
First International Workshop on

Data Mining in Sensor Networks

Chairs: Rasmus Pedersen & Eric Jul

Keynote by Samuel Madden, MIT

Table of Content

An Adaptive Modular Approach to the Mining of Sensor Network Data,

Gianluca Bontempi and Yann-Aël Le Borgne……………………………………….………………3

Data Mining in Wireless Sensor Networks Based on Artificial Neural-Networks Algorithms,

Andrea Kulakov and Danco Davcev………………………………………………………………..10

Distributed Pre-Processing of Data on Networks of Berkeley Motes Using Non-Parametric EM,

Ian Davidson and S. S. Ravi………………………………………………………………………...17

A Distributed Approach for Prediction in Sensor Networks,

Sabine M. McConnell and David B. Skillicorn……………………………………………………..28

Local Hill Climbing in Sensor Networks

Denis Krivitski, Assaf Schustery, and Ran Wolff……………………………………………...…...38

An adaptive modular approach to the mining of sensor network data.

Gianluca Bontempi, Yann-Aël Le Borgne∗.

ULB Machine Learning Group

Université Libre de Bruxelles, Belgium

email: {gbonte,yleborgn}@ulb.ac.be

Abstract

This paper proposes a two-layer modular architecture
to adaptively perform data mining tasks in large sensor
networks. The architecture consists in a lower layer
which performs data aggregation in a modular fashion
and in an upper layer which employs an adaptive
local learning technique to extract a prediction model
from the aggregated information. The rationale of the
approach is that a modular aggregation of sensor data
can serve jointly two purposes: first, the organization
of sensors in clusters, then reducing the communication
effort, second, the dimensionality reduction of the data
mining task, then improving the accuracy of the sensing
task.

1 Introduction.

There are plenty of potential applications for intelli-
gent sensor networks: distributed information gathering
and processing, monitoring, supervision of hazardous
environments, intrusion detection, cooperative sensing,
tracking.

The ever-increasing use of sensing units asks for
the development of specific data mining architectures.
What is expected from these architectures is not only
accurate modeling of high dimensional streams of data
but also a minimization of the communication and
computational effort demanded to each single sensor
unit.

The simplest approach to the analysis of sensor
network data makes use of a centralized architecture
where a central server maintains a database of readings
from all the sensors. The whole analysis effort is
localized in the server, whose mission is to extract from
the flow of data the high-level information expected to
be returned by the monitoring system. If we assume
that reasonable-size sensor networks will be made of
thousands of nodes, the limitation of this approach is
strikingly evident: the number of messages sent in the

∗Supported by the COMP2SYS project, sponsored by the
HRM program of the European Community (MEST-CT-2004-
505079)

system as well as the number of variables of the data
mining task are too large to be managed efficiently.

It has been suggested in literature that alternative
architectures are to be preferred in applications where
neighboring sensors are likely to have correlated read-
ings [6]. This is the case of aggregating systems which,
according to the definition of [10], are systems where the
data obtained from the different source nodes can be ag-
gregated before being transmitted along the network. In
these systems, we can imagine the existence of interme-
diary nodes (aggregators) having the capability to fuse
the information from different sources. Sensor networks
for weather forecasting and monitoring are examples of
aggregating systems. The authors of [6] showed that a
compression of the sensor information can be performed
at local level then reducing the amount of communica-
tion and the bandwidth required for the functioning of
the system.

At the same time techniques of data compression,
like Principal Component analysis (PCA) or Indepen-
dent Component Analysis (ICA) [8], are often used in
data mining to reduce the complexity of modeling tasks
with a very large number of variables. It is well known
in the data mining literature that methods for reducing
complexity are beneficial for several reasons: improve-
ment of the accuracy and intelligibility of the model,
reduced storage and time requirements.

The rationale of the paper is that a modular orga-
nization of the sensor network can be used to jointly
address the two main issues in mining sensor network
data: the minimization of the communication effort and
the accurate extraction of high-level information from
massive and streaming datasets.

In particular this paper proposes a data driven
procedure to configure a two-layer topology of a sensor
network (Figure 1) made of

1. a lower level whose task is to organize the sensors
in clusters, compress their signals and transmit the
aggregate information to the upper level,

2. an upper level playing the role of a data mining
server which uses the aggregate information to

3

SENSING UNITS

����
����

����

����

����

����

����

����
���� ����

����

����

����
����

����

����
����

����

������

����

����

PCA COMPRESSIONPCA COMPRESSION PCA COMPRESSION

DATA MINER

AGGREGATOR
NODES

������

Figure 1: The black dots represent the sensing units.
The dotted circles represent the aggregator nodes which
carry out the fusion of data coming from neighboring
sensors before sending the aggregated signals up to the
data mining server.

carry out the required sensing task.

We focus here on problems where the sensors are used
to perform a supervised learning (e.g. classification,
regression or prediction) task: examples could be the
classification of traffic fluidity on the basis of route
sensing units or the prediction of a wave intensity on the
basis of sensors scattered in the ocean. Our approach
consists in using a historical data set to find the best
way to combine the measures of neighboring sensors
such that the accuracy of the prediction model based
on such aggregate measures is optimized. The design
procedure relies on an iterative optimization procedure
which loops over five steps: (i) a partition of the sensing
units in proximity clusters, (ii) the compression of the
signals of each cluster of sensors, (iii) the aggregation
and transmission of the compressed signals to the upper
data mining server, (iv) the training of the prediction
model in the data mining server, and (v) the assessment
of the partition according to multiple criteria, like the
prediction accuracy of the data mining model and the
energy and transmission requirements of the resulting
network. The best partition which is returned by this
multi-criteria optimization procedure can be used as a
template for the topological organization of sensors.

An important issue in mining sensor network data
concerns the streaming and possibly non stationary
nature of data. Non stationarity may be due to changes
in the phenomenon underlying the measures as well
to sensor malfunctioning and/or modifications of their
geographical location. In order to address this aspect

we have recourse to adaptive features at both levels
of our architecture. At the lower sensor integration
level we use an effective sequential implementation of
the Principal Component Analysis (PCA) technique:
the PAST algorithm [11]. The upper data mining
module uses an adaptive lazy learning (LL) technique [1]
characterized by a fast training phase and an effective
treatment of non stationarity.

The experimental section of the paper presents
some preliminary results obtained by adopting the
proposed two-layer architecture in the context of a
simulated monitoring task: measuring the wavelength
of a two dimensional wave in situation of scattering.

2 The problem

Consider a sensor network S made of S sensors where
P is a [S, 3] matrix containing the three-dimensional
coordinates of the S sensors and

x(t) = {s1(t), s2(t), . . . , sS(t)}(2.1)

is the state (or snapshot) of the sensor network at time t.
Suppose we intend to employ S to perform a supervised
learning task, for example a regression problem

y(t) = f(x(t)) + ε(t)(2.2)

where y is the variable to be predicted at time t on
the basis of the state x(t) of the network S and ε is
usually thought as the term including modeling error,
disturbances and noise.

If we have available a finite dataset DN =
{〈x(ti), y(ti)〉, i = 1, . . . , N} of N input-output obser-
vations, this problem can be tackled as a conventional
regression problem, by first estimating an approximator
of f on the basis of DN and then using this estimator
as a predictor of y.

However, if, like in the case of sensor networks, the
number S is huge, the mapping f is non-stationary
and the data are collected sequentially, conventional
techniques reach rapidly their limits. In particular, the
large dimensionality of the problem asks for feature
selection problem as well as the streaming aspect of
the problem requires sequential (also called recursive)
estimation approaches.

This paper proposes an approach to the problem of
data mining in sensor networks which tries to concili-
ate the needs for an accurate prediction of the output y
with the constraints related to energy reserves, commu-
nication bandwidth and sensor computational power.

The following subsections will rapidly sketch the
two computational modules used in our approach: the
recursive PCA and the adaptive Lazy Learning. Sec-
tion 5 will describe how these modules are combined in
our architecture for mining sensor networks.

4

3 PCA compression techniques

As discussed above, each data mining problem in the
context of sensor network data with large S has to face
the problem of reducing dimensionality. Existing tech-
niques for feature selection (for an up-to-date state of
the art on feature selection see [7]) can be grouped into
two main approaches: the wrapper and the filter ap-
proach. In the wrapper approach [9] the feature sub-
set selection algorithm exists as a wrapper around the
learning algorithm, which is often considered as a black
box able to return (e.g. via cross-validation) an evalua-
tion of the quality of a feature subset. On the contrary,
the filter approach selects features using a preprocessing
step independently of the learning algorithm.

In this paper we will adopt the Principal Compo-
nent analysis (PCA) technique, an instance of the filter
approach. PCA is a classic technique in statistical data
analysis, feature extraction and data compression [8].
Given a set of multivariate measurements, its goal is
to find a smaller set of variables with less redundancy,
that would give as good a representation as possible. In
PCA the redundancy is measured by computing linear
correlations between variables. PCA entails transform-
ing the n original variables x1, . . . , xn into m new vari-
ables z1, . . . , zm (called principal components) such that
the new variables are uncorrelated with each other and
account for decreasing portions of the variance of the
original variables. Consider a vector x of size n and a
matrix X containing N measures of the vector x. The
m principal components

zk =

n∑

j=1

wjkxj = wT
k x, k = 1, . . . , m(3.3)

are defined as weighted sums of the elements of x
with maximal variance, under the constraints that the
weights are normalized and the principal components
are uncorrelated with each other. It is well-known
from basic linear algebra that the solution to the PCA
problem is given in terms of the unit-length eigenvectors
e1, . . . , en of the correlation matrix of x. Once ordered
the eigenvectors such that the corresponding eigenvalues
λ1, . . . , λn satisfy λ1 ≥ λ2 ≥ . . . ≥ λn, the principal
component zk is given by zk = eT

k x. It can be shown
that the PCA problem can be also put in the form
of a minimum mean-square error compression of x.
This means that the computation of the wk for the
first m principal components is equivalent to find the
orthonormal basis w1, . . . , wm that minimizes

JPCA =
1

N

N∑

t=1

‖x(t) −

m∑

k=1

(wT
k x(t))wk‖

2(3.4)

If we denote W = (w1, . . . , wm)T where W is a matrix

of size [m, n] we have

JPCA =
1

N

N∑

t=1

‖x(t) − WT Wx(t)‖2(3.5)

What is appealing in this formulation is that a recur-
sive formulation of this least-squares problem is pro-
vided by the Projection Approximation Subspace Track-
ing (PAST) algorithm proposed by [11]. This algorithm,
based on the recursive formulation of the least squares
problem, has low computational cost and makes pos-
sible an updating of the principal components as new
observations become available.

Once the matrix W is computed a reduction of the
input dimensionality is obtained by transforming the
input matrix X into the matrix Z = XW T and by
transforming the regression problem of dimensionality
n into a problem of dimensionality m in the space of
principal components.

At this step the question arises of how to choose m.
The techniques more commonly used rely either on the
absolute values of the eigenvalues or on procedures of
cross-validation [8].

4 The Lazy Learning algorithm

In supervised learning literature a possible way to
classify learning techniques relies on the dichotomy:
local memory-based versus global methods. Global
modeling builds a single functional model of the dataset.
This has traditionally been the approach taken in neural
networks [2] and other form of non-linear statistical
regression. The available dataset is used by a learning
algorithm to produce a model of the mapping and then
the dataset is discarded and only the model is kept.
Local algorithms defer processing of the dataset until
they receive request for information (e.g. prediction or
local modeling). The classical nearest neighbor method
is the original approach to local modeling. A database
of observed input-output data is always kept and the
estimate for a new operating point is derived from an
interpolation based on a neighborhood of the query
point.

The data mining architecture proposed in this paper
adopts the Lazy Learning (LL) algorithm proposed
by [1], an instance of the local modeling approach
that, on a query-by-query basis, tunes the number of
neighbors using a local cross-validation criterion. For
a detailed description of the approach see also [5] et
references therein. The LL algorithm, publicly available
in a MATLAB and R implementation1, proved to be
successful in many problems of non-linear data analysis
and time series prediction [5, 3, 4].

1http://iridia.ulb.ac.be/∼lazy

5

This paper illustrates and validates the use of Lazy
learning for the task of mining sensor network data.
The author deems that this algorithm presents a set
of specific features which makes of it a promising tool
in the sensor network context:

The reduced number of assumptions. Lazy
Learning assumes no a priori knowledge on the
process underlying the data. For example, it
makes no assumption on the existence of a global
function describing the data and no assump-
tions on the properties of the noise. The only
available information is represented by a finite
set of input/output observations. This feature
is particularly relevant in real datasets where
problems of missing features, non stationarity and
measurement errors make appealing a data-driven
and assumption-free approach.

On-line learning capability. The Lazy Learning
method can easily deal with on-line learning tasks
where the number of training samples increases
or the set of input variables changes with time.
In these cases, the adaptiveness of the method is
obtained by simply adding new points to the stored
dataset or restricting the analysis to the accessible
inputs. This property makes the technique par-
ticularly suitable for monitoring problems where
the number of samples increases with time or the
set of available signals may vary due to sensor
malfunctioning and/or bad communications.

Modeling non-stationarity. LL can deal with time-
varying configurations where the stochastic process
underlying the data is non-stationary. In this
case, it is sufficient to interpret the notion of
neighborhood not in a spatial way but both in a
spatial and temporal sense. For each query point,
the neighbors are no more the samples that have
similar inputs but the ones that both have similar
inputs and have been collected recently in time.
Therefore, the time variable becomes a further
precious feature to consider for accurate prediction.

5 A two-layer architecture for mining sensor

network data

The conventional techniques of dimensionality reduction
by PCA described in Section 3 aim to reduce the
collinearity or linear relationships existing between the
different inputs. This technique creates new variables
obtained by combining linearly the original inputs.
Typically, this linear combination assigns a weight
different from zero to all the original inputs.

Consider now the idea of applying the PCA to a

problem of regression where data are generated by a
sensor network S with a large number of sensing units
S. Although the PCA allows a reduction of the input
space from S to m and possibly an improvement of
the prediction accuracy, the resulting prediction model
needs the values of all the S sensing units in order
to perform its computation. This requires inevitably
a centralized architecture where all the sensors are
required to transmit their measures to the central
server.

A distributed architecture cannot take advantage
of this way of performing dimensionality reduction.
Our approach consists instead in applying the PCA
technique not to the whole of sensors but in a modular
fashion to subsets made of neighboring sensing units.

Suppose that a partition P of the S sensors into C
clusters of neighboring sensing units is available. Let nc,
c = 1, . . . , C, be the number of sensing units contained
into the cth cluster.

The algorithm we propose consists into applying C
separate recursive PAST computations to each of the
cluster. Let mc be the number of principal components
which are retained for each cluster and zc the [mc, 1]
vector of transformed variables returned by the PCA
applied to the cth cluster.

The original supervised learning problem (2.2)
whose input space has dimensionality S is now replaced
by a new supervised learning problem featuring an input
space [z1, . . . , zC] of dimensionality

∑C

c=1 mc.
A cross-validation procedure can be adopted to

assess the quality of the prediction model trained in the
transformed space.

This assessment figure can be used as a measure of
quality of the repartition P . It is then possible to im-
plement an iterative procedure that explores the space
of possible repartitions aiming to find the one with the
best prediction accuracy. This optimization procedure
could be turned into a multi-criteria optimization by
taking into account together with the prediction accu-
racy also a measure of the communication cost of the
repartition under analysis.

Note that the outcome of the resulting procedure
is a repartition of the nodes of the sensor network
into C clusters, a procedure for aggregating locally the
measures of the nc nodes composing the cth cluster and
a model at the server level which returns the high-level
prediction.

6 Experimental results

The two-layer adaptive architecture has been tested on
a simulated dataset generated by solving numerically
the Helmholtz equation, an elliptic partial differential

6

0.4 0.6 0.8 1.0 1.2

0.
2

0.
4

0.
6

0.
8

x

y

Figure 2: The distribution of the sensing units

equation,

∇2u + k2u = 0(6.6)

where u(Px, Py , t) = s(t) is the value of scalar field in
the point [Px, Py] at time t and k is the wave number.

The Helmholtz equation governs some important
physical phenomena, including the potential in time
harmonic acoustic and electromagnetic fields. In our
example the equation is used to model the waves re-
flected from a square object in a homogeneous medium.
The wave number is related to the wavelength λ by the
relation k = 2π

λ
.

We perform several simulations with 30 different
wave numbers ranging from 1 to 146. For each wave
number we collect the value of the u field in 50 time
instants. Altogether, we collected N = 1500 measures
of the wave field in a mesh of S = 2732 points depicted
in Figure 2.

We formulate a regression problem where the goal
is to predict the wave number k on the basis of the
S measurements at time t returned by the simulated
sensor network. The regression is performed on the
output y = k+ε that is a corrupted version of the signal
k obtained by adding to k a random gaussian additive
noise with standard deviation σε = σk/3.

We consider a sequence of partitions
{P(1),P(2), . . . , } where P(d) is an uniform lattice
with d − 1 divisions along each dimension. This means
that the partition P(d) decomposes the sensor field into
C = d2 clusters. For illustration, the partition P(4)

is reported in Figure 3. Note that the partition P(1)

is equivalent to a centralized configuration where all

0.4 0.6 0.8 1.0 1.2

0.
2

0.
4

0.
6

0.
8

x

y

Partition of order 4

Figure 3: The uniform partition P(4) of the sensor
network in 42 = 16 clusters.

sensors transmit their unprocessed measures to the
central server.

Given a partition, a recursive PCA is performed
on each cluster to return the first mc = 2 principal
components. Then the resulting aggregated signals are
transmitted to the data mining server which performs
the regression modeling by using the adaptive Lazy
Learning algorithm described in Section 4. The quality
of the data mining step is assessed by a ten-fold cross
validation strategy. At each run of the cross-validation,
we use Ntr = 1350 samples for the training set and
the remaining Nts = 150 samples for the test set.
The prediction accuracy is computed by averaging the
Normalized Mean Square Error (NMSE) for the test
sets over all ten runs of the cross-validation. Note
that NMSE is always a positive quantity and that
values smaller than one denotes an improvement wrt
the simplest predictor, i.e. the sample average.

We perform three experiments:

1. The first experiment deals with the centralized
configuration where all sensor measurements are
transmitted with no processing to the data min-
ing server. We perform a recursive PCA with an
increasing number m of principal components. The
NMSE results for m = 2, . . . , 7 after that Ntr sam-
ples have been processed are reported in Table 1.
This table serves as reference for the results ob-
tained in the modular case.

2. This experiment assesses the prediction accuracy of
6 uniform partitions {P(2), . . . ,P(7)} of the whole

7

200 400 600 800 1000 1200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t

N
M

S
E

Figure 4: The sequential evolution of the NMSE for the
partition P(2) (upper line) and P(5) (lower line). The
NMSE at each instant t is an average over the ten runs
of the cross validation procedure. The x-axis report the
number of observations taken into consideration.

200 400 600 800 1000 1200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

t

N
M

S
E

Figure 5: The sequential evolution of the NMSE for
the partition P(2) (upper line) and P(5) (lower line) in
front of random malfunctioning. The NMSE at each
instant t is an average over the ten runs of the cross
validation procedure. The x-axis report the number of
observations taken into consideration.

m 1 2 3 4 5 6

NMSE 0.782 0.363 0.257 0.223 0.183 0.196

Table 1: Centralized configuration: NMSE for different
numbers m of principal components. NMSE is evalu-
ated through a 10-fold cross-validation procedure after
NTR examples have been processed.

P(2) P(3) P(4) P(5) P(6) P(7)

NMSE 0.140 0.118 0.118 0.118 0.116 0.114

Table 2: Modular configuration: NMSE obtained with
six different partitions of the S = 2372 sensors. NMSE
is evaluated through a 10-fold cross-validation proce-
dure after NTR examples have been processed.

set of sensors. Table 2 reports the NMSE of the
test set after that Ntr samples have been processed.
Since the data processing is carried out in a recur-
sive fashion, we can also analyze the evolution of
the NMSE for the test set, as more observations
reach the mining server. Figure 4 reports the evolu-
tion of the Normalized Mean Square Error (NMSE)
for the partition P(2) and the partition P(5).

3. The third experiment assesses the degradation of
the accuracy in front of random malfunctioning of
the sensors. We consider the 6 partitions assessed
in the first experiment and we analyze the evolu-
tion of the NMSE when we simulate the occurrence
of sensor faults. We assume that at each observa-
tion there is a 10% probability that a sensing unit
is switched off and a 1% probability that one of
the aggregating unit becomes out of order. Note
that each malfunctioning is permanent and a sens-
ing unit which breaks down cannot be reactivated.
In data analysis terms, this is equivalent to the dis-
appearance of some input variables for the recursive
PCA procedure and the lazy learning algorithm, re-
spectively. The NMSE after the processing of Ntr

observations is reported in Table 3. These figures as
well as the evolution of NMSE during the process-
ing of Ntr observations (Figure 5), show that the
degradation is negligible if the ratio between failure
probability and unit number is not too high. This
limitation in the system reliability is illustrated in
the case of partition P(2) (Figure 5) for which a
dramatic loss in accuracy is observed. By increas-
ing the number of clusters, one increases the ro-
bustness of the architecture, which thanks to the
recursive feature of its components is able to react
accordingly to faults and malfunctioning.

8

P(2) P(3) P(4) P(5) P(6) P(7)

NMSE 0.501 0.132 0.119 0.116 0.116 0.117

Table 3: NMSE obtained with six different partitions of
the S = 2372 sensors in front of random malfunctioning.
NMSE is evaluated through a 10-fold cross-validation
procedure after NTR examples have been processed.

7 Conclusions and future work

The paper proposed an adaptive methodology to mine
data in large sensor networks. Previous works focused
mainly on addressing issues of energy and transmission
bandwidth reduction independently of the sensing task
to be performed. This paper advocates the idea that
the structure of the processing architecture of a sensor
network must take into account also criteria related to
the accuracy and quality of the data mining task. This
means that the organization of the same sensor network
may change according to the type of sensing task (e.g.
classification or prediction) and the required quality and
precision.

The results shown in this paper are preliminary but
open the way to further research whose main lines can
be summarized as follows:

• Extensions to non simulated data.

• Combination of accuracy based criteria with energy
related cost functions in a multi-criteria configura-
tion procedure.

• Assessment of more sophisticated clustering poli-
cies to partition the sensor field.

• Combination of spatial and temporal local correla-
tions.

• Test of nonlinear compression techniques, like ICA.

• Adoption of sequential robust estimation tech-
niques.

References

[1] M. Birattari, G. Bontempi, and H. Bersini. Lazy
learning meets the recursive least-squares algorithm.
In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,
NIPS 11, pages 375–381, Cambridge, 1999. MIT Press.

