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Foreword

There is a significant amount of innovative data mining work taking place in the context of
scientific and engineering applications that is not well-represented in the mainstream KDD/Data
Mining conferences. For example, scientific data mining techniques have been developed and applied
to diverse fields such as remote sensing, physics, chemistry, biology, astronomy, etc. In these areas,
data mining frequently complements and enhances existing analysis methods based on statistics
and exploratory data analysis.

On the surface, it may appear that data from one scientific field, say genomics, is completely
different from data in another field, such as physics. Nevertheless, there is much that is common
across the mining of different scientific datasets. For example, techniques used to identify objects in
images are very similar, regardless of whether the images came from a remote sensing application,
a physics experiment, astronomy observations, or a medical study.

New techniques for scientific experimentation and data collection are continually being devel-
oped and utilized. As one example, biology laboratories are increasingly using robots to drive exper-
iments that yield extensive amounts of microscopy data per night. In other disciplines, large-scale
numerical simulations are being used to investigate physical phenomena that would be infeasible
to study in the laboratory. Such simulations produce vast quantities of data often in the form of
meshes or particle trajectories. Data mining techniques will clearly be indispensable for helping to
transform these and other datasets generated by new experimental methods into information the
scientist or engineer can use.

This workshop, which is the eighth in the series, is focused on bringing together data miners
and scientists/engineers who are analyzing datasets from diverse fields to:

• share their experiences with other researchers working with similar data

• learn how methods developed for other disciplines might apply to their own data

• better understand new analysis techniques that are being developed in the scientific data
mining community

As a final note, the scope of the workshop this year was expanded to include all aspects of bioin-
formatics. The growing interest in this area is well-reflected in the Workshop through one of the
keynote talks and several of the contributed papers. We hope that you find the workshop interesting
and enjoyable!

Sincerely,

Michael C. Burl, Jet Propulsion Laboratory
Arnold Goodman, University of California, Irvine
Chandrika Kamath, Lawrence Livermore National Laboratory
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Morning Keynote

Collaborative Problem Solving:

Link Between the Data and Satisfied Clients

Arnold Goodman, Ph. D.

University of California, Irvine

Abstract

Today’s science and engineering are driven by complex multidisciplinary problems that need
the integration of data mining and statistics in successful solutions to satisfy clients. Such solutions
should not begin before agreeing on a definition of the client’s problem, and should not end before
adding value with insights to facilitate his decisions or actions.

Complex multidisciplinary problems also require project teams to collaborate. In turn, genuine
collaboration demands commitment to the client and his team, communication with them, and
evaluation outside methodology and technology in client’s environment.

Although collaborative problem solving appears fundamental, it is currently conspicuous by its
absence. Checklists and scorecards of ”what to do” and ”how to do it” are covered, as a guide to
collaborative problem solving.

Biography

Arnold Goodman has 45 years of experience involving statistics and information technology in
the aerospace, petroleum, government, and university settings. He co-founded symposia on the
interface of computing science and statistics in 1967, which are ongoing to this day. He organized
the first meeting on measurement of computer systems at the 1972 Fall Joint Computer Conference.
He was elected a fellow of the American Statistical Association in 1974. He co-founded the UCI
Center for Statistical Consulting in 1997. He has also co-founded workshops on critical success
factors for consulting and collaborating. His current work focuses on collaboration in data mining
and software engineering and uncertainty in proteomics.
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Afternoon Keynote

Image understanding and modeling for biological development: the case of a

plant shoot meristem

Professor Eric Mjolsness

Institute for Genomics and Bioinformatics, and

Department of Computer Science

University of California, Irvine

Abstract

The Computable Plant project is a systematic effort to advance the understanding of the shoot
apical meristem (SAM) of Arabidopsis thaliana through imaging and computational modeling of
developmental processes. Interesting and generic problems arise within this computational ap-
proach. For example, to quantify the growth of the SAM and its cell lineages requires detecting
and tracking multiple features in 3D image sequences, and finding a smoothed global velocity field
due to growth; we approach this problem through nonlinear optimization. Also, fitting the result-
ing data to dynamical models requires a flexible modeling framework for coupled mechanical and
regulatory networks. For these problems we develop a mathematical foundation based on the use
of a ?dynamical grammar? capable of representing discrete-time events such as cell division that
change the number of objects and their relationships, as well as continuous-time processes arising
from regulatory networks and mechanical interactions. The resulting algorithms are being used to
assist experimental research on mechanisms of meristem maintenance and phyllotaxis.

Joint work with Tigran Bacarian, Pierre Baldi, Ashish Bhan, Victoria Gor, Marcus Heisler,
Henrik Jnsson, Elliot Meyerowitz, Venu Reddy, Alex Sadovsky, Bruce Shapiro. Further information
available at http://www.computableplant.org.

Biography

Eric Mjolsness received an undergraduate degree from Washington University in St. Louis in
1980 and a PhD in physics from the California Institute of Technology in 1986. He has served on
the faculties of Yale University, the University of California San Diego, the California Institute of
Technology, and the University of California Irvine where he is currently a member of the Institute
for Genomics and Bioinformatics and the Computer Science Department. He has also served as a
leading member of the Machine Learning Systems Group at the Caltech Jet Propulsion Laboratory.
His research interests are largely connected with the construction of scientific inference systems,
using techniques from machine learning, pattern recognition, nonlinear optimization, statistical
physics and other mathematical disciplines to further research into computational biology and
other sciences.
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Enabling Automated Analysis of Fluorescent In-Situ

Hybridized Tissue Arrays Using Image Analysis with

Constrained Clustering

Joe Roden

Jet Propulsion Laboratory

MS 126-367

Pasadena, CA 91109

Joe.Roden@jpl.nasa.gov

Lucas Scharenbroich

School of Information and Comp. Sci.

University of California - Irvine

Irvine, CA 92712

Victoria Gor

Jet Propulsion Laboratory

MS 126-367

Pasadena, CA 91109

March 3, 2005

Abstract

The advent of high-throughput imaging techniques in biology in recent years necessitates

reliable software techniques for automating data collection as much as possible. In this paper

we describe a new software tool that enables automated analysis of tissue arrays, using an

approach that combines traditional image processing techniques with a constrained clustering

lattice-fitting technique to identify tissue core locations and measure fluorescence signals within

the core samples. Our technique is able to robustly handle various distortions of the ideal grid

as well as missing tissue cores. The technique is applied to tissue arrays with good results,

enabling high-throughput collection of gene expression data from this useful biological assay.

1 Introduction

Scientist’s efforts to decode the relationships be-
tween functional components of the genome rely
on an increasingly diverse set of high-throughput
experimental techniques to provide high-quality
quantified data on a genome-wide scale. The
workhorse of these techniques is the gene expres-
sion microarray, which typically measures rela-
tive quantities of thousands of transcripts in a
single tissue sample. A complementary assay,
fluorescent in-situ hybridization (FISH), seeks to
quantify the degree to which one particular gene
transcript occurs throughout an anatomical sys-
tem. Hybridizing one cDNA probe to cross-
sections of embryonic animals small enough to
fit on a glass microscope slide can provide an
anatomy-wide view of the gene’s expression, but
the resulting digitally-scanned images are not
amenable to automated analysis at this time.

Rather, an array of tissue section “cores” placed
on a microscope slide is a recently developed tech-
nique that is particularly well suited to high-
throughput screening and, to some degree, au-
tomated interpretation. Ongoing efforts to thor-
oughly annotate genes for completed genomes
promise to benefit greatly from high-throughput
custom FISH tissue arrays. This has lead us to
develop tools to automate a substantial portion
of the tissue array image data collection and anal-
ysis to support genome-wide annotations.

Our overarching goal is to provide a system
to aid pathologists or researchers tasked with ob-
serving and annotating an individual gene’s ex-
pression within an array of tissue cores. Re-
searchers currently use a tissue microarray data
collection system that requires them to review
every tissue core within hundreds of digitally
scanned tissue arrays and document the tissues
in which a gene is expressed as well as their inter-
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pretation of the strength of the expression pat-
tern (negative, uninterpretable, weak positive or
strong positive) [4]. This existing system makes
no attempt to automatically analyze or under-
stand the image content, so it has no ability
to direct the researcher’s attention to a specific
core location within an image. Instead that sys-
tem’s annotation process relies on the researcher
to manually associate a core’s address within the
tissue array grid with that core’s location within
a tissue array scan.

As a component of our solution, we devel-
oped a tool to automatically analyze the digi-
tally scanned tissue array images in order to lo-
cate the tissue cores and subsequently measure
the strength of expression (relative fluorescence)
within each of the tissue cores. Our system can
use the resulting data to direct a researcher to a
subset of tissues deemed to have significant ex-
pression, thereby skipping the interpretation of
negative tissues and reducing the time required
to review and annotate the tissue arrays. Fur-
ther, our solution can further enable semi- or
fully-automated microscopy by driving a micro-
scope and/or scanning system to only take high-
resolution images for these regions of interest.

The tissue array image analysis task is made
challenging by numerous real-world factors re-
lated to the tissue array construction process:
some of the tissue cores may not be present in
certain slides; individual cores may be degraded
so that only a portion of the core is present, or
the core shape may be distorted or fragmented;
the normally regular grid pattern of cores can be
slightly rotated, warped or even torn; and the
scans can have some unintended but visible arti-
facts or defects, e.g. spurious water spots. Ad-
ditionally the tool was required to run relatively
quickly – the system designers request that the
program take no longer than a minute or so to
locate and measure the cores present in the large
scanned images.

Through a process of evolutionary design we
constructed a package that robustly and effi-
ciently performs job of locating and measuring
the tissue cores, using a methodology that com-
bines some aspects of the above existing tech-
niques, e.g. adaptive segmentation, with some
more novel techniques for spot finding. Our novel
approach includes a fixed diameter matched filter
approach to get an initial estimate for the place-
ment of an idealized grid, in combination with a
constrained-clustering-based adaptive shape seg-
mentation that permits our grid to adapt to the

actual data in the image while tolerating missing
spots. In the following sections we review ex-
isting spot finding approaches, describe our soft-
ware package and the details of our methodology,
and follow with examples and results.

2 Spot Finding Approaches

Numerous image analysis approaches exist to lo-
cate and identify individual “spots” comprising
an array, i.e. spots that are organized into rows
and columns. It is worth mentioning that general
image segmentation techniques alone or adaptive
shape segmentation such as watershed [8][7] and
seeded region growing [1] are inadequate because
they fail to identify missing spots, may not han-
dle artifacts, may not handle tissue cores that are
fragmented, and don’t solve the tissue core grid
address to pixel location mapping problem per
se. We believe this problem requires an approach
that takes full advantage of the known lattice or
grid-based structure of the data, in particular the
grid size and spacing and core sizes.

Yang et. al. [11] reviewed microarray spot
finding and measuring techniques, and described
the three phases of the task: addressing or grid-
ding to associate tissue array grid coordinates
with pixel locations; segmentation to separate
foreground and background pixels; and inten-
sity extraction to measure fluorescence inten-
sity. Within this framework many variations
have been explored in an attempt to maximize
the quality of the resulting fluorescence measure-
ments, e.g. Yang et. al. 2002 [10], Wu and
Yan 2003 [9], Park et. al. 2004 [6]. However
all of these existing approaches are tailored to
some degree to gene expression microarrays and
so they do not necessarily generalize well to tissue
arrays considering the variability present with
tissue arrays, e.g. grid distortions, grid rota-
tion, missing and degraded cores (see Figure 1).
For example, both Jouenne [3] and Agulo and
Serra [2] use horizontal and vertical projections
(image row and column sums) to identify array
rows and columns, but their approach (and oth-
ers’) assumes that there is effectively no rotation
or skewing of the grid and spots across the image.
Furthermore they exploit details of microarray
slide printing, e.g. print-tip irregularities, that
are not relevant to tissue arrays. Thus our work
has primarily focused on developing a robust so-
lution to the more challenging tissue array ad-
dressing problem.
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(a) (b)

Figure 1: Examples of (a) a portion of a microarray scan and (b) a tissue array scan. Note that the
tissue array exhibits greater grid distortion (including grid rotation, stretching and tearing), more
missing spots, and spots with more diverse shape, internal structure and texture.

3 Software

We have created a software tool to analyze
overview scans of tissue arrays to assist re-
searcher’s analysis efforts by focusing them on the
small set of tissue cores that have the strongest
expression signals. This tool has been integrated
into a larger system that permits researchers to
collect, annotate and analyze a large number of
custom in-situ hybridization scans to support bi-
ologist’s investigations. A pseudocode descrip-
tion of the spot finding and measuring software
follows:

- locate tissue cores

- initialization

- compute response surface for core

spot matched filter

- search (exhaustively translate &

rotate an idealized grid) to find

grid position w/ maximum response

- relax grid intersection points

- k-means with 2D grid constraint

- measure each core’s signal

- sum of foreground pixel’s red

channel intensity

The program is written in C, with minimal de-
pendencies on third-party software for maximum
portability and ease of integration into the larger
in-situ image management system. The software
uses FFTW version 3 library to efficiently per-
form the filter convolutions, and uses the Im-
ageMagick C++ API library for image reading
and writing. The portions of the software written
in-house total approximately 3400 lines of code.

The larger in-situ management system has facil-
ities for visualizing and adjusting the resulting
core locations prior to the results interpretation
phase.

For efficiency, the addressing or gridding por-
tion of the software may optionally be performed
using a downsampled version of the image. Upon
completion the resulting core center locations can
be scaled back up to the original image coordi-
nate system. When extracting the fluorescence
data, the original-resolution image should be an-
alyzed in order to use the highest-quality infor-
mation available for each of the tissues; speed is
not as great a concern at this later stage of anal-
ysis.

4 Locating Tissue Cores

The tissue array is designed to contain a set of
cores located on regular grid positions, e.g. an
array might have 7 rows and 8 columns of tissue
cores, generally of equal size and evenly spaced.
The names of the tissues placed at each grid lo-
cation are known in advance, but the software
system has to derive the location within the scan
of each core, and the extent of the core, so that
it can accurately measure the fluorescence signal
corresponding to each tissue. The solution we
settled on combines the speed of image process-
ing (to place an initial grid) with the flexibility
of unsupervised clustering optimization (to relax
the initial grid to tolerate some degree of distor-
tion).

The initial grid placement phase searches ex-
haustively to find the best translation and rota-
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tion of an ideal grid. The approximate core loca-
tions that it identifies are then used as an initial
seed to the relaxation phase. One cluster mean is
defined for each possible core location (each ini-
tial grid intersecton point- the number of which
is known a priori), even if the fluorescent signal
is weak or non-existent in the immediate vicinity.

4.1 Placing the Initial Grid

In the given task, many attributes of the initial
grid are known a priori. Such attributes are:
number of rows R and columns C in the tis-
sue grid, diameter of the tissue samples (the core
diameter), and distance between cores. Never-
theless, automated analysis of fluorescent in-situ
hybridized tissue arrays is complicated by the
inaccuracies in the data. In addition to usual
noise introduced by image generation process, we
are confronted with various inaccuracies intro-
duced by humans during the placement of del-
icate tissue sections within the grid of the mi-
croscopic slide. The human introduced errors in-
clude frequently missing cores, fragmented and
malformed tissue samples, and inaccurate posi-
tions of the cores within the grid. In addition,
the entire tissue array (grid) can be rotated and
shifted while placed under the microscope.

Because of these inaccuracies the relaxation
part of the software requires a good guess of
where the original grid is positioned in the pic-
ture, that is it requires the knowledge of the shift
and rotation undergone by tissue array. Once the
position of the original grid is known, the relax-
ation algorithm deals well with finding exact core
positions within the grid.

Luckily, the rotation and shift of tissue array
introduced during slide placement under the mi-
croscope is not very large. The rotation of the
image frame is limited to 25 degrees and shift is
limited to 35 pixels. Therefore, it is possible to
search exhaustively for best grid fit, given that
the fit calculation for best grid is FAST.

To calculate the fit we use the ideal core as
a matched filter and calculate filter response on
original image, that is we perform correlation of
filter f(x, y) with image g(x, y).

f(x, y) • g(x, y) =

M−1
∑

m=0

N−1
∑

n=0

f(m, n)g(x+m, y+n)

where M and N are the width and height of the
image in pixels. The ideal core f(x, y) is repre-
sented by a white circle of the given core diameter

on a black background (Figure 2.a.). The filter
response f(x, y)•(x, y) (Figure 2.b.) is computed
in frequency domain (correlation in the time do-
main is equivalent to multiplication in frequency
domain). This enhances the efficiency of the algo-
rithm. If the underlying image pattern is similar
to the filter, the response image will have a high
value at the given filter location, representing the
goodness of individual core fitness at that loca-
tion. We expect high responses in the vicinity
of the regions where the actual cores are located,
and low responses otherwise. The overall fitness
of one possible grid can be calculated by sum-
ming the R×C individual core fitnesses, i.e. the
filter response of the ideal core centered at each
of the grid’s R × C intersection points.

In an exhaustive search the overall grid fit-
ness is calculated for each possible rotation and
each possible shift. If we neglect the cost of cal-
culating the grid intersection locations for each
possible grid (e.g. if the coordinates of rotated
and shifted grid intersections are calculated and
presorted a priori), the overall grid fitness calcu-
lation can be performed as N additions, where
N is the total number of grid intersection points
(the number of cores). Such a calculation is ex-
tremely fast, enabling an exhaustive search for
all possible grid locations, and producing an ac-
curate estimate of grid position.

While the semi-regular placement of the tis-
sue samples should result in a distinctive 2D dis-
crete Fourier transform that indicates the fre-
quency of the grid, this information is provided to
our program in advance. The grid rotation and
translation could also be recovered from the fre-
quency image, but this would require similar im-
age processing techniques to those we presently
employ in the spatial image. We found our ap-
proach to be direct, efficient and effective, and so
we chose not to analyze the frequency image.

4.2 Relaxing the Core Locations

The relaxation algorithm is a standard k-means
clustering algorithm [5] augmented to constrain
the relative positions of the cluster centroids.

In order utilize k-means, the image needs to
be transformed into a “conventional” data set
in feature vector (matrix) form. Pixels hav-
ing a gray scale intensity that exceeds a user-
controlled threshold are added to a two- dimen-
sional dataset, X , of pixel instances, each with
an x and y pixel location.
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(a) (b)

Figure 2: The (a) matched filter and (b) matched filter response surface that is used to compute the
placement (offset and rotation) of an initial idealized grid.

During initialization, each of the initial clus-
ter centroids is logically associated with a grid in-
tersection point in the idealized grid produced by
the previous stage (see Placing the Initial Grid).
Since the number of rows, R, and columns, C, are
known a priori, exactly R × C clusters are cre-
ated with the first cluster mean mapped to grid
point (1, 1) and the last cluster mapped to grid
point (R, C).

The algorithm iterates through the following
three steps until convergence:

1. update means via standard k-means update

2. constrain the centroids using the current
grid parameters

3. update the grid parameters

The grid parameters are represented by two
vectors, ∆h and ∆v, which correspond to hor-
izontal and vertical unit steps, (∆x, ∆y), along
the grid in pixel space. Since the grid may be
skewed or rotated, these unit steps must be repre-
sented in vector form, rather than simple scalars.

4.2.1 k-means Update

The standard k-means update step recomputes
the centroid of a cluster as the mean of all data
points which lie closer to that particular centroid
than any other. This is expressed as

µ̂
(t+1)
i =

1

ni

∑

x∈X

x I(µ
(t)
i , x)

where I(µi, x) is an indicator function which
equals 1 if x is closer to µi than any other
µj , i 6= j and zero otherwise, and ni is the num-
ber of points closest to µi, or

∑

x∈X I(µi, x).

In the degenerate case where a centroid has
zero data points assigned to itself, the centroid’s
value remains unchanged from the previous iter-
ation.

4.2.2 Constraining Centroids

Once the proposed centroids, µ̂i, have been com-
puted, they need to be forced to lie on the im-
posed grid. Since we only require that a loose grid
structure be imposed, we constrain each centroid,
i, in terms of its neighborhood, which is defined
as i itself as well as the centroids at the grid po-
sitions which lie one unit away from i. These are
the centroids immediately above, below, to the
left and right of i.

µ
(t+1)
i =

∑

j∈Neighborhood

wj(µ̂
(t+1)
i − ∆

(t)
ij )

where

wj =
nj + 1

Ni + |J |

|J | is the size of the neighborhood, which is at
least 1 since i is a member of its own neighbor-
hood, nj is the count of the datapoints in neig-
boring cluster j, and Ni is the count of all the
datapoints in the neighborhood of i. The offset
between centroids ∆ij is defined in terms of the
grid offset parameters at the previous time step,

∆
(t)
h and ∆

(t)
v .

This update equation can be interpreted as a
weighted mean of the centroids where the weights
correspond to the posterior mean of a multino-
mial distribution with a uniform Dirichlet prior.
The multinomial coefficients represent the rela-
tive weights of the centroids in a given neighbor-
hood and the observed data is composed of all
the data points within the neighborhood of the
i.th centroid.
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4.2.3 Update Grid Parameters

The grid parameters, ∆
(t)
h and ∆

(t)
v are, intu-

itively, updated by computing the average hor-
izontal and vertical displacement between con-

strained centroids µ
(t+1)
i . These average dis-

placements define a grid basis which may not be
orthogonal. Since our idealized grid is orthog-
onal, we project the computed basis to enforce
orthogonality. Finally, since the projection op-
eration introduces a rotation in one of the basis
vectors, the entire basis is rotated to compen-
sate and the vectors are normalized to the proper
length (see Figure 3).

For notational convenience, ∆h,x represents
the x component of the vector ∆h and µi,j refers
to the centroid associated with the grid point
(i, j).

First, the average displacements are com-
puted,

∆̄h =
1

R(C − 1)

R
∑

i=1

C−1
∑

j=1

µ
(t+1)
i+1,j − µ

(t+1)
i,j

∆̄v =
1

C(R − 1)

R−1
∑

i=1

C
∑

j=1

µ
(t+1)
i,j+1 − µ

(t+1)
i,j

followed by a projection to enforce orthogonality
of the basis vectors.

∆̄v,y = −
∆̄h,x∆̄v,x

∆̄h,y

Finally, the induced rotation of the basis vector
∆v is computed and the entire basis is rotated
by half this amount is order to evenly distribute
the error between ∆h and ∆v.

θ = arccos

(

∆̄h · ∆̄v

|∆̄h||∆̄v|

)

∆
(t+1)
h = rotate(∆̄h,

1

2
θ)

∆(t+1)
v = rotate(∆̄v,

1

2
θ)

These update equations are repeated until a
convergence criterion has been reached, or a max-
imum number of iterations have been executed.

5 Measuring Fluorescence

The goals for measuring fluorescence for this ef-
fort were very modest. Unlike the microarray

situation in which all expression quantification
is automated, our scientists intend to continue
to review and manually annotate cores showing
a significant level of expression. Not only must
the expert pathologist/researcher describe and
record the pattern of expression observed in each
tissue, but they must also describe in which sub-
tissues and cell types the pattern of expression
is observed. Thus it is not important that our
software report highly-accurate levels of expres-
sion, since our goal is only to provide a means
to rank order the tissues roughly by relative level
of expression. In particular, the level of expres-
sion observed in one fluorescent channel, the red
channel of our images, is of interest to our inves-
tigators.

To that end we collect some basic statistical
measurements for each tissue core’s image region
as identified by the prior tissue locating stage.
Each tissue region is defined to have a center lo-
cation as determined by the relaxed cluster cen-
ters, and all cores have the same fixed diameter
based on the known core size (so that statistics
are collected over an equal-sized area for each
core). The statistics collected for each tissue in-
clude:

total red the sum of the red intensity of all pix-
els within the tissue

red area the total number of pixels within the
core that exhibit sufficiently strong red
channel intensity (over a red threshold pre-
determined by the investigators in prior
studies)

In practice these two measures are quite well
correlated, and either will suffice to provide a
meaningful ordering of tissues that will help the
researcher prioritize and streamline his annota-
tion effort. Figure 4 shows the relative red scor-
ing of three distinct tissues.

It is noteworthy that at this stage our ap-
proach does not involve foreground versus back-
ground separation via thresholding or adaptive
shape segmentation. Tissue arrays exhibit much
greater diversity of signal within their cores, re-
flecting diverse underlying tissues and cell types,
and so it is not necessarily appropriate to parti-
tion a tissue core’s region into two classes. Also a
background pixel’s contribution to the red chan-
nel scores we derive is negligible and so does not
affect the resulting tissue prioritization.
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(a)
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(b)

∆̄v

θ

θ
∆̄v

∆̄h

1 )2 )
3 ) ∆̄v

∆̄h

∆̄h

Figure 3: The cluster centers and connecting grid after one iteration. The grid parameters are
derived by (a) averaging the neighborhood offsets (shown in yellow) from the cluster centroid µi,j

across all grid intersection points (i, j) to obtain the intermediate variables ∆̄h and ∆̄v, then by
(b) rotating these basis vectors by 1

2θ (to enforce orthogonality) to get the final grid parameters ∆h

and ∆v

.

