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K-Means Clustering over Peer-to-peer Networks

Souptik Datta∗ Chris Giannella† Hillol Kargupta‡

Abstract

This paper presents preliminary work on an algorithm for
K-means clustering of homogeneously distributed data in a
peer-to-peer network. The algorithm is asynchronous and
each node operates locally by communicating only with its
topologically neighboring nodes. Importantly, large scale
synchronization is not required. Empirical results show, in
many cases, the final centroids produced are very close to
the final centroids produced by standard K-means run on
centralized data. Consequently, the number of incorrectly
labeled data points is small.
Keywords: Peer-to-peer (P2P), K-means clustering.

1 Introduction

K-means clustering [5] is a well-known and well-studied ex-
ploratory data analysis technique. The standard version as-
sumes that all data is available at a single location. However,
important applications exist for which data sources are dis-
tributed over a large, loosely-connected network. Collecting
the data at a central location before clustering is not an attrac-
tive option. Moreover, distributed algorithms which require
global synchronization are also not desired.

Example: Consider a sensor network consisting of a
large number of light-weight, wireless, battery-powered sen-
sors for environment monitoring. Each sensor is measuring
the same variables and clustering all the data in the network
in a given time window can offer valuable information con-
cerning environmental phenomena. Since the power required
for wireless communication goes up with the square of dis-
tance, nodes only should communicate with others in a small
radius (immediate neighbors). Moreover, the large number
of nodes makes global synchronization undesirable. Thus, a
K-means clustering algorithm in this example ought to work
in a locally synchronous manneri.e. nodes only synchronize
with their immediate neighbors.

This paper addresses the problem of K-means clustering
of data distributed homogeneously over a large, loosely con-
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†Computer Science and Electrical Engineering Department, University
of Maryland Baltimore County, USA.

‡Computer Science and Electrical Engineering Department, University
of Maryland Baltimore County, USA. Also affiliated with AGNIKLLC,
Columbia, MD USA.

nected peer-to-peer (P2P) network. We present preliminary
work toward the develop of an algorithm,P2P K-Means,
for which nodes only require local synchronization. To our
knowledge, P2P K-means represents the first K-means clus-
tering algorithm to operate in this fashion.

Section 2 describes related work: P2P content sharing,
distributed K-means algorithms, data mining in P2P net-
works. Section 3 describes the P2P K-means algorithm.
Section 4 describes the experimental setup: simulator and
dataset. Section 5 describes the experiments conducted and
their results. Section 6 discuses several outstanding issues to
be addressed in the future work. Finally, Section 7 concludes
the paper.

2 Related Work

Content sharing in P2P networks has received a great deal
of attention.1 However, distributed data mining in P2P
networks has received very little. Wolff and Schuster [8]
develop an algorithm for association rule mining in a large-
scale, dynamic P2P network. Kowalczyket al. [7] develop a
framework (newscast model) for computing basic operations
like average, maximum, minimum in a large-scale, dynamic
P2P network. Eisenhardtet al. [3] develop a K-means
clustering algorithm for a P2P network using aprobe-and-
echo mechanism. Their algorithm is similar to ours in that
we both only transmit centroids rather than data to reduce
communication load. However, their algorithm requires a
complete global synchronization at each iteration, while ours
does not require global synchronization at any time. On the
other hand, their algorithm is guaranteed to produce exact
results (i.e. same as K-means on centralized data), while ours
produces an approximation. Finally, Bandyopadhyayet al.
[1] develop a non-locally synchronized K-means algorithm
in a P2P network but use random sampling of the network
to reduce message load. Their algorithm is similar to ours in
that an approximate result is produced. On the other hand,
we do only require local synchronization and only require
nodes to communicate with their immediate neighbors.

Distributed clustering has been addressed as of recent
in the Distributed Data Mining (DDM) community. For a
survey of clustering techniques in DDM see [6] and [1]. In
particular, some work has been done on parallel implementa-

1See Androutsellis-Theotokis, http://citeseer.ist.psu.edu/androutsellis-
theoto02survey.html for an overview.



tions of K-means. Dhillon and Modha [2] divide the dataset
into p same-sized blocks, then, on each iteration, each of
the p processors updates its current centroids based on its
block. The processors broadcast their centroids and cluster
counts. Once a processor has received all the centroids from
other processors it forms the global centroids by weighted
averaging. Each processor proceeds on to the next iteration.
Forman and Zhang [4] take a similar approach, but extend
it to K-harmonic means. Note that the methods of [2] and
[4] both start by partitioning then distributing a centralized
dataset over many sites. This is different than the setting we
consider: the data is never centralized, it is inherently dis-
tributed. However, we directly employ their idea of sending
around centroids and updating based on weighted averaging.

3 The Algorithm

Below we describe our P2P K-means algorithm. The goal
is for each node to converge on a set of centroids that are as
close as possible to the centroids that would be produced by
first centralizing the data, then running K-means.

3.1 Basic Algorithm Let N1, N2, . . . , Nn denote the
nodes in the system each with data setXi. The global dataset
is denoted asX which equals

⋃n
i=1 Xi. LetNeigh(i) denote

the set of nodesNi is directly connected to at a given time
i.e. the immediate neighbors ofNi. We assume that each
node can reliably computeNeigh at any given time. As a
consequence, for example, each node can determine if the
link to any of its immediate neighbors from a previous time
has gone down.

At the beginning of iterationℓ, nodeNi has a set of
centroids,{v(i)

j,ℓ :1 ≤ j ≤ K}. NodeNi first carries out

one round ofK-means on its local dataXi using {v
(i)
j,ℓ :

1 ≤ j ≤ K}. The result is a new set of centroids and their
associated cluster counts{(w(i)

j,ℓ ,|w(i)
j,ℓ |) : 1 ≤ j ≤ K} where

|w
(i)
j,ℓ | is defined as the number of tuples inXi for which

w
(i)
j,ℓ is closer2 than any otherw(i)

h,ℓ, h 6= j. The collection

{(w
(i)
j,ℓ ,|w(i)

j,ℓ |) : 1 ≤ j ≤ K} is stored in thehistory table
whose purpose will be explained in Section 3.2.

Node Ni sends a poll message,〈i, ℓ〉, to each node
Nk ∈ Neigh(i) (the purpose of the iteration number will
be explained in Section 3.2). Once allNk have responded
or cease to be neighbors,Ni continues. LetResp(i) denote
the set of nodes that did respond. Each response message
from node Nk ∈ Resp(i) contains the locally updated
centroids and cluster counts at nodeNk during iterationℓ,
i.e. the response is〈k, {(w(k)

j,ℓ ,|w(k)
j,ℓ |):1 ≤ j ≤ K}〉. Node

Ni updates itsjth centroid as follows (producing thejth

centroid at the beginning of iterationℓ + 1):

2In our experiments we used Euclidean distance.

v
(i)
j,ℓ+1 =

∑
Nk∈(Resp(i)∪{Ni})

w
(k)
j,ℓ |w

(k)
j,ℓ |

∑
Nk∈(Resp(i)∪{Ni})

|w
(k)
j,ℓ |

.

If max{||v
(i)
j,ℓ − v

(i)
j,ℓ+1|| : 1 ≤ j ≤ K} > γ (a user-

defined parameter), then nodeNi goes on to iterationℓ + 1.
Otherwise it enters the terminated state (described in Section
3.2).

3.2 Some Details Initialization: The initial centroids
{v

(i)
j,1 : 1 ≤ j ≤ K} are chosen randomly, but are the

same for each node. The node which initiates the algo-
rithm chooses the initial centroids, then propagates them to
its neighbors. Once a node receives the initial centroids, it
propagates them to its neighbors, then begins iteration one.

Poll response: Suppose nodeNi receives polling mes-
sage〈h, ℓ̂〉 during its iterationℓ. The message came from
nodeNh, during its iterationℓ̂. Ni must determine how to
respond. Ifℓ̂ < ℓ, thenNi’s history table contains its local
centroids and their cluster counts from iterationℓ̂. Hence,
Ni, sends these immediately in a response message toNh.
If ℓ̂ > ℓ, thenNi’s history table does not contain local cen-
troids for iterationℓ̂. So, poll message〈h, ℓ̂〉 is placed in the
poll table. If ℓ̂ = ℓ, thenNi checks if its history table con-
tains local centroids and their cluster counts for iteration ℓ̂.
If so, these are sent toNh. If not, 〈h, ℓ̂〉 is placed in the poll
table.

Finally,Ni must also check its poll table during iteration
ℓ. This is done immediately after producing the local
centroids and their cluster counts. For all poll messages
〈h1, ℓ〉, · · · , 〈hm, ℓ, 〉 in the table,Ni sends its local centroids
and their cluster counts in a response message to eachhj .
These poll messages are then removed from the table.

Termination: As described in Section 3.1, a node,Ni,
can enter a terminated state, say at the end of iterationℓ.
Once this happensNi no longer updates its centroids or
sends polling messages. However, it does respond to polling
messages〈h, ℓ̂〉 as follows. Ifℓ̂≤ ℓ, thenNi looks up its local
centroids and their cluster counts for iterationℓ̂ in its history
table. They are immediately sent in a response message to
Nh. If ℓ̂ > ℓ, thenNi looks up its local centroids and their
counts for iterationℓ and sends these in a response message
to Nh.

Note that, no node has an explicit condition under which
all activity stops. However, once a node enters the terminated
state, it no longer sends polling messages, only responses.
Therefore, once all nodes enter into the terminated state, all
communication ceasesi.e. the algorithm has terminated.

3.3 Analysis Consider P2P K-means at some fixed mo-
ment in time. LetI denote the maximum number of
iterations carried out by any node and letL denote



max{Neigh(i) : 1 ≤ i ≤ n}. Now we provide worst-case
space and communication analysis of P2P K-means with re-
spect toI, L, K, andn.

At any given nodeNi, the space required is proportional
to the size ofNi’s history and poll tables. Clearly the history
table is of sizeO(IK) since the local centroids and their
cluster counts are added for each iteration. The poll table is
of sizeO(IL), since each ofNi’s neighbors sends one poll
messages per iteration, thus, a maximum ofI per neighbor.
Therefore, the total space isO(I(K + L)). The number of
messages (4 byte numbers) transmitted byNi is O(ILK).
This is becauseNi sends a poll message (sizeO(1)) to each
neighbor at each iteration (O(IL) in total). On top of this,Ni

sends a response of sizeO(K) for each entry of theO(IL)
entries in its poll table (O(ILK) in total). Therefore, total
number of messages isO(IL + ILK).

Hence the total amount of space and communication
over all nodes isO(nI(K+L)) andO(nILK), respectively.

4 Experimental Setup

We tested our algorithm in a simulated environment run on
a single machine. First we describe the simulator (Section
4.1), then the dataset used (Section 4.2).