[2] C. M. Bishop. Neural Networks for Statistical Pattern
Recognition. Oxford University Press, Oxford, UK,
1994.

[3] G. Bontempi. Local Learning Techniques for Modeling,
Prediction and Control. PhD thesis, IRIDIA- Univer-
sité Libre de Bruxelles, 1999.

[4] G. Bontempi, M. Birattari, and H. Bersini. Local
learning for iterated time-series prediction. In I. Bratko
and S. Dzeroski, editors, Machine Learning: Proceed-
ings of the Sixteenth International Conference, pages
32–38, San Francisco, CA, 1999. Morgan Kaufmann
Publishers.

[5] G. Bontempi, M. Birattari, and H. Bersini. A model
selection approach for local learning. Artificial Intelli-
gence Communications, 121(1), 2000.

[6] S. Goel and T. Imielinski. Prediction-based monitoring
in sensor networks: Taking lessons from mpeg. ACM
Computer Communication Review, 31(5), 2001.

[7] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[8] A. Hyvarinen, J. Karhunen, and E. Oja. Independent
Component Analysis. Wiley, 2001.

[9] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[10] L. Subramanian and R. H.Katz. An architecture
for building self-configurable systems. In IEEE/ACM
Workshop on Mobile Ad Hoc Networking and Comput-
ing (MobiHOC 2000), 2000.

[11] B. Yang. Projection approximation subspace tracking.
IEEE Transactions on Signal Processing, 43(1):95–107,
1995.

9

Data mining in wireless sensor networks based on artificial neural-networks

algorithms

Andrea Kulakov

Computer Science Department

Faculty of Electrical Engineering

Skopje, Macedonia

kulak@etf.ukim.edu.mk

Danco Davcev

Computer Science Department

Faculty of Electrical Engineering

Skopje, Macedonia

etfdav@etf.ukim.edu.mk

Abstract

Up to date the algorithms for in-sensor-network data

processing were modifications of regression methods like

multidimensional data series analysis. In this paper we show

that some of the algorithms developed within the artificial

neural-networks tradition can be easily adopted to wireless

sensor network platforms and will meet several aspects of

the constraints for data mining in sensor networks like:

limited communication bandwidth, limited computing

resources, limited power supply, and the need for fault-

tolerance. The analysis of the dimensionality reduction

obtained from the outputs of the neural-networks clustering

algorithms shows that the communication costs of the

proposed approach are significantly smaller, which is an

important consideration in sensor-networks due to limited

power supply.

In this paper we will present two possible

implementations of the ART and FuzzyART neural-

networks algorithms, which are unsupervised learning

methods for categorization of the sensory inputs. They are

tested on a data obtained from a set of several motes,

equipped with several sensors each. Results from

simulations of purposefully defective sensors show the data

robustness of these architectures.

1 Introduction

A centralized data clustering in wireless sensor networks is

difficult and often not scalable because of various reasons

such as limited communication bandwidth and limited

power supply for running the sensor nodes. It is also

inefficient given that sensor data has significant redundancy

both in time and in space. In cases when the application

demands compressed summaries of large spatio-temporal

sensor data and similarity queries, such as detecting

correlations and finding similar patterns, the use of a neural-

network algorithm is a reasonable choice.

The development of the wireless sensor networks is

accompanied by several algorithms for data processing

which are modified regression techniques from the field of

multidimensional data series analysis in other scientific

fields, with examples like nearest neighbor search, principal

component analysis and multidimensional scaling (e.g. [7],

[10]). We argue that some of the algorithms well developed

within the neural-networks tradition for over 40 years, are

well suited to fit into the requirements imposed to sensor

networks for: simple parallel distributed computation,

distributed storage, data robustness and auto-classification

of sensor readings.

Auto-classification of the sensor readings is important in

sensor networks since the data obtained with them is with

high dimensionality and very immense, which could easily

overwhelm the processing and storage capacity of a

centralized database system. On the other hand, the data

obtained by the sensor networks are often self-correlated

over time, over space and over different sensor inputs, due

to the nature of the phenomena being sensed which is often

slowly changing, due to the redundant sensor nodes

dispersed near each other, and due to the fact that often the

sensor readings are correlated over different modalities

sensed at one node (e.g. sound and light from cars in traffic

control application).

Neural-networks algorithms, on the other hand, use

simple computations and do not represent big burden to

memory. The proposed adaptations of the ART neural

networks models can be easily parameterized according to

user needs for greater or lower level of details of the sensor

data.

Up to date, the only application of neural-networks

algorithms for data processing in the field of sensor

networks is the work of Catterall et al. [5] where they have

slightly modified the Kohonen Self Organizing Maps model.

Even this application was presented to a different kind of

audience at a conference for Artificial Life. This has

additionally motivated us to bring closer the work done in

the field of Artificial Neural Networks to the community of

researchers working in the field of Sensor Networks, since

some of the problems for the processing of the sensory input

data are similar.

10

Unsupervised learning Artificial Neural Networks

typically perform dimensionality reduction or pattern

clustering. They are able to discover both regularities and

irregularities in the redundant input data by iterative process

of adjusting weights of interconnections between a large

numbers of simple computational units (called artificial

neurons). As a result of the dimensionality reduction

obtained easily from the outputs of these algorithms, lower

communication costs and thus bigger energy savings can

also be obtained.

A neural network algorithm can be implemented in the

tiny platform of Smart-It units, which are kind of sensor

nodes or motes. Thus instead of reporting the raw-data, each

Smart-It unit can send only the cluster number where the

current sensory input pattern has been classified. In that way

a huge dimensionality reduction can be achieved depending

on the number of sensor inputs in each unit. In the same

time communication savings will benefit from the fact that

the cluster number is a small binary number unlike sensory

readings which can be several bytes long real numbers

converted from the analog inputs.

Since the communication is the biggest consumer of the

energy in the units, this leads to bigger energy savings as

well.

In the paper we will review first the ART1 [1] and

FuzzyART [2] models. Later some related work will be

considered and after that our proposal of three different

kinds of architectures for incorporating the Artificial Neural

Networks into the small Smart-It units’ network will be

given. Shortly we will present the hardware platform that

has been originally used to obtain the data that we later used

to test our proposal and we will give some results of the

classifications of the data within different architectures. We

will also give results from the simulations where we have

purposefully made one of the input sensors malfunctioning

in order to show the data robustness of our approach. Finally

we will give some discussions and directions for future

work.

2 ART and FuzzyART algorithms

Several models of unsupervised Artificial Neural Networks

have been proposed like Multi-layer Perceptron (MLP),

Self-Organizing Maps (SOMs), and Adaptive Resonance

Theory (ART) ([8] and [9]). Out of these we have chosen

the ART models for implementation in the field of sensor

networks because they do not constrain the number of

different categories in which the input data will be clustered.

Although the later extensions of MLP and SOMs involve the

principle of incrementally growing structure, their

topological self-organization is possible only with so called

off-line learning cycle separate from the classification cycle.

Having two separate cycles is inconvenient in the presence

of potentially unlimited stream of input data with no reliable

method of choosing the suitably representative subset for a

learning cycle. ART algorithms offer another example of

topological self-organization of data but they can adapt

structure quickly in the so called fast-learning mode

explained later.

Adaptive Resonance Theory (ART) has been developed

by Grossberg and Carpenter for pattern recognition

primarily. Models of unsupervised learning include ART1

[1] for binary input patterns and FuzzyART [2] for analog

input patterns.

ART networks develop stable recognition codes by self-

organization in response to arbitrary sequences of input

patterns. They were designed to solve the so called stability-

plasticity dilemma: how to continue to learn from new

events without forgetting previously learned information.

ART networks model several features such as robustness to

variations in intensity), detection of signals mixed with

noise, and both short- and long-term memory to

accommodate variable rates of change in the environment.

There are several variations of ART-based networks: ART1

(three-layer network with binary inputs), Fuzzy ART (with

analog inputs, representing neuro-fuzzy hybrids which

inherit all key features of ART), their supervised versions

ARTMAP and FuzzyARTMAP and many others. ARTMAP

models [3], for example, combine two unsupervised

modules to carry out supervised learning.

Figure 1: Architecture of the ART network.

In Figure 1 typical representation of an ART Artificial

Neural Network is given. Winning F2 category nodes are

selected by the attentional subsystem. Category search is

controlled by the orienting subsystem. If the degree of

category match at the F1 layer is lower than the so called

vigilance level , a reset signal will be triggered, which will

deactivate the current winning F2 node for the period of

presentation of the current input.

An ART network is built up of three layers: the input

layer (F0), the comparison layer (F1) and the recognition

layer (F2) with N, N and M neurons, respectively. The input

layer stores the input pattern, and each neuron in the input

layer is connected to its corresponding node in the

comparison layer via one-to-one, non-modifiable links.

Nodes in the F2 layer represent input categories. The F1 and

F2 layers interact with each other through weighted bottom-

11

up and top-down connections that are modified when the

network learns. There are additional gain control signals in

the network (not shown in Figure 1) that regulate its

operation, but those will not be detailed here.

The learning process of the network can be described as

follows: At each presentation of a non-zero binary input

pattern x (xj {0, 1}; j = 1, 2, …, N), the network attempts

to classify it into one of its existing categories based on its

similarity to the stored prototype of each category node.

More precisely, for each node i in the F2 layer, the

bottom-up activation Ti is calculated, which can be

expressed as

i

i

iT
w

xw
i = 1, …,M (1)

where | · | is the norm operator (for a vector u it is:
N

j ju
1

u), wi is the (binary) weight vector or

prototype of category i, and > 0 is a parameter. Then the

F2 node I that has the highest bottom-up activation, i.e. TI

= max{Ti | i = 1, …, M}, is selected (realizing so called

winner-takes-all competition). The weight vector of the

winning node (wI) will then be compared to the current

input at the comparison layer. If they are similar enough, i.e.

if they satisfy the matching condition:

x

xw I

 (2)

where is a system parameter called vigilance (0 < 1),

then the F2 node I will capture the current input and the

network learns by modifying wI:

 (3)
old

I

old

I

new

I w)1()xw(w

where is the learning rate (0 < 1) (the case when

=1 is called “fast learning”). All other weights in the

network remain unchanged.

If, however, the stored prototype wI does not match the

input sufficiently, i.e. if the condition (2) is not met, the

winning F2 node will be reset (by activating the reset signal

in Figure 1) for the period of presentation of the current

input. Then another F2 node (or category) is selected with

the highest Ti, whose prototype will be matched against the

input, and so on. This “hypothesis-testing” cycle is repeated

until the network either finds a stored category whose

prototype matches the input well enough, or allocates a new

F2 node in which case learning takes place according to (3).

As a consequence of its stability-plasticity property, the

network is capable of learning “on-line”, i.e. refining its

learned categories in response to a stream of new input

patterns, as opposed to being trained “off-line” on a finite

training set.

The number of developed categories can be controlled

by setting the vigilance : the higher the vigilance level, the

larger number of more specific categories will be created. At

its extreme, if = 1, the network will create a new category

for every unique input pattern.

FuzzyART is an analog version of the ART1 algorithm

which takes analog inputs and classifies them in a similar

way as ART1. The main ART1 operations of category

choice (1), match (2), and learning (3) translate into Fuzzy

ART operations by replacing the ordinary set theory

intersection operator of ART1 with the fuzzy set theory

conjunction MIN operator .

In FuzzyART (but as well in ART1), complement

coding of the input vector prevents a type of category

proliferation that could otherwise occur when weights erode.

Complement coding doubles the dimensionality of an input

vector b (b1, …, bN) by concatenating the vector b with its

complement bc. The input to the FuzzyART network (F0 in

Figure 1) is then a 2N-dimensional vector: I=B (b, bc),

where (bc)i (1- bi). If b represents input features, then

complement coding allows a learned category representation

to encode the degree to which each feature is consistently

absent from the input vector, as well as the degree to which

it is consistently present in the input vector, when that

category is active. Because of its computational advantages,

complement coding is used in nearly all ART applications,

and we have used it in our models as well.

The strengths of the ART models include its unique

ability to solve a stability-plasticity dilemma, extremely

short training times in the fast-learning mode, and an

incrementally growing number of clusters based on the

variations in the input data. The network runs entirely

autonomously; it does not need any outside control, it can

learn and classify at the same time, provides fast access to

match results, and is designed to work with infinite stream

of data. All these features make it an excellent choice for

application in wireless sensor networks.

3 Related work

As we mentioned in the introduction, Catterall et al. [5] have

slightly modified the Kohonen Self Organizing Maps

(SOMs) model. Kohonen SOMs and ART models are

similar in a way that they are both prototype-based networks

where they both create a set of prototypes and then compare

an unknown input vector with the stored prototypes in order

to implement the mapping or clustering.

The advantages of SOMs over other Artificial Neural

Network models include the ability to provide real-time

nearest-neighbor response as well as topology-preserving

mapping of the input data. Still, the limitations are extensive

off-line learning and most importantly, the need of a

predefined map size, i.e. a fixed number of output clusters or

categories. In [5] a rather simple and straightforward

implementation of the Kohonen neural-network architecture

is used, where one cluster unit corresponds to one Smart-It

hardware unit.

In many real-world situations, there is no a priori

information on variability present in the data stream, so we

12

can not determine in advance the required number of output

clusters in which the input patterns will fit. Thus this

straightforward implementation of the Kohonen neural

network seems rather rudimentary and the only justification

for it can be the mere possibility to apply some principles of

Artificial Neural Networks for data processing in wireless

sensor networks.

DIMENSIONS [7] is another model where they treat the

problems of data storage and handling in sensor systems.

DIMENSIONS incorporates spatio-temporal data reduction

to distributed storage architectures, introduces local cost

functions to data compression techniques, and adds

distributed decision making and communication cost to data

mining paradigms. It provides unified view of data handling

in sensor networks incorporating long-term and short-term

storage with increasing lossy compression over time, multi-

resolution data access using different wavelet parameters at

different hierarchical levels, and spatio-temporal pattern

mining.

Several aspects of our approach are common to

DIMENSIONS such as spatio-temporal data reduction,

limited communication costs, long-term and short-term

storage and hierarchical access with different level of

details, although these aspects are achieved by completely

different algorithms.

4 Proposed architectures of sensor networks

Three types of network architectures are proposed. The

results of the classifications of a real-world data will be

given later for each of the architectures.

Figure 2: Clusterhead collecting all sensor data from its

cluster of units

4.1 One Clusterhead collecting all sensor data First we

have made this architecture (Figure 2) to compare the work

of Catterall et al. (which used Kohonen SOMs), in order to

show that ART model can be used straightforwardly instead

of SOMs. This model brings advantages in that we do not

have to fix in advance the number of clusters (categories)

that the network should learn to recognize. Here the Smart-It

units send the sensory readings to one of them chosen to be

a Clusterhead, where a FuzzyART network is implemented.

The sensor data can be classified with different vigilance

parameter , thus providing a general overall view on the

network, (smaller) or more and more detailed views of the

network (greater). Depending on the level of details

needed at the moment, some of the Clusterheads can be

adjusted to different vigilance parameters and later can be

queried depending on that parameter.

4.2 Clusterhead collecting only clustering outputs

from the other units Each Smart-It unit has FuzzyART

implementations classifying only its sensor readings. One of

the Smart-It units can be chosen to be a Clusterhead

collecting and classifying only the classifications obtained at

other units. Since the clusters at each unit can be represented

with integer values, the neural-network implementation at

the Clusterhead is ART1 with binary inputs. The categories

in each unit do not have to be coordinated in any way

among each other.

Figure 3: One Clusterhead collecting and classifying the

data after they are once classified at the lower level

With this architecture a great dimensionality reduction

can be achieved depending on the number of sensor inputs

in each unit (in our case it’s a 6-to-1 reduction). In the same

time communication savings benefit from the fact that the

cluster number is a small binary number unlike raw sensory

readings which can be several bytes long real numbers

converted from the analog inputs.

If the number of sensors in each unit is n, the

Clusterhead collects data from k units, and the number of

different categories in each unit can be represented by c-byte

integer, while the sensor readings are real numbers

represented with r bytes, then the communication saving can

be calculated as:

c

rn

ck

rkn

13

Since the communication is the biggest consumer of the

energy in the units, this leads to bigger energy savings as

well.

Another benefit from this architecture is the fact that we

can view the classifications at the Clusterhead as an

indication of the spatio-temporal correlations of the input

data.

5 Hardware platform

The platform for the experiments, from which the data

analyzed in this paper were obtained, is a collection of

‘Smart-Its’ (see [5], for more details). One Smart-It unit

embodies a sensor module, and a communication module,

which are interconnected. The core of sensor module is a

PIC 16F877 microcontroller clocked at 20 MHz, which

offers 384 bytes of data memory and 8Kx14 bits of memory.

The sensor module consists of a light sensor, a microphone,

2 accelerometers, a thermometer and a pressure sensor. An

RF stack provides wireless communication, at a maximum

rate of 125 kbps, which only supports broadcast.

Smart-It 1

0

50

100

150

0 200 400 600 800 1000 1200 1400 1600

Sound Temp. Light Pressure AccX AccY

Smart-It 2

0

50

100

150

0 200 400 600 800 1000 1200 1400 1600

Smart-It 3

0

50

100

150

0 200 400 600 800 1000 1200 1400 1600

Smart-It 4

0

50

100

150

0 200 400 600 800 1000 1200 1400 1600

Smart-It 5

0

50

100

150

0 200 400 600 800 1000 1200 1400 1600

Figure 4: Datasets with sensor values from each of the

Smart-It units during several states of the environment

(‘contexts’): Lights on (1-330), talking people nearby while

lights remain on (331-400), lights turned off (401-800),

talking people nearby while light remain turned off (801-

1000), and heating on (1090-1400).

6 Experimental results

The data used in these experiments were provided courtesy

of Catterall et al1. All results presented here were produced

using datasets containing real-world data. The five datasets

(one for each Smart-It) are visualized by time series plots in

Figure 4. Note that, although the sensor data are very similar

(as the units are physically close to each other), they are not

exactly the same.

All the experiments were conducted with complement

coding of the input vector and fast learning mode. Figure 5

shows one possible classification of these input data in an

architecture presented in Figure 2 with vigilance level

=0.93. In subsequent chart, the axis shows the recognized

category of the sample input, while the ordinate shows the

sample sensory input.

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400 1600

C
a

te
g

o
ry

Figure 5: One possible classification of the input data

For testing the data robustness of the models, we have

synthetically made one of the sensors at a time defective in

way that it gives either a zero constant signal or a random

measurement signal. Training was done with vigilance set to

0.93, while testing was done with vigilance set to 0.90. In

Figure 6 the effects of the representative sensor errors are

shown (sensor numbered 12 and sensor numbered 17, out of

30), where with the ovals are highlighted the regions where

the classifications differ from the case when all sensors are

functioning correctly. In Regions 1 and 2, the classification

of the case when the sensor number 12 gives random values

differs from the regular case, while in Region 3, the

defective sensor number 17 results in different classification

than the regular case. In Region 2, the cases when the 17th

sensor gives random or zero values also results in different

classifications.

1 The data files are available for download at this website:

http://www.comp.lancs.ac.uk/~catterae/alife2002/

14

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400 1600

No_Error Random_12 Zero_17 Random_17

Figure 6: Different classifications when some of the sensors

are defective giving zero or random values.

If we want to see the difference when providing different

degrees of granularity of the input data, namely for different

values of the vigilance parameter (ranging from 0.7 up to

0.99 in our experiments) we get different number of output

categories (from 2 up to 370) for the 1700 samples taken as

a learning dataset, which can be seen in Table 1. Some of

the possible classifications for different vigilance parameter

can be seen in Figure 7.

Number of

categories
2 3 8 19 36 87 151 370

Table 1 Number of different categories into which the

same data is classified depending on the vigilance parameter

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600

Figure 7: Different numbers of categories appear when we

classify data at different levels of details depending on the

vigilance parameter

For the second architecture (Figure 3) we have also

conducted experiments with the original data and with the

synthetically made erroneous data. In Figure 8 we give the

results of the classifications of the Clusterhead collecting

only the classifications from the other Smart-It units. The

training was done with vigilance level of 0.80, while the

testing with 0.70. The results show no significant difference

among the classifications when all sensors are functioning

correctly or when some of the sensors give only zero or

random signal (in our case sensors number 12 and 17).

Reg. 1

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600

No_Errors s12_zero s12_random s17_zero s17_random

Figure 8: Results of the classifications show significant data

robustness of the third architecture with one Clusterhead

collecting only clustering outputs from the other units.

Counting the number of cases, it turned out that only

0.75% of the samples have a different classification than the

case with no deliberate error in the signal, although the

overall percentage of errors in the data were 3.3% (one out

of 30 sensors was made erroneous).

7 Discussion

The second proposed architecture (Figure 3) with one

Clusterhead collecting only clustering outputs from the other

units can be generalized to a hierarchical cascade

classification scheme where small Smart-It units at the

lowest level will be grouped in small groups having one

Clusterhead. Then several Clusterheads can be grouped and

their outputs can be classified using a binary input ART1

classifier at a Clusterhead one-level higher and so on, up to

a level where the classification will be read by a human user

or stored in a database, after achieving a huge

dimensionality reduction (see Figure 9).

If at each level classifications from k units are clustered

into one Clusterhead (represented with the same number of

bytes), the dimensionality reduction after l levels will be:

lk
c

rn

Reg. 3

Reg. 2

15

For future work we are also considering to apply the

supervised learning versions of the ART algorithms, namely

ARTMAP and FuzzyARTMAP where along with the sensor

input vector, a vector of corresponding “right-answers” is

obtained by the user (so called teacher), or possibly

automatically from another system.

Figure 9: Hierarchical cascades of ART neural-network

classifiers implemented in units of a sensor network

8 Conclusion

In this paper we have demonstrated a possible adaptation

of one popular model of Artificial Neural Networks

algorithm (ART model) in the field of wireless sensor

networks. The positive features of the ART class algorithms

such as simple parallel distributed computation, distributed

storage, data robustness and auto-classification of sensor

readings are demonstrated within two different proposed

architectures.

One of the proposed architectures with one Clusterhead

collecting only clustering outputs from the other units,

provides a big dimensionality reduction and in the same

time additional communication saving, since only

classification IDs (small binaries) are passed to the

Clusterhead instead of all input samples.

Results from the simulated deliberately erroneous

sensors, where we imitate defective sensors giving only zero

or random output, show that the model is robust to small

variations in the input.

Data clustering algorithms for data spread over a sensor-

network are necessary in many applications based on

sensor-networks. The use of limited resources together with

the distributed nature of the sensor-networks demands a

fundamentally distributed algorithmic solution for data

clustering. Hence, distributed clustering algorithms as the

ones proposed in this paper, based on artificial neural-

networks, seem useful for mining sensor-network data or

data streams.

