
Mining for Outliers in Sequential Databases

Pei Sun∗ Sanjay Chawla† Bavani Arunasalam‡

Abstract

The mining of outliers (or anomaly detection) in large

databases continues to remain an active area of research

with many potential applications. Over the last several years

many novel methods have been proposed to efficiently and

accurately mine for outliers. In this paper we propose a

unique approach to mine for sequential outliers using Prob-

abilistic Suffix Trees (PST). The key insight that underpins

our work is that we can distinguish outliers from non-outliers

by only examining the nodes close to the root of the PST.

Thus, if the goal is to just mine outliers, then we can drasti-

cally reduce the size of the PST and reduce its construction

and query time. In our experiments, we show that on a

real data set consisting of protein sequences, by retaining

less than 5% of the original PST we can retrieve all the

outliers that were reported by the full-sized PST. We also

carry out a detailed comparison between two measures of

sequence similarity: the normalized probability and the

odds and show that while the current research literature in

PST favours the odds, for outlier detection it is normalized

probability which gives far superior results. We provide an

information theoretic argument based on entropy to explain

the success of the normalized probability measure. Finally,

we describe a more efficient implementation of the PST al-

gorithm, which dramatically reduces its construction time

compared to the implementation of Bejerano [3].

1 Introduction and Related Work

In many application domains an interesting event is de-
fined in terms of its deviation from the norm. By defini-
tion such events are rare (otherwise they would become
the norm!) and lend themselves to the proverbial “nee-
dle in a haystack” analogy. Examples of well known
applications where the discovery of such events are im-
portant include network intrusion and fraud detection
[10]. In fact one can argue that science in general pro-
gresses with the detection (often accidentally) of inter-
esting events followed by an invention of new theories
to explain them.

Within the data mining community a substantial

∗The School of Information Technologies, University of Sydney.

The work of this author was supported by Capital Markets CRC.
†The School of Information Technologies, University of Sydney.
‡The School of Information Technologies, University of Sydney.

body of research has developed to proactively search for
interesting events or outliers in large databases. Start-
ing from the folklore definition of outlier as an event
“which is at least three standard deviations away from
the mean”, several novel and efficient methods have ap-
peared in the recent past. In general, three main de-
sign patterns have emerged to detect and extract out-
liers based on distribution, distance and density. In
the distribution-based approach the underlying statis-
tical distribution of the data source is estimated, say
M , and a data point d is considered to be an outlier if
P (d|M) < t for a user-specified threshold. A known lim-
itation of this approach is that computing the distribu-
tion of complex heterogenous and high-dimensional data
sets is non-trivial if not intractable. The distance-based
paradigm was originally proposed by Knorr and Ng [9]
in which each data point is represented as point in a
n-dimensional space. Points whose distance to their kth

nearest neighbor is large are considered candidate out-
liers. Several variations and efficient algorithms on this
have been proposed [2, 9, 11]. A limitation of distance-
based outlier techniques is that they are not flexible
to discover local outliers, especially in data sets which
have non-uniform density as one moves across the data
landscape. This limitation was lifted by Breunig et. al
[6] who introduced the concept of Local Outlier Factor
(LOF) which takes the local density into account when
checking for outliers.

Most of contemporary approaches assume that the
underlying data element can be represented as a rela-
tional tuple r where r = (t1, . . . , tn) and the tis are
either real-valued or categorical. For many application
domains, data is most naturally represented as a se-
quence of symbols. For example, a piece of text can
be perceived as a sequence of alphabets. Similarly in
speech recognition, the sound wave is binned into a fixed
set of categories, which then serves as an alphabet for
the sound signal. The most prominent examples are the
composition of the DNA and proteins. The DNA is a
sequence from the alphabet set {A, G, C, T}. Similarly
a protein is a sequence of amino acids from an alphabet
of size twenty.

The challenge in sequence analysis is to define a
notion of similarity, which can capture the structural
differences between sequences. The edit distance, edit,

94

between two sequences s1, s2 is defined as the number
of operations from the set {insert, delete, replace} that
are required to map s1 into s2. Despite its widespread
use, it is not hard to come up with an example set of
sequences {s1, s2, s3}, where s1 should be more similar
to s2 than s3 yet edit(s1, s2) is greater than edit(s1, s3).
Moreover, edit distance can only be used as a similar-
ity measure between two sequences, not between a se-
quence and a set of sequences. Another approach is
to transform symbolic sequences into numerical or in-
tegral vectors, and then map sequences into points in
a multi-dimensional space. Several different mappings
have been proposed. Kahveci and Singh [8] have used
wavelets, and Guralnik and Karypis [7] have used the
frequent subsequences as “words” of the sequence and
created an analog of the document-word matrix which
is fed into a mining process.