4.1 Simulator Our simulation consists of two parts: the
network topology with edge delays; the message passing
and local computation behavior. For the network topology
and delays, we have used one of the standard Internet topol-
ogy generators, BRITE3. It produces a weighted graph with
edge weights representing communication delays (in mSec-
onds). We have used flat level ‘Autonomous System’ (AS)
with Waxman model to simulate the network in BRITE,
where two nodes u and v are connected with a probabil-
ity P (u, v) = αe−d(u,v)/βL, whereα =0.15 andβ = 0.2.
An ‘incremental growth’ version of the Waxman model with
random node placement is used during topology construc-
tion. A new node surveys the existing nodes in the graph
in each step and connects to m (= 2) of them with the said
probability. Other parameters4 used are HS= 1000, LS=
100 (size of the plane), constant bandwidth distribution with
Max BW = 1024, and Min BW= 10. In our experiments,
we do not consider the effect of edge or node failures or edge
or node additionsi.e. the topology remains fixed throughout
each experiment.

For the message passing and local computation behav-
ior, our simulator operates with respect to a global clock.
At each clock tick, the state of the network is updated.
For each message in flight, its number of ticks to arrival
is decremented. If the message has arrived, it is copied
into a buffer associated with the arrival node. We assume

3www.cs.bu.edu/brite
4Refer to BRITE documentation for details.

Figure 1: Experimental dataset

that network communication dominates local computation
(a reasonable assumption if the local datasets are small).
Thus, local computation time is not considered in the sim-
ulation. In one clock tick, each node is able to carry out
one round of K-means producing local centroids and cluster
counts ({(w, |w|)}) and send polling requests to all neigh-
bors. The remainder of the iteration will require more clock
ticks until all responses have arrived. Once all responses
have arrived, the node updates its old centroids without any
additional ticks and, moreover, processing poll requests from
other nodes does not incur any additional clock ticks.

Since the simulator operates on global clock ticks rather
than wall clock time, the BRITE map edge delays must be
converted from mSeconds to number of clock ticks. To do
this, we assume a clock tick in 500 mSeconds and round
edge delays to the nearest multiple of 500 mSeconds.

4.2 Dataset We conducted all the experiments with a 2D
synthetic data set generated from ten multivariate Gaussian
distribution, Figure 1. The dataset has78200 points and sig-
nificant overlap between the clusters. The data is distributed
over different nodes in the network by uniform random sam-
pling. We assume the data remains static throughout each
experiment.

5 Results

We varied the number of nodes from 50 to 500 and mea-
sured communication complexity of P2P K-means as well as
its accuracy with respect to the centralized K-means. In all
experiments,γ, the termination parameter, is set to one. We
also start the simulations with each node having the initial
centroids (same for each node) thereby ignoring the initial
propagation delay. However, since we assume the network



topology remains fixed in each simulation, the initial prop-
agation of centroids from a leader node to all other nodes
merely increases the number of global clock ticks for the
simulation to complete. It does not affect the accuracy or
the number of algorithm iterations to completion. Average
immediate neighborhood length is4 per node. The number
of clusters (K) in all simulations is set to 8. Note that the
dataset is made up of 10 Gaussian distributionsi.e. 10 natu-
ral clusters. Our choice of K is intended to test the algorithm
in less than optimal conditions.

5.1 Accuracy Accuracy is measured as follows. The
initial centroids are labeled1, . . . ,K (the same centroids
for each node and for the centralized K-means). For each
x ∈ X, let Lcent(x) denote the label of the cluster to which
x is assigned at the end of the centralized K-means. Assume
x appears at nodeNi i.e. x ∈ X(i). Let Lp2p(x) denote the
label of the cluster atNi to whichx is assigned once the node
reaches the termination state. Thepercentage of mislabeled
points (PMP) is

100|{x ∈ X : Lcent(x) 6= Lp2p(x)}|

|X|
.

Let v
(i)
j,∗ denote thejth centroid at nodeNi once the

termination state is reached. Letvj,∗ denote thejth centroid
in the centralized algorithm once it terminates. Theaverage
Euclidean distance between thejth centroid in P2P K-means
and centralized K-means (abbreviated ”AED j”) is

∑n
ı=1 ||v

(i)
j,∗ − vj,∗||

n
.

Figure 2 depicts the accuracy of the final centroids
produced by P2P K means. The top row depicts the number
of nodes in the network and the next row, AI, depicts the
average number of algorithm iterations carried out over all
nodes. The maximum and minimum in all cases is no more
that 1.5 away from the average. For more than 350 sites, the
simulation is forced to stop after300 global clock ticks due to
memory constraints. Note, however, this is only a limitation
of the simulator, not the algorithm. Moreover, more than
90% of the nodes had reached their termination state.

The results show that P2P K-means clusters most of the
data points correctly as PMP is no more than1.58% for 350
or less nodes and no more than7.25% for all simulations.
The sharp increase beyond 350 is due to the fact that the
simulator was stopped early (300 global clock ticks). There
appears to be no significant upward trend as the number of
nodes increases to 350, thereby, suggesting that PMP scales
well with number of nodes. However, this claim need be
verified with larger numbers of nodes, thus, requiring the
memory constraints of the simulator to be addressed; we
leave this to future work.

The results for AED are consistent with the above
observations. Indeed, for less than 400 nodes, the AED is
no more than 0.523 and an order of magnitude less in more
cases. Given the range over which the dataset spans (more
than 50 units in each dimension), this is quite small. Also,
for less than 400 nodes, there appears to be no significant
upward trend, thereby, supporting the claim that accuracy
scales well.

The effect of topology on Accuracy: We expect the
performance of P2P K-means to diminish at the topology
becomes “thinner” – nodes have fewer neighbors. To test
this claim, we simulated our algorithm on a straight-line
topology. Delays were assigned to edges uniformly between
1 and 5 (clock ticks). The results are shown in Figure 3. For
brevity we do not show AED for each node, but, it does not
exceed 1.7 in any case and in the vast majority is less than
half this amount.

As expected, we see a large increase in the average
number of iterations and the percentage of misclassified
points over the BRITE topology case. The PMP becomes
as large as11%. While this is not great accuracy, it is decent
considering the straight-line topology represents a worstcase
for our algorithm. Moreover, the PMP trend suggests good
scalability with respect to accuracy. Interestingly, PMP
appears todecrease (unexpected result). We don’t yet have
an explanation for this observation.

5.2 Communication Complexity We measure the com-
munication complexity of P2P K-means by counting the
number of messages passed during a simulation. Each mes-
sage is a 4 bytes numbere.g. a floating point number. The
purpose of doing so is to assess scalability in terms of com-
munication load. Figure 4 shows the variation of communi-
cation cost with respect to the number of sites. The results
suggest that communication cost scales faster than linearly
for the BRITE topology, but not so with straight. Using em-
pirical values ofI, L, K, andn, we computed the asymp-
totic communication complexity derived in Section 3.3. The
results are always20 to 40 times greater than the observed
empirical communication complexity for the BRITE topol-
ogy, and roughly8 times for the straight line topology. This
indicates that the worst case has either a very small constant
or produces a loose bound.

6 Discussion

In this section, we discuss several issues that remain to be
addressed or require further discussion.

6.1 Algorithmic Issues Below we describe how P2P K-
means could be modified (if necessary) to address several
outstanding algorithmic issues.

Node failure or topology change: If a node leaves
the network, as explained in Section 3.1, its neighboring



50 100 150 200 250 300 350 400 450 500
AI 16 21 13.5 14 19.5 12.5 22.5 34.5 34.5 34.5

PMP 1.98 1.88 1.78 1.73 1.82 1.58 2.04 2.47 3.71 7.25
AED 1 0.187 0.229 0.036 0.0513 0.068 0.0089 0.0084 0.021 0.008 0.012
AED 2 0.523 0.177 0.284 0.331 0.056 0.158 0.105 0.011 0.064 0.134
AED 3 0.022 0.057 0.007 0.025 0.043 0.032 0.011 0.045 0.129 0.021
AED 4 0.024 0.035 0.025 0.003 0.059 0.007 0.011 0.034 0.013 0.002
AED 5 0.092 0.010 0.025 0.038 0.026 0.007 0.013 0.053 0.014 0.032
AED 6 0.019 0.024 0.008 0.046 0.008 0.005 0.012 0.042 0.007 0.004
AED 7 0.036 0.077 0.008 0.067 0.008 0.027 0.011 0.030 0.013 0.030
AED 8 0.015 0.014 0.011 0.005 0.039 0.014 0.015 0.041 0.004 0.024

Figure 2: Accuracy of P2P K-means.

50 100 150 200 250 300 350
AI 71.5 77.5 101.5 101.5 62.5 80.5 59

PMP 10.17 11.04 10.81 11.01 7.01 7.93 6.91

Figure 3: Accuracy of P2P K-Means (straight-line topology).
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Figure 4: Communication complexity

nodes will discover this and move on to the next iteration
without it. Likewise, if an edge goes down, the nodes
involved will detect the change. These nodes will refrain
from waiting on neighbors no longer accessible. Hence, the
algorithm requires no conceptual change to deal with these
cases (however, accuracy may suffer).

If a new edges come up, all associated nodes will dis-
cover this and, therefore, detect new immediate neighbors.
A simple way to augment P2P K-means is to have all asso-
ciated nodes wait until the next iteration before considering
the new neighbors.

Node addition: If a new node,N , joins the network,

a more complicated set of modifications is needed.N will
need to synchronize itself with its neighborsNeigh(N). A
simple way to do this is as follows.

1. N polls its neighbors and eachNi ∈ Neigh(N) returns
its current iterationℓi and all centroids and cluster
counts.

2. N sets its iteration number toℓ = min{ℓi : Ni ∈
Neigh(N )}, and its centroids as follows. Choose
Ni ∈ Neigh(N) whose iteration number isℓ (break ties
arbitrarily). For all1 ≤ j ≤ K, setv(N)

j,ℓ to v
(i)
j,ℓ .

3. N begins iterationℓ as described for P2P K-means.

All immediate neighbors ofN which are not in the
“terminated” state would simply wait until the next iteration
before pollingN . However, immediate neighborŝN that
were in the terminated state ought to consider becoming
active again. To do this,̂N polls N for its local centroids
and cluster counts (thew’s). N̂ computes an update of
its centroids and if the resulting centroids have changed
significantly,N̂ becomes active again and sends a message
to all its immediate neighbors. If any of these neighbors are
in the terminated state, they follow the same procedure to
determine if they should become active.

Data change: If the data at a nodeN changes and theN
is not in the terminated state, its behavior need not change.
If N is in the terminated state, it must determine whether or
not to become active again. To do this,N recomputes its
local centroids and polls its immediate neighbors for their
centroids and cluster counts. ThenN updates its centroids
and if the resulting centroids have changed significantly,N

becomes active again.



In either case, though,N sends a message to all its im-
mediate neighbors indicating a data change. Neighbors not
in the terminated state, can ignore the message. Neighbors in
the terminated state will determine whether to become active
using the same technique as described above in the “Node
addition” case.

6.2 Synchronization P2P K-means does not require
global synchronization in the sense that all nodes in the net-
work must be on the same iteration. However, the algorithm
is not completely asynchronous in the sense that any node
can be on any iteration with respect to any other node. The
algorithm requires local synchronization in the following
sense. Since a node must wait for responses from its imme-
diate neighbors (unless they go down), it cannot move more
that one iteration beyond them. Hence the difference in it-
eration number between two nodes is always upper bounded
by the number of network links between the two nodes.