References

[1] CARPENTER, G.A., AND GROSSBERG, S., A massively

parallel architecture for a self-organizing neural pattern

recognition machine, Computer Vision, Graphics, and

Image Processing, vol. 37, pp. 54-115, 1987.

[2] CARPENTER, G.A., GROSSBERG, S., AND ROSEN, D.B.,

Fuzzy ART: Fast stable learning and categorization of

analog patterns by an adaptive resonance system,

Neural Networks, vol. 4, pp. 759-771, 1991.

[3] CARPENTER, G.A., GROSSBERG, S., MARKUZON, N.,

REYNOLDS, J.H., AND ROSEN, D.B., Fuzzy ARTMAP:

A neural network architecture for incremental

supervised learning of analog multidimensional maps,

IEEE Transactions on Neural Networks, vol. 3, pp.

698-713, 1992.

[5] CATTERALL, E., VAN LAERHOVEN, K., AND

STROHBACH, M., Self-Organization in Ad Hoc Sensor

Networks: An Empirical Study, in Proc. of Artificial

Life VIII, The 8th Int. Conf. on the Simulation and

Synthesis of Living Systems, Sydney, NSW, Australia,

2002.

[6] FRITZKE, B., A Growing Neural Gas Network Learns

Topologies, in Tesauro, G., Touretzky, D.S., and Leen,

T.K. (eds.) Advances in Neural Information Processing

Systems 7, MIT Press, Cambridge MA, USA, 1995.

[7] GANESAN, D., ESTRIN, D., HEIDEMANN, J.,

DIMENSIONS: Why do we need a new Data Handling

architecture for Sensor Networks?, in Proc.

Information Processing in Sensor Networks, Berkeley,

California, USA, 2004.

[8] GROSSBERG, S. Adaptive pattern classification and

universal recoding: I. parallel development and coding

of neural feature detectors, Biological Cybernetics, vol.

23, pp. 121-134, 1976.

[9] GROSSBERG, S. Adaptive Resonance Theory in

Encyclopedia Of Cognitive Science, Macmillan

Reference Ltd, 2000.

[10] GUESTRIN, C., BODIK, P., THIBAUX, R., PASKIN M.,

AND MADDEN, S., Distributed Regression: an Efficient

Framework for Modeling Sensor Network Data, in

Proceedings of IPSN’04, April 26–27, 2004, Berkeley,

California, USA, 2004.

16

Distributed Pre-Processing of Data on Networks of Berkeley Motes

Using Non-Parametric EM

Ian Davidson ∗ S. S. Ravi †

Abstract

Inexpensive sensor networks, such as those constructed
using Berkeley motes, record many missing or absurd
values due to low battery levels, transmission errors,
sensor device errors and node failures. However, many
mining algorithms do not easily handle data with miss-
ing values and the mining literature illustrates that re-
moving records with missing values yields worse results
than if missing values are intelligently filled in. A pow-
erful method of filling in missing values is the expecta-
tion maximization (EM) algorithm which maximizes the
complete (both observed and missing) likelihood. How-
ever, typical implementations of EM require a paramet-
ric model which is prohibitive for sensor networks as the
M -step typically requires collecting and transmitting
the expected values for missing data to a central base
station. Furthermore, distributing either the E-step or
the M -step onto the network is infeasible for parametric
models as Berkeley motes have neither a hardware float-
ing point unit (FPU) nor sufficient memory to imple-
ment them. In this paper, we develop a non-parametric
version of EM specifically for sensor networks. We for-
mally show that the E-step can be solved in polynomial
time. Though the problem associated with the M -step
is NP-complete, a straightforward heuristic is possible.
Therefore, our approach provides an example of general-

ized EM. Our preliminary empirical results indicate that
the algorithm can restore many of the missing values.
Future work will change the likelihood function that EM
maximizes to include appropriate mining tasks.

Keywords : Sensor Networks, Missing Values, Mining,
Non-parametric, Expectation Maximization.

1 Introduction and Motivation

A sensor network consists of nodes, each of which
is equipped with a set of sensors for collecting data
from the environment and additional hardware that

∗Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email: davidson@cs.albany.edu.

†Department of Computer Science, University at Al-
bany - State University of New York, Albany, NY 12222.
Email: ravi@cs.albany.edu.

allows the nodes to communicate with each other in
a wireless fashion [1, 16]. In our work, each node
is a Berkeley mote that consists of a Mica2 radio
board and a MTS300 sensor board which can be used
to sense temperature, light intensity and the sound
level. The transmission range of each node is not more
than 100 feet in ideal situations (open area, no walls
or other forms of interference). We treat the sensed
values as binary with 0 (false) representing typical
indoor readings and 1 (true) representing above typical
values. Typical values for the sensed parameters are
as follows: light intensity < 500 lumens, temperature
< 25.0 degrees Celsius and sound level < 20 decibels.
Collecting binary values is quite common for simple
sensor networks that are designed to be deployed over
areas that are in excess of a square mile [3].

In practice, a sensor network may report many miss-
ing or absurd values for some of the quantities measured
by the sensors. This may be due to tranmission fail-
ures, faulty sensor readings, obstructions of the sensor
devices and low battery levels. For example, with our
Berkeley mote network in an indoor environment, we
found that even when the motes are only about ten feet
from the base station, over the course of three hours, ap-
proximately three percent of packets were lost. When
there are walls or other structures between a mote and
the base station, the packet loss is even greater. Fur-
thermore, when polling light and temperature readings
every five seconds over the course of three hours, five
percent of temperature readings and four percent of
light readings were absurd (i.e., represented values that
are physically impossible). When the same experiments
were conducted with the nodes in a room different from
the base-station, the packet loss increases to 23%, and
26% of temperature readings and 21% of light readings
were absurd or missing. Therefore, even though Berke-
ley motes offer great potential for wide-scale deploy-
ment, techniques to deal with missing and/or absurd
values generated by such networks need to be developed
before the sensor network data can be mined.

We could ignore records that contain missing values.
However, many mining algorithms do not easily handle
missing values. Throwing away records containing

17

missing values removes legitimate values as well. For
example, in our experiments mentioned above, with the
motes and the base-station being in different rooms,
we would have thrown away on average 23% of all
records per five second snap-shot of the network. Filling
in missing values using even basic schemes leads to
improved results [6]. An approach that is used in
many commercial data mining tools is to fill in each
missing value with the most likely value [7]. This
is equivalent to calculating the likelihood probability
distribution over the ith column’s values (θi) from only
the observed data. Then, the most probable value is
chosen to fill in the missing value. Formally, if yl,i

denotes the missing value of the lth record’s ith column,
then yl,i = argmax jP (yl,i = j|θi).

Better estimates of what the missing values should
be are attainable if: 1) More complex models beyond
marginal probabilities are used and 2) The missing data
values influence the model selection. Formally, this in-
volves calculating the complete likelihood (i.e., the likeli-
hood of both the observed and missing data). However,
when the missing data is part of the likelihood calcula-
tion, no tractable solution for maximum likelihood esti-
mation exists. Instead, a common approach is to use the
expectation maximization (EM) algorithm to converge
to a local maxima of the complete data likelihood.

Unfortunately, the parametric form of the EM algo-
rithm is not amenable to sensor networks as the second
step (the M -step) involves transmitting the expectation
of the missing values to a central location (i.e. the base
station) for aggregation. Since the EM algorithm may
take many iterations to converge, this approach may
require many rounds of data transmission, leading to
quick depletion of the battery power at the nodes. Fur-
thermore, since motes lack FPU hardware, neither the
E-step nor the M -step can be distributed onto the net-
work with parametric models.

In this paper we propose a non-parametric version
of EM specifically for sensor networks. Our approach is
designed to minimize power consumption and the neces-
sary computations can be distributed over the network.
To our knowledge, only two other papers have outlined
non-parametric version of EM [2, 17]. The paper by
Caruna [2] presents an EM style algorithm which only
involves one step while the paper by Schumitzky [17]
allows only a very restricted model space. Furthermore,
both approaches are not readily applicable to sensor net-
works. We shall focus on how to fill in the missing values
so that the resulting sensor network data can be mined
using a variety of techniques.

The remainder of the paper is organized as fol-
lows. We begin by overviewing parametric and non-
parametric EM specifically for sensor networks and then

discuss our particular non-parametric model. We for-
mally show that in this model, the computational prob-
lem associated with the E-step can be solved in polyno-
mial time and that the corresponding problem for the
M -step is NP-complete. However, a simple heuristic
for the M -step exists, thus our algorithm is an exam-
ple of generalized EM. Other examples of generalized
EM include the Baum Welch algorithm commonly used
to learn hidden Markov models [4]. We then illustrate
approximations that allow distribution of the E and
M steps onto the sensor network. Our empirical re-
sults presented next, illustrate the usefulness of our al-
gorithm. Finally, we discuss and conclude our work.

2 Parametric and Non-Parametric EM for

Sensor Networks

When the sensor network reports a combination of ob-
served (X) and missing (Y) values, our aim is to calcu-
late the complete (missing and observed) maximum like-
lihood estimate P (X, Y |θ). This involves finding both
the most probable model and actual values for the miss-
ing data. No tractable solution for this problem exists;
instead, we attempt to calculate the expectation of the
complete data likelihood EP (Y |X,θ)[Y, X |θ]. To do this,
we use the two step EM algorithm. The first step (the
E-step) calculates the expectation of the missing nodes
values (P (Y |X, θ)). Given the expectations for the miss-
ing values, the second step (the M -step) calculates the
value for θ that maximizes the expected complete data
likelihood.

Instead of using a parametric model, we use a non-
parametric model, namely the Ising spin-glass model,
that is commonly used in image processing [5]. The
model consists of a set V = {v1, . . ., vn} of nodes,
one for each sensor node. To be consistent with the
Ising spin-glass model, we assume that the nodes whose
values are known take on one of the discrete values from
{−1, +1}, instead of 0 and 1. Nodes whose values are
missing are assumed to have the value ‘?’. Extensions
that allow the nodes to take on many discrete values
are possible and will be left for future work, though as
mentioned earlier, it is typical to report binary values
from Berkeley motes. Each node vi has a set N(vi)
of neighboring nodes. Therefore, the non-parametric
model of the sensor network can be considered as the
graph G(V, E) which represents the nodes and their
neighbors. Some nodes will have legitimate filled in
values while others will have missing values or absurd
values that can be treated as missing. In contrast to
our non-parametric model, a parametric model could
identify a subset of key nodes, with the sensor values at
other nodes being modeled according to their distance
to these key nodes and by a parametric probability

18

distribution (e.g. a Gaussian with parameters µx, σx, µy

and σy). We now derive the probability density (mass)
function for a sensor network using our non-parametric
model. The the probability mass function (P (G)) of a
particular configuration of sensor values is a function
of the Hamiltonian (H(G)) of the underlying graph.
Equations defining H(G) and P (G) are given below.

Definition 2.1. Let G(V, E) be an undirected graph.

Suppose each node vi ∈ V is assigned a label �i ∈
{+1,−1}.

H(G) = −
∑

{vi,vj}∈E

�i �j .(2.1)

P (G) = 1 −
2H(G)

2|E|
(2.2)

As can be seen, our probability density function is a
function of the edges (E) in the graph and the node
labels (�1, . . . , �n). As in the Ising spin-glass model,
we sometimes refer to H(G) as the energy associated
with the given configuration. Note that the smaller
the value of energy, the larger is the probability of
the corresponding configuration and that the smaller
the number of conflicts between a node’s value and its
neighbors, the lower the energy. Our model, namely
the graph structure, contains no continuous parameters.
Hence we use the term non-parametric to describe the
model.

3 Our Non-Parametric EM Algorithm

We present our non-parametric EM algorithm along
with a sketch of how the E and M steps were derived.
Later sections provide the formal details of these deriva-
tions.

A key problem with the EM algorithm is initializa-
tion. However, in our situation, we can choose an initial
model (graph) that is obtained by connecting each node
to every other node that is within its transmission dis-
tance (100 feet for Berkeley motes). Our EM algorithm
will then iteratively fill in the expected missing values
and change the model by removing nodes so as to in-
crease the probability.

3.1 The E-Step - A Sketch Given a graph G(V, E),
where V is the set of nodes in the sensor network, and
a subset P of nodes that have fixed values, the goal of
the E-step is to fill in the values for the nodes in V −P .

Calculating the expected values for the missing
value nodes is equivalent to minimizing the Hamiltonian
H(G) shown in Equation (2.1). Minimizing H(G)
is achieved by filling in the missing values so as to
minimize the number of conflicts (differences) between

s

+

? t

a

b c

d

e f
−

+

Figure 1: A Simple Illustration Why the MinCut of G1

Minimizes the Hamiltonian

neighbors. Since missing value nodes can be neighbors
of other missing value nodes, filling in the missing values
is not straightforward. Fortunately, this computation is
tractable using the following approach. (For simplicity,
we leave out several technical details in the following
discussion. These details are provided in Section 4.3.)

To the graph G, we add two nodes (s and t), where
s has the value +1 and t the value −1. All of the
nodes in P whose value are +1 are connected to s and
those whose value are −1 are connected to t. This
new graph is called G1. All edges have unit weights,
except that the edges involving either s or t have their
weight as ∞. Then, a minimum weight edge cutset of
G1 is the minimum number of edges whose removal will
create two node-disjoint subgraphs: a positive subgraph
where each node has the value +1 or ’?’ and a
negative subgraph where each node has the value −1 or
’?’. Determining the minimum weight edge cutset of a
graph can be done in polynomial time (see for example,
[18]). The subgraph that a missing value node is part
of determines the value to be assigned to the node.
Figure 1 shows the intuition behind why a minimum
cut of the graph is needed. Clearly, in that figure,
the missing value should be filled in as ‘+’. Removing
edges marked c and d creates two appropriate subgraphs
but it produces the wrong missing value; removing just
the edge marked e corresponds to a minimum cut and
hence produces the correct result. The E-step can be
approximated and easily distributed onto the network
by allowing a node with a missing value to set its
value to the most commonly occurring value among its
neighbors. This approximation will return exactly the
same solution as the one based on minimum cut, unless
two missing value nodes are neighbors of each other.
When there are edges between two nodes with missing
values, the two approaches may return different results.

Our algorithm shown in Figure 2 formalizes the
above discussion. (Some details in the figure rely on
definitions presented in Section 4.3.)

3.2 The M-Step - A Sketch Here, we are given a
graph G(V, E) with all node values instantiated. (Recall

19

Input: An undirected graph G(V, E); a subset P of

nodes such that each node in P has been assigned a
label from {+1,−1}. (These labels cannot be changed.)

Output: A label from {+1,−1} for each node of V −P
such that H(G) is minimized.

Algorithm:

1. Construct the auxiliary graph G1(V1, E1) from G.

2. Find an s-t edge cutset C∗ of minimum weight in
G1.

3. Construct graph G2(V2, E2), where V2 = V1 and
E2 = E1 − C∗, from G1 by deleting the edges in
C∗.

4. for each node v ∈ V − P do

if there is a path from s to v in G2

then Assign the label +1 to v

else Assign the label −1 to v.

Figure 2: Algorithm for the E-step

that all missing values were filled in by the E step.) We
must now compute the most probable model (G∗) for
this data. Since our model space is the set of all possible
graphs with upto |V | = n nodes, we can change the
graph G by deleting edges or nodes. In this paper, we
have chosen to remove nodes as this approach is more
amenable to our aim of reducing power consumption.
The nodes removed from G to obtain G∗ are put to sleep
to conserve power. These nodes may be subsequently
awakened for other applications.

In Section 5, we show that the problem of deter-
mining which nodes to remove so as to minimize the
Hamiltonian is NP-complete. Therefore, obtaining an
exact solution to this problem (i.e. finding G∗ that max-
imizes Equation (2.2)) is computationally intractable.
However, we can easily find a graph structure G′ that is
more probable than G using the algorithm shown in Fig-
ure 3. (The definition of the g function used in Step 2(a)
of the algorithm is given in Section 5.) If the variable k
used in that figure is chosen to be 1, then the compu-
tation can be distributed onto the network, since each
node needs to check only its immediate neighbors to de-
termine whether it should go to sleep. Our M -step is
an example of generalized EM [15], since the calcula-
tion yields a more probable model, but not necessarily
the most probable model. Nodes which are put to sleep
can be considered as outliers since removing them from

Input: An undirected graph G(V, E) where each node

in V has been assigned a label from {+1,−1}; a subset
P ⊆ V of nodes such that there is a path in G from
from each node in V − P to some node in P .

Output: Graph G′ obtained from G by deleting a
subset P ′ of P . (In G′ also, there is a path from from
each node in V − P to some node in P − P ′.) The
procedure tries to obtain a graph G′ whose energy is as
low as possible.

Note: The g function used in Step 2(a) below is defined
in Section 5.

Procedure:

1. Choose a positive integer k. (The running time
increases with k.)

2. loop

(a) By trying all subsets of P up to size k, find a
subset P ′ such that g(P ′) > 0 and deleting P ′

does not violate the path property mentioned
above. If there is no such subset, go to Step 3.

(b) Delete the nodes in P ′ from P . (The graph
also needs to be modified accordingly.)

3. Output the resulting graph G′.

Figure 3: Heuristic Procedure for the M-step

the network increases the probability of the entire net-
work/graph.

4 Derivation of the E-Step

4.1 Viewing E-Step as Energy Minimization In
the E-step, we need to calculate the expected values of
the nodes with missing values. Using a non-parametric
model, this is simply determined by the neighbors of the
node. Formally:

P(vi = j) =
∑

x∈N(vi)

1 − δ(j, x)

|N(vi)|
(4.3)

where N(vi) denotes the neighbors of node vi and δ is
the Kronecker delta function (δ(p, q) = 1 if p = q and 0
otherwise).

A common simplification [14] of the E step is to
use a “winner take all” approach. This leads to the
following E step.

vi = 1 if argmax jP (vi = j) = 1

= 0 otherwise

20

Filling in the missing values with their most proba-
ble values is equivalent to calculating the ground state of
the spin-glass model. The ground state involves setting
the missing values in such a way that the probability
of the configuration (given by Equation (2.2)) is max-
imized. This, in turn, is equivalent to minimizing the
energy value given by Equation (2.1). We now explain
how this minimization problem can be solved in poly-
nomial time.

4.2 Graph Theoretic Preliminaries The model
space considered in this paper consists of undirected
graphs that are simple in the sense that they have no
multiedges or self-loops. Let G(V, E) be an undirected
graph. When each node vi ∈ V is assigned a value
�i ∈ {+1,−1}, the Hamiltonian function (or the energy

function) H(G) (Equation (2.2)) can be rewritten
using the following definitions.

(a) Each edge {vi, vj} such that �i 	= �j is called a
conflict edge.

(b) Each edge {vi, vj} such that �i = �j is called an
agreement edge.

Lemma 4.1. Let Nc and Na denote respectively the

number of conflict and agreement edges in G. Then,

H(G) = Nc − Na. Alternatively, H(G) = 2 Nc − |E|.

Proof: From the expression for H(G) (Equation (2.1)),
it is easy to see that each conflict edge contributes +1
to H(G) and that each agreement edge contributes −1
to H(G). Therefore, H(G) = Nc − Na. Since each
edge is either a conflict edge or an agreement edge, we
have |E| = Nc + Na. Therefore, H(G) is also equal to
2 Nc − |E|.

The following is an easy observation which will be
used later.

Observation 4.1. Suppose G(V, E) is an undirected

graph where each node is labeled +1 or −1. If there

is a path in G between a node labeled +1 and a node

labeled −1, then the path has at least one conflict edge.

4.3 An Efficient Algorithm for the E-Step The
E-step of the EM algorithm for filling in missing sensor
node values solves the following combinatorial problem.

Minimum Energy Label Assignment (Mela)

Instance: An undirected graph G(V, E) and a subset
P ⊆ V of “preassigned” nodes; that is, each node in
P has been assigned a label from {+1,−1}.

Requirement: Assign a label from {+1,−1} to each node
in V − P such that H(G) is minimized.

It is assumed that in G, there is a path from each
node in V − P (i.e., each node with a missing value)
to a node in P . This assumption enables the E-step
to assign values to missing nodes in an unambiguous
fashion.

Our algorithm for the Mela problem relies on a
transformation to the problem of finding a minimum

weight s − t edge cut in an undirected graph. The
definition of such an edge cut is given below.

Definition 4.1. Let G(V, E) be an undirected graph

with a nonnegative weight w(e) for each edge e ∈ E.

Let s and t be two distinct vertices in V . An s-t edge

cutset for G is a subset E′ ⊆ E such that in the graph

G′(V, E − E′), there is no path between s and t. A

minimum weight s-t edge cutset for G is an edge

cutset whose total weight is minimum.

The following well known result shows that mini-
mum weight edge cutsets can be found efficiently (see
for example [18]).

Theorem 4.1. Given an undirected graph G(V, E) with

a nonnegative weight w(e) for each edge e ∈ E and two

distinct vertices s and t in V , a minimum weight s-t
edge cutset for G can be computed in O(|E|+|V | log |V |)
time.

Recall that in the Mela problem, the nodes in
the set P ⊆ V have preassigned labels which cannot
be changed. Throughout this section, we will use EP

denote the set of edges where each edge has both of its
endpoints in P . Let NP

c and NP
a denote the number

of conflict and agreement edges in EP . (Thus, |EP | =
NP

c + NP
a .) The contribution HP of the edges in EP

to the Hamiltonian of the graph G is therefore given by
HP = NP

c − NP
a . Note that no matter how labels are

assigned to the nodes in V − P , the edges in EP will
always contribute HP to the value of H(G).

We now discuss how the Mela problem can be
solved efficiently. Let G(V, E) and P ⊆ V denote the
given instance of the Mela problem. Consider the
auxiliary edge weighted graph G1(V1, E1) constructed
from G as follows.

(a) V1 = V ∪ {s, t}, where s and t are two new nodes
(i.e., s 	∈ V and t 	∈ V).

(b) E1 = (E − EP) ∪ Es ∪ Et, where Es = {{s, vi} :
vi ∈ P and �i = +1}, and Et = {{t, vi} : vi ∈ P
and �i = −1}.

(c) For each edge e ∈ E1, the weight of e, denoted by
w(e) is chosen as follows: if e ∈ E, then w(e) = 1;
otherwise, w(e) = ∞.

21

We note that the auxiliary graph G1 has a trivial s-t
edge cutset of weight |E − EP |. Thus, no minimum
weight s-t edge cutset of G1 can use any of the edges
incident on the nodes s and t. In other words, any
minimum weight s-t edge cutset of G1 is a subset of
E −EP . The following lemma shows the role played by
auxiliary graph in solving the Mela problem.