The underlying statistical distribution of the se-
quences (in a given domain) is usually unknown and
hard to estimate. However, there is a recurring prop-
erty of sequences that manifests itself across domains,
which the above methods do not exploit - at least ex-
plicitly. This property is called short memory by Ron
et.al. [12] and is essentially a higher-order Markov con-
dition. Namely, given a sequence s = s1s2 . . . sl, there
exists an L < l such that the conditional probabilities
P (sl|sl−k . . . sl−1) ≈ P (sl|sl−L . . . sl−1) ∀k > L. Their
key observation is that the length of the Markov chain
in many domains is context-driven and not fixed. This
led them to propose a variable-order chain, where the
states of the system are variable length suffixes of se-
quences organized in a suffix tree. Associated with each
node of the tree was a vector of transition probabilities
from the state to the next symbol. They call the model
a Probabilistic Suffix Automata (PSA), and they also
introduce a variation on the PSA, which they call the
Probabilistic Suffix Tree (PST). A PST can be repre-
sented more efficiently and allows for an efficient and
approximate computation of the joint probability as

PT (s1s2 . . . sl) = PT (s1)P
T (s2|s1) . . . PT (sl|s1s2...sl−1)

We will describe the PST in more detail in Section
2. Bejerano et.al. [3, 5, 4] has used the PST to model
biological sequences. They have provided an implemen-
tation of their algorithm, which we will compare against
in the experiment section.

Yang and Wang [14] have introduced the CLUSEQ
model to cluster sequences using the PST. The
CLUSEQ model is quite powerful and allows for the
number of clusters to be automatically set. The
CLUSEQ model uses the odds measure to test for clus-
ter membership, i.e., given a sequence s = s1 . . . sl and
a PST for cluster C, the membership of s in C is de-

termined by the ratio of PC(s1)
∏l

j=2
PC(sj |s1s2...sj−1)

and
∏l

j=1
P (sj). A ratio greater than one provides evi-

dence that s belongs to C. Outliers can be detected us-
ing CLUSEQ because a sequence, which does not belong
to any cluster, can be considered as a candidate outlier.
However, our objective is to directly mine for outliers
and we will make several observations, which makes it
possible to do so more efficiently than going through the
clustering route. If the objective is to directly find out-
liers, then the number of user-defined parameters that
need to be set can also be reduced.

If the set of sequences is perceived as a configuration
system, then intuitively the injection of outliers will
increase the entropy of the system. Thus, one way of
directly determining outliers in the system is to check
if the removal of a sequence increases or decreases the
entropy of remaining system. Indeed, this is one way
of validating the discovered outliers. Furthermore, we
will show that the similarity measure for outliers can
be calculated by traversing nodes very close to the root
of the PST. This will have implications in deciding the
threshold values for pruning the tree. Finally, instead
of using the odds similarity measure [4, 15], we will use
the length normalized similarity measure [3]. Extensive
experiments show that this measure is better suited for
outlier detection.

The notations and basic concepts used in this paper
are listed in Table 1.

1.1 Problem Definition 1 (P1)

Given: A set of sequences S and a number n.

Find: The top-n outliers in S.

1.2 Problem Definition 2 (P2)

Given: A set of sequences S, and a query sequence q

and similarity threshold value t.

Determine: If q is an outlier with respect to S and t.

1.3 Key Insights and Contributions
We claim the following contributions towards the min-
ing of outliers in a sequential database.

1. We describe a new and more efficient implemen-
tation of the PST algorithm compared to the one
reported in [3]. Experiments on synthetic and real
data sets show that our implementation is several
orders of magnitude faster.

2. When a set of sequences are organized in a PST,
the outlier sequences are found near the root of
the PST, i.e., the maximal level we need to search

95

Name Description∑
the alphabet

S the string (sequence) set
s = s1,l = s1s2...sl a string (sequence) of length l, sj ∈

∑
j = (1, 2, ..., l)

suffix of s a segment s′ of length l′ if s′j = sj+l−l′ for j = (1, ..., l′)

P (s) empirical probability,P (s) = the number of occurrences of s in S
the maximal number of possible occurrences of string of length |s| in S

P (sj |s1...sj−1) the conditional probability of observing sj right after s1...sj−1

PST probabilistic suffix tree
Pmin the minimal value of empirical probability, a threshold used to prune the nodes of a PST

MinCount the minimal number of occurrence of a string in S, a threshold used to prune the PST

L the maximal depth of a PST , a threshold used to control the depth of a PST

Table 1: Notations and basic concepts

in PST while computing their similarity values is
small. By making use of this observation, we only
need to construct part of the PST instead of the full
one. Thus, we can reduce the cost (both running
time and memory) if the intention is just to find
outliers (Section 5.3).

3. The normalized probability similarity measure
SIMN (see Section 4) is a more suitable measure
than the odds measure (SIMO) for outlier detec-
tion. This is contrary to the current understanding
of sequential similarity measures in the PST liter-
ature [3].

4. There is a strong correlation between the normal-
ized probability measure and the entropy of the
system. In fact, we note that by the Shannon-
McMillan theorem −SIMN converges to the en-
tropy of an information source (Section 5.7)

5. We will report on a wide array of experiments that
we have carried out on synthetic and real data
sets, which show that our overall approach is more
efficient while retaining the accuracy of detecting
outliers in a sequential setting.

1.4 Solution in a Nutshell
Our unified solution for P1 and P2 proceeds as follows.

1. Let S be a set of sequences from an alphabet of
size |Σ|, where |S| = N and the average length of
sequences in S is m. Organize S into a PST of
predetermined depth L. The construction of the
PST requires several important parameters, which
we will discuss in subsequent sections. For now, all
we have to note is that a PST can be constructed
in time O(NmL) + O(L|Σ|α) + O(LC), where α

is fixed integer, which depends upon the pruning
parameters (α is usually less than 4) and C is a
constant.