7 Conclusions and Future Work

We have considered the problem of K-means clustering on
data homogeneously distributed over a P2P network. We
have presented preliminary work on the development of a
locally synchronous K-means algorithm for P2P networks.
Nodes only communicate and synchronize with their topo-
logically immediate neighbors. Empirical results show, in
many cases, the final centroids produced are very close to
the final centroids produced by centralized K-means. Con-
sequently, the number of incorrectly labeled data points is
small. The communication, however, seems to scale faster
than linearly with the number of nodes.

Several algorithmic and experimental issues remain to
be addressed in future work.

1. Implement the algorithmic changes discussed in Sec-
tion 6 to address the issue of new nodes coming into the
network and non-static data.

2. Carry out a more elaborate set of experiments to assess
accuracy with respect to (i) varying degrees of data
heterogeneityi.e. the data is not split uniformly across
all nodes from the central dataset; (ii) data and topology
changes.
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ABSTRACT 
In sequential pattern mining the availability of large 
databases and the generation of massive number of 
frequent subsequences demand scalable high 
performance solutions involving multiple processors. 
To address this issue, this paper presents an efficient 
scalable parallel algorithm based on the PrefixSpan 
sequential pattern mining algorithm. We use task 
parallelism approach and experiment with several static 
task partitioning techniques to partition the tasks 
among processors. Although static task partitioning has 
the advantage of simplicity in terms of both 
implementation as well as overhead, it is difficult to 
precisely estimate the actual workload. To overcome 
this issue we propose dynamic task partitioning 
technique that estimates the actual workload by 
allocating the tasks one at a time to a processor, 
whenever it becomes free. Moreover, to ensure that the 
load of each processor is equal, we have extended our 
approach by including a dynamic subtask partitioning 
mechanism, where subtasks of the given task is also 
partitioned among the free processors when load 
imbalance is detected. Experiments on a 16 processor 
distributed memory environment show good speedups 
and scalable performance over different processors and 
problem sizes. Using our dynamic partitioning 
technique, we report an average speedup of 13.2 on 16 
processors, for different problem sizes. 

Keywords 
Sequential pattern mining, parallel processing, data 
mining.  

1. INTRODUCTION 
Sequential pattern mining has become an essential data 
mining task to discover previously unknown patterns in 
vast amount of data. Such knowledge discovery task 
provides a lot of useful information. For example, 
analyzing customer buying patterns from sales data 
collected over a period of time can be used for 
projections and forecasting. Several algorithms have 
been proposed such as GSP [4], SPADE [6], FreeSpan 
[5], SPAM [7] and PrefixSpan [3] in the past to find 

sequential patterns in a sequence database. When 
considering the availability of massive volume of data, 
discovering all frequent sequences is still a major issue. 
The search space is quite large and the serial 
algorithms are not scalable for large datasets. To 
address this, it is necessary to study scalable parallel 
implementations of sequence mining algorithms.  

A number of algorithms for parallel sequential 
mining can be found in the literature; e.g. [2, 8, 9, 10, 
14]. Several parallel versions of the GSP algorithm are 
proposed by Shintani & Kitsuregawa in [14], for 
distributed memory environment. Their method 
partitions the database equally among the processors 
and exchanges remote database partitions in each of the 
iterations. Thus it requires high communication cost 
and synchronization overhead. Parallel version of the 
SPADE algorithm on shared memory environment was 
proposed by Zaki in [2]. The algorithm uses a shared 
database among the processors and an efficient 
dynamic load-balancing scheme.  

In this paper, we present a parallel algorithm based 
on the PrefixSpan sequence mining algorithm, 
targeting a distributed memory environment. 
PrefixSpan [3] is an efficient sequence mining 
algorithm, which uses prefix based projection and 
depth first search strategy to generate sequential 
patterns. PrefixSpan reports fast execution time and 
consumes less space. Although this algorithm is 
efficient, when compared with the previously available 
sequence mining algorithms, it still consumes a lot of 
computational resources when support threshold is low 
or the patterns become long [12, 8]. 

In our proposed parallel algorithm, we decompose 
the mining phase into a set of prefix-based 
subsequences called tasks. We use task parallelism 
approach and partition the tasks among available 
processors using static and dynamic task partitioning 
techniques. Each task can be mined separately in main 
memory without sharing or synchronization. We have 
used several static task partitioning techniques based 
on support count of the items. Also, we have proposed 
dynamic task partitioning technique suitable for 
distributed memory environment. In this technique, 
whenever a processor becomes free it obtains a task 



from the shared pool of tasks and balances the 
workload evenly at run time. We have also extended 
this with a dynamic subtask partitioning mechanism, 
where unprocessed subtasks of a task are partitioned 
among the available free processors whenever a load 
imbalance is detected. The key features of our 
approach are: 

(1) Our algorithm is an asynchronous algorithm 
where processors work on separate tasks without 
sharing or synchronization, except when a load 
imbalance is detected at the end.  

(2) We use simple and efficient task scheduling 
technique based on actual workload, and an 
efficient subtask partitioning mechanisms for 
load balancing. 

(3) Also, our algorithm has low communication 
overhead, which is important for a distributed 
memory environment like cluster of 
workstations. 

We have tested our algorithm using various 
datasets including several real-world datasets, on a 
cluster of 16 workstations. With dynamic task 
partitioning technique we achieved higher speedup 
improvement, compared to static task partitioning 
techniques and, an average speedup of 13.2 on 16 
processors, for different problem sizes. Sutou et al. [8] 
have developed a parallel implementation of the 
PrefixSpan algorithm using a dynamic task partitioning 
mechanism. Our approach is different from their 
approach as we use an efficient dynamic subtask 
partition mechanism to balance the workload, when 
load imbalance is detected. Our subtask partitioning 
scheme delivered on average 48% speedup 
improvement over non subtask partitioning scheme 
such as [8] on 16 processors for skewed data sets, 
where tasks shows significant difference in workload. 
Even the static task partitioning techniques proposed in 
this paper, showed reasonably good speedup for 
datasets that are not skewed. Our dynamic task 
partitioning algorithm with sub task partitioning 
mechanism delivered higher speedups for almost all 
types of databases tested. 

The rest of the paper is organized as follows: 
Section 2 describes sequential pattern mining and the 
serial algorithm. Section 3 describes in detail the 
parallel execution model and our parallel algorithm. 
Section 4 presents the evaluating environment and the 
results. Section 5 concludes the paper.  

2. SEQUENCE MINING  
The problem of mining for sequential patterns was 
introduced by Agrawal et al [1]. It can be stated as 
follows: Let I = {i1, i2, …,im} be a set of m distinct 
items. An itemset Si is a non-empty subset of items; i.e. 

Si ⊆ I. Itemset with k items is called a k-itemset. Also, 
an item can occur only once in an itemset. 

A sequence is an ordered list of itemsets, denoted 
by <S1, S2, …,Sn>, where Si is an itemset. Itemsets in a 
sequence are ordered according to their timestamp. We 
assumed that items of an itemset are sorted in 
increasing or lexicographic order. The Length of a 
sequence is the number of items in that sequence. A 
sequence with k items is called a k-sequence.  

A sequence database D consists of set of data 
sequences. The support of a sequence S is defined as 
the fraction of total data sequences that contain S. A 
sequence is called frequent if its support is above a 
user specified minimum support threshold. Given a 
database D of sequences and support threshold t, the 
problem of mining for sequential patterns is to find all 
frequent sequences in the database.  

2.1 Serial PrefixSpan Algorithm 
PrefixSpan [3] is a fast sequence mining algorithm that 
generates complete set of frequent patterns using 
prefix-based projection. It examines prefix 
subsequence and projects the corresponding postfix 
subsequence into a database called projected database. 
Projected databases are constructed for each prefix 
subsequence. Using the projected database, local 
frequent items are determined and appended to the 
prefix subsequence of that projected database 
recursively to form sequential patterns.  
 Consider the sample database of 4 sequences: 
{<(ab)(b)(ae) (bc)>, <(bcd)(b)(cdf)>, 
<(a)(abc)(bc)(e)>, <(b)(cd)(abd)(ad)>}.  By scanning 
the database we can find length-1 sequential patterns 
with a minimum support of 2. They are {<a>:3, <b>:4, 
<c>:4, <d>:2, <e>:2}, where <pattern>:count 
represents the frequent pattern and its associated 
support count. 
 In PrefixSpan algorithm, subsequent sequential 
patterns can be found by constructing corresponding 
projected database. For prefix pattern <a>, a-projected 
database is {<(_b)(b)(ae)(bc)>, <(abc)(bc)(e)>, 
<(_bd)(ad)>}, where (_b) means the last element in the 
prefix (i.e. a) together with b form one element [3]. 
Similarly projected databases are built for other prefix 
patterns <b>, <c>, <d> and <e>.  
 By scanning projected database once all frequent 
items i are found such that i can be assembled to the 
last element of prefix pattern or (i) can be appended to 
prefix pattern to form a sequence [3]. For example, 
scanning a-projected database all length-2 frequent 
pattern with prefix <a> can be found as {<(a)(a)>:3, 
<(ab)>:3, <(a)(b)>:2, <(a)(c)>:2 <(a)(e)>:2}. 
Subsequent patterns can be mined by constructing 
respective projected databases as before, and mining 
each recursively.  



 The major cost of PrefixSpan algorithm is the 
construction of projected databases. To reduce this 
cost, pseudo projection technique has been proposed in 
[3]. Here instead of physically copying the postfix 
sequences of the database, pointers are used to refer to 
the sequence in the database. 

3. PARALLEL FORMULATION 
Our parallel formulation can be best understood when 
we analyze the computations performed by the 
PrefixSpan algorithm. We can see the computations of 
the PrefixSpan as dynamically expanding irregular sub-
trees, each rooted with a prefix subsequence as shown 
by Figure 1. Also note that the computations at each 
node and its sub-tree become independent from other 
nodes and their respective sub-trees.  
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Figure 1: Search space of the PrefixSpan algorithm. 

 
We choose task parallelism approach as the main 
paradigm to implement our parallel PrefixSpan 
algorithm. In our approach each processor is assigned a 
task or a set of tasks, based on the partitioning 
technique discussed later, and it then proceeds to 
independently grow the entire sub-trees rooted at those 
tasks. 
 In our parallel algorithm, we decompose search 
space of the PrefixSpan into a set of independent tasks 
such that the number of tasks (k) is larger than the 
available number of processors (P). Experimentally, 
we found k to be at least 4.P to achieve good workload 
balancing. First, we consider the prefix subsequences at 
level-1 as tasks, if number of such subsequences is 
larger than 4.P; otherwise we move to the next level 
and consider the prefix subsequences at that level as 
tasks. In Figure 1, {<aa>, <ae>, <ba>, <eb>, <ec>} 
are the set of tasks at level-2. Similarly we move level 
by level deeper in the computational tree until we find 
the desired number of tasks. A subtask of a task is the 
postfix item of the corresponding prefix subsequence. 
Tasks are partitioned among processors using the 
techniques discussed in the following sections. To 
achieve maximum performance task partitioning must 

be done in a way so that the workload of each 
processor is fairly balanced. 

3.1 Static Task Partitioning 
In our static partitioning approach each task is assigned 
a weight based on the support count of the prefix 
subsequence of the task. Then the set of tasks are 
partitioned and each subset of tasks is assigned to a 
processor. We discuss several partitioning methods in 
the following sections. 

