Advanced Prototype Machines: Exploring Prototypes for Classification

Hans-Peter Kriegel

Matthias Schubert

Institute for Computer Science

University of Munich, Germany
{kriegel,schubert }@Qdbs.ifi.lmu.de

Abstract

In this paper, we propose advanced prototype machines
(APMs). APMs model classes as small sets of highly de-
scriptive prototypes which are well suited for interactive
visualization. Thus, APMs offer a method to analyze
class models, feature spaces and particular classifica-
tion scenarios. To derive the prototypes, we introduce
"Push and Grow”, a classification algorithm which is
based on a quality measure favoring maximal margins
between classes. To explore the derived prototypes,
we propose a visualization suite that adapts interac-
tive multi-dimensional scaling to prototype models. The
idea of this tool is to display the distance relationships
between the prototypes and the objects to be classified.
We distinguish three visualization tasks deriving differ-
ent kinds of information. To shift the visualization error
to the less important distance relationships as much as
possible, the stress function is adjusted to each of these
tasks. APMs achieve fast and accurate classification
that is based on compact class models which can be
explored by interactive visualization. Our experimen-
tal evaluation demonstrates on 14 data sets that APMs
achieve better classification accuracy on much less data
objects than other KNN-based classifiers. To demon-
strate the value of our interactive exploration tool, we
provide examples for the derived class models and clas-
sification scenarios.

Keywords

classification, visual data mining, multi-dimensional
scaling, prototype models

1 Introduction

The most desirable ability of a good classifier is to
offer reliable class predictions. However, in many
applications another aspect of classification is very
important as well, the understandability of the found
class models. For example, a manager using a decision
support system wants to understand the characteristics
of the situation that led to the decision proposed by

the computer. Thus, finding a class model that is
understandable is an important aspect of designing a
classification algorithm. However, most directions of
classification neglect this aspect in favor of superior
accuracy.

In this paper, we propose, advanced prototype ma-
chines (APM), an alternative approach to understand-
able classification that is based on nearest prototype
classification and data visualization. The idea is to de-
scribe each class by a small set of highly descriptive
prototypes. Each prototype represents a subset of the
original training objects. Furthermore, the prototypes
represent necessary concepts for each class and thus we
can visualize the classes without the influence of noise
objects. APMs consist of two components. A new al-
gorithm, called ”Push and Grow” (PAG) to derive pro-
totype models which is focused on finding very small
prototype models. Since the number of prototypes is
very small, it is much easier to find a meaningful visual-
ization. The second component of an APM is a visual-
ization suite that adapts interactive multi-dimensional
scaling on a hyperbolic plane to displaying prototype
models. We distinguish three tasks of visualization: the
visualization of feature spaces, prototype models and in-
dividual class decisions. Since not all distance relation-
ships in a prototype model are equally important for
each of these scenarios, we introduce different weight-
ings to shift the visualization error to the less impor-
tant distance relationships for that particular scenario.
Additionally, the visualization suite allows to directly
compare the feature vectors of objects and to analyze
specific classification scenarios more closely.

The rest of the paper is organized as follows. In
section 2, we will briefly survey related work. Section 3
provides an overview of the proposed system and makes
some basic definitions. Section 3 describes the new clas-
sification algorithm called ”Push and Grow”. Weighted
multi-dimensional scaling and its application to display
class knowledge is introduced in section 5. Furthermore,
this section contains a description of the features of the
proposed visualization suite. The experimental evalu-

176

ation in section 5.3 describes the classification perfor-
mance of ”Push and Grow” compared to other classifi-
cation algorithms, on multiple data sets. Furthermore,
the section contains some examples for the usefulness of
the introduced visualization tool. The paper concludes
in section 7 with a short summary and some ideas for
future work.

2 Related Work

The simplest method of prototype classification is cen-
troid based classification as proposed in [7]. A more
general approach to nearest prototype classification was
proposed by Kohonen [9, 10]. Similar to his clustering
approach, self-organizing-maps, he proposed ”learning
vector quantization” (LVQ) for optimizing the position
of a given set of artificial prototypes with respect to
nearest neighbor classification. Basically, LVQ performs
the same task as the pushing step in our proposed al-
gorithm PAG. However, LVQ does not determine the
number of employed prototypes for each class on its
own. Thus, it solves only one part of the problem. Fur-
thermore, LV(Q moves centroids with respect to the dis-
tance of a data object to the two closest prototypes. In
our approach, we optimize the positions of prototypes
with respect to the breadth of the margin between the
classes, which is the core idea of our quality measure.
To demonstrate the advantages of our method, we will
compare it to a version of our method called "LVQ and
Grow” that employs LVQ instead of the Push step in
PAG.