2. Once the PST is constructed the SIMN of a
sequence and the all sequences can be calculated
in time O(mL) and O(NmL) respectively.

3. Sort the sequences using SIMN in O(NLogN)
time.

4. Choose the sequences with the n lowest SIMN

values.

5. This is our proposed solution for P1. Thus, the cost
of solving P1 is dominated by the construction cost
(assuming LogN < mL).

6. Given a new query sequence q, the cost of calcu-
lating SIMN(q) is (O(|q|L). We will test whether
SIMN(q) is greater than an user-defined threshold
t. The threshold t can be set using Chebyshev’s
inequality. This is our proposed solution for P2.

Once again, notice that the PST construction and
query time can be reduced by choosing a smaller L. This
is possible (without loss of accuracy) if the objective is
to solely mine for outliers.

2 Probabilistic Suffix Tree

The Probabilistic Suffix Tree (PST) is a compact repre-
sentation of a variable-order markov chain, which uses
a suffix tree as its index structure. It was originally pro-
posed together with the Probabilistic Suffix Automata
(PSA) by Ron et. al [12]. A PST is considered to have
a more memory efficient representation than the PSA.
Since then, it has been used in several domains as an effi-
cient approach for classifying sequences [4, 5, 13, 14, 15].

Figure 1 shows an example of a PST of a sequence
database over the alphabet Σ = {a, b}. In this example
each node of a PST has at most two (the size of the
alphabet) children. Each edge is labelled by a symbol
of the alphabet and each node is labelled by a string,
which represents a path from the node to the root.

96

0.008

(0.991, 0.009)

0.570

(0.968, 0.032)

0.066

(0.972, 0.028)

0.612

(0.5, 0.5)

0.005

(0.755, 0.245)

(0.2, 0.8)

0.003

0.320

(0.159, 0.841)

0.388

(0.606, 0.394)

0.017

(0.155, 0.845)

bb 1781
0.348

(0.612, 0.388)

Root

(0.5, 0.5)

0.023

(0.667, 0.333)

0.023

minCount = 25 (0.999, 0.001)
a 4674

b 2961

aa 2920

ba 336

ab 85

aba 20

bab 7

abb 13

bbb 836

babb 4

bbab 4

a

a

a

b

b

b

b

b

a

b

b

b

a

b

0.059
bba 153

(0.947, 0.053)

(1.0, 0)

aaa 1356
0.520

(0.333, 0.667)
baa 212
0.081

a

Pmin = 0.02

Figure 1: An example of PST and pruning it using
MinCount or Pmin. The probability distribution
vectors are shown on the top of the nodes, and the label
strings, the number of times they appear in the dataset
and their empirical probability are shown within the
nodes

The node also records a probability distribution vector
of the symbols, which corresponds to the conditional
probabilities of seeing a symbol right after the label
string in the dataset. For example, the probability
vector for the node labelled bba is (0.947,0.053). This
means the conditional probability of seeing a right after
bba (P (a|bba)) is 0.947, and seeing b right after bba

(P (b|bba)) is 0.053.
The structure of PST is similar to the classical

suffix tree (ST). However, there are some important
differences. Besides keeping a probability distribution
vector at each node, in a PST, the parent of a node is a
suffix of the node, while in a classical ST the parent of
a node is a prefix of the node.

2.1 Pruning of a PST
The size of a PST is a function of the cardinality of
the alphabet (|Σ|) and maximum memory length L. A
fully grown unchecked PST is (O(|Σ|L). Several pruning
mechanisms have to be employed to control the size of
the PST.

Bejerano and Yona [5] have proposed a two-step
mechanism to prune a PST. In the first step, an
empirical probability threshold Pmin is used to decide
whether to extend a child node. For example, at the

node labelled bb, if P (abb) ≥ Pmin, the node with
label string abb will be added to the PST under some
conditions. Otherwise, the node itself, including all its
descendants will be ignored. The formula of computing
P (abb) is listed in Table 1

In the second step, a tree depth threshold L is
employed to cut the PST. This means when the length
of the label string of a node reaches L, its children nodes
will be pruned.

Instead of using Pmin, Yang and Wang [15] sug-
gested the use of minCount for pruning a PST. For
each node, the number of times its label string appears
in the database is counted. If this number is smaller
than minCount, then the node (and therefore all its
children) are pruned.

In Figure 1 both Pmin and MinCount are shown
in each node for ease of exposition. However, it is not
necessary to keep them in the PST. The dashed and
the solid lines show examples of pruning the PST using
Pmin = 0.02 and MinCount = 25 respectively.

2.2 Computing Probabilities Using a PST
The probability associated with a sequence s over a PST
is PT (s) = PT (s1)P

T (s2|s1) . . . PT (sl|s1s2...sl−1). The
PST allows an efficient computation of these intermedi-
ate conditional probability terms.

For example let us compute PT (b|abab) from the
PST in Figure 1. The search starts from the root
and traverse along the path → b → a → b, which
is in the reverse order of string abab. The search
stops at the node with label bab, because this is the
longest suffix of abab that can be found in the PST,
and PT (b|abab) is estimated by PT (b|bab) = 0.8. Thus,
we are exploiting the short memory feature, which
occurs in sequences generated from natural sources: the
empirical probability distribution of the next symbol,
given the preceding subsequence, can be approximated
by observing no more than the last L symbols in that
subsequence [12, 5].