Figure 4: Relative red-channel fluorescence is estimated for each tissue. These three tissues have the
following red area red pixel counts (from left to right): 0, 1727, and 1460. On this basis, the middle
tissue would receive the highest priority for annotation of the three.
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6 Results

A total of 20 tissue array images were pro-
vided for algorithm development and testing, all
roughly in the 1000x1000 size range, composed
of either 48 cores in a 6 by 8 grid or 56 cores
arranged in a 7 by 8 grid. In this section we
demonstrate the performance of the approach on
one typical tissue array, that of Figure 1. Due to
space constraints we will only discuss generally
how our method performed on the larger set of
tissue array images available to us during devel-
opment.

In our testing we manually derived the
approximate core size and spacing, as well
as the appropriate threshold settings for fore-
ground/background pixel separation. Very lit-
tle adjustment is required to achieve the correct
results, and most are known a priori from the ex-
periment design. The input parameters used to
obtain the results we show for this example are:

rows 6

cols 8

spot_delta 120

spot_diameter 80

max_iterations 100

threshold 0.12

Figure 5 shows the initial and final core loca-
tions computed for the tissue array in Figure 1.
Figure 6 demonstrates that the localized tissues
can be further analyzed for intensity of expres-
sion, and on that basis the tissues can be priori-
tized for manual annotation in order to maximize
a researcher’s efficiency.

We observe that the method does a good job
of finding an appropriate initial guess for the grid,
and that the core center relaxation adjusted well
to settle on all the complete or partial core in the
image. In even does quite well on the columns
that exhibit a reasonable amount of skew, e.g.
the second column from the right. The con-
strained clustering approach does a good job of
pushing the tissue centers for the last, mostly
empty column, off to the right away from the
second, allowing the strong signals present in the
second to last column to influence the shape of
the grid in that portion of the image.

The software performed equally well on the
remaining tissue array images used during devel-
opment. Each of these early tissue arrays ex-
hibited interesting forms of variation (some had
more rotation, some had more skew or missing

cores). In practice the users can provide a some-
what inaccurate grid spacing parameter, either
slightly larger or slightly smaller than ideal, and
in either case the software was able to settle
to the correct grid. In a few cases cores with
unusually- shaped cores resulted in center esti-
mates that were slightly offset from ideal. Such a
core’s computed center plus radius was not posi-
tioned well enough to capture all of the relevant
pixels, though they typically contain the major-
ity of pixels. But in no case did this compromise
the overall grid assignments or tissue prioritiza-
tion.

For the example we illustrated, a slide
overview scan of 1000x768 pixels, the tool cal-
culated the final grid locations and measured the
fluorescence in approx 30 seconds on an Apple
Powerbook 800MHz G4 laptop computer with
1GB RAM. The time to converge in the relax-
ation step causes the greatest variation in run
times, and poorly specified parameters (e.g. in-
correct grid spacing or core diameter) can result
in many more iterations, slow run times, e.g. 1-2
minutes, and incorrect grid assignment results.

7 Conclusions

When we completed the design of our matched
filter grid estimation phase we considered an al-
ternative approach, to use seeded region growing
or its variants as a means to relax away from
the ideal but inaccurate grid points to locate the
core centers. We recognized early that for tissue
arrays such an approach still requires some way
to build in spatial constraints necessary to pre-
vent neighboring cores from moving towards (and
conflicting over) the same core, especially in the
case of an adjacent empty core. Our constrained-
clustering-based approach offered a much more
elegant way to enforce those priors than the alter-
native: to manually graft directional constraints
into the seeded region growing to make it fully
respect the grid constraints.

Since our technique is applicable to any grid
image, we believe it can be applied to microarray
imagery as well as tissue arrays. We also intend
to reformulate our relaxation algorithm within
a probabilistic framework in order to guaran-
tee convergence and more easily introduce prior
knowledge from the filter matching.

The software has proven very effective at ro-
bustly identifying tissue cores within tissue ar-
rays and prioritizing them for subsequent man-
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(a) (b)

Figure 5: The initial idealized grid placement (a), and the final grid placement (b) after the
constrained-clustering relaxation (6 iterations).

3666 3107 3049 2982 2863 2756 2414

2249 2130 1727 1693 1460 1417 1407

1108 1082 1004 945 713 689 586

552 457 361 330 313 311 244

206 198 169 158 142 122 86

55 45 12 10 9 7 6

0 0 0 0 0 0

Figure 6: The red-channel fluorescence estimates (e.g. the red area values shown for each core above)
can be used to prioritize tissues for subsequent annotation, and thereby speed up the data collection.
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ual annotation. As we get more familiar with
the complete image analysis and interpretation
process and discover appropriate methods, we
are hopeful that much of the burden of man-
ual annotation and curation of tissue array ex-
pression data can be further reduced. It is rea-
sonable to consider whether and to what degree
we can employ learning algorithms to automate
the more objective portions of the tissue expres-
sion annotation process. However, the patholo-
gist/researcher often brings substantial expertise
and knowledge of detailed anatomical structures
to the process, and we cannot realistically hope
to automate the experience-based recognition as-
pects of the process for the foreseeable future.

Finally, our success at using constrained clus-
tering to bring to bear the right level of prior in-
formation and structure to solve this particular
image analysis problem gives us confidence that
there are more well-structured or semi-structured
segmentation problems that can be addressed in
a similar fashion. At least within biology many
scientists can benefit from better tools and tech-
niques to aid or enable various high-throughput
assays, e.g. the diverse investigations that auto-
mated fluorescence microscopy makes possible.
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Ab s t r a c t  

A u to m a te d  c lo u d  d e te c tio n  a n d  tr a c k in g  is  a n  im p o r ta n t 
s te p  in  a s s e s s in g  g lo b a l c lim a te  c h a n g e  v ia  r e m o te  
s e n s in g . D a ta  p r o d u c ts  b a s e d  o n  s a te llite  im a g e r y  a r e  
a v a ila b le  to  th e  s c ie n tif ic  c o m m u n ity  fo r  s tu d y in g  
tr e n d s  in  th e  E a r th ’ s  a tm o s p h e r e . T h e  d a ta  p r o d u c ts  
in c lu d e  c lo u d  m a s k s  th a t a s s ig n  c lo u d -c o v e r  
c la s s if ic a tio n s  to  p ix e ls . M a n y  c lo u d - m a s k  a lg o r ith m s  
h a v e  th e  fo r m  o f d e c is io n  tr e e s . T h e  d e c is io n  tr e e s  
e m p lo y  s e q u e n tia l te s ts  th a t s c ie n tis ts  d e s ig n e d  b a s e d  
o n  e m p ir ic a l a s tr o p h y s ic s  s tu d ie s  a n d  s im u la tio n s . 
L im ita tio n s  o f e x is tin g  c lo u d  m a s k s  r e s tr ic t o u r  a b ility  
to  a c c u r a te ly  tr a c k  c h a n g e s  in  c lo u d  p a tte r n s  o v e r  tim e . 
I n  th is  s tu d y  w e  e x p lo r e d  th e  p o te n tia l b e n e fits  o f  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  fo r  d e te c tin g  
c lo u d s  f r o m  r e m o te -s e n s in g  im a g e s . T h e  im a g e s  w e r e  
a c q u ir e d  u s in g  th e  A d v a n c e d  V e r y  H ig h  R e s o lu tio n  
R a d io m e te r  ( A V H R R )  in s tr u m e n t o n  b o a r d  th e  
N O A A - 1 4  w e a th e r  s a te llite  o f  th e  N a tio n a l O c e a n ic  
a n d  A tm o s p h e r ic  A d m in is tr a tio n . W e  c o n s tr u c te d  th r e e  
d e c is io n  tr e e s  fo r  a  s a m p le  o f  8 k m -d a ily  A V H R R  d a ta  
f r o m  th e  y e a r  2 0 0 0  u s in g  a  d e c is io n -tr e e  le a r n in g  
p r o c e d u r e  p ro v id e d  w ith in  M A T L A B ® , a n d  c o m p a r e d  
th e  a c c u r a c y  o f  th e  d e c is io n  tr e e s  fo r  s a m p le  te s t d a ta  
to  th e  a c c u r a c y  o f  th e  c lo u d  m a s k s  in c lu d e d  in  th e  
A V H R R  d a ta  p r o d u c ts . W e  u s e d  g r o u n d  o b s e r v a tio n s  
c o lle c te d  b y  th e  N a tio n a l A e r o n a u tic s  a n d  S p a c e  
A d m in is tr a tio n  Clo u d s  a n d  th e  E a r th ’ s  R a d ia n t E n e r g y  
S y s te m s  S ’CO O L  p r o je c t a s  th e  g o ld  s ta n d a r d . F o r  o u r  
s a m p le  d a ta , th e  a c c u r a c y  o f a u to m a tic a lly - le a r n e d  
d e c is io n  tr e e s  w a s  g r e a te r  th a n  th e  a c c u r a c y  o f th e  
c lo u d  m a s k s . T h e  d iff e r e n c e  in  a c c u r a c y  w a s  
s ta tis tic a lly  s ig n ific a n t w ith  p  <  0 .0 0 1 .      

1 . I n t r o d u c t io n  

U n d e r s ta n d in g  th e  r o le  o f  c lo u d s  in  th e  c u r r e n t c lim a te  
is  a  p r e r e q u is ite  fo r  p r e d ic tin g  f u tu r e  c lim a te  c h a n g e  
d u e  to  h u m a n  a c tiv itie s  [ 1 ] . T h e  N a tio n a l O c e a n ic  a n d  
A tm o s p h e r ic  A d m in is tr a tio n  ( N O A A )  p o la r -o r b itin g  

s a te llite s  p r o v id e  o b s e r v a tio n s  o f th e  E a r th ’ s  o c e a n s , 
la n d , a n d  a tm o s p h e r e . S c ie n tis ts  u s e  th e  o b s e r v a tio n s  to  
s tu d y  lo n g -te r m  w e a th e r  p a tte r n s  a n d  to  fo r e c a s t 
w e a th e r . T h e  s a te llite s  c a r r y  a  s u ite  o f in s tr u m e n ts  th a t 
m e a s u r e  p a r a m e te r s  o f th e  E a r th ’s  s u r fa c e , a tm o s p h e r e , 
a n d  c lo u d  c o v e r . F o r  e x a m p le , th e  N O A A -1 4  s a te llite  
c a r r ie s  th e  A d v a n c e d  V e r y  H ig h  R e s o lu tio n  
R a d io m e te r  ( A V H R R )  in s tr u m e n t. T h e  d a ta  a c q u ir e d  
b y  th e  s a te llite s  a r e  p a c k a g e d  in  a  v a r ie ty  o f  d a ta  
p r o d u c ts  o f d if fe r e n t s p a tia l, te m p o r a l, a n d  s p e c tr a l 
r e s o lu tio n s . T h e  d a ta  p r o d u c ts  a r e  d is tr ib u te d  v ia  th e  
N A S A  G o d d a r d  E a r th  S c ie n c e s  D is tr ib u te d  A c tiv e  
A r c h iv e  Ce n te r .  
 
Clo u d  m a s k s , w h ic h  d e p ic t c lo u d  c o v e r a g e , h a v e  b e e n  
in c lu d e d  in  d a ta  p r o d u c ts  f r o m  s a te llite  r a d io m e tr y  
s in c e  its  e a r ly  d a y s . S c ie n tis ts  u s e  c lo u d  m a s k s  to  
id e n tif y  s u r f a c e  a n d  a tm o s p h e r ic  d a ta  o f  c o m p r o m is e d  
q u a lity  d u e  to  c lo u d  in te r f e r e n c e  a n d  to  d e s c r ib e  c lo u d s  
a n d  th e ir  p r o p e r tie s . T h e  c lo u d  m a s k s  a r e  c o m p u te d  
f r o m  m e a s u r e d  r e f le c ta n c e  a n d  e m is s io n  v a lu e s  u s in g  
c la s s if ic a tio n  a lg o r ith m s  th a t s c ie n tis ts  d e s ig n e d .  T h e  
a lg o r ith m s  a r e  b a s e d  o n  e x p e r im e n ta tio n  w ith  
a c q u is itio n  p a r a m e te r s  a n d  w ith  s im u la te d  c le a r - s k y  
a n d  c lo u d  c h a r a c te r is tic s  fo r  a  v a r ie ty  o f  s u r f a c e  a n d  
a tm o s p h e r ic  c o n d itio n s , a n d  o n  th e  a n a ly s is  o f  
a m b ig u o u s  m a n ife s ta tio n s  o f d iff e r e n t p h y s ic a l 
p h e n o m e n a , f o r  e x a m p le , s im ila r  r e fle c ta n c e  v a lu e s  fo r  
s n o w , ic e  a n d  c lo u d s . T h e  a lg o r ith m s  e m p lo y  
s e q u e n tia l-th r e s h o ld  te s ts  to  a r r iv e  a t d e c is io n s  a b o u t 
th e  p r e s e n c e  o f c lo u d s  o r  a b o u t c lo u d  c o m p o s itio n  [ 2 -
3 ] . T h e  lim ita tio n s  o f  e x is tin g  c lo u d  m a s k s  [ 4 ]  
p r o v id e d  m o tiv a tio n  fo r  o n - g o in g  r e s e a r c h  to  d e v e lo p  
im p r o v e d  c lo u d  d e te c tio n  a n d  c h a r a c te r iz a tio n  
a lg o r ith m s .  
 
Clo u d  d e te c tio n  a n d  c h a r a c te r iz a tio n  is  a  c h a lle n g in g  
ta s k . Clo u d - d e te c tio n  a lg o r ith m s  m u s t d is a m b ig u a te  
c lo u d s  a n d  o th e r  e n titie s  th a t h a v e  c h a r a c te r is tic s  
s im ila r  to  c lo u d s . E n titie s  w h o s e  a p p e a r a n c e  in  s a te llite  
im a g e r y  m a y  b e  s im ila r  to  th a t o f  c lo u d s  d if fe r  fr o m  
r e g io n  to  r e g io n . I n  th e  p o la r  r e g io n , c lo u d s  a n d  
s n o w /ic e  a r e  d if f ic u lt to  d if fe r e n tia te  b e c a u s e  a ll th r e e  

11



e n titie s  a r e  r e fle c tiv e  in  th e  v is ib le  w a v e le n g th s  a n d  
d e m o n s tr a te  little  c o n tr a s t in  th e  th e r m a l in fr a r e d . S u n  
g litte r  d u e  to  s p a tia lly  u n r e s o lv e d  w a te r  b o d ie s  o r 
r e c e n t r a in fa ll m a y  in te r f e r e  w ith  c lo u d  d e te c tio n  in  th e  
tr o p ic s . O th e r  e n titie s  th a t m a y  a p p e a r  s im ila r  to  c lo u d s  
a r e  v o lc a n ic  a s h , d e s e r t d u s t, s m o k e , a n d  te r r a in  
s h a d o w s .  
 
S c ie n tis ts  h a v e  u s e d  a  v a r ie ty  o f m a c h in e - le a r n in g  
m e th o d s  to  p r o c e s s  r e m o te  s e n s in g  d a ta , f o r  e x a m p le , 
n e u r a l n e tw o r k s  [ 5 ] , B a y e s ia n  c la s s ific a tio n  [ 6 ] , k e r n e l 
m e th o d s  [ 7 -1 0 ] , g e n e tic  a lg o r ith m s  [ 1 1 ] , c la s s ific a tio n  
tr e e s  [ 1 2 ]  a n d  r e g r e s s io n  tr e e s  [ 1 3 ]. T h e  r e s u lts  o f  th e s e  
a p p r o a c h e s  r a n g e  fr o m  p r o m is in g  p r e lim in a r y  r e s u lts  to  
v a lid a te d  a lg o r ith m s  th a t a r e  d e p lo y e d  in  h ig h - le v e l 
r e m o te - s e n s in g  d a ta  p r o d u c ts  [ 1 4 ] . F ro m  th e s e  
m e th o d s , c la s s if ic a tio n  tr e e s , w h ic h  a r e  a u to m a tic a lly -  
le a r n e d  d e c is io n  tr e e s , a r e  th e  m e th o d s  th a t r e s e m b le  
th e  s e q u e n tia l-th r e s h o ld  te s ts  th a t a r e  u s e d  in  c lo u d  
m a s k s  th e  m o s t.  
 
I n  th is  s tu d y  w e  c o m b in e d  e le m e n ts  f r o m  th e  
s e q u e n tia l-th r e s h o ld  te s t a p p r o a c h  th a t e x p e r ts  u s e d  to  
p r o d u c e  c lo u d  m a s k s , a n d  fr o m  a u to m a tic a lly - le a r n e d  
m o d e ls  th a t m a x im iz e d  c la s s ific a tio n  a c c u r a c y  fo r  
tr a in in g  d a ta . T h e  g o a l o f o u r  w o r k  w a s  to  d e te r m in e  
w h e th e r  a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  th a t u s e d  
th e  s a m e  v a r ia b le s  a s  th e  CL A V R  e x p e r t- g e n e r a te d  
c lo u d - m a s k  a lg o r ith m  p e r f o r m e d  b e tte r  th a n  th e  la tte r  
a lg o r ith m . W e  a ls o  e x p lo r e d  th e  e x te n t to  w h ic h  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  b a s e d  o n  
a c q u is itio n  p a r a m e te r s  a n d  th e o r e tic a l p h y s ic a l 
r e la tio n s h ip s  a m o n g  s e n s e d  d a ta  p e r fo r m e d  b e tte r  th a n  
tr e e s  b a s e d  o n  o n ly  s e n s e d  d a ta . 
 
T h e  n e x t s e c tio n  p r e s e n ts  th e  c lo u d  m a s k  th a t is  
p r o d u c e d  w ith  a n  e x p e r t- g e n e r a te d  d e c is io n  tr e e , a n d  
d is c u s s e s  th e  lim ita tio n  o f  th e  c lo u d  m a s k . T h e  s e c tio n  
a ls o  lis ts  th e  c h a lle n g e s  in  e v a lu a tin g  th e  r e s u lts  o f  
c lo u d  d e te c tio n  m e th o d s . S e c tio n  3  d e s c r ib e s  th e  
m e th o d s  w e  u s e d  in  th is  s tu d y , S e c tio n  4  r e p o r ts  th e  
r e s u lts , a n d  S e c tio n  5  in c lu d e s  a  d is c u s s io n  o f  o u r  
f in d in g s . S e c tio n  6  p r e s e n ts  o u r  c o n c lu s io n s .    

2 . B a c k g r o u n d  

T h e  N O A A - 1 4  A V H R R  d a ily  8 k m  g lo b a l d a ta  p r o d u c t 
in c lu d e s  1 2  s c ie n tific  d a ta s e ts  ( S D S s ) , e a c h  o f  w h ic h  
in c o r p o r a te s  a  m e a s u r e d  p a r a m e te r , fla g , o r  c o m p u te d  
p a r a m e te r  w ith in  a  s in g le  p la n e . T h e  S D S s  a r e : 
n o r m a liz e d  d if fe r e n c e  v e g e ta tio n  in d e x , CL A V R  c lo u d  
m a s k , q u a lity  c o n tr o l fla g , s c a n  a n g le , s o la r  z e n ith  
a n g le , r e la tiv e  a z im u th  a n g le , s u r fa c e  r e f le c ta n c e  in  th e  
v is ib le  w a v e le n g th s  ( c h a n n e l 1 ) , s u r fa c e  r e f le c ta n c e  in  
th e  n e a r -in f r a r e d  w a v e le n g th s  ( c h a n n e l 2 ) , s u r fa c e  

b r ig h tn e s s  te m p e r a tu r e  in  th e  th e r m a l in fr a r e d  
w a v e le n g th s  ( c h a n n e ls  3 -5 ) , a n d  a c q u is itio n  d a y  a n d  
tim e  [ 1 5 ] .  
 
T h e  CL A V R  a lg o r ith m  in c lu d e s  fo u r  d e c is io n  tr e e s , 
o n e  fo r  e a c h  o f  d a y tim e  la n d  s c e n e , d a y tim e  o c e a n  
s c e n e , n ig h ttim e  la n d  s c e n e , a n d  n ig h ttim e  o c e a n  
s c e n e . E a c h  d e c is io n  tr e e  p e r f o r m s  a  s e r ie s  o f  th r e s h o ld  
a n d  u n ifo r m ity  te s ts  o n  a  2 x 2  a r r a y  o f p ix e ls , a n d  
c la s s if ie s  p ix e ls  a s  c le a r , m ix e d , o r  c lo u d y . T h e  v a lu e s  
u s e d  f o r  e a c h  te s t a r e  e ith e r  r e tr ie v e d  c h a n n e l v a lu e s , o r  
f u n c tio n s  o f  r e tr ie v e d  v a lu e s  th a t in c o r p o r a te  
a c q u is itio n  p a r a m e te r s  a n d  e s tim a te s  o f e m itte d  
r a d ia n c e s  [ 2 ] . S e v e r a l te s ts  w e r e  d e s ig n e d  s p e c if ic a lly  
to  r e s o lv e  a m b ig u itie s , fo r  e x a m p le , a m b ig u itie s  d u e  to  
r e f le c ta n c e  g r e a te r  th a n  4 4 %  in  c h a n n e l 1  o r  c h a n n e l 2  
f o r  s n o w , ic e , o r  s u n  g lin t. T h e  th r e s h o ld s  u s e d  f o r  th e  
te s ts  w e r e  d e r iv e d  e m p ir ic a lly  o r  v ia  s im u la tio n s  o f a  
v a r ie ty  o f c lo u d - s u r fa c e - d a y tim e  o b s e r v a tio n  
c o n d itio n s . 
 
T h e  s e q u e n tia l d e c is io n  p r o c e s s  in  CL A V R  
d is c r im in a te s  b e tw e e n  c lo u d s , fir s t b y  th e ir  g r o s s  
c h a r a c te r is tic s , a n d  th e n  b y  th e ir  s u b tle  c h a r a c te r is tic s . 
T h e  a lg o r ith m  e n s u r e s  th a t p ix e ls  th a t fa il a ll th e  te s ts  
h a v e  a  v e r y  s m a ll p r o b a b ility  o f h a v in g  r a d ia tiv e ly  
s ig n ific a n t c lo u d s . T h e  s e q u e n tia l-te s t n a tu r e  o f  
CL A V R  m a k e s  it s im ila r  to  a u to m a tic a lly -le a r n e d  
d e c is io n  tr e e s , b u t u n lik e  th e  la tte r , th e  CL A V R  
a lg o r ith m  is  n o t b a s e d  o n  a n  e x h a u s tiv e  a n a ly s is  o f th e  
d a ta  s p a c e .  
 
T h e  CL A V R  a lg o r ith m  h a s  s e v e r a l lim ita tio n s . F ir s t, 
th e  a lg o r ith m  a s s u m e s  th a t th e r e  is  a  r e p r e s e n ta tiv e  
s a m p le  o f c le a r  p ix e ls  in  e a c h  im a g e , h o w e v e r , th is  
a s s u m p tio n  d o e s  n o t h o ld  f o r  b r o a d ly  o v e r c a s t s c e n e s . 
S e c o n d , th e  a lg o r ith m  d o e s  n o t w o r k  w e ll f o r  p o la r–
w in te r  s c e n e s  o r  n ig h ttim e  s c e n e s , w h e n  o n ly  th e  
th e r m a l c h a n n e ls  a r e  a v a ila b le . T h ir d , th e  a b ility  o f  th e  
a lg o r ith m  to  d if f e r e n tia te  b e tw e e n  c lo u d s  a n d  o th e r  
e n titie s  th a t a p p e a r  a s  c lo u d s  in  A V H R R  im a g e s  is  
lim ite d .   
 