3.1.1 Contiguous Task Partitioning (STATIC-1) 
In this partitioning method we calculate the average 
weight of the items to be allocated to a processor by 
dividing the total weight of all the tasks with the 
number of processors. Then tasks are sorted in 
descending order based on weight. We start allocating 
tasks to a processor contiguously until their total 
weight is greater than or equal to the average weight. 
After allocating tasks to a processor we start allocating 
tasks to the next processor in the same way.  

3.1.2 Bin Partitioning (STATIC-2) 
In this method each processor is considered as a bin. 
First, the tasks are sorted in descending order of 
weight. Here a task is allocated to a processor, with 
lowest total weight. Initially total weight of each 
processor is zero. When allocating the next task, 
processor with the lowest total weight is chosen. 

3.1.3 Bin Partitioning Using Subtask Weight 
(STATIC-3) 
In STATIC-2 we used support count of the task as the 
weight. In STATIC-3, we compute the support count of 
frequent postfix items of the task, and use sum of 
support counts as the weight. The idea behind this 
approach is to improve the accuracy of the workload 
estimation. Instead of using an estimate based on single 
support value as in STATIC-1 and STATIC-2, this 
method looks ahead at the supports of the postfix 
items, and therefore tend to provide a better workload 
estimate, with the cost of postfix item generation. After 
that the task allocation is similar to STATIC2.  

3.2 Static Parallel Algorithm  
In our parallel algorithm we assume each processor has 
access to the database using either a shared file system 
(with parallel I/O facility) or local disks each with a 
copy of the database. We used the latter approach. The 
main steps of our static parallel algorithm are as 
follow: 

1. One processor known as Master scans sequence 
database and generate the set of tasks. 

2. Master processor then partition the set of tasks 
into P subsets Ti, 1≤ i ≤ P using a static task 



partition technique and send subset Ti to 
processor-i for all 1< i ≤P (P is the number of 
processors). 

3. Every processor mines for frequent patterns for 
each task t in the assigned subset Ti 

3.3 Dynamic Task Partitioning 
The idea behind our static partitioning techniques is 
that if an item has a high support it will most likely 
have a deeper computational sub-tree (higher 
workload) than an item with low support. However 
estimates based on support count can potentially be 
very inaccurate, because of the skewness of sequence 
data. Also, when presenting experimental results we 
will show that the accuracy of static estimates 
decreases as the number of processors increases. For 
this reason, we have developed dynamic task 
partitioning scheme, where tasks are partitioned to 
processors at mining time based on the current 
workload of the processor. 

Our parallel model is a master worker model as 
shown in Figure 2. The task of the worker processor is 
to generate all the frequent sequences for a given task. 
Master processor does two major jobs: one is the 
mining to generate frequent sequences and the other is 
to act as a server for worker processors. Once a worker 
processor finished generating sequences for a given 
frequent task, it requests another task from the Master. 
If a request from a worker processor is available 
Master processor temporarily stops mining and process 
the request by sending a new task to that worker 
processor. The task list contains tasks sorted 
(descending order) according to the support count. 
Thus large jobs will be carried out first by the 
processors.  
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Figure 2: Parallel Execution Model. 

The idea behind this approach is to have a shared task 
list. Since in a distributed memory environment it is not 
possible to have a shared data structure, we implement 
this functionality with message passing and client-
server architecture. But, here we do not have a 
dedicated server. Instead Master processor frequently 

probes the system while mining the items. This allows 
us to utilize all the available processors including the 
master processor for mining. The communication 
overhead in this model is minimal. For n frequent tasks 
the communication overhead is O(2n). In this model, 
load is balanced fairly, as a processor gets another task 
only when it is finished executing the current task. 

3.3.1 Dynamic Subtask Partitioning 
It is possible that the workload balancing of the 
dynamic method fails when a highly skewed sequence 
database is used. Since tasks are arranged in the task 
list based on the support count, larger jobs will be 
carried out first. But a problem can occur when support 
count cannot predict the workload of a data set, 
particularly for a skewed data set. For example, worst 
situation occurs when P-1 processors are free (i.e. they 
finish their portion of the allocated tasks and there are 
no more tasks in the task list) and only one processor is 
busy (here P is the number of processors). Figure 3 
shows this scenario for a skewed dataset. Out of the k 
tasks available for mining, all the tasks except task-2 
are processed completely by the processors while the 
processor responsible for task-2 is processing subtask-b 
of task-2. 
 In order to address this situation, we have to 
provide a load balancing mechanism so that the free 
processors will be able to join with busy ones to share 
the workload. We have solved this problem by 
partitioning the high workload subtasks of the 
corresponding task among free processors. In our 
method, once the free processors are available, a 
Coordinator processor sends a job request message to 
busy processors and obtains sub-tasks. Then they are 
distributed to free processors for pattern generation. 
We accomplish load balancing among the processors 
by recursively applying this method until all the 
processors become free. Selection of Coordinator 
processor is carried out dynamically.  Here Master 
processor will choose the first processor that becomes 
free as the Coordinator processor. We decided to have 
a separate processor as the Coordinator, rather than 
using the Master, because Master itself can be busy 
with a heavy task. 
 When executing a task in our parallel model, a 
processor will always queue the subtasks generated at 
each level (see Figure 3). When a job request arrives 
from a Coordinator processor, a subset of subtasks will 
be selected from all the unprocessed subtasks for 
transfer to the Coordinator. Selection of subtasks is 
done based on their predicted workload. Only the high 
workload subtasks are selected to minimize the job 
transfer cost (i.e. the cost of generating projected 
databases of the PrefixSpan method for transferred 



subtasks by the receiving processors, and the 
communication cost). 
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Figure 3: Subtask partitioning for load balancing. 
 

The workload of the subtask is assessed based on the 
lengths of the projected database of the parent item and 
the subtask. Projected databases keep shrinking as we 
go down the computational tree. We found this 
shrinking factor of the projected database of a subtask 
as a useful measure in estimating the subtask workload. 
The data communicated to coordinator processor 
includes selected items (high workload subtasks) in the 
queues and the prefix pattern generated up to the last 
queue. I.e. pattern bbcac for the situation in Figure 3. 

3.4 Dynamic Parallel Algorithm 
(DYNAMIC) 
Here we present our parallel PrefixSpan algorithm 
using dynamic task and subtask partitioning techniques. 
The main steps of our dynamic parallel algorithm are 
as follow: 

1. One processor known as Master scans sequence 
database and generate the set of tasks. 

2. Master processor sorts the tasks based on 
support count. 

3. Every processor mines for frequent patterns for 
each task assigned by Master processor (see 
Figure 2). 

4. Master processor selects the first processor, who 
becomes free, as Coordinator, which carryout 
following steps:  

4.1. Coordinator selects free processors available 
so far for job distribution. 

4.2. Coordinator will pick busy processors and 
send job request to obtain jobs (sub tasks). 

4.3. Busy processors, who receive a job request, 
send high workload jobs to Coordinator (see 
Figure 3). 

4.4. Coordinator distributes the jobs among the 
available free processors for mining. 

4.5. Repeat steps (4.1- 4.5) until all the 
processors become free. 

4. EXPERIMENTAL EVALUATION 
In this section we describe the evaluation environment 
used to execute our algorithms and the results obtained. 

4.1 Evaluating Environment 
Our machine environment consists of a cluster of 16 
Ultra Sparc II workstations (512MB memory) 
connected by 100Mbps network. We used Message 
Passing Interface (MPI) library (mpich -1.2.5.2) [13] to 
achieve parallel communication. We have implemented 
the serial PrefixSpan algorithm as described in [3] and 
compared the resulting sequences with the sequences 
generated by the PrefixSpan executable program 
obtained from the authors of [3].  

We used sequence databases generated by the 
IBM Quest synthetic data generator [11]. The dataset 
contains 1,000 different items with an average length 
of 10 to 20 items per sequence.  

We have also used real-world datasets, Earth 
Science data and bio-datasets. The Earth Science data 
consists of monthly measurements of 0.5-degree 
precipitation on land, collected over a period of 18 
years starting January 1982 to December 1999. We 
have transformed these time series data into a sequence 
of HI and LO events. The bio-datasets Snake and Pi 
are very dense datasets and can generate large number 
of short sequences with a higher threshold like 55%. 
Snake dataset contains 174 Toxin-Snake protein 
sequences and 20 different items. Dataset Pi contains 
190 protein sequences and 21 different items. Table 1 
shows the characteristics of all of our test data sets. 

 
Dataset Num. Seq. Threshold 

C10T5S4 I1.25D100k 100,000 0.10% 
C20T5S8I1.25D100k 100,000 0.50% 
C10T5S4I2.5D100k 100,000 0.25% 
C20T2.5S4I1.25D100k 100,000 1.00% -0.05% 
Precipitation 67,034 10% 
Snake 174 55% 
Pi 190 90% 

Table 1: Characteristics of the datasets. 

4.2 Experimental Results 
We tested both parallel and serial algorithms on a 
workstation cluster environment and execution time 
was recorded. Figure 4 shows execution time and 
speedup for some generated datasets. Here number of 
processors (P) =1 corresponds to the execution time of 
the serial program. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Execution time and speedup of generated datasets. 

 

 
For all the datasets tested, we obtained near linear 
speedups with dynamic parallel algorithm 
(DYNAMIC). For some datasets we achieved a 
maximum speedup of 15.1 on 16 processors. Speedup 
achieved by STATIC-1 is the lowest. This is because 
of the lack of accurate workload balancing of STATIC-
1. It partitions the tasks contiguously to processors and 
the processor with the high-support tasks takes higher 
execution time. STATIC-3, although has a better 
estimation of workload, the overhead of calculating 
total support of the sub-tasks is a bottleneck. 
Therefore, we found that both STATIC-1 and 
STATIC-3 techniques are not suitable for our parallel 
PrefixSpan algorithm. 
  STATIC-2 shows good results when compared 
with other static partitioning techniques. Since 
STATIC-2 depends on support counts for workload 
estimation, it cannot outperform DYNAMIC algorithm. 
This is significant for databases with high workload 
(i.e. that generate deeper computational trees) such as 
C20T5S8I1.25D100k. In this dataset, the average 
length of maximal potential large sequence is 8. For 
this dataset, there is a higher difference of speedup 
between DYNAMIC and STATIC2. 
 We have also analyzed the performance of our 
parallel algorithm on real world datasets. Execution 
time and speedup for Precipitation and Pi datasets are 
shown in Figure 5 for DYNAMIC algorithm. Pi is a 
very dense dataset, which generates massive number of 
sequences at very high threshold like 90%. Note that 
the execution time decreases almost linearly with the 
increase in number of processors. Our DYNAMIC 

algorithm tends to show higher performance for 
datasets with larger workloads.  
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Figure 5: Execution time and speedup of real world 

datasets with DYNAMIC. 

 
We analyzed the workload balancing of static task 
partitioning technique (STATIC-2) and the dynamic 
task partitioning techniques. We have compared two 
different dynamic task partitioning techniques: 
DYNAMIC_NO_STP (dynamic load balancing 
without sub task partitioning, which is similar to [8]) 
and DYNAMIC (with sub task partitioning). Figure 6 
shows total mining time spent by each processor in 12-
processor case for Snake dataset. Workload balancing 
of STATIC-2 is not that good as some processors spent 
lower time while others spent higher time for mining. 
Although DYNAMIC_NO_STP achieves fair 
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workload balancing compared to STATIC-2, there are 
situations that the workload is not balanced. For 
example, in Figure 6 processor-4 and processor-9 show 
high workloads when compared with rest of the 
processors. But with DYNAMIC we can see a fair 
workload distribution among all the processors. 