If the PST is pruned using minCount = 25, the
search stops at the node with label ab and PT (b|abab)
is estimated by PT (b|ab) = 0.394. The following is an
example to compute the probability of string ababb over
the PST pruned using minCount = 25.

PT (S) = PT (a)PT (b|a)PT (a|ab)PT (b|aba)PT (b|abab)
= 0.612× 0.028× 0.606× 0.032× 0.394
= 1.309 ∗ 10−4

Since the probabilities are multiplied, care must be
taken to avoid the presence of zero probability. Thus,
a smoothing procedure is employed across each node
of the PST and the probability distribution vector is

97

perturbed to make all its components non-zero. For
example, at the node with label aba, the original values
of P (a|aba) and P (b|aba) are 1.0 and 0. This means
that the symbol b is never observed right after aba.
A minimum probability value, in this case 0.001, is
assigned to P (b|aba) and P (a|aba) is adjusted to 0.999.

3 Algorithm

The PST construction algorithm is shown in Table 2.
The main innovation of our approach is to use the hash
map data structure at each level to efficiently retrieve
and update the counts of each character before and after
a segment in the sequential database. For example, sup-
pose we are at level 2 and the alphabet is {a, b}. Then,
without pruning, the hash.keys at level 2 are all the
possible 2 combinations of the alphabet:{aa, ab, ba, bb}.
These combinations are lexicographically ordered and
the orders are stored as the values of the hash map.
Thus, hash.values are {0, 1, 2, 3}. Now, the hash.key,
hash.value combination is used as an index to the ar-
rays Abefore and Aafter . The size of these arrays is the
size of the alphabet, and the value of each element of
Abefore is the current count of σs′, where s′ is the key
of the hash map and σ is a character in the alphabet.
Similarly Aafter will store the count of s′σ. This way,
in one scan, we can update all the counts at each level
of the tree. After a level of the PST is constructed, the
hash map is destroyed and a new hash map for the next
level is initialized. For example, suppose we have a se-
quential database consisting of one sequence {abba}. In
one scan we can update the counts of ab → b, a ← bb,
bb→ a and b← ba.

Theoretically, the number of entries in the hash
map (i.e. the number of nodes) at level L is |

∑
|L

without pruning. Thus, the total complexity of this
implementation is O(NmL) + O(L|

∑
|L). However,

if we prune the PST using Pmin or MinCount, the
number of nodes only increases exponentially at first
a few levels and then decreases and converges to some
constant C (see figure 7). So we can break the second
part of the cost into two parts, and the total cost of
constructing the PST becomes O(NmL) + O(L|Σ|α) +
O(LC), where α is fixed integer which depends upon
the pruning parameters (α is usually less than 4) and C

is a constant.

4 Similarity Measures

A PST provides a compact representation of a sequen-
tial database as well as an efficient mechanism to com-
pute the factors that arise in the probability calcula-
tion. However, several measures are available to com-
pute the similarity of a sequence with the PST. Two
prominent examples are the Odds and the Normalized

The algorithm: Construct-PST(minCount, L)

1.Initialization: let T consist of a single root node
(with an empty label) and let k=1;
let S1 ← {σ|σ ∈

∑
and count(σ) ≥MinCount};

create a hash map HM1 for S1 at the same time
2.While k ≤ L

2.1 Initialize two arrays Aafter [|
∑
|], Abefore[|

∑
|]

2.2 for each element s′ in Sk. for each symbol
2.3 σ ∈

∑
, Aafter and Abefore record the

2.4 numbers of times s′σ and σs′ appear in the
2.5 dataset respectively.
2.6 For each sequence s in the dataset
2.7 For each substring si,i+k−1 of s,
2.8 1 ≤ i ≤ length(s)− k + 1
2.9 If si,i+k−1 is found in HMk then
2.10 update Aafter and Abefore

2.11 corresponding to si,i+k−1.
2.12 End If
2.13 End For
2.14 End For
2.15 For each element s′ in Sk

2.16 Add to T the node corresponding to s′
2.17 and for each σ ∈

∑
, compute P (σ|s′)

2.18 using Aafter , smooth P (σ|s′) if necessary
2.19 If there exists a symbol σ′ ∈

∑
such that

2.20 count(σ′s′) ≥MinCount (using Abefore)
2.21 then add σ′s′ to Sk+1

2.22 End If
2.23 End For
2.24 Create hash map HMk+1 for Sk+1

End While

Table 2: The PST Construction Algorithm

(by the length) measure. Given a sequence s = s1 . . . sl

and a PST T , the odds of s with respect to T is denoted
as SIMO and defined as

SIMO(s, T) =
PT (s1)P

T (s2|s1) . . . PT (sl|s1 . . . sl−1)

P (s1)P (s2) . . . P (sl)

Thus, SIMO represents the odds that s is a member
of T (as opposed to a random sequence). Clearly, if
the value of SIMO(s, T) is greater than 1, it indicates
that s is more likely to be subsumed by T than be a
random sequence. The SIMO measure was used by
Yang and Wang [14, 15] to decide cluster membership
of a sequence s to cluster T .