E v a lu a tio n  o f c lo u d  m a s k s  is  d iffic u lt b e c a u s e  th e r e  is  
n o  g o ld  s ta n d a r d  to  w h ic h  to  c o m p a r e  th e  m a s k .  
R e s e a r c h e r s  e s tim a te  th e  q u a lity  o f c lo u d  m a s k s  b y  
c o m p a r in g  th e ir  a g r e e m e n t w ith  m a s k s  p r o d u c e d  b y  
h u m a n  a n a ly s ts  o r  b y  o th e r  a lg o r ith m s . S to w e  a n d  
c o lle a g u e s  [ 2 ]  c o m p a r e d  th e  r e s u lts  o f CL A V R  to  
c lo u d  a m o u n t ( f r a c tio n )  e s tim a te s  o f a  h u m a n – e x p e r t 
a n a ly s t. F o r  th is  c o m p a r is o n , th e  CL A V R  c lo u d  m a s k  
c a te g o r ie s  w e r e  a s s ig n e d  c lo u d – c o v e r  p e r c e n ta g e s : 
c le a r -0 % , m ix e d - 5 0 % , c lo u d y -1 0 0 % . F o r  s m a ll c lo u d  
a m o u n ts , CL A V R  o v e r e s tim a te d  fr a c tio n a l a m o u n ts  b y  
a p p r o x im a te ly  1 0 %  c o m p a r e d  to  th e  a n a ly s t’ s  
in te r p r e ta tio n , a n d  fo r  la r g e  c lo u d  a m o u n ts , CL A V R  
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u n d e r e s tim a te d  th e  c lo u d  a m o u n ts  b y  a p p r o x im a te ly  
1 0 % . T h e  e v a lu a tio n  s h o w e d  la r g e r  e r r o r s  fo r  c e r ta in  
g e o g r a p h ic a l lo c a tio n s  a n d  s e a s o n s . I n  a  r e c e n t s tu d y , 
T h o m a s  a n d  H e id in g e r  [ 1 6 ]  r e p o r te d  th a t c lo u d  
a m o u n ts  th a t r e s u lte d  fr o m  im p r o v e m e n ts  in  CL A V R  
a g r e e d  w ith  c lo u d  a m o u n ts  f r o m  e s ta b lis h e d  s a te llite –
d e r iv e d  c lo u d  c lim a to lo g ie s .  
 
I n  th e  n e x t s e c tio n  w e  d e s c r ib e  o u r  w o r k  o n  le a r n in g  
d e c is io n  tr e e s  fr o m  A V H R R  d a ta  a n d  c o m p a r in g  th e  
c lo u d  m a s k s  th a t th e y  p r o d u c e  to  g r o u n d  o b s e r v a tio n s  
p e r fo r m e d  b y  h u m a n s  in  m u ltip le  lo c a tio n s  a r o u n d  th e  
E a r th .  

3 . M e t h o d s  

W e  o b ta in e d  g r o u n d  o b s e r v a tio n s  fr o m  th e  N A S A  
L a n g le y  A tm o s p h e r ic  S c ie n c e s  D a ta  Ce n te r  CE R E S  
S 'CO O L  P r o je c t [ 1 7 ] . H ig h - s c h o o l s tu d e n ts  f r o m  m a n y  
g e o g r a p h ic a l lo c a tio n s  a r o u n d  th e  w o r ld  r e c o rd e d  a n d  
r e p o r te d  th e  S ’CO O L  o b s e r v a tio n s  u s in g  a  w e ll-
d e f in e d  p r o to c o l w h o s e  g o a l w a s  to  p r o v id e  s u f fic ie n t 
in f o r m a tio n  fo r  v a lid a tio n  o f  m e a s u r e m e n ts  ta k e n  b y  
th e  Clo u d s  a n d  th e  E a r th 's  R a d ia n t E n e r g y  S y s te m  
(CE R E S )  in s tr u m e n ts  o n  N A S A 's  E a r th  O b s e r v in g  
S y s te m  s a te llite s . T h e  o b s e r v a tio n s  w e r e  d e s ig n e d  to  
c o in c id e  te m p o r a lly  w ith  p a s s a g e  o f  th e  CE R E S  a b o v e  
th e  p o in t o f o b s e r v a tio n . A m o n g  th e  r e c o r d e d  d a ta  
w e r e  d a te  a n d  tim e  o f o b s e r v a tio n , lo n g itu d e  a n d  
la titu d e , c lo u d  o b s e r v a tio n s  ( c a te g o r ic a l v a r ia b le s : 
c lo u d  ty p e , v is u a l o p a c ity ; o r d in a l v a r ia b le s : c lo u d  
c o v e r )  a t lo w , m id  a n d  h ig h  a ltitu d e s , a n d  s u r f a c e  c o v e r  
c h a r a c te r is tic s .  

W e  s e le c te d  a ll o b s e r v a tio n s  th a t w e r e  a v a ila b le  fo r  th e  
y e a r  2 0 0 0 . T h e n , w e  r e tr ie v e d  8 k m  d a ily  A V H R R  d a ta  
th a t m a tc h e d  in  a c q u is itio n  d a te  a n d  in  lo n g itu d e  a n d  
la titu d e . W e  e x c lu d e d  f r o m  th is  d a ta s e t a ll p o in ts  fo r  
w h ic h  th e  d a ta  q u a lity  f la g  in d ic a te d  o u t- o f -r a n g e  
v a lu e s  o r  p r o c e s s in g  e r r o r s  ( a b o u t 2 0 %  o f  th e  d a ta  
p o in ts )  a n d  o b ta in e d  2 8 6 9  d a ta  p o in ts . W e  u s e d  th e  
S ’CO O L  c lo u d - p r e s e n t/n o - c lo u d -p r e s e n t o b s e r v a tio n s  
f o r  a  g iv e n  d a te  a n d  lo c a tio n  a s  th e  g o ld  s ta n d a r d  fo r  
la b e lin g  tr a in in g  d a ta  a n d  f o r  c o m p a r in g  to  c la s s if ie d  
te s t d a ta . I n  a d d itio n , w e  c o m p a r e d  th e  S ’CO O L  
o b s e r v a tio n s  to  th e  CL A V R  c lo u d  m a s k s  f o r  th e  
r e tr ie v e d  d a ta  p o in ts . A lth o u g h  b o th  CL A V R  a n d  th e  
S ’CO O L  p r o je c t u tiliz e d  a n  o r d in a l s c a le  fo r  
c h a r a c te r iz a tio n  o f c lo u d  a m o u n t, th e  s c a le s  w e r e  n o t 
id e n tic a l a n d  m a p p in g  o n e  s c a le  to  th e  o th e r  c o u ld  b e  
d o n e  in  m o r e  th a n  o n e  w a y . Co n s e q u e n tly , w e  m a p p e d  
th e  CL A V R  s c a le  to  a  b in a r y  v a r ia b le  w ith  v a lu e s  c le a r  
a n d  c lo u d y , w h ic h  w e  th e n  c o u ld  c o m p a r e  to  th e  

S ’CO O L  b in a r y  v a r ia b le  w ith  v a lu e s  c lo u d - p r e s e n t/n o -
c lo u d - p r e s e n t. 
 
W e  p e r f o r m e d  th r e e  e x p e r im e n ts  w ith  th e  A V H R R  
d a ta  th a t w e  s e le c te d . T h e  e x p e r im e n ts  d if fe r e d  in  th e  
s e t o f  v a r ia b le s  th a t c o n s titu te d  th e  in p u t to  th e  
d e c is io n - tr e e  le a r n in g  p r o c e d u r e . E x p e r im e n t I  
in c lu d e d  v a r ia b le s  th a t r e p r e s e n te d  s e n s o r  d a ta : 
o b s e r v a tio n  id e n tif ic a tio n , th e  r a d ia n c e s  o f  c h a n n e ls  1  
th r o u g h  5 , a n d  th e  b in a r y  la b e l th a t in d ic a te d  th e  
p r e s e n c e  o r  a b s e n c e  o f c lo u d s  o b ta in e d  f r o m  th e  
S ’CO O L  d a ta . E x p e r im e n t I I  in c lu d e d  th e  v a r ia b le s  o f  
E x p e r im e n t I , a s  w e ll a s  la titu d e , lo n g itu d e , a n d  
a c q u is itio n  p a r a m e te r s : s c a n  a n g le , s o la r  a z im u th  
a n g le , r e la tiv e  a z im u th  a n g le , d a y  o f y e a r  a n d  tim e  o f  
a c q u is itio n . E x p e r im e n t I I I  in c lu d e d  th e  v a r ia b le s  o f  
E x p e r im e n t I I , a s  w e ll a s  th r e e  a d d itio n a l f u n c tio n  
v a r ia b le s  th a t a r e  u s e d  w ith in  th e  CL A V R  d a y tim e -
la n d  a lg o r ith m  [ 2 ] . T a b le  1  d e s c r ib e s  h o w  th e  f u n c tio n  
v a r ia b le s  r e la te d  to  s e n s e d  d a ta  a n d  to  a c q u is itio n  
p a r a m e te r s . 
 
W e  r a n d o m ly  s e le c te d  a p p r o x im a te ly  1 0 %  o f th e  d a ta  
p o in ts  to  fo r m  a  d a ta s e t th a t w o u ld  b e  u s e d  e x c lu s iv e ly  
a s  a  te s t s e t. W e  u s e d  b o o ts tr a p p in g  [ 1 8 ]  to  le a r n  a n d  
e v a lu a te  m u ltip le  d e c is io n  tr e e s  f r o m  th e  r e m a in in g  
2 5 9 2  d a ta  p o in ts . F o r  e a c h  tr ia l, w e  r a n d o m ly  
p a r titio n e d  th e  d a ta  in to  a  tr a in in g  s e t a n d  a  te s t s e t 
w ith  a  s iz e  r a tio  o f  9 :1 . W e  le a r n e d  a  d e c is io n  tr e e  fr o m  
th e  tr a in in g  s e t w ith  th e  tr e e fit p r o c e d u r e , w h ic h  is  a n  
im p le m e n ta tio n  o f c la s s ific a tio n  a n d  r e g r e s s io n  tr e e s  
[ 1 9 ]  a v a ila b le  w ith in  th e  M A T L A B ®  s ta tis tic s  to o lb o x . 
W e  th e n  c la s s ifie d  th e  d a ta  in  th e  c o r r e s p o n d in g  te s t s e t 
a s  c le a r  o r  c lo u d y  u s in g  th e  d e c is io n  tr e e . W e  
c o m p a r e d  th e  c la s s ific a tio n  r e s u lts  to  th e  S ’CO O L  
o b s e r v a tio n s  fo r  m a tc h in g  d a te  a n d  lo c a tio n . T o  
m e a s u r e  a c c u r a c y  fo r  e a c h  e x p e r im e n t w e  c o m p u te d  
tw o  m is m a tc h  r a te s . F ir s t, w e  c o m p u te d  th e  r a te  o f 
m is m a tc h  b e tw e e n  c la s s if ic a tio n  r e s u lts  o f  th e  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  a n d  th o s e  o f th e  
S ’CO O L  o b s e r v a tio n s . S e c o n d , w e  c o m p u te d  th e  r a te  
o f m is m a tc h  b e tw e e n  th e  CL A V R  c lo u d  m a s k s  a n d  th e  
S ’CO O L  o b s e r v a tio n s . W e  r a n  tw o -s id e d  p a ir e d  t- te s ts  
to  d e te r m in e  if th e r e  w e r e  s ig n if ic a n t d if fe r e n c e s  
b e tw e e n  r a te s  o f  c la s s if ic a tio n  m is m a tc h , fo r  CL A V R  
a n d  fo r  e a c h  o f  th e  th r e e  d e c is io n  tr e e s , a n d  fo r  e a c h  
p a ir  o f d e c is io n  tr e e s . F in a lly , w e  u s e d  th e  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  to  c la s s if y  th e  te s t 
s e t w e  h a d  in itia lly  s e t a s id e , a n d  w e  c o m p a r e d  th e  r a te  
o f c la s s if ic a tio n  m is m a tc h  to  th a t o f CL A V R . 
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T a b le  1  V a r ia b le s  c o m p u te d  fr o m  s e n s e d  d a ta  a n d  a c q u is itio n  p a r a m e te r s  
 
T e s t N a m e  T e s t D e s c r ip tio n  V a r ia b le s  F u n c tio n  
R e fle c ta n c e  
r a tio  c lo u d  
te s t ( R R CT ) 

E x a m in e s  th e  
r a tio  o f Ch a n n e l 
1  a n d  Ch a n n e l 2  
r e f le c ta n c e  

R 1  -  Ch a n n e l 1  
r e f le c ta n c e  
R 2  -  Ch a n n e l 2  
r e f le c ta n c e  
 

R R C
1

2

R

R
�  

Ch a n n e l 3  
a lb e d o  te s t 
(C3 A T )  

E x tr a c ts  th e  
r e f le c ta n c e  
c o m p o n e n t o f th e  
m ix e d  Ch a n n e l 3  
s ig n a l 

S p a c e c r a ft- d e p e n d e n t 
c o e ffic ie n ts : a , b , c , d  
D 0  –  E a r th  s u n  d is ta n c e  
D  –  m e a n  E a r th - s u n  
d is ta n c e  
B  –  P la n c k  b la c k b o d y  
r a d ia n c e  fu n c tio n  
v o  –  Ch a n n e l 3  c e n tr a l 
w a v e  n u m b e r  
T i –  o b s e r v e d  e q u iv a le n t 
b la c k b o d y  te m p e r a tu r e  
in  c h a n n e l i 

T 3 e – e s tim a te d  b r ig h tn e s s  
te m p e r a tu r e  f o r  Ch a n n e l 
3  d u e  to  e m is s io n  o n ly  
S 3 – Ch a n n e l 3  filte r e d  
s o la r  ir r a d ia n c e  a t 
n o r m a l in c id e n c e  a n d  
m e a n  E a r th -s u n  d is ta n c e  
 

C3 A
2

0

3

)/)(c o s (

1 0 01 4 1 5 9.3

DDZ

R

o

��
�  

 

)()( 333 eTBTBR ���  

 

� �adTacTabT e /)/()/( 543 ����  

F o u r - m in u s -
f iv e  te s t 
( F M F T )  

E x a m in e s  th e  
Ch a n n e l 4  –  
Ch a n n e l 5  
b r ig h tn e s s  
te m p e r a tu r e  
d if fe r e n c e   

T 4  –  Ch a n n e l 4  
b r ig h tn e s s  te m p e r a tu r e  
T 5  –  Ch a n n e l 5  
b r ig h tn e s s  te m p e r a tu r e  

F M F 54 TT ��  

N o te  th a t e a c h  te s t c o m p a r e s  th e  v a lu e  c o m p u te d  b y  th e  c o r r e s p o n d in g  fu n c tio n  to  a  p r e - d e fin e d  th re s h o ld . 

  
T a b le  2  S u m m a r y  s ta tis tic s  f o r  c la s s ific a tio n  m is m a tc h  in  th e  tr ia ls  o f  e a c h  e x p e r im e n t 

 
E x p . M e th o d   M e a n  

( b o o ts tr a p )  
S ta n d a r d  
d e v ia tio n  
( b o o ts tr a p )  

M e a n  
( in d e p e n d e n t)  

S ta n d a r d  
d e v ia tio n  
( in d e p e n d e n t)  

I  CL A V R  0 .2 1 6  
 

0 .0 2 3  
 

0 .1 7 7  N A  

I  D e c is io n  tr e e s  b a s e d  o n  o n ly  c h a n n e ls  0 .1 6 1  0 .0 1 9  0 .1 2 5  0 .0 0 9  
I I  CL A V R  0 .2 1 3  

 
0 .0 2 3  0 .1 7 7  N A  

I I  D e c is io n  tr e e s  b a s e d  o n  c h a n n e ls  a n d  
a c q u is itio n  p a r a m e te r s  

0 .1 5 2  
 

0 .0 1 9  0 .1 3 1  0 .0 1 7  

I I I  CL A V R  0 .2 1 0  0 .0 2 1  0 .1 7 7  N A  
I I I  D e c is io n  tr e e s  b a s e d  o n  c h a n n e ls , 

a c q u is itio n  p a r a m e te r s , a n d  f u n c tio n s   
0 .1 5 1  0 .0 2 2  0 .1 0 5  

 
0 .0 1 3  

T h e r e  a r e  th r e e  d if fe r e n t m e a n  ( b o o ts tr a p )  v a lu e s  fo r  CL A V R  b e c a u s e  th e  r a n d o m  p a r titio n s  o f th e  d a ta  in to  tr a in in g  a n d  te s t 
s e ts  w e r e  d if fe r e n t in  e a c h  e x p e rim e n t. T h e  in d e p e n d e n t te s t- s e t e v a lu a tio n  w ith  CL A V R  p r o d u c e d  a  s in g le  c la s s ific a tio n  
m is m a tc h  r a te , a n d  th e r e fo r e  th e  m e a n  v a lu e  is  c o n s ta n t fo r  th e  th re e  e x p e r im e n ts , a n d  th e  s ta n d a r d  d e v ia tio n  is  z e r o .  
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Ch 1  

Ch 5  

Ch 3  

Ch 5  

Ch 2  

Ch 1  

Ch 1  

Ch 3  

4 . R e s u lt s  

T a b le  2  lis ts  th e  m e a n  a n d  s ta n d a r d  d e v ia tio n  tr ia l 
c la s s if ic a tio n  m is m a tc h  fo r  e a c h  e x p e r im e n t. N o te  th a t 
th e  b o o ts tr a p p in g  tr a in in g  s e ts  w e r e  n o t in d e p e n d e n t, 
a n d  th e  te s t s e ts  w e r e  n o t in d e p e n d e n t a s  w e ll. 
H o w e v e r , th e  te s t s e t th a t w a s  s e t a s id e  in itia lly  w a s  
in d e p e n d e n t o f a ll o th e r  s e ts . T h e  tw o -s id e d  p a ir e d  t-
te s t s h o w e d  th a t th e  d if f e r e n c e s  in  c la s s ific a tio n - 
m is m a tc h  r a te s  b e tw e e n  CL A V R  a n d  e a c h  o f th e  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  w a s  s ig n if ic a n t in  
a ll th r e e  e x p e r im e n ts  w ith  p  <  0 .0 0 1 . T h e  d if fe r e n c e s  in  
c la s s if ic a tio n - m is m a tc h  r a te s  a m o n g  th e  a u to m a tic a lly -
le a r n e d  d e c is io n  tr e e s  w e r e  n o t s ta tis tic a lly  s ig n if ic a n t. 
F ig u r e  1  s h o w s  a n  e x a m p le  d e c is io n  tr e e  le a r n e d  in  
E x p e r im e n t I . 

 

F ig u r e  1  A n  e x a m p le  d e c is io n  tr e e  u s e d  in  th e  fir s t 
e x p e r im e n t. T h e  la b e ls  fo r  n o n - te r m in a l n o d e s  in d ic a te  
th e  c h a n n e ls  u s e d  in  e a c h  d e c is io n  p o in t ( w e  o m itte d  
th e  th r e s h o ld s  u s e d  in  e a c h  n o d e  fo r  b r e v ity ) . T h e  
te r m in a l n o d e s  s h o w  th e  a s s ig n e d  la b e l: A  f ille d  c ir c le  
in d ic a te s  c lo u d y  a n d  a  c le a r  c ir c le  in d ic a te s  c le a r .  
 

5 . D is c u s s io n  

T h e  th r e e  e x p e r im e n ts  th a t w e  p e r fo r m e d  s h o w e d  th a t 
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  c la s s if ie d  8 k m  
d a ily  A V H R R  d a ta  fo r  th e  y e a r  2 0 0 0  m o r e  a c c u r a te ly  
th a n  CL A V R . T h e  th r e e  ty p e s  o f  d e c is io n  tr e e s — tr e e s  
b a s e d  o n  o n ly  s e n s o r  d a ta , tr e e s  b a s e d  o n  s e n s o r  d a ta  
a n d  a c q u is itio n  p a r a m e te r s , a n d  tr e e s  b a s e d  o n  s e n s o r  
d a ta , a c q u is itio n  p a r a m e te r s , a n d  fu n c tio n s  o f th e  
s e n s o r  d a ta  a n d  th e  a c q u is itio n  p a r a m e te r s — d id  n o t 
s h o w  s ig n ific a n t d if fe r e n c e s  in  c la s s ific a tio n  a c c u r a c y . 
T h u s  th e  s e n s o r  d a ta  a lo n e  w e r e  s u f fic ie n t to  o b ta in  a n  
im p r o v e m e n t o v e r  CL A V R . N o te  th a t th e  p r e v a le n c e  
o f c lo u d y  p ix e ls  in  th e  s a m p le  d a ta s e t w a s  a b o u t 8 0 % . 
CL A V R  d id  a s  w e ll a s  a  c la s s ifie r  th a t a lw a y s  a s s ig n e d  

th e  la b e l c lo u d y , w h ile  a ll d e c is io n  tr e e s  p e r f o r m e d  
b e tte r  th a n  th e  la tte r  c la s s if ie r  b y  a b o u t 2 5 % .  

T h e  d a ta  w e  u s e d  f o r  o u r  s tu d y  w a s  a  s a m p le  o f  
c o n v e n ie n c e . T h e  lo c a tio n  a n d  d a te s  o f S ’CO O L  
g r o u n d  o b s e r v a tio n  d ic ta te d  w h ic h  s e n s o r  d a ta  w e r e  
in c lu d e d  in  th e  e x p e r im e n t. T h e  v a lid ity  a n d  r e lia b ility  
o f th e  S ’CO O L  o b s e r v a tio n s  a r e  c u r r e n tly  u n d e r  s tu d y  
[ 1 7 ] . B e c a u s e  th e  S ’CO O L  o b s e r v a tio n s  d id  n o t 
n e c e s s a r ily  c o in c id e  te m p o r a lly  w ith  th e  e x a c t tim e  in  
w h ic h  A V H R R  p a s s e d  a b o v e  th e  o b s e r v a tio n  p o in t, 
c lo u d  p a tte r n s  a n d  illu m in a tio n  m a y  h a v e  c h a n g e d  
b e tw e e n  th e  o b s e r v a tio n  tim e  a n d  th e  s a te llite -p a s s a g e  
tim e . W e  a s s u m e d  th a t a n y  d if fe r e n c e s  th a t r e s u lte d  
f r o m  th e  g a p  b e tw e e n  A V H R R  a c q u is itio n  tim e  a n d  
S ’CO O L  o b s e r v a tio n  tim e  a f fe c te d  CL A V R  a n d  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  e q u a lly , a n d  
th e r e fo r e  w e  d is r e g a r d e d  th e s e  p o te n tia l d if fe r e n c e s . 
W e  u s e d  th e  S ’CO O L  o b s e r v a tio n s  a s  a  b e s t- e s tim a te  
o f th e  g o ld  s ta n d a r d  b e c a u s e  th e r e  is  n o  g o ld  s ta n d a r d  
d a ta  fo r  th e  p r e s e n c e  o r  a b s e n c e  o f  c lo u d s .  W e  
c la s s if ie d  th e  A V H R R  d a ta  in to  o n ly  tw o  c la s s e s , 
c lo u d y  a n d  c le a r . F in e r  c lo u d  c a te g o r ie s  a r e  a v a ila b le  
in  b o th  th e  CL A V R  m a s k  ( c le a r , m ix e d , a n d  c lo u d y ) 
a n d  th e  S ’CO O L  d a ta  ( c le a r , p a r tly  c lo u d y , m o s tly  
c lo u d y , a n d  o v e r c a s t) . W e  d id  n o t u s e  th e  fin e r  
c a te g o r ie s  b e c a u s e  m a p p in g  th e  CL A V R  c a te g o r ie s  to  
th e  S ’CO O L  c a te g o r ie s  w a s  n o t s tr a ig h tfo r w a r d . N o te  
th a t, in  e f f e c t, th e  a u to m a tic a lly - le a r n e d  d e c is io n  tr e e s  
w e r e  tr a in e d  to  p r e d ic t S ’CO O L  o b s e r v a tio n s  fr o m  
A V H R R  d a ta . T h u s , o u r  a b ility  to  c o n c lu d e  th e  tr u e  
p r e s e n c e  o r  a b s e n c e  o f c lo u d s  b a s e d  o n  th e  r e s u lts  o f 
a u to m a tic a lly -le a r n e d  d e c is io n - tr e e s  is  lim ite d  b y  th e  
a c c u r a c y  o f th e  S ’CO O L  o b s e r v a tio n s .    

T h e  a u to m a tic a lly - le a r n e d  d e c is io n  tr e e s  a r e  s im ila r  to  
th e  CL A V R  a lg o r ith m  in  th a t th e y  u s e  in d iv id u a l 
c h a n n e l v a r ia b le s  m u ltip le  tim e s , w ith  a  d iff e r e n t 
th r e s h o ld  e a c h  tim e , to  r e fin e  th e  c la s s if ic a tio n . 
H o w e v e r , u n lik e  th e  CL A V R  a lg o r ith m , th e  
a u to m a tic a lly -le a r n e d  d e c is io n  tr e e s  d o  n o t e x a m in e  
th e  u n ifo r m ity  o f  a  2 x 2  s p a tia l n e ig h b o r h o o d  to  r e d u c e  
th e  u n c e r ta in ty  a n d  to  r e a c h  a  f in a l d e c is io n  a b o u t th e  
c la s s  o f  a  g iv e n  d a ta  p o in t. T h e  a u to m a tic a lly -le a r n e d  
d e c is io n  tr e e s  w e r e  p o w e r f u l in  th a t, f o r  o u r  s a m p le  
d a ta , th e y  w e r e  a b le  to  le a r n  a  c o m p a c t m o d e l ( s m a ll 
n u m b e r  o f  c h a n n e l v a r ia b le s )  th a t p r o d u c e d  b e tte r  
p r e d ic tio n s  th a n  CL A V R . I f  th e  S ’CO O L  d a ta  w e r e  
a v a ila b le  to  th e  d e s ig n e r s  o f  th e  CL A V R  a lg o r ith m , 
th e y  m ig h t h a v e  b e e n  a b le  to  tu n e  CL A V R  to  g e n e r a te  
b e tte r  p r e d ic tio n s  o f  S ’CO O L  o b s e r v a tio n s . 