Lemma 4.2. Let G(V, E) and P ⊆ V constitute a given

instance of the Mela problem. Let H∗(G) denote

the minimum value of the Hamiltonian function over

all assignments of labels to the nodes in V − P . Let

G1(V1, E1) denote the auxiliary graph of G constructed

as discussed above and let W ∗
1 denote the minimum

weight of an s-t edge cutset in G1. Then, H∗(G) =
HP + 2 W ∗

1 − |E − EP |, where HP is the contribution

due to the edges in EP .

Proof: We prove that result in two parts.

Part 1: Here, we prove that H∗(G) ≥ HP + 2 W ∗
1

−|E − EP |. Consider an assignment of labels from
{+1,−1} to the nodes in V − P such that the value of
H(G) is equal to H∗(G). Let C denote the set of all the
conflict edges from E −EP in the resulting assignment.
As mentioned earlier, the edges in EP contribute HP to
H(G), regardless of the label assignment to the nodes
in V − P . From Lemma 4.1, the contribution to the
Hamiltonian due to the edges in E −EP is 2|C|− |E −
EP |. Therefore, H∗(G) = HP + 2|C|− |E −EP |. Now,
we have the following claim.

Claim: C is an s-t edge cutset for G1.

Proof of Claim: Suppose C is not an s-t edge cutset
for G1. Then, there is a path from s to t in the graph
G2(V1, E1 − C). In this path, let x be the node that is
adjacent to s and let y be the node that is adjacent to t.
Thus, the label of x is +1 and that of y is −1. Hence, by
Observation 4.1, there is a conflict edge in this path. By
our construction of graph G1, this conflict edge is from
the edge set E − EP . This contradicts the assumption
that C contains all the conflict edges from E −EP , and
the claim follows.

In view of the claim, G1 has an s-t edge cutset of
weight at most |C|. Since W ∗

1 is the minimum weight of
an s-t edge cutset of G1, we have |C| ≥ W ∗

1 . Therefore,
H∗(G) = HP +2 |C|−|E−EP | ≥ HP +2 W ∗

1 −|E−EP |.
This completes the proof of Part 1.

Part 2: Here, we prove that H∗(G) ≤ HP + 2 W ∗
1 −

|E − EP |. This is done by finding an assignment of
labels to the nodes in V − P such that the value of
the Hamiltonian for the resulting assignment is at most
HP + 2 W ∗

1 − |E − EP |.
Consider algorithm in Figure 2. Using the assump-

tion that there is a path in G from each node in V − P

to a node in P , it is easy to see that Step 4 of the
algorithm assigns a label from {+1,−1} to each node
of V − P . Further, the assignment ensures that the
only conflict edges from E − EP in the resulting as-
signment are those in C∗. Therefore, by Lemma 4.1,
the value of the Hamiltonian function H(G) for this
assignment of labels to the nodes in V − P is given by
H(G) = HP +2 |C∗|− |E−EP |. Since C∗ is a minimum
weight s-t edge cutset, we have |C∗| = W ∗

1 . Therefore,
H(G) = HP +2 W ∗

1 −|E−EP |. Since there is an assign-
ment of labels to the nodes in V −P such that the Hamil-
tonian function of G has a value of HP +2 W ∗

1 −|E−EP |,
it follows that H∗(G) ≤ 2 W ∗

1 − |E − EP |. This com-
pletes the proof of Part 2 as well as that of the lemma.

A direct consequence of the above lemma is that the
algorithm in Figure 2 computes an optimal solution to
the Mela problem. The running time of the algorithm
is dominated by Step 2, where a minimum weight s-t
edge cutset of G1 is constructed. As mentioned in
Theorem 4.1, this step can be carried out in O(|E| +
|V | log |V |) time. The following theorem summarizes
the above discussion.

Theorem 4.2. The E-step of the EM algorithm for

filling in the missing sensor values can be solved in

O(|E| + |V | log |V |) time, where |V | is the number of

nodes and |E| is the number of edges in the given sensor

network.

5 Derivation of the M-Step

The M -step requires finding the most probable model
given the observed and filled in missing values (from
the E-step). We model the M -step by a graph problem
where the goal is to delete a set of nodes so that the
energy of the resulting graph is as small as possible.
Since the goal of the EM algorithm is to fill in the
missing values, only nodes that had preassigned labels in
the E-step are candidates for deletion. (In other words,
nodes whose values are to be filled in cannot be deleted.)
When a node is deleted from a graph, all the edges
incident on that node are also deleted. Recall that in
the graph used in the E-step, there must be a path from
each node with a missing value to a node with a value
+1 or −1. Therefore, the deletion process used in the
M-step must ensure that this path property continues
to hold in the resulting graph. A precise formulation of
the problem is as follows.

Minimum Energy Node Deletion (Mend)

Instance: An undirected graph G(V, E) where each node
in V has been assigned a label from {+1,−1}; a subset
P ⊆ V of nodes with preassigned values. (Note: The
E-step assigned values to the nodes in V − P .)

22

Requirement: Find a subset P ′ ⊆ P so that in the graph
G′ obtained by deleting from G the nodes in P ′, each
node in V − P has a path to some node in P − P ′ and
H(G′) is a minimum over all such subsets.

As stated above, Mend is an optimization problem.
A decision version of the problem can be obtained in
an obvious manner by introducing a parameter B and
changing the requirement to the following question: Is
a set of nodes P ′ whose deletion produces a graph G′

such that G′ has the path property mentioned above and
the energy of G′ is at most B? For convenience, we will
use Mend to denote both the decision and optimization
versions of the problem. (The usage will be clear from
the context.)

We now show that the Mend problem is computa-
tionally intractable. Our proof uses a reduction from the
following problem which is known to be NP-complete
[12].

Exact Cover by 3-Sets (X3C)

Instance: A set X = {x1, x2, . . . , xn}, where n =
3q for some positive integer q; a collection Y =
{Y1, Y2, . . . , Ym} of subsets of X , where |Yj | = 3, 1 ≤
j ≤ m.

Question: Is there a subcollection Y ′ = {Yj1 , Yj2 , . . .,
Yjq

} consisting of q sets such that the union of the sets
in Y ′ is equal to X?

Theorem 5.1. The Mend problem is NP-complete.

Proof: It is easy to see that Mend is in NP. To
prove NP-hardness, we use a reduction from the X3C

problem defined above. Given an instance I of the X3C

problem, we create an instance I ′ of the Mend problem
as follows. For each element xi ∈ X , we create a node
vi, 1 ≤ i ≤ n. Similarly, for each subset Yj ∈ Y , we
create a node wj , 1 ≤ j ≤ m. Let V1 = {v1, v2, . . . , vn}
and V2 = {w1, w2, . . . , wn}. The node set V for the
graph G(V, E) is given by V = V1 ∪ V2. The edge set
E is constructed as follows. If Yj = {xj1 , xj2 , xj3}, then
we add the edges {wj , vj1}, {wj , vj2} and {wj , vj3} to
the graph. This completes the construction of the graph
G. Each node wj is assigned the label +1 (1 ≤ j ≤ m)
and each node vi is assigned the label −1 (1 ≤ i ≤ n).
The set P from which nodes can be deleted is V2. Note
that each edge in the graph is a conflict edge. Further,
the graph has exactly 3m edges. Therefore, the initial
energy value of G is 3m. The energy bound B for the
graph after node deletion is set to n. This completes
the construction of the Mend problem instance I ′. It
is clear that the construction of I ′ can be carried out in
polynomial time. We now argue that there is a solution
to the Mend instance I ′ if and only if there is a solution
to the X3C instance I.

Suppose there is a solution to the X3C instance
I given by Y ′ = {Yj1 , Yj2 , . . . , Yjq

}. A solution to the
Mend instance is obtained by deleting from G all the
nodes from V2 except wj1 , wj2 , . . ., wjq

. Let G′ denote
the resulting graph. Note that each set in Y ′ has exactly
three elements and Y ′ is a solution to the X3C instance
I. Therefore, in G′, each node from V2 is of degree
three and each node from V1 is of degree one. Hence,
G′ has the path property mentioned above. Further, the
number of edges in G′ is exactly n, and each edge is a
conflict edge. Therefore H(G′) = n as required. Thus,
we have a solution to the Mend instance I ′.

Now, suppose there is a solution consisting of the
node set P ′ to the Mend instance I ′. Let G′ denote
the graph after the nodes in P ′ are deleted from G. We
have the following claim.

Claim: G′ contains exactly q = n/3 nodes from V2.

Proof of Claim: Let V ′
2 denote the set of nodes from

V2 in G′. We have two cases to consider.
Case 1: Suppose |V ′

2 | < q. Note that each node in V ′
2 is

of degree three. Thus, the total number of edges from
the nodes in V ′

2 is at most 3(q− 1) = 3q− 3 < n. These
3q − 3 edges are incident on the n nodes in V1. Thus,
at least one node in V1 has degree zero. Such a node
does not have a path to a node in P − P ′. This is a
contradiction since the solution to I ′ must satisfy the
path property.
Case 2: Suppose |V ′

2 | > q. Again, each node in V ′
2 is

of degree three. Thus, the total number of edges from
the nodes in V ′

2 is at least 3(q + 1) = 3q + 3 > n. Each
of these is a conflict edge and there are no agreement
edges in G′. Thus, the energy of G′ is greater than n.
This is a contradiction since the solution to I ′ has an
energy value of at most n. The claim follows.

From the above claim, it can be seen that each
node from V2 in G′ has a degree of three and that each
node in V1 has a degree of one. It follows that the
sets corresponding to the nodes from V2 in G′ form a
solution to the X3C instance I. This completes the
proof of Theorem 5.1.

In view of Theorem 5.1, it is unlikely that the M-
step of the EM algorithm can obtain a global minimum
energy configuration in polynomial time. So, it is
reasonable to look for heuristic methods that reduce
the energy iteratively and reach a local minimum. We
discuss one such method below.

Suppose we are given an undirected graph G(V, E)
with a +1 or −1 label for each node and a subset P ⊆ V
of candidate nodes that can be deleted. Consider any
nonempty subset P 1 of P . Of the edges incident on
the nodes in P 1, let N1

c and N1
a denote respectively the

number of conflict edges and agreement edges. Define
the gain of P 1, denoted by g(P 1), to be the value

23

N1
c − N1

a . Let us call P 1 a candidate deletion set if
g(P 1) is greater than zero and the graph G′ obtained by
deleting P 1 from G continues to have the path property
mentioned above. The reason why P 1 is useful is that
the graph G′ obtained by the deleting P 1 has a smaller
energy value than G. (In fact, H(G′) = H(G)−g(P 1).)
It will be prohibitively expensive in terms of running
time to find a candidate deletion set by trying all
possible subsets of P . To make the process efficient,
we fix an integer k and try only subsets of size at most
k. Thus, in each iteration, this method will examine
O(|P |k) subsets. This is reasonable for small values of k.
As mentioned earlier, for k = 1, the computation can be
distributed over the sensor network. When a candidate
deletion set is found, the deletion of the corresponding
nodes is guaranteed to decrease the energy. When no
candidate deletion set of size at most k is available, the
procedure stops with a local minimum solution. An
outline of the resulting heuristic algorithm is shown in
Figure 3.

6 Empirical Results

We present preliminary results for our work. Using
the TOSSIM sensor network simulator and MATLAB,
we created an artifical sensor network on a uniformly
spaced 50 × 50 grid, with a sensor node at each grid
point. Each node has its eight immediate neighbors as
its initial neighborhood. It is helpful to remember the
our M step removes nodes from the network to increase
the probability of the entire network. These removed
nodes can be considered as anomalies/outliers.

For our simple BOX example (see Figure 4), we
randomly removed 10% of all values and then applied
our distributed non-parametric EM algorithm to restore
them. Examples of networks with missing and then
restored values are shown in Figures 5 and 6. Note that
a few nodes around the boundary of the simple pattern
are turned off. We repeated this experiment ten times.
As expected, we found that on average only 0.4% of all
missing values were restored to their incorrect values
for this simple problem.

For our CIRCLES example (see Figure 7), we
randomly removed 10% of all values and then applied
our algorithms to restore them. Examples before and
after the restoration data sets are shown in Figures 8
and 9. We found that on average only 1.0% of all missing
values were not restored to their correct values. We
also found that many of the nodes along the boundaries
of adjacent circles were turned off as they can be
considered anomalous.

As a test of our algorithm’s ability to turn off nodes
that are outliers, we constructed a RANDOM example
(see Figure 10) where each node’s value is generated

randomly. We then randomly removed 10% of all values
and applied our algorithms to restore them. Examples
before and after restoration data sets are shown in
Figures 11 and 12. We found that on average, 2.1%
of all missing values were restored to their incorrect
values. More importantly, our algorithm turned off the
vast majority of nodes indicating that most of the node
values were anomalies as would be expected for random
data.

7 Conclusion and Future Work

We have presented preliminary results from a line
of research for mining using the resource constrained
Berkeley mote sensor network platform. We believe
that this is an important area as Berkeley motes are an
inexpensive and popular sensor network platform that
is commercially available in kit form. The basic sensing
boards can record temperature, light and noise. Often
this information is converted to binary data according
to a user settable threshold. The information generated
from these motes regularly contains missing or absurd
values due to transmission errors, low battery levels,
sensor reading errors and node failures. However, many
mining algorithms do not easily handle missing data.

In this paper, we examined the use of EM algorithm
to fill in the missing values as is the standard practice
in statistics. However, parametric EM would quickly
consume the battery life of the motes as it requires
repeated transmission of the expected values to a central
base-station for aggregation. Instead, we propose a
novel non-parametric EM algorithm that is motivated
by the Lattice spin-glass literature. The E-step in
our approach leads to a problem that can be solved
efficiently. Even though the problem associated with the
M -step is is computationally intractable, we proposed a
heuristic that finds a more probable (but not necessarily
the most probable) model. Therefore, our approach is
an example of generalized EM [15].

A significant benefit of using non-parametric models
is that the E and M steps can be distributed onto
the sensor network. This would not be possible for
parametric EM since the motes lack floating point
hardware and the memory-space needed to execute the
corresponding algorithms.

Our distributed non-parametric EM algorithm,
functionally, fills in the values for nodes that do not re-
port a value or report an absurd value. In addition, since
our M step removes nodes from the network/graph to
increase the overall probability, we are effectively remov-
ing outliers. Future work will investigate more complex
likelihood functions that incorporate the mining task
as well data pre-processing. For example, clustering is
easily facilitated by the introduction of a latent vari-

24

able (Q) which is the cluster ID, for each node. The
complete data likelihood to maximizes would then be
P (Q, X, Y |θ).

Our preliminary experimental results show that for
synthetic sensor network data, the algorithm is capable
of restoring the vast majority of missing values correctly.
However, additional empirical work must be done to
determine and overcome the pragmatic problems in the
approach.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E.
Cayirci, “Wireless Sensor Networks: A Survey”, Com-
puter Networks, Vol. 38, 2002, pp. 393–422.

[2] R. Caruna, “A Non-Parametric EM-Style Algorithm
for Imputing Missing Values”, AI-Stats 2001.

[3] Communications of the ACM, Special Issue on Wireless
Sensor Networks, June 2004.

[4] R. O. Duda, P. E. Hart and D. G. Stork, Pattern
Classification (2nd edition), Wiley Interscience, 2000.

[5] I. Davidson and G. Paul, “Locating Secret Messages in
Images”, 10th SIG KDD Conference 2004.

[6] P. Domingos and M. Pazzani, “Beyond independence:
Conditions for the optimality of the simple Bayesian
Classifier”, ICML, 1996.

[7] H. Edelistein, Two Crows Data Mining Report, Two
Crows Corporation 1999.

[8] E. Elnahrawy and B. Nath, “Poster Abstract: Online
Data Cleaning in Wireless Sensor Networks”, Proc.
SenSys’03, Los Angeles.

[9] E. Elnahrawy and B. Nath, “Cleaning and Querying
Noisy Sensors”, Proc. WSNA’03, San Diego, CA.

[10] E. Elnahrawy and B. Nath, “Statistical Approaches to
Cleaning Sensor Data”, book chapter in Distributed
Sensor Networks, Edited by S. S. Iyengar and R. R.
Brooks, CRC Press, 2003.

[11] E. Elnahrawy and B. Nath, “Context-Aware Sensors”,
Proc. European Workshop on Wireless Sensor Net-
works, 2003, pp. 77–93.

[12] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Co., San Francisco.

[13] IEEE Computer, Special Issue on Sensor Networks,
Aug. 2004.

[14] M. Kearns, Y. Mansour, and A. Y. Ng, . “An
information-theoretic analysis of hard and soft assign-
ment methods for clustering”, Proc. UAI 1997.

[15] T. Mitchell, Machine Learning, McGraw-Hill, 1997.
[16] C. S. Raghavendra, K. M. Sivalingam and T. Znati

(Editors), Wireless Sensor Networks, Kluwer Academic
Publishers, Norwell, MA, 2004.

[17] Schumitzky, A., NonParametric EM Algorithms for
Estimating Prior Distributions, TR 90-2, Department
of Mathematics, University of Southern California.

[18] M. Stoer, F. Wagner, “A Simple Min-Cut Algorithm”,
J. ACM, Vol. 44, No. 4, July 1997, pp. 585–591.

+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
+ - -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

Figure 4: Original Box Data for a 50 × 50 uniformally
spaced sensor network.

25

+ - -
+ + + + + + + ? + + + ? + + + + + + + + + + + + + - - ? - ? -
+ + + + + + + + + + + + + + + + + ? + + + + + ? + - - - ? - - - - - - - - - - - - - - - - - - ? - -
+ + + + + + + + + + + ? + ? + + + + + + + + + + + - - - - - - ? - - ? - - - - - ? - - - - - - - - -
+ + + ? + ? + + + + + + + + + + + + ? + + + + + + - - - ? - - ? ? - ? - - - - - - - - - ? - - - - -
+ + + + ? + + ? + + + + + + + + + + + + + + + + + - - - - ? - - - ? - - - - - - - - ? - - - ? - - -
+ ? + + - ? - - - - - - - - ? - - - - - - - - - - ? - - -
+ + + + + + + + + + + ? + + + ? + + + + + ? + + + ? - - - - - - - - - - - - - - - - - - ? - - - - -
+ ? + + + + + + + + + + + + ? + + + + + + + ? + + - - ? ? - ? - - - - - - - - - - - - - - - - - - -
+ + + + + + + + + + + + + + + + + ? + + + + + + + - - - - - - - ? - - - - - ? - - - - - - - - - - -
+ + + + + + + + + + + + + ? + + + + + + + ? + + + - - - - - - - - - ? - - - - - - - - - - - - - ? -
+ + + + ? + - - - - ? ? ? - ? - - - - - - - - - - - - - - - -
+ + ? ? + + + + + + + + + ? + ? + + + + + + + + + - - - - - - - - - ? - - - - - - - - - - - - - - -
+ + + ? + + + + + + ? + + + + + ? + + + + + + + + - - - - - ? - - - - - ? ? - - - - - - - - - - ? -
+ + + + + + + + + + + + ? + + + + + + + + + + + + - - - - - - - - - - - - - - - ? - - - - ? - - - -
+ ? + - - - - - - ? - ? - - - - - - - - - - - - - - - -
+ + + + + + + + + + + + + + + + + + ? + + + + + + - - - - ? - - - - - - - - - ? - - - - - - - - - -
+ - - - - - - - - ? - - - - - - - - - - - - - - - ?
+ + + + + + ? + + + + + + + + + + + + + + + + + + - - ? - - - - - - - - - - - - - ? - - - - - - - -
+ - -
+ + ? ? + + ? + + + + + + + + + + ? + + + + + + + - - ? - - - - - - ? - - - - - - - - - - - - - - -
+ + + + + + + ? + + + + + + + ? + + + + + + + + + ? - - - - - - - - - - - - - - - - - - ? - - - - -
+ ? + + + + ? + + + ? + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - ? - - - - -
+ + + + + + ? + + + + + + + + + + + + + + + ? + + - - - - - - - - - ? - - - - - - - - - - - - - - -
+ ? + - - ? - - - - - - - ? - - - - - - - - - - - - - -
- ? ? -
- - - - - - - - - - - - - - - - ? - - - - - - - - - - - - - - - - ? - ? - - - - - - - - - - - - - -
- - - - - - ? - - - ? - - - - - ? - - - - - - - - - - - - - - - - - ? - - - - - ? - - - - - - - - -
- - - - - - - - - - - - - - - - - - ? - - - - - - - ? - ? - ? - - - - - - ? ? - ? - ? - - - - - - -
- - ? - - - - - - - ? - - - - ? - ? - - - ? - - - - - - ? -
- - - - - - - ? - - - - - - ? - - - - - - ? - - - - - - - - - - - - - - - ? - - - - - ? - - - - - -
- - - - ? - - - - - - - - - - - - - - - ? - - - ? - - - - ? - ? - ? ? - - - ? - - - - - - - - - - -
- - - - - - - - ? - - - - - - - ? - - - - ? - - - - - - - - - - - - ? - ? - - - - - - - - - - ? - -
- ? -
- ? - - - - - ? - ? - ? - - - ? -
- - - - - - - - - - - - - - - ? - ? - - - - - - - ? - ? -
- ? ? - ? ? - - - - - - - - - - - - ? ? - ? - ?
- - - - - - - - - - - - ? - - - - - - - - - - - - - ? - - - - - - - - - - - ? - - - - ? ? - - - - ?
- - - ? - ? - - - - - ? - - - ? - ? ? ? ? - - -
- ? - - - - - - - - - - - - - ? - - - - ? - - - - - - - - - - - - - - - ? - - - ? - - ? - ? ? - ? -
- - - - - - - - - - ? - - - - - - - - - - - - - - - - - ? - - - - - - - - - - - - - ? - - ? - - - -
- - - - - - - - - - - - ? - - - - - - - - - - - ? - - - - - - ? - - - - - - ? - ? - - - - - - - - -
- - - - - - - - - - - ? - - - ? - ? - - ? - - - - - - - - ? - - - - - - - - ? - ? ? - - - - - - - -
- - ? - - - - - - ? - - - - - - ? ? - - - - ? - - - - - - - - - ? - - - - - - - - - - - ? ? - - - -
- - - - - - - - - - - - - - - - - - ? - - ? - - - ? - - ? - - - ? - - - ? - ? - - - - - - - - - - -
- - - - ? - - - - - - - - - - ? - - - - - - - - - - - - - - - - - - ? ? - - - - - - - - ? - - - - -
- ? - - - -
- - - ? - - - - ? - - - - - - ? - - - - - - - - - - - - ? - - - - - - ? - - - - - - - - ? - - - - -
- ? - - - - - - - ? - - ? - - - - - - - ? - - - - - - - - - ?
- - - - - ? - - - - - - - - ? - - - - - ? - - - - - - ? - ? - - - - - - - - - ? - - - ? - - - - - -

Figure 5: Box Data with Missing Values for a 50 × 50
uniformally spaced sensor network. The symbol ‘?’
indicates a missing value.