Snake Dataset
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Figure 6: Variation of mining time for each processor. 

 
We have also studied the effect of changing minimum 
support on the parallel performance. We used 16 
processors with C20T2.5S4I1.25D100k dataset and 
minimum support threshold varied from 1.00% to 
0.05%. Figure 7 shows execution time and the number 
of frequent sequences generated by the parallel 
algorithm, for different minimum support thresholds. 
Execution time goes from 33.4 sec. at 0.5% minimum 
support to 379.0 sec. at 0.05% minimum support, a 
time ratio of 1:12 vs. a support ratio of 1:10. Also, the 
number of frequent sequences goes from 61,018 at 
0.5% support to 6,477,006 at 0.05% support, a ratio of 
1:107 vs. a support ratio of 1:10. It appears that in 
general execution time is near linear with respect to 
minimum support. Further, it can be said that the 
efficiency of DYNAMIC algorithm increases with 
decreasing support, as it generates more frequent 
sequences per second on lower support values. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Effect of minimum support threshold on 
parallel performance. 

 
Finally, we study the effect of dynamic subtask 
partitioning technique on highly skewed datasets. We 

used datasets that have prefix subsequences with lower 
support count but deeper computational sub trees. 
Lower support count will cause our DYNAMIC 
algorithm to select that task for mining at the end, since 
we mine items with higher support count first. The 
datasets we used (C10T5S4I2.5D100k and Snake) have 
these properties and thus it allows us to see the gain we 
obtained from subtask partitioning.  
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Figure 8: Speedup of dynamic partitioning techniques. 

 
Figure 8 shows the speedup we achieved from both 
dynamic task partitioning techniques (DYNAMIC & 
DYNAMIC_NO_STP). It can be seen that, for higher 
number of processors (e.g. 16-processor case) we 
achieve impressive speedup improvement with 
dynamic subtask partitioning mechanism. Also, in the 
Snake dataset we can see scalable speedup with 
DYNAMIC algorithm. DYNAMIC_NO_STP shows a 
reduction of speedup when moving from 12 to 16 
processors for that dataset. Therefore, dynamic sub 
task partitioning technique not only improves speedup 
but also improves the scalability.  

Our dynamic sub task partitioning technique shows 
a maximum speedup improvement of 23% with Snake 
dataset and 72% with C10T5S4I2.5D100k dataset on 
16-processor environment, when compared with 
DYNAMIC_NO_STP. On average DYNAMIC 
parallel algorithm records 7%, 28%, 34% and 48% 
speedup improvement over DYNAMIC_NO_STP 
algorithm on 4, 8, 12 and 16 processors respectively. It 
is interesting to note that the speedup improvement 
increases with increasing number of processors. 

5. CONCLUSIONS 
In this paper, we have presented an efficient scalable 
parallel sequence mining algorithm on distributed 
memory multiprocessor systems. The proposed 
algorithm draws its motivation from the PrefixSpan [3] 
sequential mining algorithm. We used task parallelism 
approach to partition the tasks among processors and 
analyzed several task partitioning techniques. 
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 In almost all the test cases, we found that the 
dynamic task partitioning technique together with the 
efficient subtask partitioning mechanism, showed 
better speedup and scalability than that of the static 
partitioning and dynamic partitioning without subtask 
partitioning. The main reason behind this performance 
is the accurate load balancing done by the dynamic 
subtask partitioning method, whenever a load 
imbalance is detected among processors. We have 
tested our algorithm using several data sets on a 16-
processor distributed memory environment. The results 
presented in this paper are among the best known in the 
literature.  

We intend to run our parallel algorithm with 
higher number of processors using larger data sets and 
also plan to study the performance of our algorithm on 
different platforms and different workload 
characteristics. 
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Abstract

In this paper we address the problem of mining frequent

closed itemsets in a distributed setting. We figure out an

environment where a transactional dataset is horizontally

partitioned and stored in different sites. We assume that

due to the huge size of datasets and privacy concerns dataset

partitions cannot be moved to a centralized site where to

materialize the whole dataset and perform the mining task.

Thus it becomes mandatory to perform separate mining on

each site, and then merge the local results do derive a global

knowledge. This paper shows how frequent closed itemsets,

mined independently in each site, can be merged in order to

derive globally frequent closed itemsets. Unfortunately, such

merging might produce a superset of all the frequent closed

itemsets, while the associated supports could be smaller

than the exact ones because some globally frequent closed

itemsets might be not locally frequent in some partition. A

post-processing phase is thus needed to compute exact global

results.

1 Introduction.

The frequent itemset mining (FIM) problem has been
extensively studied in the last years. Several variations
to the original Apriori algorithm [3], as well as com-
pletely different approaches, have been recently pro-
posed (see, for example, the papers presented at the last
two FIMI workshops [1, 2]). Recently it has been shown
that frequent closed itemsets [10, 11, 4, 9, 15, 14, 6]
are particularly interesting because they provide qual-
itatively the same information, by guaranteeing at the
same time better performance, non redundant results,
and concise representation.

In this paper we investigate a novel topic: dis-
tributed mining of frequent closed itemsets. While
some papers address the problem of mining all the fre-
quent itemsets in a distributed environments, at our

best known, no proposal for distributed closed itemset
mining exists. We figure out a distributed framework in
which one (virtually single) transactional dataset D is
horizontally partitioned into N parts. Each transaction
of the dataset consists of an ordered list of items in the
set of possible items I. Each partition D1,D2, ...,DN is
made up of a subset of the transactions in D, and there
are no overlaps among the partitions.

In order to mine D we could devise a very simple
strategy based on the ”moving data” approach. We
could choose a central site, which will receive every
partition and, once materialized the whole dataset, will
perform the mining task. The main drawback of this
approach is that real datasets are usually huge, and it is
not feasible to send an entire partition to a central site
because of communication costs. Moreover, a central
site could not be able to mine it as a whole, but it
should have to partition it again in some way. In
addition, if we have to deal with privacy concerns, we
cannot move sensible data from one site to another.
Hence, it is mandatory to employ a ”moving results”
approach, according to which frequent closed itemsets
are independently extracted on each site, and then
are collected and merged to get the global solution.
Such algorithms are more suitable for loosely-coupled
distributed settings, since they limit the number of
communications/synchronizations between distributed
nodes.

In the last years researchers have proposed many
data mining algorithms that can efficiently be run in
a loosely-coupled setting [8, 5], even if a few of them
regards the FIM problem1. In particular, Partition
[12], i.e. an algorithm for mining all the frequent

1On the other hand, frequent itemset mining has been exten-

sively studied in the context of tightly-coupled environments, like
parallel clusters.



itemsets, can be straightforwardly implemented in a
loosely-coupled distributed setting, i.e. with a limited
number of communications/synchronizations (see for
example [7]).

In this paper we want to explore whether a Par-
tition-like approach can also be exploited to mine fre-
quent closed itemsets in a distributed environment. In
order to demonstrate the feasibility of this approach,
we show how the various local results, extracted inde-
pendently on each site with the preferred closed itemset
mining algorithm, can be merged in order to obtain the
set of all the globally frequent closed itemsets.

Unfortunately, similarly to what happen in the dis-
tributed extraction of all the frequent itemsets, merg-
ing local results may produce a not exact set of all the
frequent closed itemsets, while the associated supports
could be unknown. A post-processing phase is thus nec-
essary to compute exact global results.

The rest of the paper is organized as follows.
Section 2 discusses some preliminary results concerning
the merging function proposed to join the local results
computed independently in the various distributed sites.
Section 3 describes the additional steps needed to
retrieve the exact supports of closed itemsets, and,
finally, Section 4 draws some conclusions and future
work.

2 Closed Itemsets Extraction

Our goal is to find a distributed algorithm that mini-
mizes synchronizations and communications in mining
frequent closed itemsets.

For the sake of simplicity, we limit the following
discussion to a transactional dataset D that is parti-
tioned in only two parts. More formally, let D1 and
D2 be the two disjoint horizontal partitions of D, where
D1 ∪D2 = D, and D1 ∩D2 = ∅. However, we can easily
generalize our results to n partitions, for an arbitrary
value of n.

Moreover, in this section we do not consider the is-
sues concerning the (relative) minimum support thresh-
old used to locally mine the various partitions. Remem-
ber that some globally frequent (closed) itemsets might
not be extracted at all from some partitions, while some
globally infrequent ones might be mined from others. In
other words, the method discussed below surely works
when we mine all the partitions with an (absolute) sup-
port supp = 1, i.e. when we consider as frequent any
itemset which occur at least once in D. We will take
in account the issues concerning the minimum support
constraint in the last part of the paper.

2.1 Preliminaries. Given a transactional dataset D,
let T and I, T ⊆ D and I ⊆ I, be subsets of all the

transactions and items appearing in D, respectively.
The concept of closed itemset is based on the two

following functions f and g:

f(T ) = {i ∈ I | ∀t ∈ T, i ∈ t}
g(I) = {t ∈ D | ∀i ∈ I, i ∈ t}.

Function f returns the set of itemsets included in all the
transactions belonging to T , while function g returns the
set of transactions supporting a given itemset I. We can
also consider g(i) and g(X) to be tid-lists, i.e. lists of
identifiers associated with all the transactions in D set-
including item i and itemset X, respectively.

Definition 2.1. An itemset I is said to be closed if
and only if

c(I) = f(g(I)) = f ◦ g(I) = I

where the composite function c = f ◦ g is called Galois
operator or closure operator.

Given a dataset partition Dj , let Tj and Ij , Tj ⊆ Dj

and Ij ⊆ Ij , be subsets of all the transactions and items
appearing in Dj , respectively. We can thus redefine the
two following functions:

fj(Tj) = {i ∈ Ij | ∀t ∈ Tj , i ∈ t}
gj(Ij) = {t ∈ Dj | ∀i ∈ Ij , i ∈ t}.

Therefore we can consider gj(i) and gj(X) be tid-
lists only referring to transactions in Dj which set-
include item i and itemset X, respectively. Similarly,
we can define cj(Ij) = fj(gj(Ij)), ∀Ij ⊆ Ij .

Let C be the collection of all the closed itemsets
in D, and C1 and C2 be the two sets of closed itemsets
mined from D1 and D2, respectively. Before introducing
the theorems stating the properties concerning C1 and
C2, and their relationship with C, let us introduce
a couple of important lemmas concerning the closure
operator c() with respect to the dataset D. The same
lemmas also hold for operators c1() and c2() relative to
D1 and D2, respectively.

Lemma 2.1. Given an itemset X and an item i ∈ I,
g(X) ⊆ g(i) ⇔ i ∈ c(X).

Proof. Proof.
(g(X) ⊆ g(i) ⇒ i ∈ c(X)):

Since g(X ∪ i)2 = g(X) ∩ g(i), g(X) ⊆ g(i) ⇒
g(X∪i) = g(X). Therefore, if g(X∪i) = g(X)
then f(g(X ∪ i)) = f(g(X)) ⇒ c(X ∪ i) =
c(X) ⇒ i ∈ c(X).