W h ile  th e  CL A V R  d e s ig n  p r o c e s s  d id  in c lu d e  c a r e fu l 
s tu d y  a n d  f in e  tu n in g  o f te s t th r e s h o ld s , th e  p r o c e s s  
e x p lo r e d  o n ly  p a r t o f th e  s o lu tio n  s p a c e . H o w e v e r , th e  
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d e c is io n - tr e e  le a r n in g  p r o c e s s  p e r f o r m e d  a n  e x te n s iv e  
s e a r c h  to  f in d  a  s e q u e n tia l- th r e s h o ld  s o lu tio n  th a t 
o p tim iz e d  th e  p r e d ic tio n  a c c u r a c y  f o r  th e  tr a in in g  s e t. 
W e  c o u ld  e x p la in  th e  d if f e r e n c e  in  p e r fo r m a n c e  
b e tw e e n  th e  tw o  m e th o d s  in  th a t th e  a u to m a te d  
le a r n in g  p r o c e s s  c o u ld  h a v e  c a p tu r e d  e x p lic itly  
s tr u c tu r e  a n d  r e la tio n s h ip s  b e tw e e n  v a r ia b le s  th a t w e r e  
in h e r e n t in  th e  p r o b le m  d o m a in  a n d  th a t m ig h t n o t h a v e  
b e e n  p e r c e iv e d  a s  r e le v a n t b y  th e  CL A V R  e x p e r ts .    

T h e  e x p e r im e n ts  th a t w e  p e rf o r m e d  le a r n e d  m u ltip le  
d e c is io n  tr e e s , o n e  fo r  e a c h  s a m p le  tr a in in g  s e t. 
H y p o th e tic a lly , if w e  w e r e  to  d e p lo y  a  le a r n e d  d e c is io n  
tr e e  fo r  c lo u d  d e te c tio n  w ith in  th e  c o n te x t o f a  r e m o te  
s e n s in g  d a ta  p r o d u c t, it w o u ld  n o t b e  o b v io u s  w h ic h  o f  
th e  m u ltip le  d e c is io n  tr e e s  to  d e p lo y . Co n s tr u c tin g  a n  
e n s e m b le  o f  d e c is io n -tr e e  m o d e ls  [ 2 0 ]  w o u ld  a llo w  u s  
to  o b ta in  a  r o b u s t c la s s ifie r  th a t c o u ld  p o te n tia lly  
p e r fo r m  b e tte r  th a n  a n y  o n e  d e c is io n  tr e e .  

6 . C o n c lu s io n  

W e  d e m o n s tr a te d  th a t a u to m a tic a lly -le a r n e d  d e c is io n  
tr e e s  p r e d ic te d  th e  p r e s e n c e  o r  a b s e n c e  o f c lo u d s  m o r e  
a c c u r a te ly  a n d  e f fic ie n tly  th a n  CL A V R  f o r  o u r  s e le c te d  
d a ta s e t. T o  fu r th e r  v a lid a te  o u r  r e s u lts  w e  w ill r e p lic a te  
th is  s tu d y  u s in g  g o ld  s ta n d a r d  d a ta  o b ta in e d  fr o m  
c lo u d - o b s e r v a tio n s  m a d e  b y  s c ie n tis ts  a t s u r fa c e  
w e a th e r  s ta tio n s . A  m o r e  c o m p r e h e n s iv e  r e p lic a te  
s tu d y , fo r  m u ltip le - y e a r  d a ta  w ith  a  r a n g e  o f s p a tia l a n d  
te m p o r a l r e s o lu tio n s , a c q u ir e d  u n d e r  d iff e r e n t s u r fa c e  
c o n d itio n s  ( o c e a n , la n d , d a y tim e  a n d  n ig h ttim e  
s e ttin g s )  a n d  w ith  p o te n tia l a m b ig u ity  d u e  to  th e  
p r e s e n c e  o f  s m o k e  o r  w a te r -in d u c e d  g litte r , w o u ld  
a llo w  u s  to  g e n e r a liz e  o u r  r e s u lts . T w o  p o s s ib le  
e x te n s io n s  o f  th is  w o r k  a r e  to  u s e  a u to m a tic a lly -
le a r n e d  d e c is io n  tr e e s  to  c la s s if y  c lo u d s  in to  m u ltip le  
c o u ld  ty p e s , a n d  to  u s e  r e g r e s s io n  tr e e s  to  p r e d ic t th e  
a m o u n t o f c lo u d  c o v e r  a n d  v is u a l o p a c itie s . 

Ac k n o w le d g e m e n t s  

T h e  g o ld - s ta n d a r d  d a ta  f o r  th is  s tu d y  w e r e  o b ta in e d  
f r o m  th e  N A S A  L a n g le y  R e s e a r c h  Ce n te r  A tm o s p h e r ic  
S c ie n c e s  D a ta  Ce n te r  a s  p a r t o f th e  CE R E S  S 'CO O L  
P r o je c t. W e  th a n k  A s h o k  S r iv a s ta v a , M a r k  
S c h w a b a c h e r , N ik u n j O z a , D a w n  M c I n to s h , a n d  
M a r ia n n e  M o s h e r  fo r  u s e f u l d is c u s s io n s  a n d  c o m m e n ts  
o n  e a r lie r  v e r s io n  o f th is  m a n u s c r ip t. T h is  w o r k  w a s  
f u n d e d  b y  th e  I n te llig e n t S y s te m s  / I n te llig e n t D a ta  
U n d e r s ta n d in g  p r o g r a m  f o r  V ir tu a l S e n s o r s .  
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Abstract. We are developing a pixel-level
cloud-type classifier for the Multi-angle
Imaging SpectroRadiometer (MISR), an in-
strument used to study clouds and aerosols
from NASA’s Terra satellite. To augment
MISR’s existing high-level products (in-
cluding cloud masks, cloud heights, and
aerosol optical depth retrievals), our cloud-
type classifier labels each 1.1-km pixel as
clear, or as belonging to one of several types
of cloud. In the past, similar classifiers have
been developed for other remote-sensing in-
struments using various machine learning
techniques, such as artificial neural net-
works. However, support vector machines
(SVMs) are not typically used, in part be-
cause the computational cost of evaluating
new examples with an SVM can be much
higher. Our novel approach to achieving
high classification accuracy within the com-
putational requirements of the operational
MISR processing system involves training
a very large multi-class SVM using thou-
sands of training points and then apply-
ing cutting-edge reduced-set techniques to
yield a computationally manageable num-
ber of support vectors. The resulting prod-
uct will help provide new insights for those
constructing cloud climatologies, model-
ing radiative transfer through clouds, and
studying the effects of clouds on climate,
in addition to demonstrating the effective-
ness of using SVMs in a production science
setting.

1 Scientific Motivation

Because different cloud types are formed by different
mechanisms, cloud type is often indicative of underly-
ing atmospheric processes. In that regard, in satellite

data analysis it is useful to separate stratiform (lay-
ered) clouds from cumuliform (puffy) clouds, at the
very minimum. This is because the radiative and hy-
drological impacts of these two cloud types are very
different. Stratiform clouds are thin and relatively
dry clouds that cover large areas. They have a pro-
found effect on the radiative properties of the earth-
atmosphere system due to their ability to reflect large
amounts of solar radiation back to space. However,
stratiform clouds contain only a very small portion
of the total atmospheric liquid water. Cumuliform
clouds behave in the opposite manner. These clouds
cover small areas and have only a small radiative im-
pact, but contain most of the atmospheric liquid wa-
ter. Additionally, these two cloud types are indicative
of the direction of atmospheric heat transport: strati-
form clouds tend to transport heat horizontally, while
cumuliform clouds represent heat transport primarily
in the vertical.

A second motivation for classifying satellite obser-
vations of clouds into different cloud types is that this
allows satellite observations to be related to surface-
based observations. Surface weather observers are
trained to group clouds into 10 standard types and
extensive global compliations exist of these observa-
tions. Comparison between satellite and surface ob-
servations is facilitated by grouping satellite mea-
surements into similar categories. The International
Satellite Cloud Climatology Project (ISCCP), for ex-
ample, attempts to do this by associating exactly one
cloud type with particular ranges of cloud-top height
and cloud optical thickness [1]. However, comparisons
of ISCCP and surface climatologies (e.g., Hahn et
al. [2]) have found that this simple approach does
not quite work properly and ISCPP can only reliably
distinguish a limited set of combined cloud classes.
Clearly, it would be desirable to do better.
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An increasingly important motivation for cloud
classification in satellite imagery is climate monitor-
ing. Global changes in the amounts of different cloud
types is a potential signal of climate change. Within
the operational forecast community as well there is
interest in methods of automatic satellite cloud clas-
sification. Although weather forecasters typically rely
on imagery from geostationary satellites, such as the
Geostationary Operational Environmental Satellites
(GOES), techniques for automatic cloud classification
developed for other satellite instruments, such as the
Multi-angle Imaging SpectroRadiometer (MISR) on-
board NASA’s Terra satellite, could potentially lead
to new insights that could be incorporated into an
automatic cloud classifier for GOES imagery.

2 Related Work

Perhaps the most visible example of automatic cloud-
type classification using machine learning is Bankert’s
real-time classifier for GOES images available on the
web [3]. While the classification algorithm it uses
is simple (1-nearest-neighbor), the features were se-
lected carefully using a backward sequential selec-
tion (BSS) algorithm, and the system boasts an im-
pressively large collection of training data (10 cloud
types classified in over 5,000 GOES scenes). More
details about the approach are described in a Tag,
Bankert et al. paper on Advanced Very High Resolu-
tion Radiometer (AVHRR) cloud-type classification
[4]. Overall their approach leads to fast and accu-
rate classification. However, some shortcomings are
apparent, including limited detection of thin cirrus
clouds and small cumulus clouds, as well as multilayer
systems of cirrus over low clouds being misclassified
as mid-level clouds. The latter problem, in particu-
lar, occurs when low and high cloud infrared temper-
atures are averaged to obtain the associated cloud
height, a problem that would be alleviated if cloud
heights could be determined by another method.

Dozens of other papers exist on automatic satellite
cloud-type classification using learning algorithms.
Some pioneering work was done by Welch et al. [5],
comparing the use of discriminant analysis and two
types of neural networks to classify pixels in AVHRR
images as one of a number of classes, including five
cloud types. Bankert et al. [6] [7] [8] compared neural
networks to decision trees and a 1-nearest-neighbor
classifier in GOES data. Tian et al. [9] used proba-
balistic neural networks to classify 10 cloud types in
GOES images using both spatial and temporal fea-

tures. Saitwal et al. [10] extended Tian et al.’s work
to nighttime classification. Baum et al. [11] used fuzzy
logic to detect multilayer systems in AVHRR scenes
based on examples getting classified into more than
one of eight trained cloud types. Azimi-Sadjadi and
Zekavat [12] used a hierarchical arrangement of sup-
port vector machines to classify six different cloud
types in infrared GOES-8 imagery, while Lee et al.
[13] investigated using a multi-class support vector
machine to distinguish between ice and water clouds
in MODIS images. Li et al. [14] used the maximum
likelihood technique to improve on the basic cloud
classification provided in the MODIS standard prod-
uct.

3 Background

We used Support Vector Machines (SVMs) to con-
struct a cloud-type classifier for image data from
the Multi-angle Imaging SpectroRadiometer (MISR)
satellite instrument. This section provides a brief
overview of SVMs and the characteristics of the MISR
instrument.

3.1 Support Vector Machines

SVMs [15] are a popular technique for supervised
classification. Training a binary SVM is a quadratic
optimization procedure that finds an optimal hy-
perplane separating positive and negative example
vectors, balancing accuracy with generalization
performance by maximizing the margin. The margin
is simply the distance from the hyperplane to the
nearest positive and negative labeled feature vectors.
However, since most problems are not linearly
separable, SVMs typically use a kernel function that
implicitly projects two example vectors in input
space (Xi, Xj) into (possibly infinite) feature space
vectors (Φ(Xi), Φ(Xj)) and returns their dot product
in that feature space. Popular kernels (with model
selection parameters a, p, σ) include:

linear: K(u, v) = u · v,
polynomial: K(u, v) = (u · v + a)p,
RBF: K(u, v) = exp(− 1

2σ2 ||u− v||2)

It is also common to use normalized kernels, which
makes it more practical to work with high-degree
polynomials:

Knorm(u, v) := K(u, v)K(u, u)−
1
2 K(v, v)−

1
2
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The hyperplane resulting from SVM training is
defined implicitly by a vector of weights αi on the
original training examples. Many of these αi will be
zero and the associated example vectors can be dis-
carded. The example vectors whose corresponding αi

is nonzero – called support vectors – are needed in or-
der to determine the classification of new points. Note
that when a linear kernel is used, it is possible to com-
pute the hyperplane normal vector by summing the
α-weighted support vectors. For any nonlinear ker-
nel, though, the hyperplane normal vector exists in
feature space and may not have a pre-image in input
space. As a result, classifying a new example using
a SVM can be expensive, requiring one dot-product
calculation per support vector. Because more difficult
classification problems tend to require more support
vectors, SVMs have developed a reputation for being
powerful but inefficient.

SVM reduced-set methods [16] use various tech-
niques to decrease the number of support vectors,
either by eliminating those support vectors that con-
tribute the least (and re-weighting the remaining
ones) or by explicitly solving for the pre-image of
the hyperplane normal vector. While previous results
have shown impressive reductions in the number of
support vectors with minimal loss of generalization
performance on some problems, many other prob-
lems proved to be irreducible, and the reduction al-
gorithms were typically very slow. However, recent
breakthroughs (described in greater detail below)
have resulted in even more sophisticated reduced-set
techniques that overcome many of these limitations.

Although there have been methods developed for
“true” multi-class SVMs (e.g., [17]), it is usually
more practical to perform multi-class classification
by training several binary SVMs [12] [18]. Common
methods for solving multi-class problems using bi-
nary SVMs include one-vs-one, one-vs-all, and di-
rected acyclic graph (DAG).

3.2 MISR

The Multi-angle Imaging Spectroradiometer (MISR)
is one of five instruments aboard NASA’s Terra satel-
lite, which follows LandSat 7 in polar orbit around
the Earth at an altitude of 705 km with an equa-
torial crossing time of 10:30 am (local time) for the
descending portion of the orbit. MISR has nine push-
broom cameras pointed in different directions along
the orbital path, ranging from 70◦ forward to 70◦ aft-
ward. Each camera views four spectral bands (blue,
green, red, and near-infrared) with a resolution of 1.1

km × 1.1 km per pixel (plus limited coverage at 275
m × 275 m). The images are projected to a common
grid and coregistered during automatic ground pro-
cessing, resulting in nine views of each scene with a
swath width of about 350 km.

There are at least three ways that MISR’s multi-
ple angles yield cloud information not available via
conventional satellite means. First, thin clouds and
aerosols are more opaque at oblique angles because
the photon path length is longer, making these at-
mospheric constituents more apparent against the
background surface. Second, objects in MISR im-
agery can be identified by their angular signature.
Because aerosols and clouds scatter radiation dif-
ferently into different directions at different wave-
lengths, this knowledge can be exploited to help char-
acterize clouds and aerosols. Third, because the cam-
eras are registered to the surface ellipsoid, objects
above the surface appear displaced due to the paral-
lax effect (see Figure 1). Operationally, an automatic
pattern-matching algorithm is used in the instrument
software to determine the disparity of each pixel and
infer the height using triangulation. This is compli-
cated by the fact that there is a seven minute de-
lay between the imaging times of the first and last
cameras to view each scene and approximately a one
minute delay between images taken by each camera,
during which time clouds may have moved. However,
the cloud-top height (± 500 m at a spatial resolu-
tion of 1.1 km) and the height-resolved mesoscale
wind (± 4 m/s at a spatial resolution of 70.4 km)
can be retrieved operationally by various stereoscopic
combinations of views [19] [20]. The stereoscopically-
derived height provides an independent check against
the cloud-top height measurements made by other in-
struments using measurements of emitted radiation
and assumptions about the thermal structure of the
atmosphere.

While several methods have been developed to ob-
tain scientifically useful measurements from multi-
angle satellite data, the full parameter space of infor-
mation remains largely unexplored. We have found
that machine learning techniques allow us to explore
this parameter space much more quickly.

4 Previous Work

This work builds on our previous successes develop-
ing pixel classifiers for MISR [21]. We created a bi-
nary cloud mask (distinguishing cloudy pixels from
clear pixels) using a total of 156 features as input.
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Fig. 1. On the left, MISR’s view of multilayer clouds over the Molucca Sea, with the northeastern tip of the Indonesian
island of Sulawesi in the upper-left of the image, taken on December 1, 2004. On the right, MISR’s 70-degree forward
view of the same scene. Note both the increased opacity of the cirrus clouds and the vertical displacement of the
clouds due to their height above the surface. Path 111, Orbit 26354, Blocks 89-90, courtesy Langley Atmospheric
Sciences Data Center.

The features were derived from raw MISR radiances
from all four spectral bands and the three most nadir-
pointing cameras, as well as several neighboring pixels
for context. We trained two separate SVMs: one spe-
cializing in clouds over water and one over land (the
MISR standard product identifies whether each pixel
is over water or over land). We used two of MISR’s
existing cloud masks to provide training labels for
these two SVMs, but only over surfaces where we
knew the existing cloud masks tended to be accu-
rate. The resulting SVMs we trained over water and
land had 656 and 2456 support vectors, respectively.
To validate the performance, we independently la-
beled 3,500 pixels randomly distributed throughout
the globe, finding that the existing cloud masks each
had error rates of approximately 12% relative to these
expert labels, while our SVM cloud mask had an error
rate of approximately 6%.

Subsequently, we developed improved reduced-set
techniques that successfully reduced both SVMs used
in the cloud mask to 20 support vectors each. The ac-
curacy of the land SVM remained unchanged, while
the accuracy of the water SVM decreased by only
0.3%. The resulting classifier requires just slightly
more than 156 × 20 multiply-add instructions per
pixel, which we determined was fast enough to run as
part of the standard MISR data processing. We have
completed a test of processing the SVM cloud mask at
the NASA Langley Atmospheric Sciences Data Cen-
ter and are working on integrating it and making it
available as a standard MISR product later this year.

We also developed two other binary classifiers for
MISR using the same approach. Thin cirrus clouds
can have potentially large radiative effects on the
atmospheric and surface energy budgets and they
present an impediment to the operational retrieval of
clear sky atmospheric and surface properties. How-
ever, thin cirrus clouds are notoriously difficult to
detect using standard satellite remote sensing tech-
niques. Our SVM cirrus cloud detector was trained
using expert labels with essentially the same inputs
as the cloud mask described above. However, instead
of using the three most nadir pointing MISR cam-
eras, we used the three most forward cameras in the
northern hemisphere and three most aftward cam-
eras in the southern hemisphere. This approach took
advantage of the unique capabilities of MISR rela-
tive to other instruments by utilizing the increased
path length of photons being scattered in the for-
ward direction at these oblique viewing angles. Fi-
nally, a SVM smoke detector was developed to dis-
tinguish smoke and some related aerosols from cloudy
and clear pixels in MISR imagery. Because the detec-
tion, as opposed to the precise location, of the smoke
was of primary interest, we experimented with using
data from five of MISR’s nine cameras as input. This
resulted in improved detection of smoky regions due
to the increased photon path length for the oblique
cameras used, as well as the characteristic angular
signature of smoke, which was made more apparent
through the use of a larger number of angles. These
two classifiers have been validated, but not yet to the
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same degree of precision as the cloud mask. We hope
to finish the validation effort and make both these
classifiers available as MISR data products later in
the year, as well.

5 Methodology

Our previous three MISR classifiers were binary (e.g.
cloudy vs. clear). As our goal in this new research
was to develop a cloud-type classifier, we needed to
deal with many new issues associated with a multi-
class learning problem, such as how to handle ex-
amples that could conceivably belong to more than
one class. After choosing the classes to label, we be-
gan by creating expert labelings of 30 scenes, each
one approximately a quarter of a MISR swath, about
400× 5, 000 pixels. Our strategy was not to label ev-
ery pixel, nor to choose individual scattered pixels; in-
stead we used a graphical interface to rapidly “paint”
labels over the top of the image wherever we were
reasonably confident about the classification, avoid-
ing cloud edges and multilayer systems. Using this
technique we labeled over 3 million pixels across the
30 scenes. With practice, we found that MISR is par-
ticularly amenable to expert labeling by visual in-
spection, because we could rapidly flip between the
different camera views of one scene and see its unam-
biguous three-dimensional structure.

We originally considered 12 classes, made up of
4 non-cloud classes and 8 cloud types, but later
combined some of the classes that were difficult to
distinguish, resulting in the choice of the following
eight classes:

Abbrev. Class
Ocean Clear Ocean
Land Clear Land
Ice Ice or Snow
m Sc Marine Stratus or Stratocumulus
sm Cu Small Cumulus
Cb Cumulus Congestus or Cumulonimbus
Ci Cirrus
St Other Stratiform

Examples from every class showed up in at least three
distinct scenes.

To construct the feature vectors for classification,
we started with the feature vector we used success-
fully for cloud detection, which will now be described
in greater detail. One of the principal ideas behind
our feature vectors is deceptively simple: in order to

classify a single pixel, we use all the values from a
5× 5 (or larger) region of pixels surrounding the cen-
tral pixel as features. One source of inspiration for
this idea was the observation that SVMs were able
to successfully classify images of handwritten digits
from the MNIST database with a feature vector con-
sisting simply of all of the 27 × 27 grayscale values
making up the image [22].

Using these feature vectors, we trained a multi-
class SVM using the one-vs-all method. Of the 30
labeled scenes available, we arbitrarily chose 24 for
training and 6 as holdouts for validation.

To choose the SVM hyperparameters (the kernel
function and regularization parameter C), we chose
2,000 training examples (250 from each class) and
2,000 test examples. We then exhaustively searched
a space of several dozen kernel functions and values of
C from 0.1 . . . 3000, training a multi-class SVM with
each set of parameters. We chose the kernel and C
combination that had roughly the lowest test error.
However, all other things being equal, we favored pa-
rameters that resulted in fewer support vectors, based
on our general observation that the same accuracy
with fewer support vectors is more likely to gener-
alize. The best choice turned out to be a normal-
ized polynomial kernel with p = 17 and a = 1, and
C = 50.

After selecting the hyperparameters, we trained
a larger SVM using 8,000 training examples (1,000
from each class) using the one-vs-all method. (We
also tried one-vs-one and got similar results, but
one-vs-all was preferable for reducing, as will be
seen later.) On a holdout set of 8,000 examples,
the overall accuracy was 78.6%, with the following
confusion matrix:

Ocean Land Ice m Sc sm Cu Cb Ci St
Ocean 88.2% 0.0% 0.0% 0.6% 10.5% 0.0% 0.7% 0.0%
Land 0.0% 99.7% 0.0% 0.0% 0.1% 0.0% 0.2% 0.0%

Ice 0.0% 0.0% 58.5% 0.2% 0.8% 21.2% 13.1% 6.2%
m Sc 0.5% 0.0% 0.1% 66.7% 10.1% 13.6% 3.7% 5.3%

sm Cu 18.1% 2.9% 0.1% 12.5% 61.9% 0.0% 4.5% 0.0%
Cb 0.0% 0.0% 4.0% 7.0% 0.1% 87.1% 1.5% 0.3%
Ci 1.2% 0.3% 0.2% 5.4% 7.2% 2.9% 82.8% 0.0%
St 0.0% 0.0% 0.0% 4.4% 0.0% 9.9% 0.7% 85.0%

From the confusion matrix, we gathered that the
most difficult classes to separate were ice, marine
stratocumulus and small cumulus. Interestingly, we
found that ice was often being misclassified as cu-
mulonimbus, perhaps because they are both highly
reflective surfaces. However, it would be easy to dis-
tinguish between these two classes with additional
height information available from MISR.
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Fig. 2. On the left is the image of the automatically generated stereo height product for the MISR image seen in
Figure 1. Darker-colored pixels are higher above the surface, up to a maximum of about 12 km in this particular
scene. The noise is mainly due to blunders from the stereo matching algorithm. On the right is the smoothed stereo
image used to provide an additional feature for our SVM.