Another method to shrink the training set of kNN
classifiers is instance reduction [2, 15, 3]. All approaches
try to reduce the number of instances in the training
set in a way that the classifier provides comparable or
even better accuracy and demands less processing time.
Recent evaluations indicate that the methods RT-3 [15]
and ICF [3] currently provide the best results. However,
these methods delete instances from the training set and
do not build artificial prototypes.

To extract knowledge from the found prototype
models, we use visualization to get a good intuition
about the classes. Though prototype models use only
a fraction of the number of data objects of the original
training set, they are still feature vectors in the origi-
nal data space. Thus, prototypes are often very high-
dimensional. To visualize high-dimensional feature vec-
tors, we employ regularized multi-dimensional scaling.
General multi-dimensional scaling was first proposed by
Samon [13]. Since the data objects that MDS projects
into a the 2D image space might provide very heteroge-
neous distances, zooming becomes an important prob-
lem. This problem was solved by Walters and Ritter in
[14] proposing H-MDS, who solved the zooming prob-

lem by calculating the disparities of objects in an hy-
perbolic object space. Displaying the image point on
a hyperbolic plane allows interactive zooming of very
far and near objects. A difference to our use of MDS
on a hyperbolic plane is that we first apply MDS and
than transform the resulting configuration into the hy-
perbolic plane while H-MDS in [14] directly works in a
hyperbolic space.

Since MDS was introduced for visualizing general
high dimensional data sets, the distance relationships
of all displayed data objects are considered as equally
important. However, in the prototype model of an APM
we have different types of objects, prototypes and test
instances, and different types of distance relationships,
between objects of different classes and between objects
of the same class. Depending on the given visualization
task, some of the distance relationships are less impor-
tant. Therefore, we introduce different weightings that
increases the influence of the more important distances
to the stress function in MDS. Thus, our visualization
suite is capable to adjust the image of the prototype
model to the given scenario.

3 Describing Class Knowledge as Prototypes

In this section, we want to give a brief overview of the
described classification approach. We model classes as
sets of prototypes or prototype models. Each prototype
represents a subset of the training objects for one class
and is basically a weighted centroid that is built from a
set of feature vectors. Formally, a prototype is defined
as follows:

DEFINITION 3.1. prototype

Let S; C IR? be a set of training objects for class c and
w(o) be a weight function determining the importance
for this object o € S; in the prototype. The prototype
PT(S;) is defined as:

2oes, W(0) - 0
2 oes, w(0)

DEFINITION 3.2. prototype model

Let S = {S1,...,S,} be a disjoint decomposition of the
set TR. = |J Si of all training objects for class c € C.

5,e8

Then PM.(S) = {x;|VS; € S :z; = PT(S;)} is called a
prototype model of ¢ with respect to S. A set of prototype
models for a given training set TR belonging to classes
C is denoted as PMsc(TR).

PT(5;) =

A prototype model is a condensed version of the
training data for one class. Since a prototype is usually
built from several objects, it is a generalization and
thus contains information about what is typical for

177

the underlying training objects. A good prototype
model should contain a well-positioned prototype for
all training objects that are based on a similar concept.
Nearest neighbor classification is handled the same way
as on the original training set. However, since an
object usually is dependent on a single mechanism,
we consider only the nearest neighbor for each class.
As distance measure, we employ the well established
Euclidian distance on feature vectors fv € IR

Another aspect of prototypes is that they are well
suited for visualization. First of all, it is possible to
find very small prototype models for most applications,
containing only a fraction of the number of original
training objects. Thus, a visualization of prototype
models is faster to calculate, more accurate with respect
to visualization errors and easier to understand for a
human user. The simplest method for deriving a set
of prototype models is to describe each class by the
unweighted centroid of the training objects. In [7]
this method was described to perform well for text
classification.

A more sophisticated method for deriving proto-
type models are clustering algorithms like k-Means, DB-
SCAN or EM [8]. By clustering the training objects for
each of the classes and condense the resulting clusters to
their centroids, it is possible to find a set of meaningful
centroids for each class. The problem of this approach is
that the resulting prototype models describe the train-
ing set without considering any relationships to other
classes. Thus, the location of prototypes mirrors only
the data distribution in the training set of a class. An-
other problem with using clustering algorithms for gen-
erating prototypes is that most clustering algorithms
are dependent on the given input parameters. k-Means
for example, needs the expected number of clusters as
input parameter. This has the advantage that we can
select the size of the resulting prototype model for each
class. However, since the number of necessary objects
for each class is unknown, it is very difficult to find a
suitable parametrization for each of the classes.