2For the sake of readability, we will drop parentheses around

singleton itemsets, i.e. we will write X ∪ i instead of X ∪ {i},
where single items are represented by lowercase characters.



(i ∈ c(X) ⇒ g(X) ⊆ g(i)):

If i ∈ c(X), then g(X) = g(X ∪ i). Since
g(X∪i) = g(X)∩g(i), g(X)∩g(i) = g(X) holds
too. Thus, we can deduce that g(X) ⊆ g(i).

Lemma 2.2. If Y ∈ C, and X ⊂ Y , then c(X) ⊆ Y .

Proof. Note that g(Y ) ⊆ g(X) because X ⊆ Y .
Moreover, Lemma 2.1 states that if j ∈ c(X), then
g(X) ⊆ g(j). Thus, since g(Y ) ⊆ g(X), then g(Y ) ⊆
g(j) holds too, and from Lemma 2.1 it also follows that
j ∈ c(Y ). So, if j 6∈ Y held, Y would not be a closed
itemset because j ∈ c(Y ), and this is in contradiction
with the hypothesis.

2.2 Local vs. global closed itemsets Our goal
is to show that it is possible to perform independent
computations on each partition of the dataset, and then
join the local result by using an appropriate merging
function ⊕ in order to obtain the global results. In this
section we describe such merging function, and show
that C ≡ C, where C = C1 ⊕ C2.

Theorem 2.1. Given the two sets of closed itemsets C1

and C2, mined respectively from the two datasets D1 and
D2, we have that:

C = C1 ⊕ C2 =

(C1 ∪ C2) ∪ {X1 ∩X2 | (X1, X2) ∈ (C1 × C2)} ≡ C.

Therefore we can obtain C by collecting the closed
itemsets contained in C1 and C2, and intersecting them
to obtain further ones. We prove the above theorem by
showing that the double inclusion holds.

Theorem 2.2.
(C1 ∪ C2) ⊆ C

Proof. By definition, X is a closed itemsets in D if and
only if X occurs in D, and

∀i 6∈ X : g(X) 6⊆ g(i).

Therefore,

X ∈ C1 ⇒ ∀i 6∈ X : g1(X) 6⊆ g1(i),

Since
g1(X) 6⊆ g1(i) ⇒ g(X) 6⊆ g(i),

we have that

X ∈ C1 ⇒ ∀i 6∈ X : g(X) 6⊆ g(i),

and therefore X is closed in D, i.e. X ∈ C.
The same clearly holds also if X ∈ C2.

Theorem 2.3. Given X1 ∈ C1 and X2 ∈ C2, we have
that

Z = (X1 ∩X2) ∈ C

Proof. If Z ∈ C1 or Z ∈ C2, then Z ∈ C because
(C1 ∪ C2) ⊆ C (see Theorem 2.2).

So in the following we will consider the non-trivial
case, i.e. Z 6∈ C1 and Z 6∈ C2. In other terms, we are
interested to the case in which Z ⊂ X1 and Z ⊂ X2.

By absurd, assume that Z is not closed, so that
∃i 6∈ Z | g(Z) ⊆ g(i). So, we have that:

g(Z) ⊆ g(i) ⇒ g1(Z) ⊆ g1(i)
g(Z) ⊆ g(i) ⇒ g2(Z) ⊆ g2(i).

or, equivalently, i ∈ c1(Z) and i ∈ c2(Z).
By Lemma 2.2, it follows that c1(Z) ⊆ X1 and

c2(Z) ⊆ X2, since X1 and X2 are closed in D1 and
D2, respectively. So, the only way to choose an i that
belongs to both c1(Z) and c2(Z), where c1(Z) ⊆ X1 and
c2(Z) ⊆ X2, is that i ∈ Z = (X1 ∩X2). But this is in
contradiction with the hypothesis by absurd, i.e. i 6∈ Z.

The following corollary is a simple consequence of
the above Theorem.

Corollary 2.1.

{X1 ∩X2 | (X1, X2) ∈ (C1 × C2)} ⊆ C

Theorem 2.2 and Corollary 2.1 show that C ⊆ C.
Our merge function is thus correct, in the sense that
any itemset X ∈ C is also a closed itemset in the global
dataset D.

In the following we prove the opposite implication,
i.e. C ⊆ C, which allow us to show that our merge
function is also complete, and therefore C ≡ C.

Theorem 2.4.
C ⊆ C

Proof. Let X ∈ C be an itemset belonging to some
transactions of D. Therefore X is included in some
transactions of either D1 or D2, or it is included in both
D1 and D2.

If X only occurs in transactions of one partition,
either D1 or D2, we can trivially show that X ∈ C.
Suppose that this partition is D1. Therefore g1(X) =
g(X), and g2(X) = ∅.

Since c(X) = X by hypothesis, then ∀i 6∈
X | g(X) 6⊆ g(i). Then it also holds that ∀i 6∈
X | g1(X) 6⊆ g(i), because g1(X) = g(X). Since g1(i) ⊆
g(i), then it also holds that ∀i 6∈ X | g1(X) 6⊆ g1(i), or,
equivalently, X = c1(X). Therefore, in this case X ∈ C
surely holds, because X ∈ C1.



If X appears in transactions of D1 and D2, then
we can compute its closure in both of them, i.e. X1 =
c1(X) and X2 = c2(X). So either X = (X1 ∩ X2) or
X ⊂ (X1 ∩X2) can hold.

If X = (X1 ∩X2), then X ∈ C by definition of C.
The second condition X ⊂ (X1 ∩X2) can not hold.

If X ⊂ (X1 ∩ X2), then ∃i 6∈ X such that i ∈ c1(X)
and i ∈ c2(X). Hence g1(X) ⊆ g1(i) and g2(X) ⊆ g2(i).
Since g(X) = g1(X) ∪ g2(X) and g(i) = g1(i) ∪ g2(i),
then g(X) ⊆ g(i) also holds, i.e. i ∈ c(X) = X. But
this is in contradiction with the hypothesis that i 6∈ X.

Note that from a theoretical point of view, itemsets
in C form a lattice, i.e. for every X, Y ∈ C their join
element X ∪ Y and their met element X ∩ Y belong
to C [15, 14]. We have just shown that if X ∈ C1 or
X ∈ C2, then X ∈ C. Moreover, in order to complete
the lattice C, it is also needed to set-intersect each pair
(X1, X2) ∈ (C1×C2), and add X1∩X2 to C. The proofs
of both the implications show that this is enough to
complete the lattice C, i.e. C ≡ C.

Till now we have defined a merging function ⊕, used
to obtain C as C1 ⊕ C2. This result can be generalized
to the case of N partitions of D.

Theorem 2.5. Given the sets of closed itemsets
C1, . . . , CN mined respectively from N disjoint horizontal
partitions D1, . . . ,DN of D, we have that:

C = (. . . ((C1 ⊕ C2)⊕ . . .⊕ CN ) . . .).

Proof. It is easy to give a proof by induction. We have
already proved with Theorem 2.1 that the equality holds
in the case N = 2.

Suppose that Theorem 2.5 holds for N , we want
to show that it holds for N + 1 as well. Given the
N +1 partitions, by hypothesis we know that the closed
itemsets in D′ = {D1 ∪ . . . ∪DN} are C′ = ((C1 ⊕ C2)⊕
. . .⊕CN ). At this point, we can think at the dataset D as
it was made of two partitions only, i.e. D = D′ ∪DN+1.
Therefore, we can apply Theorem 2.1 and get C =
C′ ⊕ CN+1 = (. . . ((C1 ⊕ C2)⊕ . . .⊕ CN ) . . .) . . . CN+1.

While computing the union of the various Ci is
straightforward, the same is not true for the intersec-
tions. In order to quantify the impact of intersections
in the overall computation, we experimentally counted
the number of closed itemsets which have to be cal-
culate by intersections as a function of the number of
partitions. Figure 1 plots this number in a real world
case: the mushroom dataset mined with absolute min-
imum support 1. From the figure we can see that the
number of intersection itemsets increases as the number
of partition grows, even if this growth is less than linear.
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Figure 1: Intersection Itemsets in a real world case:
the mushroom dataset mined with absolute minimum
support 1.

When the dataset is split into 20 partitions, about 2/5
of all frequent closed itemsets have to be computed with
intersections.

3 Computing the supports of frequent closed
itemsets

Theorem 2.1 shows a way to devise the identities of all
the closed itemsets in D given the closed itemsets found
in its partitions D1,D2, ...,DN . In this section we show
how to calculate the supports of such itemsets given the
supports of all the itemsets in Ci,∀i.

Given X ∈ C, we denote with ‖X‖i the support of
X in partition Di. The global support of X is clearly∑

i=1,...,N ‖X‖i. Note that by construction of C, it
may happen that X /∈ Ci for some partition Di, and
therefore, even if the support of every itemset in Cj for
every partition j is known, the support ‖X‖i may not
be known. In fact, for each X ∈ C, we can distinguish
between two cases:

∃i | X ∈ Ci,

i.e. X was obtained by union of
the various Cj . In this case ‖X‖i is
given, but we cannot say anything
about ‖X‖j 6=i.

¬∃i | X ∈ Ci,

i.e. X was obtained from the inter-
section between two closed itemsets.
In this case we don’t know ‖X‖j ,∀j.

In both cases we need to derive ‖X‖j , i.e. the
support of itemset X on partition Dj , where X 6∈ Cj .



The support of ‖X‖j is equal to ‖cj(X)‖. Since every
Y ∈ Cj is closed, we have that cj(X) is exactly equal to
‖cj(Y )‖ where Y ∈ Cj is the smallest itemset such that
X ⊆ Y . Therefore, in order to calculate the support
of all the itemsets in C it is sufficient a post-processing
phase where subset searches are performed to calculate
the contributes of each partition to the global support
of some itemset.

In the above we have always discarded the mini-
mum support constraint, i.e. we have used a minimum
absolute support of 1. Unfortunately when we intro-
duce a minimum support threshold σ > 1, we cannot
guarantee the correctness of the algorithm. In fact it
may happen that some global frequent itemset is not
frequent in some partition, and since its local support
in such partition is not retrieved, its global support can-
not be derived. Similarly, some locally frequent itemsets
may result to be globally infrequent.

Analogously to Partition [12], we can however de-
vise the following strategy. Since each globally frequent
itemset has to be frequent in at least one partition, we
have that C will contain all the global frequent closed
itemsets, but some globally infrequent one as well. In
order to retrieve the exact support of itemsets which
are not frequent in all partitions, we have to compute
their supports in all the sites where they were found to
be not frequent. After recollecting these counts, we can
calculate the exact support of every itemset in C and
get the correct solution C.

4 Conclusion

We have addressed the problem of mining frequent
closed itemsets in a distributed environment. In the
distributed mining of frequent itemsets, a three steps
algorithm is sufficient in order to get exact results.
First, independent mining tasks are performed on each
partition, then the results are merged to form a big
candidate set, and, finally, an additional check is needed
for each candidate to retrieve its actual support in the
partitions where it was found to be infrequent. In this
paper we investigate the merging step in the case of
closed itemset mining. We have shown that in this case
the merging step is completely different and surely more
complex.