The misclassification of small cumulus as ocean
(and vice versa) is not unexpected. Small cumulus
cloud fields are often broken, which allows the ocean
surface to be seen between clouds. This will create
particular difficulties at the edges of cloud fields. The
vertical development of these clouds also introduces
a parallax effect that can cause the classifier to in-
correctly classify pixels as cloudy because clouds are
seen in one camera and not another.

5.1 Incorporating stereo height

Initially we were concerned about incorporating
height information because MISR’s stereo-derived
height product, while extremely accurate overall,
tends to be noisy at the pixel level. Therefore, we de-
veloped an appropriate smoothing algorithm for this
product to allow its use as an additional input for our
feature vectors. An image of the stereo height prod-
uct before and after smoothing can be seen in Figure
2.

Adding the smoothed stereo height to our feature
vector resulted in significant improvement in the
classifier performance as shown in the confusion
matrix below. Overall, after incorporating stereo
height, the accuracy improved from 78.6% to 85.5%:

Ocean Land Ice m Sc sm Cu Cb Ci St
Ocean 87.9% 0.0% 0.0% 0.6% 8.5% 0.0% 3.0% 0.0%
Land 0.0% 99.9% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%

Ice 0.0% 0.0% 87.2% 1.0% 1.5% 1.7% 2.5% 6.1%
m Sc 0.4% 0.0% 0.3% 71.0% 9.8% 7.7% 4.1% 6.7%

sm Cu 14.3% 4.3% 0.0% 12.8% 68.1% 0.1% 0.4% 0.0%
Cb 0.0% 0.0% 0.1% 6.0% 0.2% 92.1% 1.4% 0.2%
Ci 0.4% 0.4% 0.0% 3.0% 1.7% 2.9% 91.6% 0.0%
St 0.0% 0.0% 0.0% 1.6% 0.0% 9.4% 1.2% 87.8%

The confusion matrix shows that the most challeng-
ing classes all improved their accuracies significantly.

5.2 Smoothing the results and applying the
cloud mask

The resulting multi-class SVM classified each pixel as
one of eight different classes. Based on visual inspec-
tion of the results, in many regions the classification
appeared to be quite good. However, we found that
the resulting classification images were quite noisy.
As was done in [4] and several other cloud-type clas-
sifiers, we attempted to smooth the resulting image
and avoid noise. The results of our smoothed classi-
fication can be seen in Figure 3.

Rather than just using the class of each pixel in the
smoothing, we found it was advantageous to use the
relative weights of each binary SVM in the smooth-
ing process, taking advantage of the fact that we were
using a one-vs-all multi-class SVM. In the one-vs-all
paradigm, one binary SVM for each class is designed
to determine whether the example is in that class, or
in one of the other classes. The output of the binary
SVM is a scalar, indicating the distance between that
example and the decision hyperplane, with a larger
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Fig. 3. On the left is the same MISR image seen in Figure 1. On the right, the result of our final, smoothed cloud-type
classification algorithm, which has detected regions of cumulonimbus (Cb), cirrus (Ci), some small cumulus clouds
(sm Cu), some small marine stratocumulus (m Sc), water and land.

value indicating a farther distance from the hyper-
plane and the sign indicating whether it falls on the
positive or negative side. Class membership is then
decided by taking the argmax of all of the binary
SVMs.

So for every pixel we have a vector of eight binary
SVM outputs, one for each of our eight classes. In
the simplest case, one of these outputs will be posi-
tive and the other seven will be negative, indicating
that the pixel in question clearly belongs to one class.
However, for ambiguous pixels, or those on the bor-
der between regions, several classes may have positive
values, in which case the largest one is chosen as the
most likely class. In order to smooth the classifier,
then, we averaged each vector with the vectors of sev-
eral neighboring pixels, with a neighbor contributing
less depending on the square of its distance from the
pixel in question. After this averaging, the argmax of
each vector was taken to determine the class.

To better understand the consequences of this type
of smoothing, consider a single, isolated pixel classi-
fied as class 1, when all of its neighbors were classi-
fied as class 2. If the isolated pixel was very confi-
dently class 1 (the class 1 binary SVM output was
very large, and the other values were very negative),
the averaging would not change anything. However,
if the isolated pixel was right on the border, perhaps
with classes 1 and 2 having almost equal weight, then
the averaging would change the pixel’s classification
to class 2. We felt that this strategy did the best job
of encouraging regions to be more homogeneous while
allowing small heterogeneous regions when they were
detected with above average confidence. One could

imagine making the degree of smoothing a tunable
parameter.

Finally, in generating the final cloud-type classi-
fication product, we made use of our existing SVM
cloud mask and the existing MISR land/water clas-
sification to refine our results. The idea is that when
training our cloud-type classifier, we were focusing
on how best to distinguish between different types
of clouds, and less on how to determine whether a
pixel was cloudy or clear. Especially after our smooth-
ing, we found that far more pixels were classified as
some type of cloud than would normally be consid-
ered cloudy pixels. Therefore, as an additional pass,
we replaced each pixel which our SVM cloud mask
marked as “clear,” with either the clear land or clear
water class, as appropriate.

5.3 Reducing the multi-class SVM

Several higher-level products are generated from the
raw radiance data and distributed along with MISR
data. These include several cloud masks, the stereo-
derived height products, aerosol optical depths, and
top-of-atmosphere albedos. Our goal was to create a
classifier that was computationally fast enough that
we could integrate it into the data processing system
that automatically generates MISR products at the
Langley Atmospheric Sciences Data Center. While it
was difficult to determine the exact amount of pro-
cessing time potentially available, very roughly we
determined that we could run a single binary SVM
that gathered approximately 150 features and used
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in the vicinity of 200-300 support vectors. Unfortu-
nately, the multi-class SVM we had trained to do
cloud-type classification had 3,340 support vectors
(total, including all eight binary SVMs in the one-
vs-all framework), at least one order of magnitude
too many.

Some of our previous research includes methods to
classify new examples using SVMs more efficiently
[23] by reordering the support vectors on the fly, skip-
ping most of the support vectors for “easy” examples,
and only using the full SVM for the most difficult
(ambiguous) examples. While we have seen speedups
as high as 12× with this technique, actual speedups
on this particular problem were less, and any efficient
implementation of this algorithm is enormously more
complicated than the normally straightforward SVM
evaluation formula, making it a poor candidate for
integrating into a production software system.

Instead, we investigated the use of reduced-set
methods [16], which attempt to approximate the hy-
perplane normal vector using a small number of vec-
tors instead of all of the support vectors. While we
found the theory to be quite solid, the pre-image
algorithm in [16], which maps a feature space vec-
tor back to the input space, often got stuck in local
minima, making the reduction process very frustrat-
ing. Therefore, we developed our own pre-image al-
gorithm, using Differential Evolution [24] to find a
rough pre-image, then applying gradient descent to
refine it. Another improvement we made is that after
the reduced-set vectors have been computed we read-
just the weights and bias through a modified SVM
training algorithm. The details of our approach will
be presented in a future paper.

We had great success applying our new reduced-set
method to binary SVMs, for example reducing our bi-
nary cloud mask over land from 2456 support vectors
to exactly 20, with essentially no loss in overall accu-
racy. We are still researching the best way to reduce a
multi-class SVM. One straightforward technique that
we have used successfully is to reduce each of the in-
dividual binary SVMs in a one-vs-all classifier, allo-
cating a different number of support vectors to each
binary classifier based on its difficulty. Specifically,
we build each reduced binary SVM up one support
vector at a time, each round adding a new support
vector to the SVM with the lowest accuracy (relative
to the unreduced SVM). We stop when the overall
multi-class SVM has acceptible accuracy. This tech-
nique has yielded a new multi-class SVM with a total
of 300 support vectors and 84.5% accuracy, relative

to 85.5% accuracy for the unreduced SVM. In the fu-
ture, we hope to develop methods that “share” sup-
port vectors between different binary SVMs within
the multi-class classifier for possibly even greater re-
ductions. However, our current techniques have given
us SVMs that are at least in the right order of mag-
nitude that we can experiment with running them in
the operational MISR software framework.

6 Conclusions and Future Work

We have investigated the use of SVMs to perform
cloud-type classification of individual pixels in MISR
data. Using a combination of radiance and stereo
height information and a large amount of training
data, we were able to train a classifier that could
classify over 85% of the pixels correctly, relative to
human expert labels. Additionally, reduced-set tech-
niques were developed and applied to yield more ef-
ficient SVMs with similiar accuracy, but much faster
runtime for use in an operational setting.

We hope that this research helps open the door for
future use of SVMs in remote-sensing pixel classifica-
tion problems. While neural networks, decision trees,
genetic algorithms, and several other techniques have
been popular in such problems for years, support vec-
tor machines have many advantages, and now that
it is possible to use them with no associated speed
penalty, they should be considered more often.

Our immediate plans are to further develop our
reduced-set techniques for multi-class support vector
machines, continue to refine our cloud classifier with
more training examples and eventually turn a final
version of the classifier into an operational product.
In addition, we intend to explore incorporating tex-
ture features, which are likely to help distinguish be-
tween certain classes of clouds.
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Canonical Correlation, an Approximation, and the Prediction of

Protein Abundance

Anthony Bonner∗ Han Liu†

Abstract

This paper addresses a central problem of Bioinformat-
ics and Proteomics: estimating the amounts of each of
the thousands of proteins in a cell culture or tissue
sample. Although laboratory methods involving iso-
topes have been developed for this problem, we seek
a simpler method, one that uses fewer laboratory pro-
cedures. Specifically, our aim is to use data-mining
methods to infer protein levels from the relatively cheap
and abundant data available from high-throughput tan-
dem mass spectrometry (MS/MS). In this paper, we de-
velop and evaluate a method for tackling this problem.
The method is based on a simple generative model of
MS/MS data. We first show how to linearize the model
and fit it to data using Canonical Correlation Analy-
sis (CCA). Then, because CCA is computationally ex-
pensive for the large datasets we are dealing with, we
develop an efficient approximation of CCA, one that
exploits the structure of our data. We prove that the
method is correct in that it achieves a well-defined opti-
mization criterion. We also evaluate the method on sev-
eral biological datasets. The datasets themselves were
generated by MS/MS experiments performed on various
tissue samples taken from Mouse.

keywords: Bioinformatics, Proteomics, Data Min-
ing, Machine Learning, Peptides, Tandem Mass Spec-
trometry.

1 Introduction

Proteomics is the large-scale study of the thousands
of proteins in a cell [9]. In a typical Proteomics
experiment, the goal might be to compare the proteins
present in a certain tissue under different conditions.
For instance, a biologist might want to study cancer
by comparing the proteins in a cancerous liver to the
proteins in a healthy liver. Modern mass spectrometry
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makes this possible by enabling the identification of
thousands of proteins in a complex mixture [13, 3].
However, identifying proteins is only part of the story.
It is also important to quantify them, that is, to estimate
how much of each protein is present in a cell [1, 5]. To
this end, a number of laboratory methods have been
developed, notably those based on mass tagging with
isotopes [4, 12]. However, simpler, more-direct methods
may be possible, methods that do not require additional
laboratory procedures, but which are simply based on
the data provided by tandem mass spectrometers [10].
This paper is an initial exploration of this possibility.
In particular, we investigate the use of data-mining
techniques to infer protein quantity from tandem mass
spectrometry data.

1.1 Tandem Mass Spectrometry Tandem mass
spectrometry involves several phases in which proteins
are broken up and the pieces separated by mass [9, 13].
First, a complex mixture of thousands of unknown
proteins is extracted from a cell culture or tissue sample.
Since proteins themselves are too large to deal with,
they are fragmented, producing a mixture of tens of
thousands of unknown peptides. The peptides are
then ionized and passed through a mass spectrometer.
This produces a mass spectrum in which each spectral
peak corresponds to a peptide. From this spectrum,
individual peptides are selected for further analysis.
Each such peptide is further fragmented and passed
through a second mass spectrometer, to produce a
so-called tandem mass spectrum. The result is a
collection of tandem mass spectra, each corresponding
to a peptide. Each tandem mass spectrum acts as a
kind of fingerprint, identifying the peptide from which it
came. By searching a database of proteins, it is possible
to identify the protein that produced the peptide that
produced the tandem mass spectrum. In this way,
the proteins in the original tissue sample are identified.
Often, the entire process is completely automatic.

A peptide mixture is not analyzed all at once. In-
stead, to increase sensitivity, the peptides are “smeared
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out” over time (often using liquid chromatography), so
that different kinds of peptides enter the mass spectrom-
eter at different times. A typical MS/MS experiment
may last many hours, with proteins and peptides being
identified each second. Copies of a particular peptide
may continue to enter the mass spectrometer for sev-
eral seconds or minutes. As the copies enter, the pep-
tide will be repeatedly identified, once a second. In this
way, a peptide may be identified and re-identified many
times, increasing the confidence that the identification
is correct. The number of times a particular peptide
is identified is called the peptide’s spectral count , since
each identification requires the generation of a tandem
mass spectrum. A large spectral count indicates that
the peptide has been confidently identified.

In general, as protein abundance increases, so does
spectral count [10]. However, the exact relationship is
not at all clear and seems to depend on many factors,
including the amino acid sequence of the peptides and
the properties of the experimental set up. At present,
there is no complete quantitative theory relating a pro-
tein’s abundance to the spectral counts of its peptides.
This paper is an initial attempt at using data-mining
methods to develop such a theory, and using the theory
to estimate protein abundance.

1.2 Data Mining To this end, the Emili Laboratory
at the Banting and Best Department of Medical Re-
search at the University of Toronto has provided us with
datasets of several thousand proteins and peptides. The
datasets were derived from MS/MS experiments on pro-
tein mixtures extracted from various tissue samples of
Mouse. Each mixture contains tens of thousands of pro-
teins, and each protein is present in the mixture with
a specific (but unknown) abundance. A small sample
of the data is shown in Table 1. (Details on how this
data was generated can be found in [8].) Each row in
the table represents a peptide ion. The first (left-most)
column is the Swissprot accession number identifying a
protein. The second column is the amino-acid sequence
of the peptide. The third column is the spectral count
of the peptide, and the last column is its charge. Notice
that there may be many entries for the same protein,
since a single protein can produce many peptides, and
each peptide can produce ions with different amounts
of charge. Protein ID, Peptide and Charge define a key
for the table, that is, they uniquely identify a row.

High-throughput MS/MS experiments can provide
a large amount of data of this kind on which to train
and test data-mining methods. However, they also
introduce a complication, since the amount of protein

Table 1: A fragment of a data file

Protein ID Peptide Count Charge

Q91VA7 TRHNNLV IIR 4 2
Q91VA7 KLDLFAV HV K 3 2
· · · · · · · · · · · ·

input to the mass spectrometer is unknown. This can
be seen in Table 1, where spectral count is provided, but
protein abundance is not. Thus, it is in general unclear
whether a low spectral count for a peptide is due to the
properties of the peptide or to a small amount of protein
at the input. One of the challenges is to untangle these
two influences. What makes the problem approachable
is that we have data on spectral counts for peptides
from the same protein, so differences in their counts
cannot be due to differences in protein abundance.
The data-mining methods developed and tested in this
paper were chosen, in part, because of their ability to
exploit this information. In effect, they treat protein
abundance as a latent, or hidden variable, whose value
must be estimated. In addition, they lead to efficient
algorithms based on well-developed operators of linear
algebra (specifically, eigenvector decomposition).

The methods are based on a simple generative
model of MS/MS data. Because this is an initial study,
we chose the model for its simplicity and tractability,
and the goal was to see how well (or poorly) it fits the
data, and to quantify the error. The model predicts the
spectral count of a peptide based on two factors: its
amino-acid sequence, and the abundance of the protein
from which it was derived. We show that the model pro-
vides an explanation for the linear relationship between
protein abundance and spectral count observed in [10].
More importantly, we show how to use the model to
estimate protein abundance from spectral count.

Although the model is non-linear in the unknowns,
it can be linearized without difficulty (Section 2.3). In
its linearized form, the model can be fit to data using
Canonical Correlation Analysis (CCA), a well-known
statistical procedure that measures the linear relation-
ship between two random vectors [7]. However, while
we have found that CCA is quite adequate for small
datasets, we have also found that it is computationally
expensive for the large datasets we are dealing with. As
an alternative, this paper develops an efficient algorithm
for an approximation of CCA, one that avoids the need
to deal with large, dense matrices. We show that the
algorithm is correct for data of a certain form, which in-
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cludes the kind of data we are dealing with. Finally, we
evaluate the method on the real-world datasets provided
by the Emili Laboratory, and compare its performance
to CCA.

The rest of this paper is organized as follows. Sec-
tion 2 shows how to use CCA to estimate protein quan-
tity. Section 3 discusses the computational bottlenecks
of CCA and develops our approximate method. Sec-
tion 4 describes our experiments on real-world data, and
presents and discusses our experimental results. Finally,
Section 5 presents conclusions and suggests possible ex-
tensions. In addition, the appendix provides a proof
that our approximation method is correct, i.e., that it
computes a well-defined approximate optimization cri-
terion.

2 Using CCA to Mine MS/MS Data

This section first reviews Canonical Correlation Anal-
ysis (CCA), then presents our model of MS/MS data,
and finally shows how to use CCA to fit the model to
experimental data.

2.1 Canonical Correlation Analysis (CCA)
Canonical correlation analysis (CCA), first developed
by Hotelling [7], is a way of measuring the linear re-
lationship between two multidimensional random vari-
ables, X and Y. In this paper, we are interested in find-
ing the largest of the so-called canonical correlations.
This can be defined as finding a linear combination of
the X variables and a linear combination of the Y vari-
ables that are maximally correlated. More formally, if
we treat X and Y as column vectors, then we want to
find two other column vectors, α and β, such that the
correlation coefficient between x = XT α and y = YT β

has maximal magnitude. We therefore want to maxi-
mize the magnitude of the following expression:

ρ = E[(x−Ex)(y−Ey)]√
E(x−Ex)2 E(y−Ey)2

= E[αT (X−EX)(Y−EY)T β]√
E[αT (X−EX)]2 E[(Y−EY)T β]2

= αTCxyβ√
αTCxxαβTCyyβ

(2.1)

Here, Cxy = E[(X− EX)(Y− EY)T ] is the covari-
ance matrix of X and Y.

Maximizing this expression leads to the following
generalized eigenvalue equations:

{
ρ2Cxxβ = CxyC−1

yy Cyxβ

ρ2Cyyα = CyxC−1
xx Cxyα

(2.2)

The eigenvalue, ρ2, is the square of the correlation

coefficient whose magnitude we want to maximize. We
should therefore choose the eigenvectors, α and β,
with the largest eigenvalue. In other applications,
eigenvectors and eigenvalues other than the maximum
can be of interest. In general, the eigenvalues of
these equations are known as the squared canonical
correlations of X and Y, and the eigenvectors are the
canonical correlation basis vectors.

2.2 Modeling Spectral Counts This section
presents our model of MS/MS data. The model
represents a hypothesis about the way MS/MS data
is generated. As mentioned above, because this is
an initial study, the model was chosen largely for its
simplicity and computational tractability. Section 4
evaluates the model on real MS/MS data.

To keep track of different proteins and peptides, we
use two sets of indices, usually i for proteins and j for
peptides. Proteins are numbered from 1 to N, and the
peptides for the ith protein are numbered from 1 to ni.
In addition, we use y to denote spectral count, and z to
denote protein abundance. Each protein has a unique
abundance, and each peptide has a unique spectral
count. We therefore use zi to denote the abundance
of protein i, and yij to denote the spectral count of
peptide j of protein i. With this notation, the following
equation provides a simple model of spectral count:

yij = zi · eij(2.3)

This equation divides spectral count into two factors:
zi, the amount of protein from which peptide ij was
generated; and eij , the ionization efficiency of the
peptide. Ionization efficiency can be thought of as the
propensity of the peptide to ionize and contribute to
a peak, though it includes all factors that contribute to
spectral count other than the amount of protein. In this
way, we hope to untangle the amount of protein (which
we want to estimate) from all other factors. Note that
yij is observed, while zi and eij are both unknown.

Of course, Equation 2.3 is not exact. It provides
at best an approximate description of the data, and it
is not yet clear what the errors look like. The rest of
this paper spells out this model in greater detail, fits it
to real-world data, quantifies the error, and estimates
values for zi and eij in the process.

It is worth noting that the model already accounts
for an experimentally observed property of MS/MS
data. Specifically, the abundance of a protein is di-
rectly proportional to the total spectral count of its pep-
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tides [10]. Formally,

zi = bi

∑

j

yij

where bi is an (unknown) proportionality constant that
depends on the protein. The notion of ionization effi-
ciency provides an explanation for this proportionality
and a way of computing the constants bi. In particular,
it follows immediately from Equation 2.3 that

zi =

∑
j yij∑
j eij

In other words, bi = 1/
∑

j eij . Thus, according to the
model of Equation 2.3, learning ionization efficiencies,
eij , is the central problem in estimating protein abun-
dance.

It should also be noted that with the model and
data described above, we can only learn relative values
of protein abundance and ionization efficiency, not abso-
lute values. This is because any solution to Equation 2.3
is only unique up to a constant: multiplying all the zi by
a constant, and dividing all the eij by the same constant
gives another, equally good solution. However, inferring
relative protein abundance would be an extremely useful
biological result. Moreover, by using a small amount of
calibration data, the relative values can all be converted
to absolute values.

In order to estimate relative values for these un-
knowns, we need a model of ionization efficiency. In
this paper, we investigate the use of linear models, that
is, models of the following form:

eij = xij • β(2.4)

Here, β is a vector of parameters (to be learned), xij is a
vector of (known) peptide properties, and • denotes the
dot product (or inner product) of the two vectors. The
peptide properties could include such things as length,
mass, charge, amino-acid composition, and estimates of
various biochemical properties such as hydrophobicity.
Section 4 spells out the specific properties used in this
study.

Combining Equations 2.3 and 2.4 gives

yij = zi · (xij • β)(2.5)

Here, β is a parameter vector of our model, and zi, the
amount of protein, is a variable. Since the amounts
of protein are unknown, each zi is a latent, or hidden
variable, whose values must be estimated. Note that if
the values of zi were known (i.e., if they were included

in the training data), then estimating a value for β

would be a straightforward problem of multivariate
linear regression. Unfortunately, the training data does
not include this information, as can be seen in Table 1.
This makes the model non-linear in the unknowns.

Fortunately, it is not hard to transform this non-
linear model into a linear one. We simply divide both
sides of the Equation 2.5 by zi, to give the following
linear equations:

yij · αi = xij • β(2.6)

where αi = 1/zi is unknown. This, then, is our final
model. Like Equation 2.3, it is an approximation, and
our goal is to see how closely we can fit it to the
data. Since the model is linear, we can use linear fitting
methods, such as CCA.

2.3 Fitting the Model with CCA Since both
sides of Equation 2.6 contain unknowns, we cannot
estimate their values by minimizing the total error, as
in linear regression. This is because the error is trivially
minimized to 0 by setting αi = 0 and β = 0, which is
clearly incorrect. However, we can choose values for αi

and β that maximize the correlation coefficient between
the two sides of the equation. This is what CCA does.

To apply CCA we first express the problem in
matrix notation. To this end, we construct the following
sparse N ×M matrix, Y:



y11 · · · y1n1 0 · · · 0 · · · 0 · · ·
0 · · · 0 y21 · · · y2n2 · · · 0 · · ·

· · · · · · · · ·
0 · · · 0 0 · · · 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · · yN1 · · ·




where N is the number of proteins, M =
∑

i ni is the
total number of peptides, and yij is the spectral count of
peptide j of protein i. We also construct the following
p×M matrix:

X = (x11, ..., x1n1 , x21, ..., x2n2 , ..., xN1, ..., xNnN
)

where each xij is a column vector of length p, the vector
of peptide properties defined above. Finally, in addition
to these two (known) matrices, X and Y, we define
a new (unknown) column vector, α = (α1, ..., αN )T ,
where αi = 1/zi. With these definitions, Equation 2.6
can be rewritten as:

YT α = XT β(2.7)

Our aim is now to estimate values for α and β. From
the value of α, we can easily estimate an input amount
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for each protein, using ẑi = 1/αi; and from the value
of β, we can easily estimate an ionization efficiency for
any peptide, using êij = xij • β.