4 Push and Grow

In this section, we will introduce a new algorithm to find
small prototype models that achieve high classification
accuracy. Our algorithm is driven by two important
observations of classification. The first is minimum
description length. A classifier depending on a small
number of parameters has a smaller tendency to overfit
than a classifier using complex class models. For
prototype models, this means that a classifier depending
on a small number of prototypes is considered to be
described by less information. The second observation
is that maximizing the margin between the classes

hyperplane

Figure 1: Sketch for proof of lemma 1.

improves the performance of the classifier on unknown
data objects. This second observation is one of the main
ideas of support vector machines as proposed in [5].

4.1 The Quality of Prototype Models Before de-
scribing the algorithm, we will define a quality measure
for sets of prototype models that is based on the second
observation. For each object o, we calculate the distance
to the closest class border by calculating the distance to
each hyperplane that is defined by a pair of prototypes
(P1, P2) where P; belongs to ¢ and P, belongs to any
of the other classes ¢ € C'\ ¢. Let us note that the
hyperplane that is given by two prototypes can be de-
rived by taking the vector between both prototypes as
normal vector of the plane. Additionally, the point in
the middle of this vector must be placed on the sepa-
rating hyperplane. To compute the distance of object o
to a hyperplane that is given by prototypes Pi, P>, we
introduce the following lemma.

LEMMA 4.1. Let o be an object belonging to class c € C'
and let PMsc(TR) be a set of prototype models with
respect to a training set TR. Furthermore, let Py, Py be
prototypes with P, € PM(Tr.) and Py € PM(Tr;) with
¢ € C\candd(xy,x2) be the Buclidian distance in IR?.
Then, distp, p,(0) is the distance of o to the hyperplane
that is defined by Py and Py:

d(Py,P2)*+d(P1,0)? —d(P2,0)*

2d(P1,Cs)

_d(P1,Py)
2

diStPth (O) =

Proof. cf. figure 1

Since d(P1,0)? = A2 + h? and d(P»,0)? = B2 + h?,
we can derive that d(Py,0)? = A% — B2 +d(P»,0)?. Fur-
thermore, we know that A 4+ B = d(Py, P2). Together,
d(F’l,O)2 = d(Pl,PQ) . (2A - d(Pl,PQ))) + d(P2,0)2.

Thus
d(Pl, 0)2 + d(Pl, P2)2 — Cl(f:)g7 0)2

2-d(Py, Py)

Since we want to calculate the distance to the middle
of P, Py, we have to subtract d(Py, P2)/2. q.e.d.

A:

178

DEFINITION 4.1. Minimal Distance to Class Bor-
der

gPMse(TR) (v _

min -

min distp, p,(0)
PLePM(Tr.),P2€PM(Tre)

where ¢ € C'\ c.

The value di%sc(TR) (o) is positive, if o is placed
inside the Voronoi cell of prototype P; and negative if
it is positioned outside. To derive a confidence value,

we apply a sigmoid function to dZ%SC(TR)(o)

DEFINITION 4.2. confidence value

1

PMsc(TR)

min

Confpise (TR) (0) =

1+ exp~ ¢

(0)

If Confpurse(rry(0) displays a value smaller than
0.5, o is placed in a Voronoi cell belonging to the class
of P, instead of its own class and is thus misclassified.
Note that depending on parameter « the confidence
Confpusc(rry(0) does not instantly display a large
value if o is placed in the correct Voronoi cell. If o is
close to the class border, Confpars,(Tr)(0) might still
display a value of almost 0.5.

To measure the quality of a given set of prototype
models, Con fpys.(rr)y(0) is determined for every ob-
ject in the training set and the average is computed.

DEFINITION 4.3. quality function

Let PMsc(TR) be a set of prototype models describing
the set of classes C with respect to a training set

TR = {TR.,...,TR¢,}. Then, the quality of
PMsc(TR) is defined as follows:

ZoeTR Confpurse (TR) (0)
TR

quality(PMsc(TR)) =

This quality measure displays large values if the
training objects are correctly classified and have a sig-
nificant distance to the class border. A set of prototype
models having a considerably large portion of misclas-
sifications or many objects that are close to the class
margins, will display only a low quality when using this
measure. By considering the distance to the closest class
border, a set of prototype models achieving a broader
margin between classes offers a higher quality as well.
Thus, our quality measure favors maximum margins be-
tween classes. By defining a quality measure, we now
have a measure for comparing different prototype mod-
els with respect to their potential to offer accurate clas-
sification.

4.2 Push and Grow To derive descriptive models
with a minimal number of prototypes, we now introduce
a novel algorithm that is based on the quality measure
described above. The idea of our algorithm is to begin
with a minimum number of prototypes, namely one
for each class. Then, we are improving the prototype
models by adjusting the positions of the prototypes.
This step is called the push step. After we reach a
maximum of the quality measure, we split some of the
prototypes in the grow step. Afterwards, some of the
classes are represented by more than one prototype.
Then, we again apply the push step in the next iteration
to improve the positioning of the prototypes and split
again. The algorithm terminates when the quality of a
the new prototype model does not significantly exceed
the quality of the previous model. To explain the
exact algorithm, we will first describe the push and the
grow step separately and afterwards we will present the
complete algorithm combining both steps.