The Normalized (by the length) measure tries to
capture the length of a sequence in the similarity

98

computation. It is denoted as SIMN and defined as

SIMN(s, T) =
1

l
(logPT (s1)+

l∑

j=2

logPT (sj |s1 . . . sj−1))

The SIMN measure explicitly captures the length of
sequence in the similarity calculation. While [14, 15]
mention the use of normalization in computing the
similarity, all their experiments are based on the SIMO

measure. Our experiments in the next section will
clearly demonstrate that SIMN is superior when it
comes to outlier detection.

In our experiments we have used the log of SIMO

because otherwise SIMO can assume very large values.

5 Experiments, Results and Analysis

We have carried out extensive experiments to validate
our approach to detect outliers in sequential databases.
The results of six sets of experiments are presented in
this section.

1. The first experiment was designed to test whether
SIMN and SIMO are well normalized with respect
to the length.

2. The second set of experiments was used to test the
hypothesis that sequences with low similarity value
(SIMN) are found closer to the root of the PST.

3. The goal of the third experiment was to determine
which measure of pruning Pmin or MinCount was
more suitable for outlier detection.

4. In the fourth experiment, we compared the running
time of our implementation for constructing a PST
against Bejerano’s implementation [3].

5. In the fifth set of experiments, we have compared
and contrasted the two measures SIMO and SIMN

to determine which one of the two is more suitable
for outlier detection.

6. The objective of the sixth experiment was to de-
termine if removal of sequences with low/high sim-
ilarity values decrease/increase the entropy of the
remaining set.

5.1 The Dataset Used
The dataset we used was downloaded from the Pfam
(Protein Families database of alignments and HMMs)
website. We use the curated part of Pfam which
contains over 900,000 protein sequences belonging to
7868 protein families. Depending upon the experiment,
either the whole data set or data belonging to some
selected families was used. We have also used a

synthetic data set to determine how the size of the
PST nodes grows at each level. We have created two
synthetic data sets, Syn1 and Syn2 on an alphabet
{a, b}. In Syn1 each a and b are equally likely to appear
in a sequence (1:1). In Syn2, the generator is biased
towards emitting a over b (3:1).

5.2 The relationship between the length of
sequence and SIMN/SIMO

The sequences in the dataset have different lengths. The
similarity measures proposed for detecting outliers must
get rid of the effect of length. In order to test whether
SIMN and SIMO are well normalized on the length of
sequences, we constructed the probabilistic suffix tree on
the whole Pfam dataset, computed the similarity values
for each sequences using SIMN and SIMO respectively,
and then calculated the average similarity value for each
length, which have more than 100 protein sequences.

Figure 2 and 3 show the relationship between the
average value and length for SIMN and SIMO respec-
tively. Both measures catch the same intrinsic charac-
teristics of the dataset, because the peak values always
appear at the same positions. However, the average
similarity value for measure SIMO goes up as length in-
creases, while no such trend is apparent for SIMN . So
for the purpose of outlier detection, the measure SIMN

is better than SIMO, because the later one is likely to
pick up short sequences as outliers.

5.3 The Tree Depth
The size of a PST is an exponential function of the
length of the short memory, L. This make it mandatory
to manage the growth of the PST. One of our hypotheses
is that outliers can be mined by just using information
in the top part of a PST. The experiment results confirm
this hypothesis.

Figure 4 shows the relationship between the similar-
ity values and the maximum depth we need to search in
a PST while computing these values. Even though it is
not necessary to go deep inside a PST to compute high
similarity values, low similarity values (i.e., candidate
outliers) can be computed by traversing nodes closer to
the root. More than half of the points in Figure 4 stay
below the depth (closer to the root) of twenty five in the
tree.

All the protein sequences in the Pfam database be-
long to 7868 different families. In general sequences that
belong to one family are structurally similar and should
have high degree of “similarity” with each other. Thus,
sequences in one family should be outliers with respect
to another family - and a good similarity measure should
be able to pick this up. There are a few exceptions, as
some proteins have complex structures and may be sim-

99

-3.1

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5

0 100 200 300 400 500 600

Length

A
v
e
ra

g
e
 S

im
il

a
ri

ty

Figure 2: SIMN represents the similarity measure
normalized by the sequence length. Notice that
there is no apparent relationship between the length
of the sequence and its similarity value.

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

Length

A
ve

ra
g

e
S

im
ila

ri
ty

Figure 3: SIMO represents the odds measure. No-
tice that there is a clear positive correlation be-
tween the length of the sequence and its similarity
value. Thus, for outlier detection SIMO will be
biased towards shorter sequences.

0

25

50

75

100

125

-4 -3 -2 -1 0

Similarity value

M
a

x
im

u
m

 t
re

e
 l
e

v
e

l

Figure 4: The relationship between the similarity
and the maximal depth we need to search in PST
while computing the similarity.

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

3.E+06

4.E+06

4.E+06

5.E+06

5.E+06

0 5 10 15 20 25

Tree Level

T
o

ta
l

n
u

m
b

e
r

o
f

n
o

d
e
s

Syn1 Syn2 Protein

Figure 5: Total number of nodes (cumulative) of
PSTs from root to a specific level for synthetic and
real protein datasets (no pruning).

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

3.E+06

4.E+06

4.E+06

5.E+06

5.E+06

0 5 10 15 20 25

Tree Level

T
o

ta
l

n
u

m
b

e
r

o
f

n
o

d
e
s

MinCount=5

Pmin=0.0000086

NoPruning

Figure 6: Total number of nodes (cumulative) of
PSTs from root to a specific level for the protein
dataset: a comparison between pruning and not
pruning the PST.