O - -
O + + + + + O - O + O - O + + + + + + + + + O O O O -
O + + + + + O O O + O O O O O + + + + + + + O - O O -
O + + + + + + + + + O - O - O + + + + + + + O O O O -
O + + + + + + + + + O O O O O + + + + + + + + + O O -
O + O O -
O + O O -
O O O + O -
O - O + O O -
O O O + O O -
O + O O -
O + O O -
O + O O -
O + O O -
O + O O O O -
O + O - O O -
O + O O O O -
O + + + + O O O + + + + + + + + + + + + + + + + O O -
O + + + + O - O + + + + + + + + + + + + + + + + O O -
O + + + + O O O + + + + + + + + + + + + + + + + O O -
O + + + + O - O O + + + + + + + + + + + + + + + O O -
O O O + + O O - O + + + + + + + + + + + + + + + O -
O - O + + O - O O + + + + + + + + + + + + O O O O O -
O O O + + O - O + + + + + + + + + + + + + O - O O O -
O - O -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

Figure 6: Recovered Box Data for a 50×50 uniformally
spaced sensor network. The symbol ‘O’ indicates a node
to be turned off.

- -
- -
- -
- -
- - - - - - - - - - + + + + + -
- - - - - - - - + + + + + + + + + -
- - - - - - - + + + + + + + + + + + -
- - - - - - + + + + + + + + + + + + + -
- - - - - + + + + + + + + + + + + + + + -
- - - - - + + + + + + + + + + + + + + + -
- - - - + + + + + + + + + + + + + + + + + -
- - - - + + + + + + + + + + + + + + + + + -
- - - - + + + + + + + + + + + + + + + + + -
- - - - + + + + + + + + + + + + + + + + + -
- - - - + + + + + + + + + + + + + + + + + -
- - - - - + + + + + + + + + + + + + + + -
- - - - - + + + + + + + + + + + + + + + -
- - - - - - + + + + + + + + + + + + + -
- - - - - - - + + + + + + + + + + + - - - - - - - + -
- - - - - - - - + + + + + + + + + - - - - - + + + + + + + -
- - - - - - - - - - + + + + + - - - - - - + + + + + + + + + -
- + + + + + + + + + + + - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - -
- + + + + + + + + + + + - - - - - - - - - - - - - - - - - - -
- + + + + + + + + + -
- + + + + + + + -
- + -
- -
- + + - - - - - - -
- + + + + + + + + - - - -
- + + + + + + + + + + - - -
- + + + + + + + + + + + + - -
- + + + + + + + + + + + + + + -
- + + + + + + + + + + + + + + -
- + + + + + + + + + + + + + + +
- + + + + + + + + + + + + + + + +
- + + + + + + + + + + + + + + + +
- + + + + + + + + + + + + + + +
- + + + + + + + + + + + + + + +
- + + + + + + + + + + + + + + -
- + + + + + + + + + + + + + -
- + + + + + + + + + + + - -
- + + + + + + + + + - - -
- + + + + + - - - - -

Figure 7: Original Multiple Circles Data for a 50 × 50
uniformally spaced sensor network.

- -
- - - - - - - ? - - - ? - - - - - - - - - - - - - - - ? - ? -
- - - - - - - - - - - - - - - - - ? - - - - - ? - - - - ? - - - - - - - - - - - - - - - - - - ? - -
- - - - - - - - - - - ? - ? - - - - - - - - - - - - - - - - - ? - - ? - - - - - ? - - - - - - - - -
- - - ? - ? - - - - + + + + + - - - ? - - - - - - - - - ? - - ? ? - ? - - - - - - - - - ? - - - - -
- - - - ? - - ? + + + + + + + + + - - - - - - - - - - - - ? - - - ? - - - - - - - - ? - - - ? - - -
- - - - - - - + + + + + + + + + + + - - - - ? - - - ? - - - - - - - - ? - - - - - - - - - - ? - - -
- - - - - - + + + + + ? + + + ? + + + - - ? - - - ? - - - - - - - - - - - - - - - - - - ? - - - - -
- ? - - - + + + + + + + + + ? + + + + + - - ? - - - - ? ? - ? - - - - - - - - - - - - - - - - - - -
- - - - - + + + + + + + + + + + + ? + + - - - - - - - - - - - - ? - - - - - ? - - - - - - - - - - -
- - - - + + + + + + + + + ? + + + + + + + ? - - - - - - - - - - - - ? - - - - - - - - - - - - - ? -
- - - - ? + + + + + + + + + + + + + + + + - - - - - - - - ? ? ? - ? - - - - - - - - - - - - - - - -
- - ? ? + + + + + + + + + ? + ? + + + + + - - - - - - - - - - - - - ? - - - - - - - - - - - - - - -
- - - ? + + + + + + ? + + + + + ? + + + + - - - - - - - - - ? - - - - - ? ? - - - - - - - - - - ? -
- - - - + + + + + + + + ? + + + + + + + + - - - - - - - - - - - - - - - - - - - ? - - - - ? - - - -
- - - - - + + + + + + + + + + + + + + + - - - ? - - - - - - - ? - ? - - - - - - - - - - - - - - - -
- - - - - + + + + + + + + + + + + + ? + - - - - - - - - - ? - - - - - - - - - ? - - - - - - - - - -
- - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - ? - - - - - - - - - - - - - - - ?
- - - - - - ? + + + + + + + + + + + - - - - - - - + - ? - - - - - - - - - - - - - ? - - - - - - - -
- - - - - - - - + + + + + + + + + - - - - - + + + + + + + -
- - ? ? - - ? - - - + + + + + - - ? - - - + + + + + + ? + + - - - - ? - - - - - - - - - - - - - - -
- - - - - - - ? - - - - - - - ? - - - - + + + + + ? + + + + + - - - - - - - - - - - - - ? - - - - -
- ? - - - - ? - - - ? - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - ? - - - - -
- - - - - - ? - - - - - - - - - - - - + + + ? + + + + + + + + + - - ? - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - + + + + ? + + + ? + + + + - - - ? - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - + + + + + + + + ? ? + + + + + - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - ? - - + + + + + + + + + + + + + - ? - ? - - - - - - - - - - - - - -
- - - - - - ? - - - ? - - - - - ? - - + + + + + + + + + + + + + - - ? - - - - - ? - - - - - - - - -
- - - - - - - - - - - - - - - - - - ? + + + + + + + ? + ? + ? + - - - - - ? ? - ? - ? - - - - - - -
- - ? - - - - - - - ? - - - - ? - ? - - + ? + + + + + + ? + + - - - - - - - - - - - - - - - - - - -
- - - - - - - ? - - - - - - ? - - - - - - ? + + + + + + + + - - - - - - - ? - - - - - ? - - - - - -
- - - - ? - - - - - - - - - - - - - - - ? - + + ? + + + + ? - ? - ? ? - - - ? - - - - - - - - - - -
- - - - - - - - ? - - - - - - - ? - - - - ? - - - + - - - - - - - - ? - ? - - - - - - - - - - ? - -
- ? -
- ? - - - - - ? - ? - + + - ? - - - ? -
- - - - - - - - - - - - - - - ? - ? - - - - - - - ? - ? - - - - - - - - - - + + + + + + + + - - - -
- ? ? - ? ? - - - - - + + + + + + + ? ? + ? - ?
- - - - - - - - - - - - ? - - - - - - - - - - - - - ? - - - - - - - - - + + ? + + + + ? ? + + + - ?
- - - ? - ? - - - + + ? + + + ? + ? ? ? ? + + -
- ? - - - - - - - - - - - - - ? - - - - ? - - - - - - - - - - - - - - + ? + + + ? + + ? + ? ? + ? -
- - - - - - - - - - ? - - - - - - - - - - - - - - - - - ? - - - - - - + + + + + + + ? + + ? + + + +
- - - - - - - - - - - - ? - - - - - - - - - - - ? - - - - - - ? - - + + + + ? + ? + + + + + + + + +
- - - - - - - - - - - ? - - - ? - ? - - ? - - - - - - - - ? - - - - + + + + ? + ? ? + + + + + + + +
- - ? - - - - - - ? - - - - - - ? ? - - - - ? - - - - - - - - - ? - - + + + + + + + + + ? ? + + + +
- - - - - - - - - - - - - - - - - - ? - - ? - - - ? - - ? - - - ? - - + ? + ? + + + + + + + + + + +
- - - - ? - - - - - - - - - - ? - - - - - - - - - - - - - - - - - - ? ? + + + + + + + + ? + + + + -
- + + + + + + + + + ? + + + -
- - - ? - - - - ? - - - - - - ? - - - - - - - - - - - - ? - - - - - - ? - + + + + + + + ? + + + - -
- ? - - - - - - - ? - - ? - - - - - - + ? + + + + + + + - - ?
- - - - - ? - - - - - - - - ? - - - - - ? - - - - - - ? - ? - - - - - - - - - ? + + + ? + - - - - -

Figure 8: Multiple Circles Data with Missing Values
for a 50 × 50 uniformally spaced sensor network. The
symbol ‘?’ indicates a missing value.

26

- -
- -
- -
- - - - - - - - - O O - O - O O -
- - - - - - - O O O O O O O O O O O -
- - - - - - O - O + + + + + + + O O O -
- - - - - O O O O + + + + + + + + O O O -
- - - - O O + + + + + + + + + + + + O O O -
- - - - O O + + + + + + + + + + + + + O O -
- - - O O + + + + + + + + + + + + + + O O O -
- - - O O O + + + + + + + + + + + + + + O -
- - - O - O + + + + + + + + + + + + + + O O -
- - - - O O + + + + + + + + + + + + + + O O -
- - - - O + + + + + + + + + + + + + + + O O -
- - - O O O + + + + + + + + + + + + + O O -
- - - - O O + + + + + + + + + + + O O O O -
- - - - O O O + + + + + + + + + + O - O -
- - - - - O O O + + + + + + + + + O O O - - - - O O O -
- - - - - - - O O + + + + + + + O O - - - O O O O O O - O O -
- - - - - - - O O O O + + + O O O - - - O O + + + + O O O O O - - - - - - - - - - - - - - - - - - -
- - - - - - - - - O O O O O O - - - - O O + + + + + O - O O O O - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - O O + + + + + + O O O + O O O - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - O O + + + + + + + + + + + O O - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - O O + + + + + + + + + + + O O - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - O O + + + + + + + + + + + + O O O - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - O O O + + + + + + + + + + + O O - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - O O + + + + + + + + + + + O O - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - O O + + + + + O O O O O O O O - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - O O O O + + O - O - O - O - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - O O - O + + O O O - O O O - - - - - - - - - - - - - - - - - -
- O - O O O O + O O O -
- O O O - O O O O -
- O O O -
- O O O O - - - - - -
- O O O O + O O - O O - - -
- O O + + + + + O O O O O - -
- O O O O O + + O O - - O - O -
- O O O O - O O O O - - O O O O -
- O O O - O O O - O - - - - O O O
- O O - O O O - O O - O - - O - O
- O O O O O O O O O - O O - O O O O
- O O + + O - O - O O O O O O + + O
- O O O + O - O - - O O O O O + + O
- O O O O O O O O O O - - O + + O
- O O - O - O + + + O O O O + O O
- O O O O + + + O - O O + O O
- O O O + + + + + O O - O O O -
- O O O O O + + O - O O O - -
- O O - O + O O O O O - - -
- O - O O O - O - - - - -

Figure 9: Recovered Multiple Circles Data for a 50×50
uniformally spaced sensor network. The symbol ‘O’
indicates a node to be turned off.

- + + - + + - - - - + - + - - - + + - + - + + - + + - + - + - + + + + + - + - + - + + + + - - + + -
+ - - + - + + - - + + - + + - + + - + + + - + + + - + - + + + - + - - + - + - + + - - + - - + - + +
+ + + - - + - + + - + - + + - + - - + + - - - - - + + - + - - + - - + - + + + + - - + + + + - - - +
- + + - + - + + + + - - + - + - + + - - + + + - - + - + + - - + + - + + + + - + + + - - - - - - + -
+ - - + + - + - + + + - + - - - - + + + + + + - + - - - + + + + - + - + + - + - + - - + - + - + - +
+ - - + + + - + - + + + - + + + + - - + - + + + - - + - - + + + + + - - - + + - - + + - + - + - + +
- - + + - - + - + + + - - + - - - - + - + + + - - - + + - - - - + - - + + + + + - - - - - + + + + -
- + - + - - - + + + + - - + + + + + + - - - + - + + + + + - - - - - + + + + - + - + + - + - - - + +
+ - - - + + + + - - - - + - - + - - - + - + + + - - - - - - - - - + + - + + + - - - + + - + + + + +
+ + + - + + - - + + + + - + + + - + + + - + + - + + - - + - + - + + + - - + - + - - - - + + - + + -
- - + - - + + - + - - + - + - + + - - - - + + - - + + + + + + - - - + - + + - + - - - + + - + - - +
+ + - - + - + + - + + - + - + + + + - + + + - - - - + + - - + + - + - - - + - + + - - - + + - + - +
- - + + - + - + + + - - + - - - - - - - + + + + - - + - - + - + - + - + + + - - + + + - - + + - + +
+ - - + + - + - - + - - + + - - + + + - - - + + + - + - - + - - - - + + + + + + + - - + + - - - - -
- - + - + + + - + - + - + - - - - + + - - - - + + - - - - + - + + - - + + - - - + - - + + + - - - +
- - - - + + + - + - - + + - + - + + - - + - - - + - - - + - - - - + + - + - - - + - - + - + + - + +
+ + - + - - + + - - + + - + - - - - - + + + + + + + + + - + + - + - - + - - - - + - + + + + + - - +
+ + - - + - - + - + + + + - + - - - + - - + - + - + - + + - - - - - + + - - - + - - + - - - - - - +
+ - + + + + - + - + + - - + - - - + - + + - - - - - + + - - - - - - + - - + - + + + + + - + + - - +
+ - + - - - + + + - + + + + + - + + - - - + - - - + + + + + + + - - + - + - - + - - - - + - - + - -
- + - + + - + + + - + + - + - + + + + + - - - + - + + - - + - - - + + + + - + + - + + + - - - - + -
+ + - - + + - - + + - + - + + - + - - - - + - - - - - - - - + - - - - - - + - - + - + + + - + - - -
- + + + + + + + - - - + - - - - - + - - - + - - + + - - + - + + + - - - - + + - - - - - + + - - + -
- + + + - - + + + - - - + - - + + - - + - + - + - + - + + - - + - + - + + - + - + + - + - - + - - +
+ + + + + - - + - - - - - - - + - + + - + - + - + - - + - - + + - + + - + - - + - + + - - + + - + +
- + - - + - - + - + - + + + - + + - - + + + - - - - - + - + - - - - - + - + + - + - + - - + - - + -
+ - - + - + + + - - - + - - - - + + - - - + + - + - - - - - + + - + - + - + + - - + + + - - + + + +
- + + + - + - - - - + + + + + - + - + + + - - - - - - + - - + + + + + - + + + - + - + - - + + - - +
+ + - - - - - - + + - + - + - - - + + - + + - - + - + + + - + - - - - + - + - - - - - + - + + - + -
- + - - + - + + - + - + + + + - + - - + + + + + + + - - - + - - - - + - + - - + - + - - - - + - - -
- - - - + - + + - + - - - + + + + + + - + + - - + - - - - - - + - - - - + + - + + - + - - - - + - +
+ + + - - - - + - + + + - - + + - + - - - + + - - + + + + - + - - - + - - - + - - + - + - + + + + +
- + - - + - + - + + + - + + - - + - - + - + - - - - - + - - + + - - + + + - + + - + - - + + - - + +
+ - - + - + - - + + + - + + - + - - + - - - + + - - - + + + + + + + - - + - - + + - - - + + + - - -
+ - + + + - + - - + - + + - + - + + - + + - + - + + - - - + - + - - + - - - - - + - + + + - + - - -
+ - - - - + + - - + + - + + - - - - - - + + - + + + - + + - - - + + - - + + - - - - - - - - + + + -
+ + + + - - + - - - - + + + - - - - + - + + + + + - - - + - - + - - - + - + + + - - + - + + + + - +
- - - + + + + + + - - - + - - + - - - - + - - + - - - + + - + - - - + + - + + + + + + - - - + - + -
+ - + - + + - + + + + + + - - + - + - - + - + + + - + - - - - + - + - + - - - - + + - + + + + - - -
- + - + + - + - + - - + + + - - + - + - + + + - + - - + + + - + - - + + - - - + + - - + - - - + - +
+ - + + + - - - - + - + - - - - - + + + + + + - - - + - + + - - - + - - + + - - - + + + + - + + - +
- - + + + - - - - - - + + - - - + + + + - + - - + - - + + + + + - - + + + - + - - + - + - - + + - -
+ - + + - - + - + - + - - - - - - - - + - - + + + + + - - + + + + - - - - - - - + + + + - + - + + -
- - + + + + + - + + - + + - - - - - + + - + - + - - + + - + + - + - - - - - - - + + + - - - + + + +
- + - + + - + + - - + - + + + + + + - + - + - + - - + + - + - + - + + + + - + - + - - - - + - + - -
- - + - + + - + - + + + + - - - + + + - + - - + + + + + - + - + - - + + - + + - - - - - - + + + - -
+ - + + - + - + - - + + + - - + - - - - + + + + - - + - - + - + - + - + - + + - - + + + + - + - - +
- - - - - + + - + - - + + + - + + - - + - + - + - - - - - - + - + + - - + + - - + + - + - + - - + -
+ - + - - + + - + + + - - - - + + + - - - + - - + + + + - - - - + + - + + - + + + + + - + + + - + -
+ - + - + - + + + + + - - + - - - - - - + + - + + + + - - - + + - + - + - - + - - + - + + + + + - -

Figure 10: Original Random Data for a 50 × 50 unifor-
mally spaced sensor network.

- + + - + + - - - - + - + - - - + + - + - + + - + + - + - + - + + + + + - + - + - + + + + - - + + -
+ - - + - + + - ? + + ? + + - + + - + + + - + ? + - + - + + ? ? + - - + - + - + ? - - + - - + - + +
+ ? ? - - + - + + - + - + + - ? - - + + - - - - - + + - ? - - + - - + - + + + ? - ? + + + + - - - +
- + + - + - + + + + - - + - + - + ? - - + + + - - + - + + - ? + ? - + ? + ? - + + + - - - - - - + -
+ - - + + - + - + + + - + ? - - - + + + + + + - + - - - + + + + - ? - + + - + - + - - + - + - + - +
+ - - + + + ? + - + ? + - + + + + - - + - + + + - - + - - + + + + + - - - + + ? ? ? + - + - + - + +
- ? + + - - ? ? + + + - - + - - - - + - + + + - - - ? + - - - - + - - + + + + + - - - ? - + + + + -
- + - + - - - + + + + - - + + + + + + - - - ? - + + + + + - - - - - + + ? + - + ? ? + - + - - - + +
+ - - - + + + + - - - - + - ? + - - - + - + + + - - - - - - - - - + + - + + + - - ? + + - + + + + ?
+ + + - + + - - + ? + + - ? + + - + + + ? + + - + + - - + - + - + + + - - + ? + ? - - - ? + - + + -
- ? + - - + + - ? - - + - ? - + + - - - - + + - - + + + ? + + - ? - + - + ? - + - - - + + - + - - +
+ + - - + - + + - + + - + - + + + + - + + + - - - - + + - - + + - + - - - + - + + - - - + + - + - +
- - + + - + - + + + - ? + ? - - - ? - - + + + + - - + - - + - + - + - + + + ? - + + + - - + + - + +
+ - - + + - + - - + - - + + - - ? ? + - - - + + + - + - - + - - - - + + + + + + + - - + + - - - - -
- - + - + + + - + - + - + - - - - + ? - - - - + + - - - - + - + ? ? - ? + - - - + - - + + + - - - +
- - - ? + + + - + - ? + + - + - + + ? - + ? - - + - - - + - - - - + ? - + - - ? ? ? - + - + + - + +
+ + - + - - + + - - ? + - + - - - - - + + + + ? + + + + - + + - + - - + - - - - + - + + + + + - - +
+ + - ? ? - - + - + + + + - + - - - + - - + - + - + - + + - - - ? ? + + - ? ? + - - + - - - - - - +
+ - + + + + - + - ? + - - ? - ? - + - + + - ? ? ? - + + - - - - - - ? - - + - + + + + + - + ? - - ?
+ - + - - - + + + - + + + + + - + + - - - + - - - + + + + + + + - - + - + - - + - - - - + - - + - -
- + - + + - + + + - + + - + - + + + + + - - ? + - + + - - + - - - + + + + - + + ? + + + - - - - + -
+ + - - + ? - ? ? + - + - + ? - + - - - ? + - - - - - - - ? + - - ? - - - + - - + - + + + - + ? - -
- + + + + + + + - - ? + ? - - - - + - - - + - - + + - - + - + + ? - - - - + + - - - ? - + + - - + -
- + + + - - + + + - - - + - - + + - - + - + ? + - + ? + + - - + ? + - + + - + - + + ? + - - + - - +
+ + + + + - - + - - - - - - - ? - + + - + - + - ? - - ? - - + + - + + - + - ? ? - + + - ? + ? - + +
- + - ? + - - + - + - + + + - + ? - ? + + + - - - - - + - + - - - - - + - + + - + - + - - + - ? ? -
+ - - ? - + + + - - - + - - - - + + - - - + + ? + - - - - - + + ? + - + - + + - - + + + - - + ? + +
- + + + - ? - - - - + ? + + + - + - + + + - - - - ? - ? - - + + + + ? - + + + - + - + - - + + - - +
+ + - - ? - - - + + - + - + - - ? + + - + + - - + - + + + - + - ? - - + - + - ? - ? - + - + + - + -
- ? - ? + - + + - + - + + + + - + - ? + + + + + + + - - - ? - - - ? ? - + ? - ? - + - - - - + - - -
- ? ? - + - + + - + - - ? + + + + + + - + + - - + - - ? - - - + - - - - + + - + + - + ? - ? - + - +
+ + + - ? - - ? - + + + - - + + - + - - - + + - - + + + + ? + - ? ? + - - - ? ? - ? - + - + + + + +
- + - - + - + - + + + - + + - - + ? - + ? + - - - - ? + - - + + - - + + + - + + - + - - + + - - + +
+ - - + - + - - + ? + - + + - + ? - + - - - + + - - ? + + + + + + + - - ? - - + + - - - + ? + ? - -
+ - + + + - + - ? + ? + + - + - + + - + + - + - ? + - - - + - + - - + ? - - - - + - + + + - + - - -
+ - - ? - + + - - + ? - + + - - ? - - - + + - + + + - + + - - - + + - - + + - - - - - - - - + + + ?
+ + + ? ? ? + ? - - - + + + - - - - + - + + + ? + - - - + - - + - - - + - + + + - - + - + + + ? - +
- - - + + + + + ? - - - + - - + - - - - + - - + - - - + ? - + - ? - ? + - + + + + + ? - - - + ? + -
+ - + - + + - + + + ? + + - - + - + - - + - + + + - + - - ? - + - + - + - - - - ? + - + + + + - - -
- + ? + + - + - + ? - + + + - - + - + - + + + - + ? ? + + + ? + - - + + ? - - + + - - + ? - - + - +
+ - + + + - - - - + - + - - - - - + + + + + + - - ? + - + + - - - + ? - + + - - - + + + + - + + - +
- - + + + - - ? - - - + + - - - + ? ? + - + - - + - - + ? + + + - - + + + - + - - + - + - - + ? - -
+ - + + ? ? + - + - + - - - - - - - - + - - + + + + ? - ? + + + + - - - - ? - - + + + + - + - + + -
- - + + + + ? - + ? - ? + - - - - - + + - + - + ? - + + - + + - + - - - - - ? - ? + + - - - + + + ?
- + - + + - + + - - + - + ? + + + + - + - + - + - - + ? - + - + - + ? + + - + - + - - - ? + - + - -
- - + - + + - + - + + + + - - - + + + - + - - + + + + + - + - + - - + + - + + - - - - - - + + + - -
+ - + + - + - + - - + + + - - + - - - - + + + + - - ? - - + - + - + - + - + + - ? + + + + - + - - +
- - - - - + + - + - - + + + - ? + - - + - + - + - - ? - - - + - + + - - + + - - + + - + - + - ? + -
+ - + - ? + + - + + + - - - - ? + + - - - + - - + + + + - - - - + + - + + - + + ? + + - + + + - + -
+ - + - + - + + + + + - - + - - - - ? - + + - + + + + - - - + + ? + - + ? - + - - + - + ? + + + - -

Figure 11: Random Data with Missing values for a
50×50 uniformally spaced sensor network. The symbol
‘?’ indicates a missing value.