We use CCA to find values for α and β that maxi-
mize the sample correlation coefficient between the two
random vectors YT α and XT β. From Equations 2.2,
we need the sample covariance matrices of X and Y.
These are given by the following matrix equations:

Cxx = (X−X)(X−X)T

Cyy = (Y−Y)(Y−Y)T

Cxy = (X−X)(Y−Y)T

Cyx = (Y−Y)(X−X)T

Here, X is a matrix of sample means. That is, element
ij in matrix X is the average of all the elements in row
i of matrix X (i.e., the sample mean of peptide feature
i). Likewise for Y. With these covariance matrices,
Equations 2.2 give the values of α and β that maximize
the correlation coefficient.

Although straightforward, we have found that solv-
ing Equations 2.2 is computationally expensive, both in
terms of time and space. The main problem is the large
size of the matrix Y. The data we are dealing with
contains roughly 10,000 different peptides and 2,000
different proteins. Matrix Y therefore has dimensions
2, 000× 10, 000, and so the covariance matrix Cyy has
dimensions 2, 000× 2, 000. The first of Equations 2.2
requires inverting this matrix. However, inverting such
a large matrix requires considerable time and space, and
can lead to severe numerical problems [14]. The second
of Equations 2.2 requires inverting the covariance ma-
trix Cxx, which is not nearly so large and can easily
be inverted. However, on the left side of the equation,
we again encounter the large matrix Cyy, which makes
the generalized eigenvector equation costly to solve. In
addition, since Cyy is a N ×N matrix, where N is the
number of proteins, the cost of this method increases
rapidly with the number of proteins in the dataset.

3 An Efficient Approximation

Although it is very large, the matrix Y defined in
the previous section is also very sparse. In every
column, only one element is non-zero. By exploiting
the structure and sparseness of this matrix, we develop
an efficient algorithm for an approximation of CCA.

In CCA, the statistical measure of similarity be-
tween two random vectors is correlation coefficient. For-
mally, we want to find α and β that maximize the fol-

lowing expression:

(YT α−YT α) • (XT β −XT β)

‖YT α−YT α‖ · ‖XT β −XT β‖
(3.8)

The point to notice here is that the two vectors are
centered, by subtracting their means. The correlation
coefficient is thus the cosine of the angle between the two
centered vectors, and CCA finds α and β to minimize
this angle. Unfortunately, from a computational point
of view, the centering of the vectors causes a great
deal of problems, because it effectively destroys the
sparse structure of matrix Y. This is because the large
covariance matrix, Cyy, is defined not in terms of Y,
but in terms of Y−Y. Unfortunately, although Y is
sparse, Y is dense, so Y−Y is also dense. In fact, in
row i of matrix Y, each entry is

∑ni

j=1 yij/N , so Y has
no zeros and is maximally dense. Likewise for Y−Y.

In the approximation method developed here, we
retain the idea of minimizing the angle, but without
the requirement of centering the vectors first. That
is, we minimize the angle between the uncentered
vectors YT α and XT β, by maximizing the cosine of
the angle between them. This amounts to maximizing
the following expression:

YT α •XT β

‖YT α‖ · ‖XT β‖(3.9)

Maximizing this expression leads to the same general-
ized eigenvector equations given in Equation 2.2, ex-
cept that now the covariance matrices are defined in
terms of uncentered random variables. Thus, instead
of Cyy = (Y−Y)(Y−Y)T , we now use Cyy = YYT .

Of course, this does not change the dimensions of
any of the covariance matrices. In particular, Cyy is
still very large. However, it is now possible to simplify
Equations 2.2 so that the remaining matrices are rela-
tively small. This is shown in Theorem 1 below. In this
theorem, Yi is the column vector (yi1, yi2, ..., yini)

T , and
Xi is the matrix (xi1, xi2, ..., xini). They represent, re-
spectively, the spectral counts and peptide properties
for protein i. Note that X = (X1,X2, ...,XN ), so each
Xi is a vertical slice of the larger matrix X.

Theorem 1: Expression 3.9 above is maximized
when the parameter vector β is a solution of the follow-
ing generalized eigenvector equation:

ρ2XXT β = [
∑

i

XiYiY
T
i XT

i /‖Yi‖2] β(3.10)

Moreover, it is the eigenvector with the largest eigen-
value, ρ2. In addition, ρ = cos θ, where θ is the angle
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between the vectors YT α and XT β. Finally, the ele-
ments of the parameter vector α are given by the fol-
lowing equation:

αi = YT
i XT

i β/ρ‖Yi‖2(3.11)

Proof: Given in the appendix.

Comparing Equation 3.10 in this theorem with
Equation 2.2 in Section 2.1, the important point is
that we no longer need to compute or invert the large
covariance matrix Cyy. As for the other matrices,
Xi has dimensions p× ni, where p is the number of
properties (or features) characterizing each peptide.
Matrix X has dimensions p×M , where M =

∑
i ni

is the total number of peptides. The matrices XXT

and XiYiY
T
i XT

i thus have dimensions p× p. It is the
size of these p× p matrices that is important, since this
determines the cost of solving eigenvector equation 3.10.

Since our datasets contain roughly 10,000 peptides,
M is large. However, p, the number of peptide features
is much smaller. In this paper, we use two different
feature sets, one with p = 21 and one with p =
421, as described in Section 4. With p = 21 the
eigenvector matrices are very small. With p = 421
they are much larger, and although they slowed down
the eigenvector computations discernably, they still
posed no significant problems. Moreover, they are
considerably smaller than the covariance matrix Cyy in
Equation 2.2, whose dimensions are roughly 2000×2000,
which did cause significant computational problems.
Perhaps more importantly, the size of the p×p matrices
is independent of how many proteins or peptides are
in the dataset. Thus, computational cost will not be
significantly affected as the datasets grow.

3.1 Weighting the Data In fitting a model to data,
one may not wish to treat all data points equally, but to
place different importance on different data. To allow
for this, one can introduce weights into the optimization
criterion. For our approximation to CCA, the optimiza-
tion criterion is given by Equation 3.9, which specifies
the angle between two vectors. In this case, we can de-
fine what might be called a generalized angle, in which
different vector components are weighted differently. If
the two vectors are denoted U and V , then the general-
ized angle is defined by (the arc cosine of) the following
expression:

UT WV√
UT WU

√
V T WV

Here, W is a diagonal matrix, whose ith diagonal
element, wi, is the weight of the ith component of the
vectors. When W is the identity matrix, we get the
ordinary, unweighted angle. To compute the generalized
angle between U and V , we can use the above formula,
or we can first transform the vectors as follows:

U ′
i = Ui

√
wi V ′

i = Vi
√

wi

and then compute the unweighted angle between U ′ and
V ′. This latter approach shows that giving weight wi to
data point (Ui, Vi) is equivalent to simply multiplying
Ui and Vi by

√
wi. This makes intuitive sense, since the

angle between two vectors is more strongly influenced
by large vector components than by small ones.

In the case of our MS/MS data, this corresponds
to assigning a different weight to each peptide and
transforming its spectral count and feature vector as
follows:

y′ij = yij
√

wij x′ij = xij
√

wij

where wij is the weight assigned to peptide j of protein
i. We then apply Theorem 1 to y′ij and x′ij , instead
of to yij and xij . The choice of what weights to use
is heuristic, and in our experiments, we chose two dif-
ferent sets of weights, wij = ||Yi|| and wij = 1/||Yi||,
respectively. These weights are a simple attempt to ad-
dress two different sources of noise and error. The first
set of weights emphasizes peptides from proteins with
high spectral counts, since they have a higher reliabil-
ity and a better signal-to-noise ratio. The second set of
weights attempts to stabilize the model error, assuming
that peptides from proteins with larger spectral counts
will tend to have larger error.

4 Experiments

This section uses real-world data to experimentally eval-
uate the data-mining methods and models described
above. The main evaluation strategy is ten-fold cross
validation, with correlation coefficient used to measure
the fit of a learned model to the testing portion of the
data. The main difficulty in carrying out the evalua-
tion was the distribution of the spectral counts, which
ranges over several orders of magnitude and is highly
skewed, with most data concentrated at very low val-
ues. To deal with this difficulty, we use the Spearman
rank correlation coefficient to measure the goodness-of-
fit [2]. Unlike the more common Pearson correlation co-
efficient, which measures linear correlation, Spearman’s
coefficient measures monotone correlation and is insen-
sitive to extreme data values. In addition, we use plots
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of observed v.s. estimated values to provide an informa-
tive visualization of the fit.

4.1 Study Design We evaluated the data-mining
methods on three datasets derived from tissue samples
taken from Mouse. Similar in form to Table 1, the
datasets were provided by the Emili Laboratory at the
Banting and Best Department of Medical Research at
the University of Toronto. We refer to these datasets
as Mouse Brain Data, Mouse Heart Data, and
Mouse Kidney Data. In each of these datasets, many
proteins have multiple entries, each entry corresponding
to a different peptide. In fact, the vast majority of
entries correspond to proteins of this type. However,
some proteins have only one entry, since they give
rise to only one observable peptide. Such proteins
provide no information about protein abundance, so
we remove them from the datasets. After removal,
the Brain dataset contains 8,527 peptides and 1,664
proteins, Heart dataset contains 7,660 peptides and
1,281 proteins, and the Kidney dataset contains 7,074
peptides and 1,291 proteins.

For the data-mining methods developed in this pa-
per, each peptide must be represented as a vector, x.
This section evaluates two ways of doing this, using vec-
tors with 21 features and 421 features, respectively. The
vectors with 21 features represent the amino-acid com-
position of a peptide. Since there are twenty different
amino acids, the vector has 20 features, (x1, ..., x20),
where the value of feature xi is the number of occur-
rences of a particular amino acid in the peptide. In
addition, the vector has a 21st feature, x0, whose value
is always 1, to represent a bias term, as is common in
data-mining and machine-learning models [6]. The vec-
tors with 421 features include the original 21 plus an
additional 400 features representing the dimer compo-
sition of a peptide. A dimer is a sequence of two amino
acids, and since there are 20 distinct amino acids, there
are 400 distinct dimers.1

We evaluated numerous combinations of feature
vector, data-mining method and weighting scheme. Due
to space limitations, we present only five of them here.
In addition, because of the time required to execute
CCA, we used it in only one combination: unweighted
and with vectors having 21 features. We also evalu-
ated four versions of the approximate method devel-
oped in Section 3. The first two versions are both
unweighted and use vectors with 21 features and 421

1In [11] we explore other peptide features, including peptide
charge.

features, respectively. We refer to these two versions
as Approx-21 and Approx-421. The other two ver-
sions are both weighted and use vectors with 21 fea-
tures. The two weighting schemes used are wi = ||Yi||
and wi = 1/||Yi||, as described in Section 3.1.

Using ten-fold cross validation, we evaluated each
of these five data-mining methods on each of the three
Mouse datasets. Thus, each method was trained on
nine tenths of the data (the training set), and the
fitted model was then evaluated on the remaining one
tenth of the data (the test set), and this was repeated
in ten possible ways. Each training session produced
an estimate, β̂, of the parameter vector β, and an
estimate, ẑ , of the input amount for each protein in
the training set. Using β̂, we estimated the ionization
efficiency of each peptide in the entire dataset, using the
formula ê = x • β̂, where x is the vector representation
of the peptide. Applying univariate linear regression
to Equation 2.3, we then estimated an input amount,
ẑ , for each protein in the test set. We then estimated
the spectral count of each peptide in the entire dataset,
using ŷ = ẑ · ê. Finally, we compared the estimated and
observed spectral counts (that is, ŷ and y) by computing
Spearman rank correlation coefficients.

The results are shown in Table 2. In this table, each
column corresponds to a Mouse dataset, and each row
corresponds to a data-mining method. Each position in
the table shows four numbers, stacked vertically. The
top two numbers are the mean and standard deviation
of the correlation coefficient of ŷ and y on the training
data. The bottom two numbers are the mean and
standard deviation of the correlation coefficient on the
test data. (Since at this stage, we are only interested
in rough estimates of correlation coefficient, the ten
estimates produced by ten-fold cross validation are
enough.) In addition, by dividing ŷ and y by ẑ , we get
two different estimates of ionization efficiency, which we
denote ê and e, respectively. The correlation coefficient
between these two estimates is what CCA tries to
maximize. Thus, while the correlation coefficient of ŷ

and y measures the ability of the fitted model to predict
experimental observations, the correlation coefficient of
ê and e provides the most direct measure of fit between
the model and the data. The results are shown in
Table 3, which has the same format as Table 2.

4.2 Results The first point to notice is that of all
the methods that use vectors with 21 features, CCA
provides the best fit to the training data in Table 3.
(only Approx-421 produces a better fit, and only on
the Kidney data, but it uses more features.) This is
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Table 2: Correlation of y and ŷ on real data

Method Statistics Brain Heart Kidney
Data Data Data

CCA Mean Train: 0.0350 0.0273 0.0335
Std Train: 0.0292 0.0162 0.0413
Mean Test: 0.3694 0.2575 0.3563
Std Test: 0.1118 0.1683 0.0865

Approx Mean Train: 0.2180 0.3319 0.2850
-21 Std Train: 0.0356 0.0135 0.0583

Mean Test: 0.4190 0.4250 0.4109
Std Test: 0.1133 0.0906 0.0705

Approx Mean Train: 0.0660 0.1299 0.1742
-421 Std Train: 0.0529 0.1631 0.0745

Mean Test: 0.2869 0.2839 0.4090
Std Test: 0.1975 0.1098 0.0999

Weighted Mean Train: 0.2121 0.4004 0.3518
Approx Std Train: 0.0678 0.0935 0.0363
w = |y| Mean Test: 0.4225 0.4406 0.4302

Std Test: 0.1004 0.0934 0.0951

Weighted Mean Train: 0.2568 0.3811 0.3005
Approx Std Train: 0.0067 0.0168 0.0186
w = |1/y| Mean Test: 0.3924 0.4223 0.3999

Std Test: 0.0924 0.0799 0.0586

to be expected since CCA maximizes the correlation
coefficient, which is what the table measures. On the
other hand, Approx-21 provides the best fit to the test
data. The same is true in Table 2, where Approx-21
provides better test predictions of y, the spectral count
(the main biological observable). These results suggest
that while our method may be an approximation of
CCA, it may also be more appropriate for this problem,
in terms of accuracy as well as speed.

The effect of the weighted methods is inconclusive.
In Table 3, the unweighted Approx-21 has consistently
better performance on the test data than either of the
two weighted schemes, but not dramatically better. In
Table 2, the three methods perform comparably on the
test data, though weights of |1/y| seem to be marginally
best, and weights of |y| seems to be marginally worst,
with Approx-21 in between.

The effect of the larger feature vector is more
conclusive. If we compare the Approx-21 and Approx-
421 methods in Table 3, we can see that Approx-421
shows evidence of overfitting, since the fit on the testing
data is often much worse than on the training data. The
400 dimer values included among the 421 features thus
appear to have little predictive value. Biologically, this
a useful negative result.

Table 2 shows some apparently anomalous patterns.

Table 3: Correlation of e and ê on real data

Method Statistics Brain Heart Kidney
Data Data Data

CCA Mean Train: 0.6027 0.5929 0.5971
Std Train: 0.0042 0.0054 0.0040
Mean Test: 0.1054 0.0459 0.2049
Std Test: 0.0763 0.0486 0.0846

Approx Mean Train: 0.4298 0.3921 0.4078
-21 Std Train: 0.0057 0.0081 0.0074

Mean Test: 0.2759 0.2234 0.2530
Std Test: 0.0432 0.0605 0.0485

Approx Mean Train: 0.5460 0.5469 0.6080
-421 Std Train: 0.1998 0.2616 0.0071

Mean Test: 0.0982 0.0913 0.2335
Std Test: 0.1125 0.1058 0.0424

Weighted Mean Train: 0.4613 0.3909 0.3916
Approx Std Train: 0.0051 0.0104 0.0135
w = |y| Mean Test: 0.2021 0.1163 0.2272

Std Test: 0.0737 0.0788 0.0456

Weighted Mean Train: 0.3118 0.2995 0.3072
Approx Std Train: 0.0056 0.0070 0.0093
w = |1/y| Mean Test: 0.1999 0.1786 0.1905

Std Test: 0.0349 0.0528 0.0376

For instance, the fit on the testing data is often better
than on the training data. Also, Approx-21 has a better
fit to the training data than Approx-421, even though
the features used in Approx-21 are a subset of those used
in Approx-421. These patterns are probably a result of
comparing ŷ and y, whereas the data-mining methods
try to fit ê and e. The same patterns are not present in
Table 3, which compares ê and e.

In addition to the measurements presented in Ta-
bles 2 and 3, Figures 1 and 2 provide a visual repre-
sentation of how well the estimated models fit the data.
In each figure, the horizontal axis is ê, the vertical axis
is e, and each point represents a single peptide. Fig-
ure 1 was generated by the Approx-21 method, and Fig-
ure 2 by the Approx-421 method, with both trained on
the entire Kidney dataset. The other methods gener-
ate similar figures. The first point to notice is that in
both figures, the vast majority of values of ê and e are
positive, which is how things should be, since ioniza-
tion efficiency is inherently positive. The Approx-421
method has more negative points than Approx-21, but
again, this could be a result of overfitting. The second
point to notice is that each figure appears to consist of
two components—a fairly linear diagonal component,
and a less-linear horizontal blob. This suggests that
there are two populations of peptides, those whose ion-
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ization efficiency is well-modeled by a linear function,
and those whose ionization efficiency is much less pre-
dictable. This would explain why the correlation coef-
ficients in Table 3 are low. It also suggests a natural
topic for future research: characterizing those peptides
that can be modeled linearly.
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Figure 1: e vs. ê as estimated by Approx-21.
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Figure 2: e vs. ê as estimated by Approx-421.

5 Conclusions and Future Directions

This paper developed and evaluated a data-mining
method for estimating protein levels from high-
throughput Tandem Mass Spectrometry (MS/MS)
data. The method is based on a simple generative model
of MS/MS data. We showed how to linearize the model
and fit it to data using Canonical Correlation Analysis
(CCA). However, for the large data sets we are work-
ing with, we found CCA to be computationally expen-

sive. As an alternative, we developed an efficient algo-
rithm for an approximation to CCA, one that exploits
the structure of our data.

We provided a proof of correctness of the method,
and we evaluated its effectiveness on real MS/MS data
derived from tissue samples of Mouse. The evalua-
tions included three different tissue samples, two dif-
ferent vector representations of peptides, three different
schemes for weighting the data, and three different eval-
uation measures (two based on correlation coefficients
and one based on data visualization). The results sug-
gest that our method may be better than CCA at fitting
the model to MS/MS data. Biologically, they suggest
that spectral count is not influenced by the dimers in a
peptide. They also suggest that there may be two types
of peptide, only one of whose ionization efficiency can
be adequately modeled by a linear function.

This research is just a first step, and additional work
is needed before protein levels can be predicted accu-
rately. This includes developing non-linear models of
ionization efficiency (e.g., models based on regression
trees, neural nets, or support vector machines), iden-
tifying those peptides for which linear models are ade-
quate, and investigating additional peptide representa-
tions, especially ones that retain more of the sequential
content of a peptide. Other possibilities include devel-
oping more sophisticated models of the entire MS/MS
process, especially models that account for interactions
between peptides in the mass spectrometer.

Finally, the methodology of Section 4 evaluates a
model in terms of its ability to predict the spectral
counts of peptides, based on peptide properties and pre-
dicted protein abundance. The ability to accurately
predict spectral counts in this way would be strong
evidence that a model is correct, and would suggest
that protein abundance was accurately predicted. How-
ever, conclusive proof requires a more direct compar-
ison with known protein amounts (e.g., as measured
by the more laboratory-intensive isotope marker exper-
iments [4, 12]).
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6 Appendix: Proof of Theorem 1

Observe that the maximum of expression 3.9 is the same
as the maximum of the simpler expression YT α •XT β

subject to the constraints ‖YT α‖ = 1 and ‖XT β‖ = 1.
In fact, α and β maximize the unconstrained expression
if and only if α′ and β′ maximize the constrained ex-
pression, where α′ = α/‖XT α‖ and β′ = β/‖XT β‖.
It is therefore sufficient to maximize the simpler, con-
strained expression. To carry this out, we use Lagrange

multipliers and maximize the following expression:

YT α •XT β − λ(‖YT α‖2 − 1) − µ(‖XT β‖2 − 1)

It is not hard to see that this expression is equivalent
to the following:
∑

i

αiY
T
i XT

i β − λ(
∑

i

‖αiYi‖2− 1) − µ(‖XT β‖2− 1)

Taking partial derivatives with respect to β and αi and
setting the results to 0 gives the following equations:

∑

i

αiXiYi = 2µXXT β(6.12)

Y T
i XT

i β = 2λαi‖Yi‖2(6.13)

Left-multiplying Equation 6.12 by βT gives

βT
∑

i

αiXiYi = 2µβT XXT β(6.14)

= 2µ‖XT β‖2(6.15)

= 2µ(6.16)

since, by our constraint, ‖XT β‖ = 1. In a similar
fashion, multiplying Equation 6.13 by αi and summing
over i gives

∑

i

αiY
T
i XT

i β = 2λ
∑

i

α2
i ‖Yi‖2(6.17)

= 2λ‖YT α‖2(6.18)

= 2λ(6.19)

since, by our constraint, ‖YT α‖ = 1. Note that
Equations 6.16 and 6.19 can be rewritten as follows:

2λ = YT α •XT β = 2µ(6.20)

In other words, λ = µ = ρ/2, where ρ is the value we
are maximizing. From this and Equation 6.13, it follows
immediately that

αi = Y T
i XT

i β/ρ‖Yi‖2(6.21)

This proves Equation 3.11. To prove Equation 3.10,
note that from Equations 6.12 and 6.21, we get

2µρXXT β = [
∑

i

XiYiY
T
i XT

i /‖Yi‖2] β

The result follows immediately, since 2µρ = ρ2.
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Abstract. We have developed a software
library, LibFeature, that greatly simplifies
the task of extracting feature vectors from
raw data. The instructions for computing
feature vectors from the input data are
written in a high-level language, which can
be interpreted in real-time, but because the
language is deterministic, it can be exe-
cuted on many feature vectors in parallel,
resulting in performance comparable to ef-
ficient C code. We describe the capabil-
ities of LibFeature, the Feature Descrip-
tion Language (FDL), the internal archi-
tecture and optimizations, and then show
some benchmarks of its performance, while
using realistic examples of constructing fea-
tures from scientific image and time-series
data throughout.

1 Introduction

When applying a machine learning or data mining
algorithm to a new data set, it is often the case that
the majority of the researcher’s time is spent writing
code to parse the data set and manipulate it into a
form that can be used by the algorithm. Many such
algorithms expect data to be in the form of feature
vectors, each of which contains all of the informa-
tion that the algorithm has available about one input
example. For scientific and engineering data sets, fea-
ture vectors are typically composed of all real num-
bers representing measurements such as the image
intensity at a particular pixel, or the electrical cur-
rent of an instrument at a particular time. Assuming
that these values are already available in data files of
a known format, various operations might need to be
done in order to construct feature vectors from the
raw data, including:

1. Combining data from multiple files or multiple
tables, for example if each band of a multispectral
imager is stored in a separate array

2. Changing the units or normalizing values so that
all elements in each feature vector are approxi-
mately the same magnitude

3. Computing features based on mathematical func-
tions of raw values, for example computing the
Normalized Difference Vegetation Index (NDVI)
given radiance at both red and near-infrared
wavelengths

4. Converting from categorical features to numeri-
cal, for example a sensor that reads OFF, READY,
or ERROR could be represented by the features 0,
1, and 2, or alternatively by the vectors (1, 0, 0),
(0, 1, 0), and (0, 0, 1)

5. Augmenting the feature vector for one particular
time or location with features from neighboring
examples, for context

6. Filtering out feature vectors when one of the fea-
tures is missing or bogus, or alternatively, inter-
polating the value of missing features in that case

We have written a software library, called LibFeature,
that attempts to make this process easier by allow-
ing one to specify the commands to produce a feature
vector in a high-level language. Because LibFeature is
highly optimized and because of the inherent paral-
lelizability of the problem, it is usually possible to use
LibFeature without suffering any speed penalty for
using the additional layer and the parsing of the high-
level language. In fact, LibFeature is often within a
factor of two of a straightforward C implementation,
and thus it is fast enough to be used in near-real-time
systems.

One of the major challenges in designing a soft-
ware library to replace a programming task that is
time-consuming but not difficult, is that the new soft-
ware library must be especially clean, lightweight,
portable, and easy to use, otherwise most people will
find it easier to just reinvent the wheel each time
rather than introduce a dependency on another li-
brary. LibFeature is written in very portable C and
is designed to compile and run on almost any modern
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computing platform, including Windows, Mac OS X,
Linux, and any modern Unix system. It is powerful
enough to handle surprisingly complicated calcula-
tions, but the most common tasks are designed to be
as easy as possible.