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60

Tree level

N
u

m
b

e
r

o
f

n
o

d
e

s
 a

t
e

a
c

h
 l

e
v

e
l MinCount=5 Pmin=0.0000086

Figure 7: Pmin prunes more nodes at low levels
but less nodes at deep levels than MinCount. This
suggests that for outlier detection MinCount is a
better measure for pruning than Pmin.

100

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

Tree Level

R
u

n
n

in
g

 t
im

e
 (

s
e
c
o

n
d

)

Syn1 Protein

Figure 8: Running time of our implementation.

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12

Tree Level

R
u

n
n

in
g

 t
im

e
 (

S
e
c
o

n
d

)

Syn1 Protein

Figure 9: Running time of Bejerano’s implementa-
tion.

ilar to multiple families. We selected five protein fam-
ilies, built PST s over each one of them using different
tree depth and computed the mean and standard devi-
ation of the similarity values of the sequences in each
family. Then, we tested what percentage of members
of other families fall at least three standard deviations
away from the mean on the left side of a particular fam-
ily (in terms of the similarity score).

The results are shown in Table 3. The first three
characters of a family name are used to represent the
protein families, and the table entries are percentage
of family members that fall outside (on the left side)
the three standard deviations threshold. For example,
when we build a PST with tree depth 1 on protein
family RUB, only 0.11 percent of the members of NAD
fall outside the three standard deviations threshold;
when we build a PST with tree depth 2, the percentage
increases to 5.51, and when the tree depth increases to
3, there is a big jump in the percentage. The percentage
converges to 100 as the tree depth increases to 4.

Figure 5 shows the total numbers of nodes in the
PSTs (no prunning) of the synthetic and real datasets.
The number of nodes of Syn1 increases exponentially as
the tree level increases. For the real dataset, the number
of nodes increases exponentially at the first a few levels,
and then grows linearly with the tree level. This is
because many of the sequences in the protein data set
are homologous and have strong recurring patterns in
common. For both cases, if we cut the tree at a specific
level, the size of the PST will be much smaller than the
size of the original one.

These observations can be used to construct
part of the PST instead of the full one. Thus,
we can reduce the cost (both running time and
memory) if the intention is just to find outliers.
As we will see, this will allow us to retain more nodes
closer to the root as well so that we can calculate
SIMN more accurately for outliers. For Pfam dataset,

constructing a PST with a maximum height of ten is
sufficient for outlier detection.

Cutting the PST at a specific level will result
in sequences, which can match the nodes deeper in
the tree, to have relatively smaller similarity values.
However, these values are large enough to distinguish
them from outliers.

5.4 Pmin and MinCount

Another way to make the PST smaller is either to use
Pmin or MinCount to prune nodes. Figure 6 shows
the effect of pruning the PST using these two methods
and compare them with the case where no pruning is
carried out. Even though we used small values for Pmin

and MinCount, the total number of nodes in the PST
reduced dramatically.

Figure 7 shows the number of nodes at each level of
a PST after thresholding by either Pmin or MinCount.
The total numbers of nodes in the PST from both
methods were kept as close as possible. Pmin prunes
more nodes at lower levels (closer to the root) than
MinCount. As discussed before, the outlier sequences
can be distinguished from others by using low level
information recorded in a PST. Thus we should keep as
much low level information as possible in a PST. From
this point of view, MinCount does better than Pmin.

5.5 Comparing two PST implementations
As we noted in Section 3, we have used a hash map data
structure to efficiently update the counts of the nodes at
each level of the PST. In order to test how much running
time can be saved using this approach, we downloaded a
C implementation of PST from Bejerano’s website. Our
implementation is in Java. Figure 8 shows the running
time for building each level of the PST on a synthetic
(syn1) and a protein data set using our implementation.
Figure 9 shows the result of the same experiment using
Bejerano’s implementation.

101

PST Tree Depth HCV NAD RVP RUB TET

HCV 1 87.26 99.83 89.19 82.43
2 99.94 100.00 95.68 99.84
3 100.00 100.00 99.09 100.00
4 100.00 100.00 99.63 100.00
5 100.00 100.00 99.63 100.00
6 100.00 100.00 99.63 100.00

...

RUB 1 0.00 0.11 0.00 0.00
2 2.58 5.51 0.26 3.04
3 98.99 99.94 100.00 99.73
4 99.65 100.00 100.00 99.95
5 99.70 100.00 100.00 100.00
6 99.70 100.00 100.00 100.00

...

Table 3: We built PSTs on two protein families, HCV and RUB respectively and extended them to different
tree depth. The similarity scores of members of four other families were separately computed on these PSTs.
The figures in the table are percentage of family members that fall outside (on the left side) the three standard
deviations threshold of another family.

For the synthetic dataset, we used a very small value
for Pmin so that no nodes were pruned. The running
times of both implementations increase exponentially,
but the running time of our implementation increases
much slower.

For the protein dataset, we used a normal value for
Pmin so that nodes were pruned at each level. The
running time of our implementation increase linearly
with the height of PST; the running time of Bejerano’s
implementation increases rapidly in the first few level
and then flattens out. We have not shown the results in
the same figure, because our implementation is several
orders of magnitude faster (This can be telling from the
scales of the vertical axes of the figures).