0 0
0 0 0 0 0 0 0 0 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - - 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
0 - - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 - 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 + + 0 0 0 0 0 0 0 0 - 0 - 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0 0 0 0 0 + 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 + 0 - - - 0 0 0 0 0 0 0 0
0 - 0 0 0 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0
0 - 0 0 0 0 0 0 - - - 0 0 0 0 - 0 0 0 - - 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 -
0 0 0 0 0 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - - 0 0 - 0 0 0 0 0
0 - 0 0 0 0 0 0 - 0 0 0 0 - 0 + 0 0 0 0 0 0 0 - 0 0 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 - 0 - 0 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 - 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - 0 - - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0 - - 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0 0
0 0 0 - 0 0 0 0 0 - - 0 0 0 0 0 0 0 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 - - - - - 0 0 0 + 0 0 0 0
+ 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 - 0 0
0 0 0 - - 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - 0 0 0 - - 0 0 0 0 0 0 0 0 - 0 0
0 0 0 0 0 0 0 0 0 - 0 0 0 - 0 - 0 0 0 0 0 0 - - - 0 + 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 - 0 0 -
0 0 0 0 0 0 0 + 0 - 0 0 0 0
0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
0 0 0 0 0 - 0 - - 0 0 0 0 0 - 0 0 0 0 - - 0 0 0 0 0 0 0 0 - 0 0 0 - - - 0 0 0 0 0 0 0 0 0 0 0 - 0 0
0 0 + 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
0 + + 0 0 0 0 0 0 - - 0 0 - 0 0 0 0 0 0 0 0 - 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - - - 0 - 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 - 0 - 0 0 0
0 0 - - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - 0 - - 0
0 0 0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - - - - 0 0 0 - 0 0 0 0 + 0 0 0 0 0 0 0 0 0 - 0 0
0 0 0 0 - - - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 + 0 0 0 0 0 0 0 0 0 0 - - - 0 0 0 0 - - 0 - 0 0 0 0 0 0 0 -
- - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - - - - 0 0 0 - - 0 0 - 0 - 0 0 0 0 - 0 0 0 0 0
0 - - 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0
0 0 0 0 - 0 0 - 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 - 0 0 - - 0 0 0 0 - - 0 - 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 - 0 0 0 0 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 0 - 0 - - 0
0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 - 0 0 0 0 0 0 - 0 + 0 0 - - 0 -
0 0 0 - - - 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 0 - - 0 0 0 0 + 0 0 0 0 0 0 0 0 - 0 0
0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 - 0 - 0 0 0 0 0 0 0 - 0 0 0 0 - 0 0
0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 - 0 0 0 0 0 0 0 0 0
0 0 - 0 0 0 0 0 0 - 0 0 0 0 - 0 0 0 0 0 + + 0 0 0 - - 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 0 - 0 0 0 0 0
0 0 0 0 0 0 - - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 - 0 0 0 0 0 - - 0 0 - - 0 0 0 0 0 0 0 0 0 - 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0
0 0 0 0 - - 0 0 0 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 - 0 - 0 0 0 0 0 - - - - - 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 - 0 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 - 0 0 - 0 0 0 0 0 -
0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - 0 0 0 0 0 0 - - - - 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 + 0
0 - - - 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 0 0 0 0 0 - 0 - 0 0
0 0 0 0 - 0 0 0 + + 0 0 0 0 0 - 0 0 - 0 0 0 0 0 + 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 + + + 0 0 - 0 0 - - - - - 0 + 0 0 0 0 0 0 - - 0 0 0 - 0 0 0 - 0 0 - 0 0 0 0 - 0 0 0 - -

Figure 12: Recovered Random Data for a 50 × 50
uniformally spaced sensor network. The symbol ‘O’
indicates a node to be turned off.

27

A Distributed Approach for Prediction in Sensor Networks

Sabine M. McConnell and David B. Skillicorn
School of Computing
Queen’s University

{mcconnell,skill}@cs.queensu.ca

Abstract

Sensor networks in which the sensors are capable of lo-
cal computation create the possibility of training and
using predictors in a distributed way. We have pre-
viously shown that global predictors based on voting
the predictions of local predictors each trained on one
(or a few) attributes can be as accurate as a central-
ized predictor. We extend this approach to sensor net-
works. We also show that, when the target function
drifts over time, sensors are able to make local decisions
about when they need to relearn to capture the chang-
ing class boundaries.

Keywords: sensor networks, prediction accuracy,
classification task, distributed data mining, anom-
aly detection, local models

1 Introduction

As sensors increasingly become active devices, with
their own processing power, rather than simply
passive input devices, new possibilities for imple-
menting distributed algorithms in a network of sen-
sors become possible. One important class of such
algorithms are predictors, which use the sensor in-
puts to predict some output function of interest –
one topical example is the use of ocean overpressure
sensors and seismic detectors to predict a tsunami.

Sensor networks are of two broad kinds: peer-
to-peer or hubbed. In a peer-to-peer (or ad hoc)
network, each sensor has access to some neighbors
and the overall network resembles a random graph.
In a hubbed network, the network structure is a
tree, where leaves are sensors, the root is some more
substantial computational device, and the internal
nodes may either be ordinary sensors, resemble
the root node, or something in between. We will
consider only hubbed sensor networks.

The trivial solution to learning a predictor
in such a sensor network is of course simply to
transmit the data from all of the sensors to the
root, and carry out all of the predictor training
and prediction at the central site. This has several
disadvantages: moving the raw data to the root
increases power consumption, uses bandwidth and
introduces latency. In addition, the sensors remain
passive devices.

We show that prediction in a hubbed sensor
network can be distributed in the following way:
each sensor learns a local predictive model for the
global target classes, using only its local input data.
Only the predicted target class for each reading is
then transmitted to the root, which determines the
appropriate prediction by voting the target classes
of the local predictors. This approach has a number
of desired properties: it is no less (and potentially
even more) accurate than a centralized predictive
model; it requires only the target class prediction
to be transmitted from the sensor, rather than
the entire raw data; and it allows each sensor to
locally determine its behavior and respond to its
environment, for example deciding when to relearn
its local model in response to changes in the input
data.

The contributions of this paper are:

• A framework for building and deploying pre-
dictors in sensor networks that pushes most
of the work out to the sensors themselves.
This builds on our earlier work on distributed
data mining. We show that prediction per-
formance is not negatively impacted by using
the framework instead of a centralized learning
approach.

28

• We show how the use of local predictive mod-
els enables sensors to respond to changes in
data by relearning when their local predictive
accuracy changes. This creates new possibil-
ities, such as allowing sensors to predict only
some target classes, for example those repre-
senting anomalies, therefore further reducing
the required bandwidth.

Because sensors only transmit model predictions,
and not raw data, our approach can also be used
in settings where privacy is a concern, for example
when sensors belong to different organizations or
governments.

2 Related Work

The deployment of data mining techniques in sen-
sor networks is an open research problem. For
a general discussion of the characteristics and re-
quirements of sensor networks see the survey by
Akyildiz et al. [1]. One application is the distrib-
uted stream mining system Vedas [9] by Kargupta
et al., which monitors data streams obtained in
moving vehicles before reporting them to a base.
More recently, Bandyopadhyay et al. [2] intro-
duced a distributed clustering algorithm based on
the k-means clustering algorithm in a peer-to-peer
environment.

The current limitation of data mining applica-
tions in sensor networks is that existing distributed
data mining techniques impose heavy demands on
computation and/or communication. In addition
to the trivial approach of sending all collected data
from the individual sensors to the root, where any
standard data-mining technique can then be ap-
plied, two techniques for distributed data mining
are known: the Collective Data Mining (CDM)
framework introduced by Kargupta et al. [8], and
metalearning [5].

The CDM framework encompasses a variety of
data mining techniques, while metalearning is algo-
rithm independent. The CDM framework is built
upon the fact that any function, i.e. the function
to be learned by the data mining algorithm, can
be expressed as a (possible infinite) sum of basis
functions and their corresponding coefficients. It
is those coefficients that are learned from the local

datasets and then combined into a global model.
This is computationally expensive, and the sum is
only approximated, which puts an upper bound-
ary on the accuracy that can be achieved. In met-
alearning, outputs from classifiers built at separate
sites and from separate datasets are combined by
sending them as input to a second level of clas-
sifiers, which then produce the final result. Be-
cause metalearning requires additional resources,
both for the transmission of the models as well as
the computation of the models themselves, it is not
well suited to applications in sensor networks.

3 Learning Predictors in Sensor Networks

Provided that each of the sensors provides an
attribute value (reading) at the same time, the
global view of the collected data is a matrix. Each
row of the matrix corresponds to a (global) reading
and each column to an attribute. Each sensor
may collect only a single attribute, so that it is
responsible for only one column of the dataset, or
it may collect multiple attributes. A target class
is associated with each global reading; for training
data, there is a further column containing these
target classes. After deployment, the goal is to
predict the target class for each global reading.

In our approach, each sensor builds a local pre-
dictor that predicts the target class based only on
the attribute(s) available to it locally. At first, it
might seem as if such predictors would be too poor
to be useful, especially given the amount of re-
search directed towards more heavyweight distrib-
uted data-mining techniques as described above.
However, we have shown [10] that, even when a
model is built from each attribute individually, pre-
dictive performance is not necessarily worse than
that of a centralized predictor. This follows partly
from the same reason that Bayesian classifiers are
often useful, even when the independence assump-
tion on which they depend is violated. Domin-
gos and Pazzani [6] attribute the success of the
naive Bayes classifier to the fact that even though
the class probabilities are estimated wrongly, their
ranking is preserved, i.e. the class that should
be assigned to with the highest probability is still
the highest under the naive Bayes assumption. It
should also be noted that many predictive model

29

building algorithms do not account for attribute
correlation well, even when they purport to.

Our model of a sensor network is as follows.
The network is a tree, with a powerful computa-
tional device at the root, and sensors, with limited
power, processing, and memory capabilities at the
leaves. Bandwidth in the network is a scarce re-
source, in part because transmission by the sen-
sors consumes power. In addition, available re-
sources vary across different sensor networks. Sen-
sors gather data synchronously (logically if not
physically), and the overall goal is to predict some
function of all data inputs.

During the learning phase, each sensor builds
a predictor for the global target class based on
values of its local input data. The accuracy of each
local predictor can be determined using test data
for which the correct target class predictions are
known. During deployment, each sensor receives
data from the outside world, and sends its target
class predictions for each of these readings (directly
or through other sensors) to the root. The root
uses voting to choose a global target class from
these individual predictions. Note that the root
can tell whether each individual sensor’s prediction
was ‘right’ or ‘wrong’ by whether it agreed with
the overall vote, and this can act as a surrogate for
prediction accuracy for each local predictive model.

There are several variations in this overall ap-
proach, depending on the capabilities of the sen-
sors and the particular predictive technique being
used. Some predictive techniques require access to
all of the training data at once (for example, de-
cision trees), while others require only one reading
at a time (for example, neural networks). In both
cases, sensors must have enough memory to store
the model itself and perhaps some statistics about
it; but in the former case, a sensor must also have
enough memory to hold the entire training data for
its input attribute(s).

When only one reading is stored at a time,
the training regime is given in Algorithm 1. For
model building techniques that must see the data
multiple times (for example, the epochs required
in backpropagation training of neural networks),
the data must be transmitted multiple times from
the root. Hence small memory at the sensors is

bought at the cost of increased communication.
The test regime is outlined in Algorithm 2. During

Algorithm 1 Learning with extremely limited
resources

for all objects in the training data do
Root sends values for attribute i to sensor i

end for
Sensor i uses the attribute value to build its local
model

Algorithm 2 Testing with extremely limited re-
sources

for all objects in the test data do
Root sends values for attribute i to sensor i
Sensor i uses its local predictor to predict the
target class
Sensor i sends its prediction to the root
The root votes using the predictions of each
sensor to get a global prediction

end for
The root computes the overall prediction accu-
racy using the target class labels of the test data
The root computes the accuracy of each local
predictor and sends this to each sensor

deployment, each sensor classifies each new input it
collects according to the local model and then sends
its prediction to the base. Voting can either be
unweighted, so that each sensor’s prediction makes
the same contribution to the global prediction, or
weighted by factors such as the test set accuracy
of each sensor’s local predictor or the confidence
with which local models assign input values to
target classes. The number of target classes is
typically much smaller than the range of values in
the attribute domain, and so much less bandwidth
is required to transmit predictions than raw data.
It should be noted at this point that even a
model that requires the entire training data for its
construction can sometimes be modified to learn
incrementally. A number of incremental algorithms
are known, for example those proposed by Thomas
[11] and Utgoff [12]. This implies that adaptations
of these techniques could be deployed even in sensor
networks with extremely limited resources.

30

Algorithm 3 Learning with larger resources
for all sensors do

Root sends the columns corresponding to each
sensor’s attributes and a copy of the target
attribute to each sensor
Each sensor builds a local predictor from this
data

end for

Algorithm 4 Testing with larger resources
for all sensors do

Root sends the columns corresponding to each
sensor’s attributes and a copy of the target
attribute to each sensor
Each sensor uses its local predictor to generate
a list of predicted target classes and sends
them to the root

end for
Root votes using the target class predictions
from each sensor to get a global prediction for
each test-set reading

When each sensor has a significant amount of
memory available, a less rigid training and testing
regime is possible as outlined in Algorithms 3 and
4, respectively. After testing, the root can send
each sensor both its per-reading accuracy and its
global accuracy. The sensors are deployed exactly
as above. The amount of storage required at each
sensor has to be sufficient to store the larger of the
training and test set data, in addition to the target
class in each case. These strategies can be used
with any weak learner. The local deployed error
rate is then defined as the error rate of the locally
built model as compared to the results achieved by
the global model. The local deployed error rate
is measured against the global error rate, which
implies that relative changes rather than absolute
values are of interest.

4 Trend detection

In some sensor networks, the target function may
change over time, and the predictive model may
need to be relearned. This is difficult to handle
in a centralized way since a drop in the global
predictive accuracy could signal either a change

in the target function or a problem with the
predictor. Assuming that not all local predictors
will fail at the same time due to random data
fluctuations, and because the global predictive
model depends on many local predictors, a change
in a local predictor’s accuracy can then be used to
trigger local relearning to improve that predictor’s
accuracy in response to changes in input data.

After deployment, the root should send the cor-
rect class label for each prediction back to each
sensor. A sensor can use this to track its accu-
racy on observed inputs (which might be expected
to match its training accuracy, or at least to re-
main stable over time) and/or to label each of the
recent observed readings with its correct class la-
bel. Through the knowledge of class labels, a sen-
sor can then discover that its predictions are start-
ing to be less effective, which might trigger new
local behavior (relearning its predictive model), or
new global behavior (relearning all of the predictors
or, alternatively, removing this sensor from predic-
tions). If weighted voting is used, a sensor whose
predictions start to become less accurate is auto-
matically downweighted at the root. The availabil-
ity of global target classes also means that recent
data can be used as training data for relearning
local models.

5 Experiments

5.1 Basic distributed data mining The fea-
sibility of the distributed voting approach was
demonstrated using the following experiment that
simulates distributed execution on an artificial
dataset. A more detailed evaluation of the effec-
tiveness of this approach, utilizing a variety of real
life datasets containing a large range of numbers of
classes, samples and attributes of varying type can
be found in [10].

Datasets were generated by drawing from
two normal distributions in 10-dimensional space,
choosing various different separations for the means
in each dimension, and different magnitudes for
the variances. The target class is the distribution
from which each row was drawn. 500 samples were
drawn from each distribution, giving a dataset with
1000 rows and 10 columns.

Each sensor receives a single column of this

31

dataset, together with the corresponding class la-
bels. This is the worst case scenario, since a sensor
might be gathering more than one signal at a time.
These data were further separated into training and
test sets using the out-of-bag estimator procedure
suggested by Breiman [3]: samples are drawn with
replacement until 1000 samples have been selected.
The remaining rows, typically about one-third of
the original dataset, are used as the test set. A con-
fidence measure for each sensor’s predictive model
is then obtained by using this test set. Such a con-
fidence measure is expected to be as accurate as if
the test set were of the same size as the training set,
so that confidence intervals will be small for this
data. Global prediction accuracies are computed
in two ways: simple voting, and voting weighted
by the probability with which a sensor assigns a
particular reading to a class.

The predictive model used is the
J48 decision tree implemented in WEKA
(www.cs.waikato.ac.nz/ml/weka/), although
the approach will work for any weak learner. The
achieved accuracies for both voting schemes on
this dataset are shown in Table 1. The accuracies
achieved by building a single decision tree on
the whole dataset (the centralized solution) are
included for comparison.

From these results, it can be seen that the
overall classification accuracy for both voting ap-
proaches is comparable to or better than that of the
centralized approach datasets in all cases. In ad-
dition, the weighted voting approach outperforms
the simpler voting scheme. For an explanation of
the observations and a more general experimental
evaluation, see [10].

5.2 Effect of trends during deployment We
now consider the effect of a target function, and
hence a class boundary, that changes with time.
In the following experiments, we generated data
similar to that described above, but moved the
means of the distributions incrementally.

A dataset of a 1000 samples was drawn from
two normal distributions whose means were cen-
tered at the origin and (1,1,...,1) with variance one.
Ten further datasets, each of size 1000, were gener-
ated from two normal distributions with the same

variance; the means of these two distributions were
moved in lockstep in axis-parallel steps according
to the schedule shown in Table 2 for a total distance
of 20 in each dimension. For example, attribute 1
changed by 10% of its total change at each itera-
tion, while attribute 3 made the total change only
during the last iteration. The extension to the pre-
vious deployment is that each sensor tracks its lo-
cal deployed error rate (which is derived from the
global prediction, not from the ‘true’ prediction)
When this accuracy changes sufficiently, the sen-
sor relearns its local model, using recent data and
the target class labels reported to it by the root.
Algorithm 5 outlines the approach.

Algorithm 5 Relearning during deployment
Create a local model in each sensor
Classify each new reading according to the local
model
if local accuracy deviates then

Relearn the local model
end if
Send the resulting classifications to the base
Combine the predictions from the sensors in the
base using a voting scheme

The deviation that triggers relearning was
taken to be 5 percentage points of prediction ac-
curacy for each attribute. Figures 1 and 2 show
how the accuracy changes as the target function
changes, how relearning is triggered, and how the
prediction accuracy subsequently improves.

Figure 3 shows the effect of the data change and
relearning on the overall accuracy achieved at the
base after combining the classifications sent from
the sensors using both of the voting schemes.

This strategy assumes the change in class
boundaries will not require relearning in all at-
tributes simultaneously, for then the global class
labels would not be appropriate surrogates for the
correct prediction. This assumption is reasonably
robust, since a simultaneous relearning would indi-
cate a drastic change in the target function, which
is unlikely in most realistic settings.

We make the following observations.

• Relearning corresponds to changes in target
function. For each change in the target class

32

Distance between Variance Number of Simple Weighted Centralized
means in each dimensions voting voting prediction

dimension =attributes
1 0.5 10 98.10 (0.88) 99.28 (0.30) 94.31 (1.43)
1 0.5 5 96.61 (0.65) 96.61 (0.65) 94.96 (1.07)
1 1 10 88.05 (2.43) 89.03 (1.61) 82.75 (2.12)
1 1 5 81.16 (3.08) 81.16 (3.08) 77.70 (2.02)
2 0.5 10 100 (0) 100 (0) 99.11 (0.56)
2 1 10 98.81 (0.48) 99.15 (0.31) 95.10 (1.21)
2 0.5 5 99.97 (0.09) 99.97 (0.09) 99.79 (0.25)
2 1 5 96.98 (0.65) 96.98 (0.65) 94.38 (1.26)

Table 1: Mean global prediction accuracies over 10 trials, using simple and weighted voting, on
datasets with different class mean separation and variances. The values in parentheses indicate standard
deviations.