In this paper, we will describe an outline of the
system and the major capabilities and limitations, in-
troduce the feature description language, show some
examples of many common tasks that can be ac-
complished using LibFeature, discuss how LibFeature
works and some of the optimizations it uses in or-
der to achieve good performance, and finally exam-
ine some benchmarks comparing its performance to
C programs.

2 Related Work

While we are not aware of any previous work to de-
velop a software library specifically for constructing
feature vectors for machine learning and data mining
use, nevertheless many other software programs and
systems served as inspiration or guidance for various
aspects of LibFeature.

The idea of constructing a virtual matrix contain-
ing all of the results and then accessing only individ-
ual rows (feature vectors) as needed was inspired by
the typical use of Structured Query Language (SQL)
[1] within a high-level programming language. A pro-
gram accessing an SQL database will typically use
one function to execute an SQL query, which returns
a handle to a result set (e.g., SQLExecute in the stan-
dard SQL Call Level Interface (SQL/CLI)). The pro-
gram then calls a separate function to access indi-
vidual rows from the result set (e.g., SQLFetch in
SQL/CLI).

The idea of compiling a high-level language into an
intermediate bytecode which can then be executed
more quickly was inspired primarily by Java’s byte-
code [2] [3], which popularized the concept. Finally,
the idea of using a somewhat restricted high-level
language to specify instructions that are executed
quickly on thousands of vectors in parallel is very sim-
ilar to pixel shading languages such as the OpenGL
Shading Language [4], which allows programmers to
write simple programs that are executed directly on
a graphics card to determine the final color of each
pixel in a 3-D rendered image.

3 System Outline

LibFeature is initialized with one or more input ar-
rays, and a Feature Description Language (FDL) pro-
gram specifying how to create the feature vectors.
On initialization, LibFeature parses the program but
does not compute any actual feature vectors, but in-
stead returns a virtual matrix of feature vectors. For
example, if you have a 50 × 50 image of pixels and
each feature vector has 7 features, the virtual matrix
would be of size 2, 500 × 7. (By convention, we as-
sume that the matrix is stored in row-major order, in
which case each feature vector is one row. It is equally
correct, however, to imagine a column-major matrix
where each feature vector is a column; this may be
preferable to Fortran and Matlab users, and in either
case the memory representation is the same.)

From a high-level language, you then query LibFea-
ture for a single row of the virtual matrix (one feature
vector), a set of contiguous rows, or an arbitrary list
of rows. LibFeature is designed to work with very
large virtual matrices that could never be computed
and stored in memory all at once; specifically there
is no limitation that the number of total elements in
the matrix fit in one 32-bit integer. It is quite com-
mon to initialize a virtual matrix with ten trillion
elements, but only actually compute a few thousand
rows randomly scattered throughout the matrix.

Internally, LibFeature works with only floating-
point numbers. While input arrays are allowed to be
any numerical data type, everything is converted to
(your choice of single- or double-precision) floating-
point values first in the resulting feature vector. This
was a reasonable simplifying design decision because
on modern CPUs there is little performance differ-
ence between floating-point and integer calculations.

3.1 Input Arrays and Dimensions

LibFeature can read from arrays in memory, or di-
rectly from binary files on disk. When reading from
disk, you can specify the data type, start offset, endi-
anness, and dimensions, or LibFeature can determine
it automatically from the file’s header (supported
file types currently include BMP, Matlab, NetCDF,
PGM, PPM, and TIFF). (LibFeature can be used
with numerical data stored in ASCII text files, too,
but currently this requires reading the entire file into
memory first, so it does not scale as well.) LibFeature
works with arbitrary multidimensional arrays, but it
requires that you specify which dimensions measure
unique data points (extrinsic dimensions), and which
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dimensions measure different fields within the same
data point (intrinsic dimensions). For example, con-
sider a typical color image file with dimensions of
640 × 480 pixels, and three color components (red,
green, and blue) per pixel. The total length of the file
is 640× 480× 3 elements, however only 640× 480 of
these are unique data points. The last dimension is
an intrinsic dimension, because it counts the number
of elements within each pixel (in this case, 3). LibFea-
ture uses the convention of using positive numbers to
denote extrinsic dimensions, and negative numbers
to denote intrinsic dimensions, given in the order of
fastest-moving to slowest-moving.

Most color 640× 480 images, then, would have di-
mensions (−3, 640, 480) because the file is stored like
this:

640︷ ︸︸ ︷
480


RGB RGB RGB . . . RGB
RGB RGB RGB . . . RGB

...
. . .

...
RGB RGB RGB . . . RGB

Users of scientific image datasets may be used to call-
ing this the Band-Interleaved-by-Pixel (BIP) format.
However, some image files store the red, green, and
blue channels as separate planes, meaning that the
first 640 × 480 elements in the file are for the red
channel, which is followed by all of the green chan-
nel, and then all of the blue. Scientific users would
call this a Band-Sequential (BSQ) file. In this case,
the dimensions that you pass to LibFeature would be
(640, 480,−3):

640︷ ︸︸ ︷
480


R R R . . . R
...

. . .
...

R R R . . . R

480


G G G . . . G
...

. . .
...

G G G . . . G

480


B B B . . . B
...

. . .
...

B B B . . . B

The default assumption in LibFeature is that you
want to generate exactly one feature vector per data
point. In section 4.1, we will see how to exclude
some data points from getting turned into feature

vectors, and in section 4.2, we will see how to gen-
erate multiple feature vectors from one data point.
But most of the time there is a direct correspondence.
The concept of extrinsic and intrinsic dimensions and
LibFeature’s convention of using negative indices is a
surprisingly powerful way to represent mappings be-
tween the input array and feature vectors. As a more
complicated example, suppose that you want to take
the same image above, but you only want 320 × 240
feature vectors - one for each 2×2 group of pixels. All
that is required is to tell LibFeature that the dimen-
sions of the file are (−3,−2, 320,−2, 240). LibFeature
can infer from this that there will be 320×240 feature
vectors, and makes it effortless for you to combine el-
ements from the four pixels in each 2× 2 group into
each feature vector. Another more common illustra-
tion of the power of this convention is that when using
LibFeature, switching from a BSQ to a BIP input file
often requires changing only one line of code.

3.2 Feature Selection

A common task in machine learning problems is to
start with a large feature set containing dozens or
hundreds of potential features, and use a feature se-
lection algorithm to choose a subset of features out of
these. LibFeature is designed to make this quite easy
and efficient. At any time, you can pass LibFeature
a mask array, specifying which of the columns of the
virtual matrix, corresponding to features, you are in-
terested in. Not only will LibFeature take this into
account, returning only the columns of the virtual
matrix of interest from then on, but it also quickly
re-optimizes its computation to avoid unneeded com-
putations. Thus, there is no penalty for writing an
FDL program to compute every possible feature you
could imagine, and then later selecting the actual fea-
tures you want to use empirically.

4 FDL: The Feature Description
Language

The Feature Description Language (FDL) is used to
specify how each feature vector is constructed from
the input arrays. The syntax is based on Lisp-like
S-expressions, and while it contains many capabili-
ties commonly found in programming languages (in-
cluding many built-in mathematical functions, condi-
tionals, user-defined functions, and macros) it is an
imperative language and purposefully does not in-
clude any flow control. The reason for the lack of
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flow control is that the same commands are applied
to thousands of feature vectors in parallel, allowing
for substantial optimizations.

Recall that S-expressions use prefix notation, where
the name of the function or operator is always the
first element of a parenthesized list, and the argu-
ments follow. For example, the formula to compute
the approximate area of a circle given its radius r
could be expressed as:

(* 3.14159 (* r r))

An FDL program produces one feature vector given
one particular input data point. The command to
produce a feature is output. To retrieve the value
of an input data point (pixel, in the case of an im-
age), simply use the name of the input array (which
was assigned during initialization) as if it was a func-
tion. Supposing that our RGB (−3×640×480) image
was named myimage, then the simplest possible FDL
program would be:

(output (myimage))

This program would only result in one feature per
pixel. To output three features, one each for red,
green, and blue, pass an argument to myimage in-
dicating the offset of the element you want:

(output (myimage 0))
(output (myimage 1))
(output (myimage 2))

A 0 is always implied if there is no argument. Note
that the offset can appear in any dimension, not just
the first dimension. So it would be very easy to make
each feature vector contain six features - the RGB
values of the current pixel, and the RGB values of
the pixel above and to the left of that one:

(output (myimage 0 0 0))
(output (myimage 1 0 0))
(output (myimage 2 0 0))
(output (myimage 0 -1 -1))
(output (myimage 1 -1 -1))
(output (myimage 2 -1 -1))

Note that the order of the offsets corresponds to the
order of the dimensions: the first offset is relative to
the fastest-moving dimension, and so on. Finally, note
that when an offset takes you out of the bounds of an
image, LibFeature replaces those features with NaN
(not-a-number). It is easy to simply eliminate any
feature vectors that have any NaNs in them later.

FDL lets you create variables using the set com-
mand, and it also comes with most standard mathe-
matical functions. Here’s a more complicated exam-
ple, then, that outputs the three features per pixel,
but normalizes them so that they always sum to 1:

(set red (myimage 0))
(set green (myimage 1))
(set blue (myimage 2))
(set sum (+ red green blue))
(output (/ red sum))
(output (/ green sum))
(output (/ blue sum))

This works as expected, unless the red, green, and
blue values happen to all be 0. LibFeature will prop-
erly return NaNs when this happens, but if you would
prefer to output zeros instead, use a conditional: (if
expr true-value false-value)

(set red (myimage 0))
(set green (myimage 1))
(set blue (myimage 2))
(set sum (+ red green blue))
(output (if (== sum 0) 0 (/ red sum)))
(output (if (== sum 0) 0 (/ green sum)))
(output (if (== sum 0) 0 (/ blue sum)))

Note that like C, Java, Perl, etc., Libfeature uses a
double-equals (==) to test for equality.

As a final example, here is an FDL program that
averages the pixel values over a 3 × 3 region. This
will introduce a for loop. Even though FDL does
not have any loops that execute a different number
of times depending on the status of real-time calcu-
lations, it does include constructs that allow loops
that execute a fixed number of times. There are more
variations, but the simplest syntax for a for loop
is (for variable (seq start stop) command [com-
mands. . .]), where seq is a built-in function that
returns a list of elements to be iterated over, from
start to stop, inclusive. Here’s the code:

(set red 0)
(set green 0)
(set blue 0)
(for i (seq -1 1)
(for j (seq -1 1)
(set red (+ red (myimage 0 i j)))
(set green (+ green (myimage 1 i j)))
(set blue (+ blue (myimage 2 i j)))))

(output (/ red 9))
(output (/ green 9))
(output (/ blue 9))
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4.1 Validation

In the most recent example FDL program above, one
problem is that for all of the pixels along the edges
of the image, the 3× 3 neighborhood extends outside
the image bounds, resulting in NaNs. One way to
solve this would be to change the FDL code so that
it only sums the values if they are not NaN. How-
ever, sometimes it might make more sense to simply
exclude those pixels from becoming feature vectors.
So for our 640×480 image, we would only end up with
638 × 478 feature vectors. In LibFeature this can be
done using the require command. When the argu-
ment to require evaluates to false, the entire feature
vector is marked as invalid. (Then at runtime, the
user can choose to extract all feature vectors in a
given range, or only the valid feature vectors in that
range.) To test if a value is not NaN, you can use
the finite function. Here is the above program with
validation:

(set red 0)
(set green 0)
(set blue 0)
(for i (seq -1 1)
(for j (seq -1 1)
(set red (+ red (myimage 0 i j)))
(set green (+ green (myimage 1 i j)))
(set blue (+ blue (myimage 2 i j)))))

(require (finite red))
(require (finite green))
(require (finite blue))
(output (/ red 9))
(output (/ green 9))
(output (/ blue 9))

Note that it would have worked equally well to put
the require inside of the for loop. When there are a
lot of feature vectors that will be marked as invalid,
it is usually fastest to do the validation as early as
possible, because LibFeature can stop computing the
feature vector as soon as it is marked invalid. When
most vectors will be valid, it’s best to execute the
require command as few times as possible.

4.2 Variations

One way to cut down on overfitting in machine learn-
ing problems is to jitter the input, turning each input
point into multiple feature vectors, each one offset by
a small amount. LibFeature makes it easy to have one
input point result in multiple feature vectors. Simply

pass an initial argument to the output and require
commands indicating the 0-based index of the feature
vector to be output. Each different feature vector is
then called one variation. Here’s a simple FDL pro-
gram that outputs two feature vectors per pixel: one
vector is the original pixel, and the other is a darker
version of the same pixel:

(set red (myimage 0))
(set green (myimage 1))
(set blue (myimage 2))
(output 0 red)
(output 0 green)
(output 0 blue)
(output 1 (* 0.9 red))
(output 1 (* 0.9 green))
(output 1 (* 0.9 blue))

4.3 Multiple input arrays

In all of the examples above, we have been assuming
that LibFeature took just a single input array. How-
ever, LibFeature was designed to work with multiple
inputs. There are two common ways that multiple
inputs are used. The first way is when the data for
a single image or other dataset is already stored in
multiple files. For example, a color image might be
stored as three separate files named myimage.red,
myimage.green, and myimage.blue. In this case, you
would initialize LibFeature with all three arrays and
give them different names. Since the dimensions of
all of the files are the same, LibFeature would auto-
matically align them and generate only one set of
feature vectors. The second way that multiple in-
puts can be used is when you want to concatenate
feature vectors from multiple, independent files. If
you initialize LibFeature with multiple input files
but give them all the same name, LibFeature will
process feature vectors from the files consecutively.
So if you had two images, one 640 × 480 and one
800× 600, LibFeature would return a virtual matrix
with 640 · 480 + 800 · 600 = 787, 200 rows. This is
particularly useful for training machine learning al-
gorithms on a random subset of vectors. Rather than
computing feature vectors for every pixel in hundreds
of images, simply initialize LibFeature with all of the
images, get one virtual matrix, and then retrieve ran-
dom rows from that matrix until training has con-
verged.
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4.4 Labels

Training a supervised classifier requires a class label
for every feature vector. While it would be possible to
simply denote the last element of each feature vector
as the class label, in practice it is often convenient to
have the labels available separately. LibFeature pro-
vides a special mechanism to output a single label
associated with each vector, using the label output
command.

5 Limitations and workarounds

While FDL is powerful enough to do many computa-
tions and generate surprisingly complex feature vec-
tors (see section 7.2), there are certainly several types
of features that FDL is not adept at expressing. In
particular, FDL assumes that each feature vector can
be generated independently and deterministically. As
a simple example, there is no way in FDL to specify
that a particular feature is to be normalized, because
this would require scanning through the entire in-
put first. One solution is to use LibFeature in two
passes: In the first pass, LibFeature can be used to
scan the input files and return vectors containing the
values to be normalized. The program can then com-
pute the normalization coefficients, and call LibFea-
ture a second time with these coefficients in the FDL.
As another example, it is common to compute the
wavelet decomposition of an image to derive texture
features, but FDL is not designed for transformations
that operate on an entire image at once. In this case,
it is best to use another program to preprocess in-
put images and generate transformed images. LibFea-
ture can still be useful for generating feature vectors
from these transformed inputs, though, to combine
the untransformed and transformed inputs with dif-
ferent weights.

6 Inside LibFeature

In this section, we will examine how FDL programs
are converted to an internal representation and ex-
ecuted to produce the feature vectors. Readers who
are only interested in using LibFeature as a black box
may want to skip directly to section 7 or 8. So as to
illustrate the diversity of problems for which LibFea-
ture is applicable, we will switch from using an image
data set as the main example to a time-series analy-
sis problem. Suppose that your data contains several
million readings taken at periodic intervals from some

scientific instrument. To make things more interest-
ing, also suppose that the data is somewhat noisy,
and you want to smooth it out using a very simple
convolution filter: every point will be replaced with
the mean of the values within a certain neighborhood
centered at that point. Here’s an FDL program that
computes a feature vector consisting of each value
and the mean of its temporal neighborhood, suppos-
ing that the input file is named sensor input:

(set nborhood 2)
(set len (+ 1 (* 2 nborhood)))
(for i (seq (- 0 nborhood) nborhood)
(append a (sensor_input i)))

(set psum (+ a))
(output 0 (sensor_input 0))
(output 0 (/ psum len))

When LibFeature parses this FDL program, it in-
terprets each S-expression in order, building up its
internal data structures. Every expression it encoun-
ters turns into a command, where some commands
use references to previous commands as parameters.
Note that set does not result in a command, but in-
stead adds an entry to a symbol table, allowing you to
refer to the result of a particular expression by name.
Here is a representation of the commands that are
generated when the FDL program above is parsed:

v[0] = 2;
v[1] = 5;
v[2] = array("sensor_input", -2);
v[3] = array("sensor_input", -1);
v[4] = array("sensor_input", 0);
v[5] = array("sensor_input", 1);
v[6] = array("sensor_input", 2);
v[7] = sum(v[2], v[3], v[4], v[5], v[6]);
v[8] = array("sensor_input", 0);
v[9] = v[7] / v[1];

This representation is meant to give you an idea
of how the particular feature vector described above
could be computed using a temporary array v[]. The
array v[] is analogous to register on a processor. In-
ternally, LibFeature represents these commands us-
ing a bytecode, but the information contained is the
same. In this particular case, after the nine commands
are finished for each input point, the outputs are in
v[8] and v[9].

6.1 Optimizations

Note that there is a little bit of redundancy in the
sequence of commands shown above. The first value,
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v[0]=2 (which came from nborhood) is never actu-
ally used. Also, v[4] and v[8] are identical. LibFea-
ture performs some optimizations on its command se-
quence before executing it. These optimizations are
very similar to optimizations performed by modern
compilers, but because there is no flow control, they
are all relatively straightforward, and in fact all of the
optimizations run in time O(n log n) (where n is the
number of commands). The optimizations performed
by LibFeature include:

1. Constant Propagation: Expressions that return
constant values are replaced with the result of
that expression. This was already seen in the
above command sequence, because the expres-
sion (+ 1 (* 2 nborhood)) was replaced with
the result, 5, in a single step.

2. Identity Reduction: Computations that involve
multiplying by one or adding zero are eliminated.
This encourages users to write code with lots of
tunable parameters, since an additive parameter
can simply be set to 0 to eliminate it.

3. Common Subexpression Elimination: Commands
that are duplicates of earlier commands are elim-
inated.

4. Dead Code Elimination: Commands which are
never used are eliminated.

After optimization, the command sequence looks like
this:

v[0] = 5;
v[1] = array("sensor_input", -2);
v[2] = array("sensor_input", -1);
v[3] = array("sensor_input");
v[4] = array("sensor_input", 1);
v[5] = array("sensor_input", 2);
v[6] = sum(v[1], v[2], v[3], v[4], v[5]);
v[7] = v[6] / v[0];

The outputs are now in v[3] and v[7].

6.2 Execution

In the simplest case, when LibFeature is comput-
ing just a single feature vector, the execution model
is quite simple: it executes the commands in the
bytecode on a temporary array (v[] in the example
above), and then copies the lines from the array corre-
sponding to actual features into the feature vector at
the end. LibFeature is much more efficient, however,

when it is given the opportunity to compute multi-
ple feature vectors in parallel. Every command op-
erates on many feature vectors simultaneously. This
vectorization allows the overhead of interpreting the
program to be minimized, and LibFeature can start
approaching the speed of C code.

For example, suppose that the first few numbers in
our sensor input data happen to be the digits of π:
[3, 1, 4, 1, 5, 9]. In executing the commands to gener-
ate the first four feature vectors, LibFeature would
fill in a matrix with the following values:

Feature Vectors
Command 1 2 3 4
v[0] = 5; 5 5 5 5
v[1] = array(-2); NaN NaN 3 1
v[2] = array(-1); NaN 3 1 4
v[3] = array(0); 3 1 4 1
v[4] = array(1); 1 4 1 5
v[5] = array(2); 4 1 5 9
v[6] = sum(v[1], ..., v[5]); NaN NaN 14 20
v[7] = v[6] / v[0]; NaN NaN 2.8 4.0

Note that since LibFeature cannot index negative el-
ements in the input array, it replaces these values
with NaN. After all of the computations are finished,
LibFeature still needs to copy the rows corresponding
to output features to the completed feature vectors
in memory. When multiple feature vectors are com-
puted at once, individual features of the same feature
vector are never contiguous, so the extra copy is al-
ways required. While this does take some extra time,
it is negligible compared to the time that is saved by
being able to compute each of the rows of the tempo-
rary matrix all at once, making use of the fact that
the elements of each row are consecutive in mem-
ory. For example, the inner loop of the code which
computes the division command in the last step is
actually something like this:

for(i=0; i<len; i++) {
*out = *in1 / *in2;
out++;
in1++;
in2++;

}

In practice, as many as 64 or 128 feature vectors
are usually computed at once, and modern C com-
pilers are able to make this loop extremely efficient.
By vectorizing all of these computations (always do-
ing one step of many feature vectors at once), we
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can minimize the overhead of LibFeature. Further-
more, LibFeature takes advantage of vector instruc-
tions such as SSE on x86 chips, or AltiVec on Pow-
erPC chips, to make these inner loops run even faster.
Using these instructions for many common arithmetic
operations speeds up LibFeature by 25% overall in
typical usage.

6.3 Multithreading

Since many scientific workstations have dual proces-
sors (and other modern CPUs simulate multiple pro-
cessors using hyperthreading), LibFeature is designed
to transparently take advantage of these processors
by using two threads for computation.

In cases where all of the input data is to be loaded,
using two threads is trivial: one thread loads the
first half of the data, and the other thread loads the
second half. However, LibFeature allows for valida-
tion of individual feature vectors (using the require
statement in FDL), which complicates matters sig-
nificantly. Since it is unknown exactly how many fea-
ture vectors will be generated, the two threads must
communicate frequently in order to write their fea-
ture vectors to the same array without leaving any
gaps (which would require costly memory moving
later, negating the benefit of both threads). Pipes
are used both for thread synchronization and com-
munication. The speedup when using two threads on
a dual-processor machine is typically 1.5x, though it
can be as high as 1.9x for some computationally in-
tensive programs.

7 Benchmarks

LibFeature has been designed to provide no perfor-
mance penalty in spite of the fact that it interprets its
commands. The following benchmarks demonstrate
how closely this goal has been achieved.

7.1 Image features

Consider a simple problem where we wish to extract
two features from a grayscale 1600 × 1200 PGM im-
age: the intensity of each pixel, and the statistical
variance of an n × n neighborhood of each pixel.
To keep the neighborhood symmetrical, suppose n =
2·radius+1 for some radius ≥ 0. Here is an example
of straightforward C code to implement this feature
extraction:

void get_features(FILE *fp,

float *features, /* output */

int radius,

int width, int height)

{

uint8 *input = (uint8 *)malloc(width * height);

float *p = features;

int i, j, k;

int len = (1+(radius*2))*(1+(radius*2));

fread(input, 1, width * height, fp);

for(i=0; i<width * height; i++) {

float sum = 0;

float sumsq = 0;

float var;

for(j=-radius; j<=radius; j++)

for(k=-radius; k<=radius; k++) {

int index = i + j + (k*width);

if (index >= 0 &&

index < width * height) {

float v = (float)input[index];

sum += v;

sumsq += v * v;

}

}

var = (sumsq - ((sum * sum) / len)) / len;

*p++ = (float)input[i];

*p++ = var;

}

}

Now here is the same code, implemented in FDL:

(set width (+ 1 (* 2 radius)))

(set len (* width width))

(for i (seq (- 0 radius) radius)

(for j (seq (- 0 radius) radius)

(set v (image i j))

(append array1 v)

(append array2 (* v v))))

(set sum1 (+ array1))

(set sum2 (+ array2))

(set center (image))

(set var1 (- sum2 (/ (* sum1 sum1) len)))

(set var (/ var1 len))

(output center)

(output var)

It requires at most five lines of C code to ex-
tract feature vectors from an image given the FDL
program above. The LibFeature solution is more
compact than the C code, and significantly more
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Fig. 1. Benchmark results show that for this particular problem, LibFeature is comparable in speed to straightforward
C code when a single processor is used, and somewhat faster when two processors are used.

flexible. To show that there is also no performance
penalty, we ran the C code against LibFeature on two
different scientific workstations, for several different
radii. The following times are measured in seconds:

Xeon/3.0 GHz G5/2.0 GHz
Radius C LibFeature C LibFeature

0 0.10 0.13 0.24 0.20
1 0.23 0.23 0.69 0.62
2 0.44 0.41 1.47 1.24
3 0.85 0.75 2.63 2.22
4 1.27 1.16 4.15 3.48
5 1.71 1.71 5.93 5.12

Many modern scientific workstations have dual
processors. While it is uncommon for a programmer
to write multithreaded code for something as simple
as feature extraction, LibFeature can take advantage
of multiple processors safely and without any extra
work on the part of the programmer. While this can
introduce extra overhead for small easy problems, in
most cases this allows LibFeature to run significantly
faster than ordinary C code:

Dual Xeon/3.0 GHz Dual G5/2.0 GHz
Radius C LibFeature C LibFeature

0 0.10 0.21 0.24 0.43
1 0.23 0.24 0.69 0.44
2 0.44 0.36 1.47 0.79
3 0.85 0.56 2.63 1.30
4 1.27 0.83 4.15 1.99
5 1.71 1.30 5.93 2.83

7.2 FFT

While FDL is not a complete programming language
(it does not have any flow control), it is nevertheless
powerful enough to compute many complicated
algorithms. As an example of this, consider the Fast
Fourier Transform (FFT) [5], commonly used to
extract frequency features from time-series data.
Suppose that you have a million time points, and
for every point you wish to create a feature vector
containing the Fourier Transform of the n points
centered at that point. For simplicity assume that
n is a power of two and that we are computing
the complex FFT. We implemented a general
power-of-two complex FFT in only 46 lines of FDL
code, using a very straightforward nonrecursive
algorithm. We benchmarked it against FFTW 3.0.1
[6] [7], widely regarded as the one of the fastest
FFT implementations available for any computing
platform. We tested them both in single-precision
mode without making use of multiple processors;
the times below are in microseconds, per FFT, when
computing at least 100,000 FFTs in a row.