5.6 The Correctness of SIMN and Comparison
with SIMO

We have carried out experiments to test the robustness
of SIMN and compared it with SIMO to detect outliers.

In order for the SIMN to be robust, the following
must hold: If a sequence is an outlier in a dataset with

respect to SIMN , then it must remain an outlier for

subsets of the dataset.

We built a PST using the full Pfam database and
selected the top three sequence outliers with respect
to SIMN . The most extreme outlier is the protein
B2MG CANFA whose length is 32 and belongs to
the family C1-SET. We selected two subsets: the first
consists of all sequences in the family C1-SET, while
the second is the set of all sequences of length 32.
PST’s were built on both these sets and the top three

outliers in each set are shown in Table 4. The sequence
B2MG CANFA remains the most extreme outlier even
though the value of SIMN has changed. This provides
credence to the claim that the SIMN measure is indeed
robust.

We now show that SIMN is more accurate in de-
tecting outliers than SIMO. The experiment designed
is very similar to the one in the previous section except
that we used a fixed tree depth 10 for all PSTs this time.
The results for both SIMN and SIMO are shown in Ta-
ble 5. For example, using the SIMN measure, 100% of
the members of the family HCV fall outside (on the
left side) the three standard deviations threshold of the
family RUB. The same is true for only 7.76% of the
sequences under the SIMO measure. These results are
truly remarkable, and one can safely conclude that the
SIMN measure is superior to SIMO when it comes to
the detection of outliers. Even when we use a thresh-
old of four or five standard deviations away from mean,
SIMN still works well. This means that compared with
SIMO, SIMN reduces the variance of the intra-family
similarity scores and increases the variance of the inter-
family scores.

Table 6 shows the results of another experiment
on the same five protein families. However, this time
we built PST on four families and then tested against
the other family. When using SIMN measure, all
the members of a family fall outside (on the left side)
the two deviations threshold of the other four families
except for family RUB (99.46), and at least 94% of the
members of a family fall outside the three deviations

102

Dataset Sequence name Family name Length Similarity

Whole Pfam database B2MG CANFA C1-SET 32 -4.5533561
Q87964 SIV CZ ZF-CCHC 18 -4.122237
RNAS1 DAMKO RNASEA 123 -4.0808628

One sequence family B2MG CANFA C1-SET 32 -4.5227872
C1-SET Q9XRN2 RHIUN C1-SET 87 -3.1713487

Q31309 AMEAM C1-SET 83 -3.0020465

All sequences with B2MG CANFA C1-SET 32 -4.6780682
length 32 Q8HGU3 MAMPR CY TOCHROM B N 32 -3.7629611

Q920C6 CAV PO CRF 32 -3.6640211

Table 4: The sequence B2MG CANFA remains the most extreme outlier in the three different datasets. This is
evidence for the claim that SIMN is a robust measure of similarity

HCV HCV NAD NAD RUB RUB RVP RVP TET TET
PST SIMN SIMO SIMN SIMO SIMN SIMO SIMN SIMO SIMN SIMO

HCV 100.00 0.00 99.82 0.00 100.00 0.00 100.00 0.00
NAD 100.00 99.80 100.00 77.48 100.00 99.84 100.00 100.00
RUB 100.00 7.76 100.00 0.00 100.00 0.00 100.00 0.00
RVP 100.00 100.00 100.00 100.00 100.00 96.94 100.00 100.00
TET 100.00 99.85 100.00 100.00 100.00 100.00 100.00 100.00

Table 5: We built PST on one family and then tested against the other four families. The figures in the table
are percentage of family members that fall outside (on the left side) the three standard deviations threshold of
another family .

threshold. For this case, SIMO measure doesn’t work
at all.

5.7 Why does SIMN work so well?
As shown above, the performance of the SIMN measure
in detecting outliers is quite remarkable. This is in
contrast to what Bejerano [3] conjectures in his thesis
on page 50. We now provide an information-theoretic
argument to explain the success of SIMN . In order
to do that, we introduce the concept of entropy and
then state the Shannon-McMillan theorem [1](page 197)
without proof.

The entropy H of a discrete random variable X is
defined as

H(X) = −
∑

x∈CX

P (x)LogP (x)

where C(X) is the set of all distinct values that the
random variable X can assume. The entropy is a
measure of “uncertainty” or more informally, captures
the regularity present in the data of interest.

Theorem 5.1. (Shannon-McMillan Theorem)
Let {Xn, n = 1, 2, . . .} be an ergodic information source

with alphabet
∑

and uncertainty H(X). Define a se-

quence of random variables Vn(X1, . . . , Xn} as follows:

If X1 = α1, . . . , Xn = αn, let

Vn(X1, . . . , Xn) = −
1

n
log P (X1 = α1, . . . , Xn = αn}

Then Vn(X1, . . . , Xn) converges in probability to H(X).

Notice that Vn(X1, . . . , Xn) is −SIMN . In order
to test the relationship between SIMN and entropy
(for a set of finite length sequences), we carried out
an experiment to evaluate whether the removal of
sequences with low/high SIMN will decrease/increase
the entropy of the remaining sequences.