Iteration 1 2 3 4 5 6 7 8 9 10 11
Attribute 1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Attribute 2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Attribute 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Attribute 4 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0
Attribute 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.2
Attribute 6 0.0 0.4 0.0 0.4 0.0 0.0 0.1 0.0 0.1 0.0 0.0
Attribute 7 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0
Attribute 8 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0
Attribute 9 0.0 0.5 0.2 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1
Attribute 10 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.1

Table 2: Change of dimension means in each iteration (as % of the total change)

33

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.1

0.1

0.1
0.1

0.1
0.1 0.1

0.1

0.1

0.1

(a) Attribute 1

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

1.0

(b) Attribute 2

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

1.0

(c) Attribute 3

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.5

0.5

(d) Attribute 4

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.4

0.4 0.2

(e) Attribute 5

Figure 1: Accuracies for Attributes 1 through 5 over time. Values marked with an x indicate the
accuracies after relearning was triggered. Numerical values indicate the percentage change of the target
class centers in that dimension (and so for that attribute).

34

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.4
0.4

0.1
0.1

(a) Attribute 6

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.2 0.2

0.2
0.2 0.2

(b) Attribute 7

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.2

0.2

0.2 0.2

0.2

(c) Attribute 8

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.5

0.2

0.1
0.1

0.1

(d) Attribute 9

1 2 3 4 5 6 7 8 9 10 11
45

50

55

60

65

70

75

80

85

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Iterations

0.3
0.3

0.3 0.1

(e) Attribute 10

Figure 2: Accuracies for Attributes 6 through 10 over time. Values marked with an x indicate the
accuracies after relearning was triggered. Numerical values indicate the percentage change of the target
class centers in that dimension (and so for that attribute).

35

1 2 3 4 5 6 7 8 9 10 11
80

82

84

86

88

90

92

94

96

98

100

P
re

d
ic

ti
o

n
 A

c
c
u

ra
c
y
 (

in
 %

)

Number of Iterations

Simple Voting
Weighted Voting (dynamic data)

expected accuracy (simple Voting)

expected accuracy (centralized approach)

Figure 3: Overall prediction accuracy with moving class boundaries.

centers, and independent of the amount of
change, relearning is triggered for the local
models. This is true for all attribute values
and across all iterations. For example, the
model describing attribute 1 is relearned at
each iteration after the initial one, correspond-
ing to the change of the distribution mean in
that dimension.

• Relearning occurs occasionally even without
changes in the data. This is seen for example
in the plot for attribute 10, where relearning
occurred in iteration 4. It was observed that
over different runs of the experiment, relearn-
ing without corresponding target class changes
varied in both frequency and the timing of its
occurrence. We therefore suspect that this is
in response to occasional fluctuations in the
datasets due to the randomness of initial con-
struction and selection of the training and test
sets.

• The overall classification accuracy for both the
simple and the weighted voting scheme is as
good or better than that of the centralized data
mining approach. We know from the first ex-
periment that the overall accuracies achieved
for a dataset with a separation between dis-
tribution means of 1 in each dimension and a
variance of 1 are 88.05% and 89.03% for the

simple and weighted voting scheme, respec-
tively. In addition, the estimated value for the
accuracy for a centralized approach is 82.75%.
From the results depicted in Figure 3, we see
that the overall accuracies achieved through
the majority voting schemes with relearning
is equivalent or better to those achieved by a
centralized data mining approach.

• The global accuracy at the root is better than
the individual accuracies obtained from the lo-
cal models. This is due in part to the ensemble
effect, which allows the combined accuracy to
be superior to each of the predictors contained
in the ensemble, provided that the local pre-
dictors are both accurate and make different
errors on different data [7].

It should be noted here that the transmission of
a probability along with the class prediction from
the sensors to the base requires additional commu-
nication and might not be feasible if resources are
limited. However, the accuracy achieved by the
simple voting scheme is equivalent to the accuracy
achieved by a centralized approach and therefore
sufficient.

We have assumed that sensor reading, sensor
transmission of local prediction, and voting at the
root are synchronous. This is a moderately strong
assumption, since it would require a common clock.

36

In fact, this requirement can be relaxed in sev-
eral ways, which will be discussed in more detail
in a subsequent paper. For example, the root may
recalculate the vote whenever a new prediction is
reported from a sensor, freeing sensors to report
their predictions asynchronously. A major appli-
cation of sensors networks is as anomaly detectors
for complex anomalies that can only be detected
by concerted changes in the data at several sen-
sors. This can be modelled as a two-class problem
(Safe vs. Alarm). The amount of communication
required is greatly reduced if sensors only report
predictions for the Alarm class; the root can then
predict an Alarm in response to some number of
local predictions of Alarm by the sensors.

6 Conclusions

In this paper, we have presented a framework
for building and deploying predictors in sensor
networks in a distributed way, by building local
models at the sensors and transmitting target class
predictions rather than raw data to the root. At
the root, local predictions are combined using
weighted or unweighted voting. This framework
is appropriate for the limited resources found in
sensor networks, due to power, bandwidth and
computational limits. We have also showed how
the use of local predictive models enables sensors
to respond to changes in targets by relearning
local models when their local predictive accuracy
drops below a threshold. This enables effective
distributed data mining in the presence of moving
class boundaries, and also creates new possibilities,
for example the use of sensors to detect anomalies,
even when the criteria for an anomaly changes
over time. Finally, because only model predictions
rather than data are transmitted, the framework is
also suitable for settings where data confidentiality
is a concern.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E.
Cayirci, A Survey on Sensor Networks, IEEE
Communications Magazine, August 2002, pp. 102–
114.

[2] S. Bandyopadhyay, C. Gianella, U. Maulik, H.
Kargupta, K. Liu, and S. Datta, Clustering Dis-

tributed Data Streams in Peer-to-Peer Environ-
ments, 2004, Accepted for publication in the In-
formation Science Journal, in press.

[3] L. Breiman, Out-of-bag Estimation, 1996, Techni-
cal Report, Statistics Department, University of
California, Berkeley, Ca.

[4] L. Breiman, Random Forests, Machine Learning,
45(1), 2001, pp. 5–32.

[5] P. Chan and S. Stolfo, Experiments in Multistrat-
egy Learning by Meta-Learning, Proceedings of the
Second International Conference on Information
and Knowledge Management (Washington, DC),
1993, pp. 314-323.

[6] P. Domingos and M. Pazzani, Beyond Indepen-
dence: Conditions for the Optimality of the Sim-
ple Bayesian Classifier. In Proceedings of the
Thirteenth International Conference on Machine
Learning (ICML), 1996

[7] L. Hansen, and P. Salamon, Neural Network En-
sembles , IEEE Transactions on Pattern Analysis
and Machine Intelligence,(12) 1990, 993–1001.

[8] H. Kargupta, B. Park, D. Hershberger, and E.
Johnson, Collective Data Mining: A New Per-
specive Towards Distributed Data Mining, Ad-
vances in Distributed Data Mining, Eds: H. Kar-
gupta and P. Chan, AAAI/MIT Press, 1999.

[9] H. Kargupta, R. Bhargava, K. Liu, M. Pow-
ers, P. Blair, S. Bushra, J. Dull, K. Sarkar, M.
Klein, M. Vasa, and D. Handy, VEDAS: A Mo-
bile and Distributed Data Stream Mining System
for Real-Time Vehicle Monitoring, Proceedings of
the SIAM International Data Mining Conference,
Orlando, 2004.

[10] S. McConnell, and D. Skillicorn, Building Pre-
dictors from Vertically Distributed Data, Proceed-
ings of the 14th Annual IBM Centers for Ad-
vanced Studies Conference, Markham, Canada,
2004, pp.150–162.

[11] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka,
An Efficient Algorithm for the Incremental Up-
dation of Association Rules in Large Databases,
Knowledge Discovery and Data Mining, 1997, pp.
263–266.

[12] P.Utgoff, An Improved Algorithm for Incremental
Induction of Decision Trees, Proceedings of the
International Conference on Machine Learning,
1994, pp. 318–325.

37

Local Hill Climbing in Sensor Networks

Denis Krivitski∗ Assaf Schuster† Ran Wolff‡

Abstract

Consider a sensor network comprised of thousands of
battery operated sensors that collect data and transfer
it to a number of gateways sensor, which have a more
permanent power supply and which then transmit the
data to the system’s operators. Assume that although
there may be quite a few available gateways (e.g., passer
by vehicles, overflying airplanes, ground facilities, etc.)
bandwidth and power considerations, or restrictions at
the operators’ side only permit that a fixed number
of these facilitate the communication at every given
time. The question then arises which are the k potential
gateways which will best support the sensors. Note that
this problem should be continuously solved because the
availability of the potential gateways, as well as the
ability of sensors to communicate with them and the
importance of the data generated by each sensor may
vary considerably over time.

The problem described above is an instance of the
well known facility location problem (FLP) which deals
with finding the optimal way to provide a service to
a (possibly) very large number of clients. FLP has
been studied in many application areas, including the
placement of distribution centers in the retail domain, of
proxy servers in Internet domain, and of relay stations in
the telecommunication domain. Since FLP is NP-hard,
a hill-climbing heuristic is regularly used to provide an
approximate solution. In this paper we demonstrate
that in some cases hill climbing can be solved using
a local algorithm. Local algorithms are important
for sensor networks because they have superb message
pruning capabilities and because they perform their
entire computation in-network. A sensor taking part
of a local algorithm computes an exact result using,
in many cases, data it gathers from just its nearest
neighborhood. In such cases local algorithms are far
better than any centralized algorithm, both in terms of
message efficiency and of convergence time.

∗Computer Science Dept., Technion – Israel.
†Computer Science Dept., Technion – Israel.
‡CSEE Dept., U. Maryland, Baltimore County.

1 Introduction

Determining the location of facilities which provide
system related services is a major issue for any large
distributed system. The resource limited scenario of a
sensor network makes the problem far more acute. A
well placed resource (cache server, relay, high-powered
and more accurate sensor, etc.) can tremendously
increase the lifespan and the productivity of tens and
hundreds of battery operated sensors. In many cases,
however, the optimal location of such services depends
on dynamic characteristics of the sensors (e.g., their
remaining power), of the environment (e.g., level of
radio frequency white noise), or of the phenomena they
monitor (e.g., frequency of changes). Thus, optimal
placement cannot be computed apriori, independently
of the system’s state.

As an example for a practical facility location
problem that may occur in sensor networks consider
a network that has two kinds of sensors: Thousands
of cheap, low power, motion sensing devices which are
distributed from the air, covering the area randomly;
and a few dozens of relays with large batteries and large
range transceivers, that are placed in strategic points
by ground transportation. The purpose of the relays is
to collect data from the sensors and to transmit it to a
command station whenever it is asked for. However, the
question remains how to best utilize the relays which in
themselves have but limited resources. It would make
sense to shut down a relay if there is but mild activity
in its nearby surrounding and report that activity via
other relays. Note however, that both the amount of
activity, the remaining resources of the relays and of
the motion sensors, and the environmental conditions in
which they all operate may influence the decision and
that these are time varying. The optimal solution, thus,
has to be regularly adjusted.

The facility location problem (FLP) has been ex-
tensively studied in the last decade. Like many other
optimization problems, optimal facility location is NP-
Hard [15][13]. Thus, the problem is often subjected to
a hill-climbing heuristic [16, 10, 5]. Hill-climbing is a
simple and effective heuristic search technique in which
it is assumed that a reasonable global optimum can be
reasonably approached if on each search step the al-

1

38

gorithm chooses the direction that maximizes the im-
mediate gain. The strength of the method is in its
simplicity. It has been extensively tried for optimum
search in exponential domains in problems such as ge-
netic algorithms, clustering, etc. A rather surprising re-
sult by Arya at el. [1] states that, for FLP, hill climbing
achieves a constant factor approximation of the globally
optimal solution [1].

To our best knowledge FLP has never been studied
specifically in a distributed setting. Nevertheless, it is
easy to see how distributed formulation of related hill-
climbing algorithms such as k-means and k-median clus-
tering [6, 9, 8] can be adopted to solve distributed FLP.
We note, however, that all previous work on distributed
clustering assume tight cooperation and synchroniza-
tion between the processors containing the data and a
central processor that collects the sufficient statistics
needed in each step of the hill-climbing heuristic. Such
central control is not practical in wireless networks both
from an energy requirements perspective and because
it is prune to errors in the occurrence of even single
failures. Even more importantly, central control is un-
scalable in the presence of dynamically changing data
because any such change must be reported to the cen-
ter, for fear it might alter the result.

In contrast, the most important features which
qualify an algorithm for sensor networks are the fol-
lowing: the ability to perform in a router-less network
(i.e., to be driven by data rather than by address), the
ability to calculate the result in-network rather than col-
lect all of the data to a central processor (which would
quickly exhaust bandwidth [11]), and the ability to lo-
cally prune redundant or duplicate computation. These
three feature typify local algorithms.

A local algorithm is one in which the complexity of
computing the result does not directly depend on the
number of participants. Instead, each processor usually
computes the result using information gathered from
just few nearby neighbors. Because communication
is restricted to neighbors, a local algorithm does not
require message routing, performs all computation in-
network, and in many cases is able to locally overcome
failures and minor changes in the input (provided that
these need not change its output). Local algorithms
have been mainly studied in the context of graph
related problems [2, 18, 19, 3, 17, 20, 22]. Most
recently, a local algorithm was presented [23] which
demonstrated that local algorithms can be devised for
complex data analysis tasks, specifically, data mining
of association in distributed transactional database.
The algorithm presented in [23] features local pruning
of false propositions (candidates), in-network mining,
asynchronous execution, and resilience to changes in the

data and to partial failure during the execution of the
algorithm.

In this work we develop a local algorithm that solves
a specific version of FLP. One where uncapacitated
resources (i.e., ones which can serve any number of
clients) can be placed in any k out of m possible
locations. Initiating our algorithm from a fixed resource
location, say, in the first k locations, we show that the
computation needed to agree on single hill-climbing step
– moving one resource to a free location – can be reduce
to a group of majority votes. We then use a variation of
the local majority voting algorithm presented in [23]
to develop an algorithm which locally computes the
exact same solution a hill-climbing algorithm would
compute, had it been given the entire data. Our
algorithm demonstrates that whenever the cost of a step
is summed across the different sensors, a hill-climbing
heuristic can be computed using a local, in-network
algorithm.

In a series of experiments employing networks of
up to 10,000 simulated sensors we prove that our al-
gorithm has good locality, incurs reasonable communi-
cation costs, and quickly convergences to the correct
answer whenever the input stabilizes. We further show
that when faced with constant data updates the vast
majority of sensors continue to compute the optimal so-
lution. Most importantly, the algorithm is extremely
robust to sporadic changes in the data. So long as these
do not change the global result they are pruned locally
by the network.

The rest of this paper is organized as follows. We
first describe our notations and formally define the
problem. Then, in Section 3, we give our version for the
majority voting algorithm originally described in [23].
Section 4 describes local k-facility location algorithm as
a demonstrator of a hill climbing algorithm. In Section 5
preliminary experimental results are described. Section
6 ends the paper with some conclusions and open
research problems.

2 Notations, Assumptions, and Problem

Definition

A large number N of processors are given, which can
communicate with one another by sending messages.
We assume that communication among neighboring
processors is reliable and ordered. An assumption which
can be enforced using standard numbering, ordering
and retransmission mechanisms. For brevity of this pa-
per we assume an undirected communication tree. As
shown in [4], such a tree can be efficiently constructed
and maintained using variations of Bellman-Ford algo-
rithms [7, 12]. Last, we assume fail-stop failure and
that when for some reason a processor is disconnected

2

39

or reconnected its neighbors are reported.
Given a database DB containing input points

{p1, p2, . . . , pn} and a set M of m possible locations,
and a cost function d : DB × M → R+, the task of a
k-facility location algorithm is to find a set of facilities

C ⊂ M of size k, such that the cumulative distance of

points from their nearest facility
∑

pi∈DB

min
c∈C

d (pi, c) is

minimized.
Relating these definitions to the example given in

the introduction, the database can include the list of
events occurring in the last hour. Each event would
have a heuristic estimate of the importance of the
event. Furthermore, each sensor would evaluate its
hop distance from every relay and multiply this to
the heuristic importance of each event to produce its
cost. Given this input, a facility location algorithm
would compute the best combination of relays such that
the most important events would need not travel far
before they reach the nearest relay. The less important
events, we assume, would be suppressed either in the
sensor which has produced them, or in-network by other
sensors.

An anytime k-facility location algorithm is one
which, at any given time during its operation, outputs
a placement for the location such that the cost of this
ad hoc output improves with time until the optimal
solution is found. A distributed k-facility location
algorithm would compute the same result even though
DB is partitioned into N mutually exclusive databases{
DB1, . . . , DBN

}
and each of which is deposited with

a separate processor, and these are then allowed to
communicate by passing message to each other. A local

k-facility location algorithm is a distributed algorithm
whose performance does not depend on N but rather
corresponds with the difficulty of the problem instance
at hand.

The hill-climbing heuristic for k-facility location
begins from an agreed upon placement of the facilities
(henceforth, configuration). Then, it finds a single
facility and a single empty location, such that by moving
the facility to that free location the cost of the solution
is reduced to the largest possible degree. If such a
step exists, the algorithm changes the configuration
accordingly and iterates. If any configuration which
can be stepped into by moving just one facility has a
higher cost than the current configuration the algorithm
terminates and outputs the current configuration as the
solution.

This paper presents a local, anytime algorithm
which computes the hill-climbing heuristic for k-facility
location. Note that in order to apply this algorithm
to any other hill-climbing problem, it is enough to

describe the start point and the mechanism by which the
next possible steps are created and their cost (or gain)
evaluated. Having done that, the rest of the algorithm
remains the same.

3 Local Majority Voting

Our k-facility location algorithm reduces the problem
to a large number of majority votes. In this section, we
briefly describe a variation of the local majority voting
algorithm from [23] which we use as the main building
block for the algorithm. The algorithm assumes that
messages sent between neighbors are reliable and or-
dered and that processor failure is reported to the pro-
cessor’s neighbors. These latter assumptions can easily
be enforced using standard numbering and retransmis-
sion, ordering, and heart-beat mechanisms, correspond-
ingly. The algorithm makes not assumption on the time-
liness of message transfer of failure detection.

Given a set of processors V , where each u ∈ V
contains a zero-one poll with cu votes, su out of which
are one, and given the required majority 0 < λ < 1,
the objective of the algorithm is to decide whether∑

u

su/
∑

u

cu ≥ λ. Equivalently, the algorithm can

compute whether ∆ =
∑

u

su − λ
∑

u

cu is positive or

negative. We call ∆ the number of excess votes.
The following local algorithm decides whether ∆ ≥

0. Each processor u ∈ V computes the number of excess
votes in its own poll δu = su − λcu, and stores the
number of excess votes it reported to each neighbor v
in δuv, and the number of excess votes on which it has
been reported by v in δvu. Processor u computes the
total number of excess votes it knows of, as the sum
of its own excess votes and those reported to it by the

set Gu of its neighbors ∆u = δu +
∑

v∈Gu

δvu. It also

computes the number of excess votes it agreed on with
every neighbor v ∈ Gu, ∆uv = δuv + δvu. When u
chooses to inform v about a change in the number of
excess votes it knows of, u sets δuv to ∆u − δvu – by
that setting ∆uv to ∆u, and then sends δuv to v. When
u receives a message from v containing some δ it sets δvu

to δ – by that updating both ∆uv and ∆u. Processor u
outputs that the majority is of ones if ∆u ≥ 0, and of
zeros otherwise.

The crux of the local majority voting algorithm is in
determining when u must send a message to a neighbor
v. more precisely, the question is when can sending
a message be avoided, despite the fact that the local
knowledge has changed. In the algorithm presented here
there are two cases in which a processor u would send
a message to a neighbor v: when u is initialized and

3

40

when the condition (∆uv > ∆u ≥ 0) ∨ (∆uv < ∆u < 0)
evaluates true. Note that u must evaluate this condition
upon receiving a message from a neighbor v (since this
event updates ∆u and the respective ∆uv), when its
input bit switches values, and when an edge connected
to it fails (because then ∆u is computed over a smaller
set of edges and thus may change). This means the
algorithm is event driven and requires no form of
synchronization.

The analysis in [23] reveals that the good perfor-
mance of the algorithm above, in terms of message load
and convergence time, stems directly from its locality.
The average (as well as the worst) processor would ter-
minate after it has collected data from just a small num-
ber of nearby neighbors – its environment. The size
of this environment depends on the difference, in the
nearby surrounding of the processor, between the aver-
age vote and majority threshold. If the two differ by as
much at five percent then the size of the environment
can be expected to be limited to a few dozens. It should
be noted that in the worst case, that of a complete tie,
all votes must be counted and the algorithm would be-
come global.

In order to use the local majority voting algorithm
for k-facility location we slightly modify it. We add
the ability to suspend and reactivate the vote using
corresponding events. A processor whose voting has
been suspended will continue to receive messages and
to modify the corresponding local variable, but will not
send any messages. When the vote is activated the
processor will always check if it is required to send a
message as a result of the information received while
in suspended state. The pseudo-code of the modified
algorithm is given in Alg. 1.

4 Majority Based k-Facility Location

The local k-facility location algorithm, which we now
present, is based upon three fundamental ideas: The
first is to have every processor optimistically perform
hill-climbing steps without waiting for a conclusive
choice of the globally optimal step. Having done such
steps, the processor continues to validate the agreement
of the steps it took with the globally correct one. If
there is no agreement then these speculative steps are
undone, and better one are chosen. The second idea is
to choose the optimal step not by computing the cost of
each step directly, but rather by voting for each pair of
possible steps which of them is more costly (i.e., more
popular). The third idea is a pruning technique by
which many of these votes can be avoided altogether;
avoiding unnecessary votes is essential because, as we
further explain below, computing votes among each pair
op optional steps might be arbitrarily more complicated

Algorithm 1 Local Majority Vote

Input of processor u: the local poll cu, and support
su, its set of neighbors Gu

Global constants: the majority threshold λ
Local variables: ∀v ∈ Gu : δuv, δvu, activeu.

Definitions: δu = su − λcu, ∆u = δu +
∑

v∈Gu

δvu,

∆uv = δuv + δvu

Initialization:
δuv = δvu = 0, ∀v ∈ Gu, activeu = false
SendMessage(v) ∀v ∈ Gu

On activate: set activeu ← true
On suspend: set activeu ← false
On RecieveMessage δ from v ∈ Gu: δvu ← δ
On notification of failure of v ∈ Gu:
Gu ← Gu \ {v}
On notification of a new neighbor v:
Gu ← Gu ∪ {v}
On any of the above events and on change in δu:
For all v ∈ Gu, if (∆uv > ∆u ≥ 0) ∨ (∆uv < ∆u < 0)
then SendMessage(v)
Procedure SendMessage(v):
If activeu = true
– δuv ← ∆u − δvu

– Send 〈δuv〉 to v

than finding the best next step.

