proteins (specifically, enzymes)



Metabolic Pathway Example

Fumarate

Malate

Oxaloacetate

Citrate cis-Aconitate

Isocitrate

α-Ketoglutarate

Succinyl-CoA
Succinate

fumarase

succinate thikinase

MDH

citrate synthase aconitase

IDH

α-KDGH

FAD

FADH2

H20

NAD+

NADH

Acetyl CoA
HSCoA

H20

H20

NAD+

NADH + CO2

NAD+ + HSCoA

NADH + CO2

GDP + PiGTP
+ HSCoA

(Krebs Cycle,

TCA Cycle,

Citric Acid Cycle)



Lipomics

Analogous to metabolomics, but 
measuring concentrations of lipids
rather than metabolites

Potentially help induce biochemical 
pathway information or to help 
disease diagnosis or treatment choice



Auxotrophic Growth Experiments

Which knock-outs (organisms with a 
gene removed or incapacitated) will 
grow on which media?
Example: yeast with one gene knocked 
out, growing on media with some 
nutrients.
Can be carried out robotically.
Example: King et al., Nature 2004.



Low-Throughput Biological Data
(High-Throughput Future?)

Sequencing
Amount of data may seem high-throughput, but…
only haploid sequence, no one knows his/her 
sequence currently (SNPs are surrogate)

Protein complexes, post-translational 
modifications
Protein structures

X-ray crystallography
NMR



R

In E. coli (thanks Irene Ong)

DNA
geneA geneB geneCP TO

Operon

geneRP O T

Operon OperonOperon

R

mRNA
mRNA
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Observation 1: Noise

Much work in reducing noise in 
microarray data (mostly by statisticians)
Noise even worse in mass spec data
Noise issues in every data type 
discussed



Obs 2: Missing Data or Info

Missing data common in SNP data sets
For inducing regulatory models from 
microarrays, much of the work is 
carried out by (modified) proteins such 
as transcription factors (TFs)… levels of 
TFs don’t change must, modifications 
not measured.



Obs 3: Exceptions Rule

Biology is full of exceptions to (almost) 
every general statement.
Therefore often need probabilities in 
the models we build.



Obs 4: Wide, not Deep

Each of the high-throughput data types 
typically yields thousands to millions of 
features.
All but molecule screening typically are 
run on at most a few hundred samples.
And molecule screening typically yields 
less than a hundred positive examples 
(active molecules).



Obs 5: Comprehensibility is Key

Structure-Activity models for molecules are 
useless unless they give chemists insight into 
what to make next.
New biological pathway models need to be 
tested, published, and used to gain clues to 
potential target proteins.
Physicians and patients will want to know 
what, in a SNP pattern, indicates the patient’s 
succeptibility to a disease.



Obs 6: Time Often Important

Would like to see how the set of 
proteins present change over time after 
a change in condition.
Time-series microarray data can give 
more insight into causality for network 
modeling.

How do we model time?
How rapidly should we sample?



Without Time (or other help), 
Hard to Get Causality

A  B

A is a good predictor of B.  But is A regulating B??

Ground truth might be:

B  A A  C B

B  C A

B

C

A Or a more complicated variant



Obs 7: Opportunities to Perturb 
and Observe

Can subject a cell to various conditions.
For some organisms (e.g., yeast), can 
knock-out a gene.  May become easier 
with RNAi.
Harder to do multi-gene knock-outs.
Should open the door to more 
applications of active learning.



Obs 8: Background Knowledge

Partial models often are available.
Because number of data points often is 
limited, try revising an existing model 
from data rather than constructing it 
from scratch.



Obs 9: Diverse Data Types 
Relevant to any Given System

To study a biological pathway, it would be 
ideal to have data on:

Expression of related genes
Protein levels, protein-protein interactions, post-
translational modifications
Structures of proteins and the small molecules 
that also interact with them
Levels of metabolites, etc.

Systems Biology becoming prominent



Obs 10: Models and Data Points 
often are “Multi-Relational”

A pathway consist of proteins and other biomolecules
and the interactions among them.
A protein-protein interaction consists of several pairs 
of atoms, one from each protein, that interact in one 
of several ways (charge, hydrophobicity, steric).
A molecule consists of atoms and relations among 
them (bonds, distances).
Such relationships are most easily represented in a 
database with multiple relational tables.  The same is 
true of diverse data types related to a single system.  
If collapsing to a single table, other issues arise.
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1. Fully-Automated Discovery

Update/revise an existing theory based 
on results of experiments.
Active learning: propose experiments.
Given automated (robotic) high-
throughput data collection techniques, 
human may not be needed in the 
process at all.



Robot Scientist

R.D. King, K.E. Whelan, F.M. Jones, 
P.K.G. Reiser, C.H. Bryant, S.H. 
Muggleton, D.B. Kell, and S.G. Oliver. 
Functional genomic hypothesis 
generation and experimentation by a 
robot scientist. Nature, 427:247-252, 
2004. 





Their Experiment

Began with a partial model of amino 
acid biosynthesis in yeast.
Learning algorithm:

Proposed experiments to test the model
Modified the model based on the 
experiments
When several alternative modifications 
competed, proposed experiments to 
distinguish between them.



aromatic amino acids
enzymes
metabolites



Much Room to Carry Further

Auxotrophic growth experiments are 
relatively simple.  More complex 
experiments?
This was rediscovery experiment.  Can 
we discover something new?
Advances in active learning and theory 
revision can have major impact here.