Xeon/3.0 GHz G5/2.0 GHz
FFT Size FFTW LibFeature FFTW LibFeature

16 0.54 0.94 0.55 0.66
32 1.19 2.00 1.00 1.46
64 2.11 4.63 1.85 3.43

128 4.71 12.15 4.54 8.43
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7.3 Analysis of benchmark results

While it is not necessarily unexpected that LibFea-
ture can be more efficient than straightforward C
code when using two processors, this does not explain
how it matches and sometimes beats the performance
of C code even when using a single processor, as seen
above. Contributing to LibFeature’s efficiency:

1. Cache efficiency: The C code in section 7.1 skips
through memory in order to retrieve the values
for each feature vector, resulting in inefficient use
of the processor’s L1 cache. LibFeature typically
copies 64 contiguous values at a time from the
input array, directly to a row in the temporary
matrix.

2. Vector instructions: On both x86 and PowerPC
processors, LibFeature uses vectorized addition,
multiplication, and division, which allows it to
operate on four values at once.

3. Memory mapping: Instead of loading the file
into memory in a single fread command (which
can take some time to complete), LibFeature
memory-maps the file, which allows the compu-
tation to begin on the first few bytes of the file
while the rest is still being loaded.

It is not surprising that FFTW is faster than
LibFeature; it has been extensively tuned and under-
gone several major revisions and has essentially no
overhead. The fact that LibFeature is only a factor of
2-3 slower than FFTW, given only 46 lines of high-
level FDL code, is impressive and serves as valida-
tion of LibFeature’s design and architecture. Note of
course that LibFeature has more overhead and must
be given thousands of FFTs to compute in order to
approach this speed. Also, to be fair, LibFeature con-
sumes vastly more memory than FFTW needs to for
the same task.

8 Conclusions and Future Work

LibFeature is designed to make life easier for the ma-
chine learning or data mining researcher. Instead of
wasting time writing complicated transformations to
construct feature vectors from input data, you can
use LibFeature to do this work for you. By abstract-
ing the feature vector generation from the algorithm,
it becomes easier to change the feature vectors on the

fly; experimenting with new ideas for features thus
requires less effort. Because LibFeature was imple-
mented very carefully with performance in mind, it is
usually possible to use LibFeature and pay no perfor-
mance penalty at all. In fact, in many circumstances,
LibFeature is significantly faster than straightforward
alternatives.

We are making use of LibFeature in several
projects, and many new capabilities are constantly
being added. Some possible new capabilities that we
are considering for the future include better support
for reading numerical data from ASCII text files,
more binary data formats, more language bindings,
dual-pass algorithms for normalized features, integer
features, and efficient random shuffling of vectors.
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10 Software Availability

Information on obtaining LibFeature is available
from the JPL Machine Learning Group web page:
http://ml.jpl.nasa.gov/
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��� ��� � ����� �� ���������   	� �¢¨����¢�� � ì� . � + í é��
��� ��� ����¢�� � ����� � ��� ��� ���¢� ����� ���� ����
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���� ��¢���� �� ����¢�����   ��� � ����¡ �� �������� �� ���
��¢ ���� � ��� ��� �������� ��������   �é ��� �¢���� ���¢�
�é ��� ��¢���� �� ������� ����  � ��� ������� ����¢� �é
��� � ����¡ �� ������ �� ��� ������� ����¢� �é ��� � �è ��î
��� �é ��� � ������� �� ��� ��¢����   ����� ��� � ��� ��ñ
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����� � �������  
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�¢����� ���¢����� ��� � ������ �é ��� õ����   ��� � �¡î
��¢� �¢�¨�� �é ���������� �� ï©©   ��� �����������
�������� ��������� �� ���� ��� ¥î���� �é ��� �����¢��
������� �� ���¢��� ¨� � ������ �é � �����¢��   ��� ��î
������� � ����� ¢��� �� ����� ì¥©í ��� ��� ��������î
������� ��� � ����¡ ���¢��¢��î¨���� ���������� !� é��î
����õ������ �!�© ��� �!�ê   	� ������ ê �� ¨� ¤� ¥ �� ���� �������� ��� ������ ���� �� �!�ê ¤� �!�ê¥ ����!�ê �   	� ���� ������� ������� � �����¡ ��� ¨� ������
¨� ����� �������������� �������   �é �� ������� ���� �
� ����¡ ������ ¨� ������ ¨� � ������¢��� �������������� �
�� � ��� ���� ������� ��� ������ ì�í �é ��� é���¢��   ��î
¨ �� ¤ ���� � ��� �����¨�� ������� ����¢� ì��í �é �¢�����
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Abstract

The Protein Data Bank (PDB) contains, at least im-
plicitly, empirical information about the bond angles
between pairs of amino acids. There is considerable
variation in the observed values for a given amino acid
pair, and it is not clear whether this variation repre-
sents a wide range of conformal possibilities or is due
to noise. We show, by applying singular value decom-
positions to sets of examples of particular amino acid
sequences, that there appear to be relatively few pos-
sible conformations for a given amino acid pair, and
hence noise is a plausible explanation for the variation
in the raw data. This has implications for secondary
structure prediction which typically depends on the
PDB values.

1 Introduction

Proteins are constructed from long chains of 20
unique amino acid building blocks. Every amino
acid shares a similar chemical structure but with
a distinguishing chemical component, a side chain.
The backbone of a protein is created by linking
these similar structures together. Each pair of
amino acids along the backbone is joined in a way
that is conventionally described by two angles of
rotation; φ and ψ. These bond angles are con-
strained by numerous influences, but are assumed
to be locally dominated by the physical and chem-
ical properties of the side chains. A common visu-
alization of possible bond angles is to create a plot
with φ angles on the horizontal axis and ψ angles
on the vertical axis. This is known as a Rama-
chandran Plot; and areas of this graph correspond
to common structural formations at the secondary
structure level (Figure 1).

The Protein Data Bank (PDB) is a repository

of protein structure, mainly gathered using X-
ray Crystallography (XC) and Nuclear Magnetic
Resonance (NMR). Implicit in the PDB is the
conformation of each protein’s backbone sequence.
The actual bond angles associated with a given pair
of amino acids in the PDB show wide variation.
In some cases, it is clear that this is due to
different conformations; the bond angle values
are far apart. In other cases it is not clear
whether the variations in values correspond to
conformal possibilities or simply to noise. We
address this question empirically and show that
it is plausible, perhaps likely, that most of the
variation in values is due to noise. As a result,
we are able to show distinct conformations of
amino acid pairs that are not distinguishable in
the raw data. By extending these results to
larger sequences of amino acids, we suggest that
secondary structure can be built from primary
structure in a bottom-up fashion. As a side-effect
we are able to produce Ramachandran plots with
much more tightly constrained admissible regions
than in conventional plots.

Our strategy is to select all occurrences of a
particular amino acid sequence from the PDB, to-
gether with the bond angles between its members.
For example a sequence A-B-C could be selected
where A,B and C are amino acid types and each
dash corresponds to a φ,ψ bond angle pair. Sin-
gular Value Decomposition (SVD) is then applied
to the resulting dataset; the resulting matrices are
truncated at some k components; and then remul-
tiplied to produce a matrix analogous to the origi-
nal bond angles. This new matrix can be thought
of as defining canonical bond angles for the amino
acid sequence being considered. The different oc-
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currences show strong tendencies to cluster in the
transformed space, providing evidence of a limited
set of conformations distorted by noise rather than
a wide range of possible conformations. Since most
secondary structure prediction uses data from the
PDB, much improved results would be expected
from using canonical, rather than measured, bond
angles.

2 Related Work

The effects of neighboring amino acids, n-1, n+1,
on the conformation of amino acid n was studied as
early as the 1970’s. Advanced, automated analysis
of this variety is now possible over the WWW via
the Conformation Angles Database (CADB) [9].
Interfaces to CADB can automatically generate
Ramachandran plots of specific amino acids with
respect to neighboring residues. This is currently
limited to three amino acids and is also restricted
by the nature of information contained in the
CADB.

Aggregating PDB data to create empirical
Ramachandran plots (as opposed to ones based on
energy minima, see Section 4.1) has been done by
Kleywegt and Jones [5] and later by Hovmoller et
al. [3]. The plots were created by extracting bond
angles for every instance of an amino acid within
the PDB. These types of analysis are useful in that
they utilize all the information available to provide
a detailed plot, but the relative simplicity limits
the application of the results.

Clustering algorithms have been applied to
length 5 amino acid sequences obtained from the
PDB [6]. The clustering was done based on
amino acid type and not related to bond angles or
sequence conformation. Though similar in concept
to our work, the results are fundamentally different
as the clustering is not based on bond angles.

A geometric analysis of bond angles for a
specific protein structure is available directly at the
PDB website. The analysis can show bond angles
that deviate from the generally accepted values by
more than a given threshold. This is a generally
accepted method to identify potential noise and/or
errors introduced from the XC or NMR process [1].
Since it is a simple comparison of threshold values,
the results obtained do not reflect great confidence

and the analysis is limited to one protein structure
at a time.

A recent paper by Rost et al. [8] summarizes
work on secondary structure prediction. Most
secondary structure prediction methods are based
on information derived from conformation data
implicit in the PDB.

3 Matrix Decompositions

The singular value decomposition of a matrix A is

A = USV ′

where the dash indicates the transpose. If A is
n × m and has rank r, then U is n × r, S is
an r × r diagonal matrix with decreasing entries
σ1, σ2, . . . , σr (the singular values), and V is r×m.
In addition, both U and V are orthogonal, so that
UU ′ = I and V V ′ = I. In most practical datasets,
r = m.

The most useful property of SVD for our pur-
poses is that the transformation captures as much
variation in the original data as possible in the
first transformed dimension, as much as possible of
what remains in the second dimension, and so on.
Hence, if we truncate the decomposition so that U
is n×k, S is k×k, and V is k×m, for some small k,
then we have discarded dimensions that have little
influence on the correlational structure of A. The
dimensions from k + 1 to r can be considered to
represent noise in the original data.

Remultiplying the truncated matrices produces
a new matrix that has the same shape and interpre-
tation as A but has been ‘denoised’. The trunca-
tion parameter, k, should be chosen so that signif-
icant information is retained but insignificant dis-
carded. The magnitudes of the singular values are
a measure of how important each dimension of the
decomposition is. Plotting the values of the diago-
nal of S and choosing k at the earliest point where
these values become small is often a good selection
mechanism.

An alternate interpretation of the transformed
space produced by an SVD is that points are placed
close to other points with which they are corre-
lated. Hence if the original data describes ob-
jects of a few different kinds, distorted by noise,
we would expect to see tight clusters in the trans-
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formed space (which can be plotted and visualized
directly if k = 2 or 3). On the other hand, if the
original data describes data without much similar-
ity, we would not expect to see clusters in the trans-
formed space in any dimensions. SVD reveals the
latent cluster structure of data.

4 Background and Methods

This section describes current methods of obtain-
ing protein structure and the inherent problems,
databases of acquired protein structure, and the
limitations of applying SVD and other data min-
ing algorithms to such data.

4.1 Obtaining structure Current methods for
determining the 3-dimensional structure of a pro-
tein are slow, error-prone and expensive. The read-
ily available methods employed today are X-ray
crystallography (XC) and Nuclear Magnetic Reso-
nance (NMR); both are physical processes. XC and
NMR involve determining the 3-dimensional coor-
dinates of every atom in a protein within a known
error range. Data collected from both methods are
not directly converted to atomic co-ordinates but
require human input, interaction and heuristics to
refine the data. This is a further possible source of
error [4]. The structure of about 28,000 proteins
has been determined using these methods but mil-
lions of proteins are known to exist.

The Protein Data Bank (PDB) is the world-
wide depository for protein structure, almost all
of which have been obtained from XC and NMR.
The format for protein structure has been carefully
designed to be as flexible as possible allowing the
data to be utilized in many different fields of study
[1]. The PDB consists of individual files for each
protein entry, and contains the atomic co-ordinates
of atoms within the protein, but does not directly
contain bond angles for amino acids in the primary
sequence. Unfortunately, data mining applications
are not natively supported by this standard format
of the PDB.

4.2 Database formats There are many deriva-
tives of the PDB, only a few of which contain bond
angles of amino acids in an easily accessible for-
mat. The Conformation Angles Database (CADB)

[9] and Dihedral Angle Database (DAB) [2] are the
newest and most comprehensive sources. CADB
is a self-limited database which excludes proteins
with homologous sequences up to a certain thresh-
old. For data mining purposes, it would be benefi-
cial not to exclude any data a priori. CADB also
will only supply bond angles for small sequences
of amino acids. DAB contains bond angles for ev-
ery possible set of length 2, 3, 4 and 5 amino acid
sequences. However, the database is not currently
publicly available. Both of these databases lack the
ability to supply a set of bond angles in a matrix
format based on a simple query (i.e. for a specific
sequence of amino acids, or for every set of 8 amino
acids). Since most data mining applications, and in
particular SVD, require data to be in matrix form,
a new database was required.

4.3 Ramachandran plots Ramachandran
plots are a way to display the possible confor-
mation of an amino acid pair by plotting the
admissible regions based on energy considerations.
Figure 1 shows a typical plot. The region near the
top left corresponds to conformations associated
with a β sheet, with the two peaks corresponding
to parallel and anti-parallel secondary structure.
The region midway down and to the left corre-
sponds to conformations associated with α helices.
The third region corresponds to conformations
of anticlockwise α helices. Not all amino acids
are constrained in this way; for example pairs
involving glycine can exhibit a much larger range
of conformations. We will use Ramachandran
plots to compare the conformations possible in the
raw PDB data and those suggested after denoising
with SVD.

4.4 Methods Every protein file listed in the
Protein Data Bank was downloaded, converted
and appended to a datafile. Bond angles were
computed from atomic coordinates for each pair
of amino acids in the primary sequence using
TORSIONS [7]. The output of TORSIONS was
appended to a datafile in the format: ..., amino-
acid(location), φ, ψ,... (e.g. ..., ALA(150), -
150.595, -63.539, SER(151), ... ), where each
line is the structure of one protein. Due to the
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Figure 1: Typical Ramachandran plot (from Kley-
wegt and Jones (1996) [5]).

time-intensive nature of compiling a database into
this format, this intermediate, flexible format was
chosen for ease of access for other possible studies.
The results presented here are based on 27,544
files which were downloaded from the PDB on
November 16, 2004 and transformed into the new
format. From this new derivative of the PDB, 125
sets of length 3 sequences, 625 sets of length 4
sequences and 625 sets of length 5 sequences were
extracted for analysis.

The natively implemented svd function in Mat-
lab 6.5r13 was used to perform the decomposition
on small datasets. For larger datasets JAMA v5
was used with Java 1.4.2-04 to perform SVD. The
resultant decomposed data was geometrically in-
terpreted by plotting the first three dimensions of
the U matrix.

The following steps were performed:

• Given an amino acid sequence of length m,
the 2m − 2 internal bond angles associated
with each occurrence of this sequence were
extracted from the PDB. There are typically

1000–5000 examples of an amino acid sequence
of length 3 in the PDB, 100–500 examples of
sequences of length 4, and 0–200 examples of
sequences of length 5.

• An SVD was performed on the resulting ma-
trix whose rows correspond to examples of the
given amino acid sequence and whose columns
correspond to a bond angle at a particular po-
sition in the sequence. For example a length
4 amino acid sequence (A-B-C-D) would have
the following matrix row for each instance:
φAB ,ψAB ,φBC ,ψBC ,φCD ,ψCD .

• The resulting decomposition was truncated at
k = 3, a value chosen after inspection of a
large number of plots of singular values. The
first 3 columns of the U matrix was plotted for
visualization.

• The truncated matrices were remultiplied to
give a matrix of canonical bond angles.

• Each cluster in the transformed space was fit-
ted with a 3-dimensional ellipse and the ellipse
mapped back into bond angle space using the
SVD ‘in reverse’. This ellipse defines a region
of the Ramachandran plot corresponding to
the cluster.

5 Results

There are many possible sequences of length 3, 4,
and 5, so we only show some typical results here.

We begin by considering the sequence LEU-
VAL-ARG of length 3. There are 4529 examples of
this sequence in the dataset. Figures 2 and 3 show
histograms of the bond angles of the LEU-VAL
bond taken from these examples. There is obvious
structure in both histograms, but it is hard to make
use of it. The distribution of ψ angles suggests
two clusters; but is the distribution of φ angles one
big and one small cluster, or two big clusters and
one small one? It is not straightforward to build
conformations from such information. It is also not
clear how much of the visible variation is due to
noise and how much represents different possible
conformations. Figure 4 is a Ramachandran plot of
the bond angles for the LEU-VAL bond. It is clear
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Figure 2: Histogram of the φ angles of the LEU-
VAL bond in the sequence LEU-VAL-ARG.

Figure 3: Histogram of the ψ angles of the LEU-
VAL bond in the sequence LEU-VAL-ARG.

that there are some α helix conformations, some
β sheet conformations, and a few anticlockwise
α helix conformations, but the space of possible
conformations is not very constrained.

Figure 5 shows the first 3 dimensions of the
U matrix obtained from an SVD of the matrix
of bond angles for the sequence LEU-VAL-ARG.
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−50
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Figure 4: Ramachandran plot for the LEU-VAL
bond in the sequence LEU-VAL-ARG.

There are four clusters visible, two large and two
much smaller. There are a number of outliers, and
perhaps some smaller clusters, but they represent
a small fraction of the total number of examples.

Figure 5: 3-dimensional plot of SVD transformed
space for the amino acid sequence LEU-VAL-ARG.

Figure 6 shows the location of these clusters
when mapped back into bond angle space for each
of the pair bond angles. There are multiple possible
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Figure 6: A Ramachandran plot overlayed with
regions obtained from mapping clusters from SVD
transformed space back to bond angle space for the
amino acid sequence LEU-VAL-ARG. Each region
is labelled in gray, darker where regions overlap.
Compare with Figure 4

conformations for each of the bond angles: the
LEU-VAL bond exists in 3 α helix conformations
(with different pitches) and 1 β sheet conformation.
The conformations for the VAL-ARG bond split
more finely, with 2 α helix conformations, and 3
β sheet conformations, two of which correspond
to the same cluster in the transformed space.
In other words, 2 of the conformations of the
overall sequence are α helices, 1 is a β sheet,
and one exhibits transitions from one shape to
another at the VAL amino acid, with two different
possible β sheet conformations. Note that these
transitions are abrupt; there is little evidence that
the ‘end’of the α helix changes shape because of
the conformation of the adjacent bond.

Figure 7 shows the equivalent SVD transformed
space for a sequence that extends the one we have
just been considering: LEU-VAL-ARG-ILE. There
are 417 examples of this sequence in the dataset.
We see that there are two well-separated clusters
with hardly any outliers. Figure 8 shows the
singular values for the matrix of examples of this
amino acid sequence. Almost all of the variation is
in the first two dimensions.

Figure 9 shows the Ramachandran plot derived
from these two clusters. As expected, the plots of
each of the bond shows well-separated conformal
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Figure 7: 3-dimensional plot of SVD transformed
space for the amino acid sequence LEU-VAL-ARG-
ILE.
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Figure 8: Plot of the singular values of SVD for the
amino acid sequence LEU-VAL-ARG-ILE.

possibilities, an α helix and a β sheet; and the
conformations for the first two bonds are subsets
of those computed from the sequence of length
three. It seems likely that each of the possibilities
for the bonds match, so that there are only two
conformations for this entire length four sequence
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(and notice the tightening towards the right hand
end for both conformations). We have looked at
many sequences of length 3 and 4, and the results
are similar.

Figure 9: A Ramachandran plot overlayed with
areas obtained from mapping cluster from SVD
transformed space back to bond angle space for the
amino acid sequence LEU-VAL-ARG-ILE.

These results suggest that a much improved
version of the PDB’s bond angles could be pro-
duced by systematically denoising the existing
data. However, this is difficult in practice. There
are a large number of amino acid sequences of short
length, so a great deal of computation is required
even to apply the techniques described here to all
of their bond angles. It then remains to check
whether the canonical bond angles derived from se-
quences of length 3 agree with (or can be fitted to)
those obtained from sequences of length 4 for the
same amino acid pair. However, this suggests the
possibility of a dynamic programming style algo-
rithm for determining conformations for a sequence
of length l from the conformations of overlapping
sequences of length l − 1. We are exploring this

possibility further.

5.1 Larger structure

A random sampling of 1,557,072 length 5 amino
acid sequences (approximately a 10% sample of all
possible length 5 sequences) was extracted from the
PDB. Figure 10 shows the 3-dimensional plot of
the SVD transformed space that results. The over-
all structure is a diamond of clusters. The leftmost
cluster corresponds to sequences whose basic con-
formation is straight (i.e. they are part of β sheets)
while the rightmost cluster corresponds to α-helices
for the entire sequence. The clusters along the edge
of the diamond appear to be sequences in transition
between these two basic conformations. For exam-
ple, the first amino acid in a sequence can be part
of an α helix, while the remaining amino acids form
a straight segment. The intermediate clusters cap-
ture these different conformation possibilities (each
conformation appears as two different clusters be-
cause it depends on which end we consider first).
Clusters in the middle appear to capture conforma-
tions with more than one transition, for example
from α helix to straight segment to α helix. This
figure shows how an SVD analysis of bond angle
data can help to elucidate average structure in the
PDB. These experiments have been repeated for
longer amino acid chains with similar results. It
is clear from these results that the transitions be-
tween helices and sheets are typically quite abrupt
– the pitch of a helix does not appreciably alter as
it transitions to a straight segment.

6 Conclusions

We have applied singular value decomposition to
datasets of bond angles for particular short se-
quences of amino acids, using the values from the
PDB. The raw data contains a great deal of vari-
ability, and it is not clear to what extent this rep-
resents noise (or errors) or different conformal pos-
sibilities. By examining the clustering structure in
the space to which SVD transforms the data, we
have provided some evidence that the main source
of variation in the raw data is noise. Relatively few
conformal possibilities are revealed in the trans-
formed space.
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Figure 10: 3-dimensional plot SVD transformed
space for a large set of arbitrary amino acid se-
quences of length 5.

Mapping the clusters back to the original bond
angle space produces a version of each dataset con-
taining ‘canonical’ bond angles, that is values that
have been denoised. These bond angles are con-
strained to much smaller regions of Ramachandran
plots, and exhibit coherence when the same cluster
is followed along a sequence of bond angle pairs.

Many secondary structure prediction algo-
rithms and functional studies are based on the
PDB. Our results suggest that some effort should
be spent on denoising the data before drawing con-
clusions about more complex structure from it.
The techniques described here cannot be applied
directly to the entire PDB. Although a single SVD
on the entire PDB is (just) possible, new entries
are being added all the time, and it is not a com-
putation that is attractive to repeat regularly at
this time. Replacement of bond angle data piece-
meal using our techniques on sequences of medium
length should be straightforward, but requires fur-
ther analysis of the variation in results for an amino
acid pair considered as part of a sequence of length
3, of length 4, and so on.

The elicitation of more robust conformations
for short amino acid sequences suggests a method
for discovering the conformations of longer se-
quences by assembling the short conformations into
longer ones. We are pursuing this direction.
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