4.1 Optimistic computation of an ad hoc solu-
tion. Most parallel data mining algorithm use synchro-
nization to validate that their outcome represents the

global data
⋃

u

DBu. We find this approach imprac-

tical for large-scale distributed system – specifically if
one assumes that the data may change with time, and
thus the global data can never be determined. Instead,
when performing parallel hill-climbing, we let each pro-
cessor proceed up hill whenever it had computed the
best step according to the data it currently possesses.
Then, we use local majority voting (as we describe next)
to make sure that processors which have taken erroneous
steps would eventually be corrected. In the event that
a processor gets corrected computation associated with
configurations that were wrongly chosen is put on hold.
These configurations are put aside in a designated cache
in case additional data that will accumulate would prove
them correct after all.

We term the sequence of steps selected by proces-
sor u at a given point in time its path through the
space of possible configurations and denote it Ru =
〈Cu

1 , Cu
2 , . . . , Cu

l 〉. Cu
1 is always chosen the k first lo-

4

41

cations in M . Cu
l is the ad hoc solution Cu. u refrains

from developing another configuration following a given
Cu

l when no possible step can improve on the cost of
the current configuration, or when two or more steps
still compete on providing the best improvement.

Since the computation of all of the configurations a
long every processor’s path is concurrent , messages sent
by the algorithm contain a context – the configuration
to whom they relate. Since the computation is also
optimistic, it may well happen that two processors u
and v intermediately have different paths Ru and Rv.
Whenever u receives a message in the context of some
configuration C �∈ Ru, this message is considered out

of context. It is not accepted by u but rather is stored
in u’s out of context messages queue. Whenever a new
configuration C enters Ru, u scans the out of context
queue and accepts messages relating to C in the order
by which they were received.

4.2 Locally computing the best possible step.

For each configuration Cu
a ∈ Ru processor u computes

the best possible step as follows. First, it generates the
set of possible configurations Next [Cu

a], such that each
member of Next [Cu

a] is a configuration which replaces
one of the members of Cu

a with a non-member location
from M \ Cu

a . Next, for each C ∈ {Cu
a } ∪ Next [Cu

a]
and each p ∈ DBu, the cost incurred by of p in C is
computed such that cost (p, C) = min

x∈C
{d (p, x)}. Fi-

nally, for every Ci, Cj ∈ Next [Cu
a], where i < j, proces-

sor u initiates a majority vote Majorityu
Cu

a
〈i, j〉 which

compares their relative costs and eventually computes
∆u

Cu
a
〈i, j〉 ≥ 0 if the global cost of Ci is larger than

that of Cj (as we explain below). Correctness of the
majority vote process guarantee that the best configu-
ration Cibest

∈ {Cu
a }∪Next [Cu

a] would eventually have
negative ∆u

Cu
a
〈ibest, j〉 for all j > ibest, and positive

∆u
Cu

a
〈j, ibest〉 for all j < ibest. Hence, the algorithm

would optimistically choose Ci as the next configura-
tion whenever Ci has the maximal number of majority
votes indicating it is the better one (even if some votes
indicate differently).

To determine which of two configurations has the
better cost using a majority vote we set for every

processor u δu 〈i, j〉 =
∑

p∈DBu

cost (p, Ci) − cost (p, Cj).

This can be done for any δu 〈i, j〉 ∈ [−x, x] by choosing,
for example, c = 2x, λ = 1/2, and s = x − λ. Note
that, as shown in [23], su and cu can be set to arbitrary
numbers and not just to zero or one. Further note that
for every Ci, Cj

∑

p∈DB

cost (p, Ci) −
∑

p∈DB

cost (p, Cj) =

∑

u

∑

p∈DBu

[cost (p, Ci) − cost (p, Cj)]

. Hence, if the vote comparing the cost of Ci to that
of Cj determine that ∆u 〈i, j〉 ≥ 0 then this proves the
cost of Ci is larger than that of Cj .

Note that since every majority vote is performed
using the local algorithm described in Sec. 3, the entire
computation is also local. Eventual correctness of the
result and the ability to handle changes in DBu or Gu

also follow immediately from the corresponding features
of the majority voting algorithm.

4.3 Pruning the set of comparisons. The subsec-
tions above shows how it is possible to reduce k-facility
location into a set of majority votes. However, the re-
duction they offer overshoots the objective of the algo-
rithm. This is because while a k-facility location really
only require that the best possible configuration is calcu-
lated given a certain configuration, the reduction above
actually computes a full order on the possible config-
urations. This is problematic because for some inputs
computing a full order may be arbitrarily more difficult
(and hence, less local and more costly) than computing
just the best option.

To overcome this problem the algorithm is aug-
mented with a pruning technique which limits the
progress of comparisons such that only a small num-
ber of them actually take place. Given a configuration
C, processor u denote its best possible configurations
the ones with maximal number of majority votes indi-
cating that they are less costly than other possible con-
figurations. It denotes contending those possible con-
figurations which are indicated to be less costly than
one of the best configurations. Processor u keeps track
of its best and its contending configurations and of the
best and contending configurations of its neighbors in
Gu. For this purpose u reports with every message it
sends which configurations it currently considers best
or contending. u retain majority votes that compare a
configuration to either its own or its neighbors’ best and
contending configurations active. The rest of the ma-
jority votes it suspends, meaning that u would not send
messages relating to them even if it accepts messages or
the data changes. Needless to say, such pruning tech-
nique might cause the algorithm to halt before it reaches
the correct result. We will publish the proof that our
technique does not do so elsewhere.

4.4 Pseudocode of the algorithm. The pseu-
docode of the algorithm is given in Algorithm 2. The
pseudocode relies on an underlying majority voting al-
gorithm which supports the following calls: initialize,
activate and suspend, recieveMessage, and sendMes-

5

42

sage. Whenever the k-facility location algorithm re-
ceives a message it first analyzes it and decides to which
instance of the majority vote (if any) it should be tun-
neled. When an underlying majority vote sends a mes-
sage, it is tunneled through the k-facility location algo-
rithm, which adds a context to the message and then
forwards it to its destination.

4.5 Generalization. We claim that the algorithm we
described in this section can be generalized to any other
problem that is solved using hill-climbing. To demon-
strate this claim, consider a Genetic Algorithm. Ge-
netic Algorithms implement a probabilistic search of a
very large domain. The algorithm is initiated with a
set of points (population) in the domain (or rather, its
binary representation) and proceed as follows: In ev-
ery generation (i.e., cycle or turn) the current popula-
tion is ranked according to a heuristic gain function and
the least promising individuals (i.e., points) discarded.
Then, the remaining individuals are subjected to cross-
breeding (i.e., new individuals are created from a mix-
ture of their parents) and are subjected to some degree
of random mutation. The resulting population is nor-
malized to the same size as the starting population and
then constitute the input for the next round. The pro-
cess is continued until a stopping rule is satisfied, which
may be as simple as a fixed number of generations.

Note that it is possible for every sensor to retain
its own copy of the population at every generation and
perform the same kinds of mutation and breeding. The
only part were sensor need to cooperate is in ranking the
population. If the gain function is the sum of local gains
at each sensor (e.g., how well does the individual fit as
a descriptor of the local event), then this ranking can
be done by the local algorithm described above. This is
because finding the m worst individuals is equivalent to
finding a candidate that has m candidates whose global
cost (gain) is lower then his. This m candidates would
not participate in the next generation.

5 Experiments

To evaluate the performance of the algorithm we ran it
on simulated networks of up to ten thousands proces-
sors using up to a thousand input points in each pro-
cessor. Our experiments test for two main properties of
the algorithm: Its on-going behavior when the data is
constantly altered and its dependency on the different
operational parameters: the number of processors, lo-
cations and facilities. We measure the performance of
the algorithm using two quality metrics: the percent-
age of processors which compute the exact solution at
any given time, and the cost of the solution computed
by the average processor (using cost of the exact solu-

tion as reference). For the rest of our measurements we
used bulk mode runs, where all processors were initial-
ized at once and the data was not change during the
run. Communication cost was measured in raw algo-
rithm messages, without quantifying neither the cost of
protocol headers nor the beneficial effect of buffering.
We also measured convergence time, using the time till

X% quality metric – how long does it take until 80, 90,
and 95 percent of the processors reach the exact solu-
tion. And locality of the algorithm – from how many
processors does the typical processor collected data be-
fore 80, 90, or 95 percent of the processors reach the
exact solution.

The data we use is a bi-dimensional mixture of
normal distributions. We repeat each experiment sev-
eral dozens of times, synthesizing new datasets each
time. The synthesized input points are then equally
divided among the processors. Note that previous ex-
periments have shown that the underlying majority vot-
ing algorithm retains its local behavior when the data
is biased (i.e., nonuniform). Because the behavior of
distributed algorithms may be dependent on network
topology, we repeat our experiments for three different
topologies: Internet-like topology generated by state-of-
the-art BRITE [21] simulator, de Bruijn topology [14]
that simulates a network with fixed expansion rate, and
bi-dimensional Grid topology which have been used in
sensor network deployment.

5.1 Ongoing clustering. In this experiment we tried
to realistically simulate a typical working scenario of
the algorithm, in which the distribution of the data is
stationary, but the data is continuously updated over
time with new samples. To simulate dynamic data
which retains a stationary distribution we first wait until
the result converges and then begin randomly switching
the databases of different processors with one another.
We switch ten pairs of databases in each simulator clock
cycle, which is equivalent to changing the data of every
processors during a typical edge’s delay. Finally, we
stop switching input points and wait until the algorithm
comes to a halt.

As the results in Figure 1 show, although we change
the inputs of nearly every processor before the average
processor have a chance to report the change to its
neighbors, no more than two percents of the processors
are wrong about the result during the entire dynamic
period. Furthermore, the cost of the result computed
by the average processor (exact or not) is about 0.15%
larger than that of the exact solution. Finally, rapidness
in which the algorithm converges once we stop changing
the data hints that the processors that are wrong about
the result are never really far from the exact one.

6

43

Algorithm 2 Local k-Facility Location

Global constants: the number of facilities k, the set M of m possible locations
Input of processor u: a database DBu containing points [pu

1 , pu
2 , . . .], the set of its neighbors Gu, the

distances of points from the possible locations d : DBu × M → R
+

Local variables:
A vector Ru = 〈Cu

1 , . . . , Cu
l 〉 of configurations, where Cu

i ⊂ M and |Cu
i | = k

A message queue OutOfContextu

For each configuration C ∈ Ru:
– a set of majority votes referred to as Majorityu

C 〈i, j〉 with corresponding inputs δu
C 〈i, j〉 and outputs

∆u
C 〈i, j〉

– for each neighbor v ∈ Gu a set B&Cvu
C

Definitions:
For each p ∈ DBu and C ⊂ M , cost (p, C) = min

x∈C
{d (p, x)}

Next [C] = {C} ∪ {∀i ∈ C, j ∈ M \ C : C \ i ∪ j}

For any C and Ci, Cj ∈ Next[C], costuC 〈i, j〉 =
∑

p∈DBu

cost (p, Ci) − cost (p, Cj).

For any C ∈ Ru and Ci ∈ Next [C],
BetterC (Ci) = {Cj ∈ Next [C] : (i < j ∧ ∆u

C 〈i, j〉 < 0) ∨ (i > j ∧ ∆u
C 〈j, i〉 ≥ 0)}

For any C ∈ Ru Best [C] = arg max
Ci∈Next[C]

|BetterC (Ci)|

For any C ∈ Ru Contending [C] = {Ci ∈ Next [C] : ∃Cj ∈ Best [C] such that Cj ∈ BetterC (Ci)}

For any C ∈ Ru Active [C] = Best [C] ∪ Contending (Cu
a)

⋃
(

⋃

v∈Gu

B&Cvu
C

)

Initialization:
Ru = 〈Cu

1 〉 such that Cu
1 are the k first items of M . B&Cvu

Cu
1

= ∅, for all Ci, Cj ∈ Next [Cu
1] such that i < j,

initialize a majority vote Majorityu
Cu

1

〈i, j〉 with input δu
Cu

1

〈i, j〉 = costuCu
1

〈i, j〉

On message C, 〈i, j〉 , δ, B&Cv from v ∈ Gu:
If C �∈ Ru enqueue the message in OutOfContextu

Else C = Cu
a ∈ Ru for some a

– Call RecieveMessage(δ) in the context of the majority vote Majorityu
Cu

a
〈i, j〉

– Set B&Cvu
Cu

a
← B&Cv

Call on change for Cu
a

On SendMessage δ from Majorityu
Cu

a
〈i, j〉 to some v ∈ Gu

– Send Cu
a , 〈i, j〉 , δ, Best (Cu

a) ∪ Contending (Cu
a) to v

On notification of failure of v ∈ Gu: Gu ← Gu \ {v}. For all Cu
a ∈ Ru call on change Cu

a

On notification of a new neighbor v: Gu ← Gu ∪ {v}. For all Cu
a ∈ Ru call on change Cu

a

On change in Cu
a :

Send activate message to every Majorityu
Cu

a
〈i, j〉 such that Ci ∈ Active [Cu

a] and suspend message to the rest

If Best (Cu
a) = Cu

a then purge from Cu
a+1 through Cu

l from Ru and set l = a
Else if Best (Cu

a) contains a single configuration Cb then
– if Cu

a+1 �= Cb

– – purge Cu
a+1 through Cu

l from Ru

– – append Cb to Ru as Cu
a+1 and set l = a + 1

– – for all Ci, Cj ∈ Next [Cb] such that i < j, initialize a majority vote Majorityu
Cb

〈i, j〉 with
δu
Cb

〈i, j〉 = costuCb
〈i, j〉

– – call on change Cu
a+1

Else Best (Cu
a) contains more than one configuration

– purge Cu
a+1 through Cu

l from Ru and set l = a
Output Cu

l as the ad hoc solution

7

44

Figure 1: Behavior in dynamic environment, de Bruijn
topology, N = 2048, n/N = 100, m = 10, k = 2

0 500 1000 1500 2000 2500 3000 3500 4000
3.205

3.21

3.215

3.22
x 10

5

A
ve

ra
ge

 c
os

t

0 500 1000 1500 2000 2500 3000 3500 4000
90

91

92

93

94

95

96

97

98

99

100

101

time

F
ra

ct
io

n
of

 p
ro

ce
ss

or
s

th
at

 r
ea

ch
ed

 e
xa

ct
 s

ol
ut

io
n

(%
)

Noise

5.2 Communication cost. We evaluate the commu-
nication cost of the algorithm by counting the number of
messages sent by the average processor during an entire
bulk run. To overcome the effect of paths of different
lengths we show in Figure 2 the number of messages per
hill-climbing step. Communication load is measured in
terms of raw messages. We neither took into account
the effect of protocol headers, nor have tried to piggy-
back messages with on another so as to reduce their
count.

Figure 2 depict the number of messages the for three
different network topologies described earlier. As can
be seen, each processor sends about thirty messages per
step. Considering that to make a step in this experiment
the best of 17 possible configuration was to be found,
these costs seem very reasonable. We expect that using
buffering and piggybacking techniques these costs can
be further reduced. It is of utmost importance to note
that communication costs are almost unaffected by the
network size.

5.3 Convergence time and locality. Scalability is
the most important property of an algorithm intended
for large-scale distributed systems. We execute the
algorithm on networks of between one thousand and
ten thousands processors. As the results in Figure 3
show, the time until 80, 90, and 95 percent of the
processors compute the exact result does not depend
on the number of processors in the system. For a grid
topology (Figure 3(b)) the time is almost constant, no
matter what the size of the network is. We note that
in the grid topology the algorithm’s performance seem
unaffected by scale. In BRITE and de Bruijn (Figure

Figure 2: Messages per processor

2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

m=10, k=2, n/N=1000

N

nu
m

be
r

of
 m

es
sa

ge
s

grid
BRITE
de Bruijn

3(a)) and 3(c), respectively), performance changes in a
non systematic way. We attribute this to differences
between the networks generated for experiments with
different sizes and to the random choice of a spanning
tree. As the maximal degree of processors in the
network increases, the spanning tree would be more
affected by the random choices made in its construction.

The following set of figures, Figure 4(a) through
4(c), explains the scale-up results. As can be seen, the
number of input points a processor learns of, per single
majority vote, is almost constant. Since this number
represents a dependence on a nearly constant number
of other processors, runtime cannot vary too much. For
instance, for 95 percent of the processors to derive the
exact result in a BRITE topology the average processor
needs to collect the input of just five other processors.
The time this takes can vary from that of an average
edge to five times this figure.

6 Conclusions and Further Research

We have described a new k-facility location algorithm
suitable for sensor networks. The qualities which quali-
fies the algorithm for this kind of systems are its message
efficiency, its strong local pruning, and its ability to ef-
ficiently sustain failures and changes in the input. All
these qualities stems from the algorithm’s local nature.

Beside its immediate value, the algorithm serves to
demonstrate that various data mining problem can be
solved in a sensor-network setting through reduction
to basic operators of the kind of a majority vote.
These operators can later be solved by efficient local
algorithms. we believe in-network data mining can be

8

45

Figure 3: Convergence time (m = 10, k = 2, n/N = 1000)

2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

T
im

e
un

til
 X

%
 a

re
 e

xa
ct

N

80%
90%
95%

(a) BRITE

2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

T
im

e
un

til
 X

%
 a

re
 e

xa
ct

N

80%
90%
95%

(b) grid

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
un

til
 X

%
 a

re
 e

xa
ct

N

80%
90%
95%

(c) de Bruijn

Figure 4: Locality measurement (m = 10, k = 2, n/N = 1000)

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

kn
ow

n
po

in
ts

N

80%
90%
95%

(a) BRITE

2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

kn
ow

n
po

in
ts

N

80%
90%
95%

(b) grid

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

N

nu
m

be
r

of
 p

oi
nt

s

80%
90%
95%

(c) de Bruijn

come one of the key techniques by which the output of
these systems is accessed.

The paper also pose some interesting research ques-
tions: Can the more strict formulations of k-means clus-
tering also be solved locally? If not, what are the char-
acteristics of a data mining problem which make it suit-
able for a local algorithm? Can the dependency of our
algorithm on local failure detection be avoided? What
other paradigms can be used to solve such problems in
large-scale distributed system? How can approximation
(deterministic or probabilistic) be used in order to im-
prove the performance of algorithms intended for large-
scale distributed systems? We hope to be able to answer
some of these problems in future research.

References

[1] Vijay Arya, Naveen Garg, Rohit Khandekar, Kamesh
Munagala, and Vinayaka Pandit. Local search heuris-
tic for k-median and facility location problems. In
ACM Symposium on Theory of Computing, pages 21–
29, 2001.

[2] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg.
Compact distributed data structures for adaptive net-
work routing. Proc. 21st ACM STOC, May 1989.

[3] Baruch Awerbuch, Boaz Patt-Shamir, and George
Varghese. Self-stabilization by local checking and
correction (extended abstract). In Proceedings of the
32nd annual symposium on Foundations of computer
science (FoCS), pages 268 – 277, 1991.

[4] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A
local algorithm for ad hoc majority voting via charge
fusion. In Proceedings of the 18th annual conference on
distributed computing, 2004.

[5] Moses Charikar and Sudipto Guha. Improved com-
binatorial algorithms for the facility location and k-

9

46

median problems. In IEEE Symposium on Foundations
of Computer Science, pages 378–388, 1999.

[6] Inderjit S. Dhillon and Dharmendra S. Modha. A data-
clustering algorithm on distributed memory multipro-
cessors. In Large-Scale Parallel Data Mining, pages
245–260, 1999.

[7] L.R. Ford and D.R. Fulkerson. Flows in Networks.
Princton University Press, 1962.

[8] George Forman and Bin Zhang. Distributed data
clustering can be efficient and exact. SIGKDD Explor.
Newsl., 2(2):34–38, 2000.

[9] D. Foti, D. Lipari, C. Pizzuti, and D. Talia. Scal-
able Parallel Clustering for Data Mining on Multicom-
puters. In 3rd Workshop on High Performance Data
Mining. In conjunction with International Parallel and
Distributed Processing Symposium 2000 (IPDPS’00),
Cancun, Mexico, May 2000.

[10] Guha and Khuller. Greedy strikes back: Improved fa-
cility location algorithms. In SODA: ACM-SIAM Sym-
posium on Discrete Algorithms (A Conference on The-
oretical and Experimental Analysis of Discrete Algo-
rithms), 1998.

[11] P. Gupta and P. R. Kumar. The capacity of wireless
networks. IEEE Transactions on inforamtion Theory,
46(2):388 – 404, 2000.

[12] J.M. Jaffe and F.H. Moss. A responsive routing
algorithm for computer networks. IEEE Transactions
on Communications, pages 1758–1762, July 1982.

[13] Kamal Jain and Vijay V. Vazirani. Primal-dual ap-
proximation algorithms for metric facility location and
k-median problems. In IEEE Symposium on Founda-
tions of Computer Science, pages 2–13, 1999.

[14] F. Kaashoek and D. Karger. Koorde: A simple degree-
optimal distributed hash table, February 2003.

[15] Jon Kleinberg, Christos Papadimitriou, and Prabhakar
Raghavan. A microeconomic view of data mining.
Data Mining and Knowledge Discovery, 1998.

[16] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmo-
han Rajaraman. Analysis of a local search heuristic for
facility location problems. In Proceedings of the ninth
annual ACM-SIAM symposium on Discrete algorithms,
pages 1–10. Society for Industrial and Applied Mathe-
matics, 1998.

[17] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In Proceedings of the 23rd
Symposium on Principles of Distributed Computing
(PODC), July 2004.

[18] S. Kutten and B. Patt-Shamir. Time-adaptive self-
stabilization. Proc. of the 16th Annual ACM Symp. on
Principles of Distributed Computing, pages 149–158,
August 1997.

[19] S. Kutten and D. Peleg. Fault-local distributed mend-
ing. Proceedings of the 14th Annual ACM Symposium
on Principles of Distributed Computing, August 1995.

[20] N. Linial. Locality in distributed graph algorithms.
SIAM J. Comp., 21:193–201, 1992.

[21] Alberto Medina, Anukool Lakhina, Ibrahim Matta,
and John Byers. Brite: An approach to universal

topology generation. In Proceedings of Ninth IEEE
MASCOTS ’01 (Tools track), pages 346–353, Cinci-
natti, August 2001.

[22] M. Naor and L. Stockmeyer. What can be computed
locally? 25th ACM Symposium on Theory of Comput-
ing, pages 184–193, 1993.

[23] R. Wolff and A. Schuster. Association rule mining in
peer-to-peer systems. In Proc. of the IEEE Conference
on Data Mining ICDM, Melbourne, Florida, 2003.

10

47