However, our preliminary results demonstrate the
feasibility of the approach. Future works regards the
actual implementation of the algorithm and its perfor-
mance evaluation. Moreover, similarly to [13], we are
also interested in studying an approximated version of
the algorithm, which should not require an additional
step for exactly counting itemsets supports.
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Energy Measurements for a Distributed Support Vector Machine

Classifier on Java and TinyOs Nodes

Rasmus Pedersen∗

Abstract

We use support vector machines for distributed data
mining in computationally constrained environments
called sensor networks. The support vector machine
provides powerful non-linear modelling tools to em-
bed intelligent co-active learning algorithms on sensor
nodes. However, little is known about the energy con-
sumption of exploiting such models on small sensor
nodes. We have chosen to model a binary classifier,
which is designed to work co-actively with neighboring
sensor nodes by exchanging only some key data called
support vectors. The two processes we investigate are
the energy consumption for classifying new unseen data
as well as the energy cost of wireless data transmission
among two nodes. This allows estimation of the rel-
ative energy cost for classifying new data on a sensor
node versus the energy cost of transmitting it to other
nodes.

1 Introduction

Our fundamental argumentation is that the support
vector machine (SVMs) [1] is interesting as an embedded
data mining model for sensor network nodes. We have
introduced a framework labelled the Distributed Support
Vector Machine(DSVM) [2]. This framework introduces
the idea of using SVMs in distributed data mining
to address goals such as energy preservation, limiting
network traffic, and implementing co-active learning
among distributed learners. In this paper we analyze
the energy consumption of using a Java-based trained
binary SVM classifier on different hardware platforms.
Furthermore, we compare this to a similar trained SVM
executing on a popular sensor node platform.

The DSVM is a framework and an idea that targets
distributed data mining problems in situations when
special constraints are placed on the distributed learning
machines. These learning machines, which we shall call
nodes, can be severely limited in terms of CPU, battery,
memory, and communication bandwidth as compared to
high-performance data mining servers. Our context is
a scenario in which small distributed networked nodes

∗Department of Informatics, Copenhagen Business School

work as a group toward solving a common goal. An sim-
ple example could be a group of small nodes—equipped
with wireless communication antennas—that each is re-
sponsible for making autonomous decisions. However,
if the nodes each work on a similar problem it is likely
that the nodes can exchange knowledge to support their
individual decision making process. Our contribution is
then to have described how SVMs can be utilized in
such a context to enhance the local decision making
processes without sacrificing limitations in CPU, bat-
tery, memory, or communication bandwidth [3].

Very little work has been done in this context, and
none to our knowledge, has been designed specifically
to the severely limited computing environments that
characterizes sensor networks. Therefore, we present
an analysis in this paper that uses artificial data to
produce empirical evidence of how much energy SVM
classification uses on different hardware platforms using
compliant Java Virtual Machines. In order to bridge the
analysis to the wireless sensor network community, we
also do the same analysis on a TinyOs platform. The
choice of using a binary SVM classifier is one of many
choices that we had to make, which will be clear in the
next section.

When using SVMs in sensor networks it is possible
to describe a certain systematic approach by specifying
three things: the kernel, the algorithm and the mode
used in the model. We call this framework the K ernel,
Algorithm, and M ode (KAM) model. It forces the
designer of a DSVM model to consider the three most
important dimensions of a given problem. In the context
of this paper:

Kernel: Linear vectorial dot product of two-
dimensional input.

Algorithm: Classification (binary)

Mode: Batch

Co-active: Exchange support vectors among nodes.

The experiments are done for trained SVMs with a
low number of support vectors. Experiments are con-
ducted with different settings on four selected systems

1



and we reach useful results regarding the energy effi-
ciency of large sensor nodes vs. the energy efficiency of
small sensor nodes. In this paper we experiment with
energy consumption of an SVM as a tool for embed-
ding such algorithms onto distributed nodes. We do
not provide general results, but rather results that are
specific to our implementation of a support vector ma-
chine (SVM) in Java and C. Furthermore, our results
are specific to the chosen hardware and modems, but
we believe that the use of statistical learning theory
will be a major method in the years to come in terms
of in-network-modelling and that the implementations
can inspire further work.

The machine learning community provides the SVM
algorithm [1], while energy awareness combined with
sensor networks provides the domain in which we in-
corporate this algorithm. One approach is to incorpo-
rate self-configuration in the system: First, we can use
the algorithm to perform a bootstrap test of the node’s
CPU speed, and then it can self-configure the SVM.
Secondly, the node starts filtering or performs other in-
telligent tasks. This approach is possible on a JStamp
Java processor as it can be configured to run at different
CPU clock speed, which could lead to different settings
of the SVM algorithm.

We investigate the energy consumption for a con-
structed binary classification problem using our imple-
mentation of the SVM in the Java language [4]. The
work can can be split into three main components. One
is related to the distributed system itself while the sec-
ond component corresponds to the choice of Java as the
programming language. The final component consists
of the chosen machine intelligence algorithm. In terms
of the distributed aspects, we address this by identify-
ing the idea that SVMs depend only in part on a subset
of the data examples called the support vectors (SVs).
This is an inherent characteristic of the support vec-
tor machine algorithm that apply across classification,
regression, and cluster analysis. These three types of
analysis problems can be addressed within the SVM
framework. Java can potentially be an attractive plat-
form for distributed computing since the terms ubiqui-
tous, pervasive, and ambient computing are likely to fit
well into Sun’s ”Write Once, Run Anywhere” philoso-
phy. In a double effort to assess Java’s capabilities as
well as make the SVM possible in distributed environ-
ments [2], we present the formulas on how to estimate
the additional or marginal energy consumption when
using a DSVM on four kinds of nodes: an IBM laptop,
a Symbian OS based mobile phone, an embedded Java
chip, and a TinyOs based sensor node.

Our paper is organized as follows: The experiments
setup section opens with insights into the code profiling

of the DSVM, porting of the Java code from the J2SE
API to the CLDC API, with the main experimentation
focusing on approximating a formula for predicting the
energy usage of the node given a set of parameters. Our
experiments center on four node types:

Figure 1: The big Java node: IBM A31

Figure 2: The medium Java node: Sony Ericsson p800

Figure 3: The small Java node: Systronix JStamp

These four nodes are further described in the ex-
periments section in terms of operating system, type
of processor, power consumption, and weight. Within
the scope of these nodes we perform experiments and
present some results. The experimental results fall into
two categories: (1) How many sensed points can the
sensor nodes classify per second? (2) How much energy
does each type of sensor node use to classify one point?

2



Figure 4: The TinyOs node CPU: ATMEGA128L

We conclude the paper by summarizing the main re-
sults and pointing toward the future of our work. An ob-
servation of some interest is that our experimental setup
shows about a factor three difference in the amount of
energy used by the big node, medium node, and small
node to classify a point. The smallest node was the
most energy consuming, which was not something we
intuitively expected a priori, but nevertheless is an ex-
pected result. Please note this might be specific to our
particular setup.

2 Experimental Procedure

The goal of the experiments is to gain a greater under-
standing of the energy consumption of the Java sensor
nodes, while using the TinyOs node as a point of ref-
erence. We use a code profiler, software timers, and
voltmeters to analyze the energy aspects of the code.
Direct profiling of the code in terms of how time is spent
when running the DSVM provides insight into the time
spent in each part of the program code. Moreover, the
node analysis is centered on the marginal energy usage
of running a binary classification problem. It should be
noted that a large portion of machine learning and pat-
tern recognition is binary classification. Therefore, we
have chosen to start with this problem. The base power
consumption of the device can be defined as the energy
used when performing basic tasks such as listening to
the radio transmitter and capturing data. We measure
the additional power consumption by loading a data set
and monitor the device during training, i.e., when the
Java Virtual Machine (JVM) runs at 100% speed. First,
the code profiling is performed. This is a preliminary
step leading up to—but not directly linked to—the en-
ergy consumption analysis. The third series of experi-
ments measures and profiles the energy consumption of
the nodes. Finally, the concluding experiment provides
our main contributions, which are a number of formulas
for empirically predicting the energy usage for different
size Java-based nodes for our own software implemen-
tation.

3 Energy Consumption Profiling for Local
Classification

Energy consumption is measured on artificial problems
using four nodes of different hardware and software.

Each of the three problems trains a binary SVM classi-
fier with two, three, and, four support vectors (sv). The
experiment is then to retrieve the functional output of
the trained SVM for different numbers of test points.
This experiment is conducted on four node platforms:
a big Java node, a medium Java node, a small Java node,
and a small TinyOs sensor node. The goal of the exper-
iment is to better understand the energy consumption
for various types of nodes.

The setup of the binary SVM classifier for this
problem is to use the dotproduct kernel, <xi · xj>.
It can be an advantage to keep the dual formulation
even though the kernel is linear as this allows for
later substitution of other kernels and straight forward
modification of the energy consumption formulas. In
this example we use the dot product kernel, which is
probably at least three times less expensive to calculate
than the Gaussian kernel [5].

We set up the experiment for four nodes. The first is
a standard laptop with a standard JVM, the second is a
Sony Ericsson p800 mobile phone, the third is a small,
native-Java processor called JStamp by Systronix [6],
and the last is an ATMEGA128L 8-bit processor.

Figure 5: Experimental setup for the p800. Note the
total system power consumption of 3.99 V ∗ 0.14 A =
559 mW for a running JVM. The measurement instru-
mentation is placed between the battery and the phone.

Three nodes are equipped with different JVMs and
one is running TinyOs.

The big node has a traditional JVM, which is
utilized by Java end-users. Implementation of the Java
interpreter on the medium node is based on Sun’s small
KVM. On the small node, the Java interpreter is based
on the native Java executing chip from aJile. Lastly,
the Tiny node is running TinyOs, which is programmed
using nesC language [7]. It should be noted that the
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Table 1: Properties of the Nodes
Big Medium Small Tiny

OS Win 2000 Symbian 7.0 JEM2 TinyOs
Processor Intel P4, 1.4 GHz 32-bit RISC ARM9 aJ-80 ATMEGA128L

Environment JVM KVM CLDC TinyOs
API J2SE 1.4.2 Sun PJAE 1.1.1a CLDC 1.0 nesC

Weight 3.18 kg 148 g 10.2 g a 0.46 g b

aThe weight of the print board and components are included.
bWeight ATMEGA128L chip without board etc.

Table 2: Node Electricity and Power Properties
Big Medium Small Tiny

Voltage 16.3 V 3.99 V (battery) 15.22 V 11.8 V
SVM Loaded 1230 mA 10 mA 26.4 mA 166.0 mA
SVM Running 1950 mA 140 mA 43.5 mA 174.3 mA

Power Consumptiona 11,736 mW 518.7 mW 260.3 mW 97.9 mW

aPower consumption is calculated by the difference in total system
power with the SVM running minus the SVM in idle state. This
gives the marginal power consumption.

Figure 6: Experimental setup for the ATMEGA TinyOs
Node. The total developer system power consumption
including the running tinySVM program is 11.8 V ∗
174.3 mA = 2.1 W .

JStamp processor has a lower energy consumption than
the full developer station. The JStamp processor uses
200mW when running on a 3.3 V DC battery. This
is close to the 260mW that we measured as the extra
power used when running the JStamp versus not. The
ATMEGA processor draws 100 mW according to the
specifications, which makes the 97.9 mW measurement
quite accurate. However, our approach to estimating

the marginal energy is rater crude as components on
the development boards can interfere.