2. Multi-Relational Data Mining 
and Statistical Relational Learning

MRDM: Mine databases with multiple 
relational tables.  
SRL: Combine multi-relational and 
probabilistic approaches.  E.g., PRMs (Koller, 
Pfeffer, Friedman, Getoor, etc.) overlay Bayes
nets on relational databases, BLPs (Kersting
and De Raedt) use logic programs to build 
Bayes nets dynamically.  Many others... See 
www.biostat.wisc.edu/~page/838.html



Example: Molecular Database



Why Can’t We Just Merge Into a 
Single Table?  Show me how…

Joins: will get many more rows 
(examples) for molecules with many 
atoms and bonds… altered 
distribution… and broken examples.
Features for each possible atom and 
pair of atoms (for bonds).  Poor feature 
matches… how do we know which 
atoms to align with which?



Alternative for Getting a Single 
File: Construct New Features

Propositionalization: much work, started with 
ILP system LINUS (Dzeroski & Lavrac, 1991).  
Automated creation of new features.
Pharmaceutical companies: features for 
shapes, combinations of atoms, e.g., carbon 
double-bonded to oxygen and single bonded 
to two other carbons.  Then learn trees, etc.
For Molecules: millions of features and still 
details are lost.



Many other issues…

Data may not be i.i.d.
Not a problem with molecules… each structure is 
independent of the others.
What about predicting protein function from data 
about protein-protein interactions, etc.?  Examples 
interact with one another.

Difficult to construct test/train splits.
This issue came up with predicting protein 
function from a protein interaction network 
and other data in KDD Cup 2001.  It also 
arises with many other relational databases.



KDDKDD--2001 Cup2001 Cup
The Genomics ChallengeThe Genomics Challenge

Christos Hatzis, Silico InsightsChristos Hatzis, Silico Insights
David Page, University of WisconsinDavid Page, University of Wisconsin

CoCo--chairschairs

August 26, 2001August 26, 2001

Special thanks: DuPont Pharmaceuticals Research 
Laboratories for providing data set 1, Chris Kostas from 
Silico Insights for cleaning and organizing data sets 2 and 3 

http://www.cs.wisc.edu/~dpage/kddcup2001/



3. Complex Interactions of 
Features

Many of our data mining algorithms rely on 
relevant features having some value by 
themselves.

Greedy tree learners (CART, C5.0, etc.)
Candidate Elimination for Bayes nets.
Many feature selection methods.

Even when we can get a single table, biology 
often presents us with trick problems. 



Example: Genetics

SurvivalSxl gene activeFemale

011

101

110

000

Drosophila survival based on gender and Sxl gene activity



Example: Binding

BindsProt2 ChargeProt1 Charge

0++

1-+

1+-

0--

Binding based on complementary charges of nearby atoms



K is positive, contact is negative



Tree Learner (TDIDT) Example

+110

−010

−101

+000

Valuex3x2x1



x1

x1 =0 (2+, 1−) x1 =1 (1−)

─

x2 =0 (1+) x2 =1 (1+,1−)

x2

TDIDT Example



Learning Hard Functions

Standard method of learning hard 
functions with TDIDT: depth-k
lookahead

O(mn2k-1) for m examples in n variables

Can we devise a technique that allows 
TDIDT algorithms to efficiently learn 
hard functions?



Skewing (IJCAI’03, ICML’04)
Joint work with Soumya Ray

Hard functions aren’t – if the data 
distribution is significantly different 

from uniform



Example

Uniform distribution can be sampled by 
setting each variable (feature) 
independently of all others, with 
probability 0.5 of being set to 1.
Consider same distribution, but with 
each variable having probability 0.75 of 
being set to 1.
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More Detailed Example
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More Detailed Example
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Key Idea

Given
a large enough sample and
a second distribution sufficiently different 
from the first, 

we can learn functions that are hard for 
TDIDT algorithms under the original 
distribution.



Issues to Address

How can we get a “sufficiently 
different” distribution?

Our approach: “skew” the given sample by 
choosing “favored settings” for the 
variables

Not-large-enough sample effects?
Our approach: Average “goodness” of any 
variable over multiple skews



Skewing Algorithm

For T trials do
Choose a favored setting for each variable
Reweight the sample
Calculate entropy of each variable split 
under this weighting
For each variable that has sufficient gain, 
increment a counter

Split on the variable with the highest 
count



Experiments

Synthetic data: random and random 
hard Boolean functions, random 
uniform data.
Binding data for studying protein-
protein interactions.  Involving a family 
of proteins for which enough is known 
to allow us to describe them by feature 
vectors.



Results (3-variable Boolean 
functions)
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Results (4-variable Boolean 
functions)

Random functions Hard functions
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Results (5-variable Boolean 
functions)

Random functions Hard functions
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Results (6-variable Boolean 
functions)

Random functions Hard functions
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On Protein-Protein Interactions

Skewing yields significantly more 
accurate predictions than ordinary tree 
learners (by accuracy and by weighted 
accuracy).
Very hard data set… skewing is the only 
one significantly better than chance.



Conclusion

Biological Data will continue to grow in 
importance
Raises many interesting research issues 
for data mining
Great application area even if you’re not 
all that interested in biology



More…

ICML tutorial, www.cs.wisc.edu/~dpage
AI Magazine special issue on 
Bioinformatics

Special issue of Machine Learning
journal (Volume 52:1/2, 2003) on 
Machine Learning in the Genomics Era
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