In our case we have a sequence database S

of size n. We denote each sequence si ∈ S as
s(i, 1)s(i, 2) . . . s(i, ni), 1 ≤ i ≤ n. We define the se-
quential entropy(HS) of S as the sum of entropies of
the “transpose” of S. More formally, let nmax =
max{ni|1 ≤ i ≤ n}. Then

HS =

nmax∑

j=1

H(s(., j))

HS captures the regularity across sequences. In gen-
eral, the sequences should be “aligned” before HS is
computed. However, our experiments show that even
without alignment, HS “behaves” in the way predicted.

103

Two STDs Two STDs Three STDs Three STDs
PST TEST SIMN SIMO SIMN SIMO

no HCV HCV 100.00 1.16 95.25 0.00
no NAD NAD 100.00 0.00 99.28 0.00
no RUB RUB 99.46 29.94 94.23 0.00
no RVP RVP 100.00 0.00 100.00 0.00
no TET TET 100.00 0.00 100.00 0.00

Table 6: We built a PST on four families and then tested against the other family. The figures in the table are
percentage of family members that fall outside (on the left side) the two/three standard deviations threshold of
the other four families.

470
480
490
500
510
520
530
540
550
560
570
580

460480500520540560

Number of sequences

E
n

tr
o

p
y

Remove sequences in deep cluster
Remove outliers

Figure 10: The entropy goes up when high SIMN

sequences are removed and goes down when low SIMN

sequences (outliers) are removed.

The results are shown in Figure 10, and they indicate
the expected relationship between SIMN and entropy.
We sort all the sequences according to their similarity
values (SIMN). Each time we remove 10 sequences with
the lowest/highest similarity values in the existing data
and recompute the entropy. When low/high similarity
sequences are removed, the entropy goes down/up.

6 Summary and Future Work

We have proposed a method for mining outliers in
sequential databases. Our method relies on building
a probabilistic suffix tree on the database. We have
provided a solution for two related problem in outlier
detection. Namely, finding the top-n outliers in a set
and given a query sequence q and a set S, determining
whether q is an outlier with respect to S. The latter
is particularly useful in a real-time setting. We have
shown that when the goal is to mine for outliers, we
effectively have to only examine nodes near the root
of the tree. This is sufficient to distinguish between
outliers and non-outliers. In the process, we have
shown that the measure SIMN (the length normalized
probability of a sequence) does particularly well in
the detection of outliers. We have also provided an

entropy based argument to explain its success. For
future work, we would like to apply the proposed way
of mining outliers in other domains like remote sensing
and program analysis.

References

[1] R. Ash, Information Theory, Dover Publications
(1990).

[2] S. D. Bay, and M. Schwabacher, Mining distance-

based outliers in near linear time with randomization

and a simple pruning rule, Proceedings of the ninth
ACM SIGKDD international conference on Knowledge
discovery and data mining (2003), pp. 29–38.

[3] G. Bejerano, Automata Learning and Stochastic Model-

ing for Biosequence Analysis, PhD thesis, Hebrew Uni-
versity (2003).

[4] G. Bejerano, and G. Yona, Variations on probabilistic

suffix trees: statistical modeling and prediction of pro-

tein families, Bioinformatics, 17(1) (2001), pp. 23–43.
[5] G. Bejerano, and G. Yona, Modeling protein fami-

lies using probabilistic suffix trees, Proceedings of the
third annual international conference on Computa-
tional molecular biology, (1999), pp. 15–24.

[6] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander,
LOF: Identifying Density-Based Local Outliers, Pro-
ceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data (2000), pp. 93–104.

[7] V. Guralnik, and G. Karypis, A Scalable Algorithm

for Clustering Sequential Data, Proceedings of the
2001 IEEE International Conference on Data Mining,
(2001), pp. 179–186.

[8] T. Kahveci, and A. K. Singh, Efficient Index Structures

for String Databases, Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases (2001),
pp. 351–360.

[9] E. M. Knorr, and R. T. Ng, Algorithms for Mining

Distance-Based Outliers in Large Datasets, Proceed-
ings of the 24rd International Conference on Very Large
Data Bases (1998), pp. 392–403.

[10] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and
J. Srivastava, A Comparative Study of Anomaly Detec-

tion Schemes in Network Intrusion Detection, Proceed-

104

ings of SIAM International Conference on Data Mining
(2003).

[11] S. Ramaswamy, R. Rastogi, and K. Shim, Efficient

Algorithms for Mining Outliers from Large Data Sets,
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (2000), pp. 427–
438.

[12] D. Ron, Y. Singer, and N. Tishby, The Power of Am-

nesia: Learning Probabilistic Automata with Variable

Memory Length, Machine Learning, 25(2-3) (1996),
pp. 117–149.

[13] Z. Sun, and J. S. Deogun, Local Prediction Approach

for Protein Classification using Probabilistic Suffix

Trees, Proceedings of the second conference on Asia-
Pacific bioinformatics (2004), pp. 357–362.

[14] J. Yang, and W. Wang, CLUSEQ: Efficient and Ef-

fective Sequence Clustering, Proceedings of the 19th
International Conference on Data Engineering (2003),
pp. 101–112.

[15] J. Yang, and W. Wang,, Towards Automatic Clustering

of Protein Sequences, Proceedings of the IEEE Com-
puter Society Conference on Bioinformatics (2002),
pp. 175–186.

105