The experiment measures how much time it takes
the three different systems to classify different numbers
of new unclassified data points p. The experiment is
repeated three times while increasing the number of
support vectors (sv) in the SVM model. In the first run,
the number of sv is just two, then three in the second
run, and finally four in the last run. After the series of
experiments, we have time measurements that depend
on two parameters: the number of sv in the algorithm
and the number of p to classify. If we can estimate
the formula for the prediction time depending on the
number sv and p then it is possible to use that formula
in conjunction with power consumption to estimate the
energy usage of the node, and thus how much of its
battery life we use on a given task.

The classification portion of the DSVM program has
been ported to nesC. This SVM is labelled tinySVM.
An important difference between the big/medium/small
systems and the tiny system is that the ATMEGA
chip does have support for floating point arithmetic.
Therefore it solves a simpler task than the other three
systems in that all Java double variables have been
interchanged with uint32_t. It could still provide some
new insight to compare across the two systems.

It is possible to calculate the average number of p
each of the systems can predict each second using time
measurements. This is derived by dividing the sum of
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Table 3: Time Measurements in ms for SVM with Two
Support Vectors

p Big Medium Small Tiny
100,000 71 4,172 25,984 16,023
200,000 130 8,328 51,967 18,928
300,000 170 12,500 77,950 28,400
400,000 210 16,640 103,934 37,865
500,000 251 21,594 129,918 47,328
600,000 300 28,703 155,901 56,802
700,000 351 29,110 181,885 66,265
800,000 400 38,093 207,869 75,739
900,000 451 39,719 233,853 85,202

1,000,000 500 44,531 259,836 94,667

Table 4: Average Number of Classified Points Per ms
SV Big ms Medium ms Small ms Tiny ms
2 1,940.7 22.6 3.8 10.4
3 1,408.1 16.2 2.6 7.4
4 1,046.0 12.3 2.0 5.7

points with the total time for each of the systems in
Table 3 and similar (but omitted) tables for three and
four support vectors into Table 4.

It is evident that the big system is faster than the
three smaller systems, as expected. The ATMEGA chip
is also faster than the JStamp.

Time equations for each of the systems can be calcu-
lated using ordinary least square regression (we discard
the constant term) on each of the three observation sets
in Table 5. This yields the time it takes to classify a
given number of p for a SVM model with a given num-
ber of sv. The results of this regression are shown in
(3.1), (3.2), (3.3), and (3.4):

(3.1) tbig(sv, p) = 0.221× 10−3 ms× sv × p

(3.2) tmedium(sv, p) = 19.15× 10−3 ms× sv × p

Table 5: Average Time for Classifying One Point
SV Big Medium
2 0.515× 10−6 s 44.3× 10−6 s
3 0.710× 10−6 s 61.8× 10−6 s
4 0.956× 10−6 s 81.6× 10−6 s

SV Small Tiny
2 263.2× 10−6 s 95.9× 10−6 s
3 384.6× 10−6 s 134.8× 10−6 s
4 500.0× 10−6 s 175.0× 10−6 s

(3.3) tsmall(sv, p) = 118.4× 10−3 ms× sv × p

(3.4) ttiny(sv, p) = 39.6× 10−3 ms× sv × p

Marginal energy equations can be constructed by
multiplying the time in (3.1), (3.2), (3.3), and (3.4)
for each node with the marginal power consumption in
Table 2, as measured earlier. The results are in (3.5),
(3.6), (3.7), and (3.8).

ebig(sv, p) = 11, 736 mW × 0.221× 10−3 ms× sv × p

= 2.59 µJ × sv × p

(3.5)

emedium(sv, p) = 518.7 mW × 19.15× 10−3 ms× sv × p

= 9.93 µJ × sv × p

(3.6)

esmall(sv, p) = 260.3 mW × 118.4× 10−3 ms× sv × p

= 30.82 µJ × sv × p

(3.7)

etiny(sv, p) = 97.9 mW × 39.6× 10−3 ms× sv × p

= 3.9 µJ × sv × p

(3.8)

(3.9)

e(sv, p) =





2.59 µJ × sv × p for big node
9.93 µJ × sv × p for medium node
30.82 µJ × sv × p for small node
3.9 µJ × sv × p for tiny node

It may be useful to summarize this analysis with
two examples of how these results can be applied.

Example 1: Estimation of marginal energy usage
for classifying 500 testpoints on a JStamp node for an
SVM based on three sv.
(3.10)
e(sv = 3, p = 500) = 30.82 µJ×3 sv×500 p = 46.23 mJ
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In this example, the JStamp system would use about 46
mJ to classify the 500 new points.

Example 2: Should a node classify on the node or
pass on the data directly to another node for remote
classification and then await the result? The answer
depends on the cost of radio transmitting the full data
set, the cost of the remote classification, and the cost
of transmitting back the model to the node. For some
configurations the optimal decision would be to classify
locally, and in other instances it is better to send the
data to a less energy consuming node.

4 Energy Usage in Local Classification and
Radio Exchange

One hypothesis of the DSVM system is that it should
be advantageous—in some situations—to classify new
observations locally before making a decision if the ra-
dio should be activated. In this experiment we test the
energy consumption of classifying one new point on the
JStamp vs. performing an immediate exchange of the
point. The radios used in the experiment MaxStream
24XStream 2.4 GHz 9600 Baud Wireless Module. First,
the JStamp developer station is connected to one ra-
dio and the second radio is connected to the Big node.
Then the ClassificationOutput- DataPoint is seri-
alized in Java, and the byte array is written to the
javax.comm.SerialPort class of the JStamp developer
board.

Figure 7: The wireless setup with MaxStream radios
and JStamp. The JStamp connected MaxStream radio
is transmitting while the ampere meter display a reading
of 168.4 mA.

The basic experimental results are presented in
Table 6. It is interesting that the size of the seri-
alized data point is quite large but that is the re-
sult of programming in an object oriented manner.

Table 6: Experiment Data for Local Classification
Versus Exchange

Item Measurement
Data serialized 102 bytes
Radio idle 85.3 mA× 7.98 V

= 680.7 mW
Radio sending 168.4 mA× 7.65 V

= 1, 288.3 mW
Radio marginal 1, 288.3− 680.7 = 607.6 mW
Data exchange 107.5 ms\datapoint
Data classification 263.2× 10−6 s
Number of SVs 2

The ClassificationOutput DataPoint contains sev-
eral other objects [4] and each of those add size to the
data object, which also contains its Lagrange multiplier,
α. In short, the Lagrange multiplier α determines the
relative importance of a support vector. It is an advan-
tage of the SVM that the datapoint and the α are so
closely related. For the radio, the marginal energy con-
sumption has been calculated by subtracting the idle
energy from the sending energy. The difference is the
marginal energy, which will be used to calculate the cost
of sending a data point. It takes the modem 102ms
to exchange the data point. This result was achieved
by exchanging 100,000 datapoints and then taking the
average. The associated java.io.OutputStream of the
serial port was flushed between each point sent. We also
note the time spent on classifying a novel data point on
the JStamp in Table 5 containing the average time for
classification with two sv.

As a result of this experiment we would like to
understand the energy cost ratio between classifying a
data point locally versus just transmitting it over the
wireless link in a serialized form. This ratio is calculated
by dividing the cost of radio transmission with the cost
of local classification.

(4.11)
radio vs classification = 607.6 mW×107.5×10−3 s

260.3 mW×263.2×10−6 s

= 953.4 ∼ 103

To check the transferspeed, we can note that the
wireless modem is set up with 1 stop bit and no parity
bit. With the start bit and the 8 bits of data then each
of the 102 bytes are of length 10 bits. The achieved
transfer rate is thus 1000 ms

107.5 ms/point × 102 bytes/point ×
(8 bit + 2 bit) = 9488 bit/s which is close to the 9600
baud specification.
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5 Discussion of Results

Our results fall into four categories:

1. Porting and analysis of the SVM algorithm in a
distributed setting.

2. Energy profile of the system on four systems
that run on J2SE, pJava, CLDC 1.0, and
TinyOs/ATMEGA128L.

3. Demonstration that the embedded Java device can
perform classification using an SVM based on Java
and nesC.

4. Experimental demonstration suggesting that local
classification is about 103 less energy consuming
than radio exchange.

There are two issues of interest: One is that the
big Java node is more energy efficient than the smaller
Java nodes. In terms of the ATMEGA sensor node
equipped with TinyOs, it is interesting to note that it
is seven times less energy consuming to classify on that
node compared to the JStamp node. However, since
the TinyOs program did not use floating points, then
the direct comparison of the two system is not possible.

The classification versus radio exchange and the
four energy equations in (3.9) provide the key results
as it can be counterintuitive that both the medium
(the p800) and the small node (JStamp) use approx. 3
and 10 times more energy than the big node (standard
laptop) when classifying a new data instance.

6 Conclusion

We have provided an analysis of the novel idea of using
support vectors machines in distributed data mining,
and specifically in this paper we have conducted a
series of energy related experiments. Finally, we also
demonstrated that it is possible to define a model based
on statistical learning theory by specifying which kernel,
algorithm, and mode the model is used for.

It is foreseeable that radiocommunication cost will
play an important role in future designs of distributed
and wireless Java based sensor networks. We consider
building a simulator that can be configured with the en-
ergy cost to assist designers of wireless sensor networks
to strike the balance between computing locally on the
node versus sending information to the a more power-
ful central node. Commercial availability of wireless RF
modems for the popular JStamp developer station [6] is
scheduled for fall 2004, which will further enable devel-
opment of wireless Java based sensor networks.

Besides embedding a decision making algorithm on
the node itself, we believe that this approach is applica-
ble for a well-accepted sensor network application such

as TinyDB[8], which could use this framework for cre-
ating intelligent event triggers. In the Java context, we
plan to port the DSVM to the popular WEKA open
source data mining package.

References

[1] Vladimir Naumovich Vapnik, The Nature of Statistical
Learning Theory, Springer, NY, 1995.

[2] Rasmus U. Pedersen, “Distributed support vector
machine,” in Proceedings of International Conference
on Intelligent Agents, Web Technology and Internet
Commerce, 2003.

[3] Rasmus Ulslev Pedersen, Using Support Vector Ma-
chines for Distributed Machine Learning, Ph.D. thesis,
University of Copenhagen, 2005.

[4] DSVM, “Distributed support vector machine server
and implementation, www.dsvm.org,” .

[5] John Platt, Fast training of support vector machines
using sequential minimal optimization in Advances in
Kernel Methods — Support Vector Learning, MIT
Press, 1999.

[6] Systronix, “Jstamp web site, www.jstamp.com,” .
[7] David Gay, Philip Levis, Robert von Behren, Matt

Welsh, Eric Brewer, and David Culler, “The nesc
language: A holistic approach to networked embedded
systems,” in Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and
implementation. 2003, pp. 1–11, ACM Press.

[8] Samuel R. Madden, Joseph M. Hellerstein, and Wei
Hong, “Tinydb: In-network query processing in
tinyos,” http://telegraph.cs.berkeley.edu/tinydb, Sept.
2003.

7