The Push Step

The goal of the push step is to find a weighting of
the training objects that moves the prototypes into
a position increasing the margin between the classes
and thus increasing the quality of the set of prototype
models.

The push step in ”Push and Grow” (PAG) performs
several iterations over the training data. In each
iteration, the weight of object o is increased with respect
to (1 — Confparse(rry(0)). This way, misclassified
objects and objects that are close to the class margin are
weighted higher than objects that are classified correctly
with high confidence. At the beginning of the push step,
the weight of each object is 1. After each iteration, the
weight is updated as follows:

weight(o) = weight(o) - (2 = Confprrsq(rr))(0))

This way each weight is steadily increased and the
weights of objects that are close to the class borders have
an increased influence on the position of the prototype.
As a result, the prototypes are slowly moving in the
direction of the classification errors. As can be seen from
lemma 1, increasing the weight of an object o increases
the distance to the class border for correctly classified
objects and decreases it if o is on the wrong side of the
border. However, since the weights are simultaneously
increased for several objects, it is not guaranteed that
the distance to the class border is indeed improving for
all objects. However, it is improved for the majority of
objects. After performing some iterations (about 5-15),
the quality measure is more or less stable and does not
display any significant improvement.

The Grow step
While the push step tries to find a more suitable

179

T
o0 o o o 1 X
o o o] o 7~ o
1 4 D
- 1 e s
o a ~
- -~ a 1 7 -~ ~
a o, a < S
o - ~
- a 1 N a
a o 1 S .
o NS <o
o - I i
= . o 1 o o
o o 1 o

Figure 2: Left: Tlustration of two classes (triangles and
rectangles). Middle: A prototype model employing a
single centroid for each class. Right: A prototype model
using several prototypes per class.

position for a given set of prototypes, the grow step
tries to find the right number of prototypes. After the
algorithm starts with a single prototype for each class
and optimizes the position of these prototypes using
the push step, a set of prototype models might still
display only an unsatisfying quality. For many real-
world problems, it is not sufficient to model each class
by a single prototype, i.e. a single Voronoi cell. Figure 2
displays a 2D example where a single prototype per class
is insufficient. However, by choosing several prototypes
it is possible to find a good approximation of the class
border. Thus, for some applications simply moving the
prototypes cannot achieve a good classification model.
When classifying more complex classes, the number of
prototypes representing some of the classes has to be
increased. Let us note that the same problem occurs for
other linear classification methods like support vector
machines using a linear kernel or linear discriminant
analysis.

First of all, the grow step selects certain prototypes
to be split. Therefore, the quality of the complete set
of prototype models is compared to the quality of each
of the single prototypes. If the quality per object of
a prototype is smaller than the quality per object for
the complete set of prototype models, the prototype
is selected for splitting. This heuristic is based on
the assumption that classification errors are caused by
prototypes that do not model the underlying training
objects well enough.

To split a cluster, we proceed as following. We
determine the two data objects having the largest
distance from each other. Afterwards, we assign the
remaining data points to the closer of these two objects
and build prototypes from the resulting groups. Then,
we reassign each point to the closer prototype and again
calculate the prototypes. The algorithm terminates
if the prototypes are stable for two iterations. The
algorithm is basically k-means (k = 2) [8] with one
small modification: we use the weights determined in

algorithm push(PM]], TrainSet|[])
nitWeights()
oldg = oo
oldPM]|] = PM])
while(quality(PM][]) > oldg)
oldq = quality(PM][])
oldPM[) = PM]]
foreach pt in TrainSet[] do
pt.setWeight(weight(pt) - 2 — Confpyrp(pt))
next
endwhile
return oldP M|
end.

algorithm PAG(TrainSet(])
// init PrototypeModels PM]]
for each class c do
insert centroid(TrainSet|c]) into PM]|c]
next

PM] = push(PMI)
//start PAG
oldg = oo
oldPM][| = PM]]
while(quality(PM][| — oldq > €) do
oldq = quality(PM][])
oldPM|[) = PM]]
//grow step
candidates = calculateSplitCandidates(PM]])
foreach cand in candidates do
remove cand fromPM]]
new Protoypes|] = split(cand)
insert(newProtoypes|]) into PM][]
next

//Push Step
PM][] = push(PM]))
endwhile

return oldP M|
end.

Figure 3: Pseudo code of Push & Grow.

the push step instead of using unweighted mean values.
The advantage of this approach is that the resulting
clusters are built with respect to the misclassified and
difficult objects.

Figure 3 displays the complete algorithm in pseudo
code. PAG starts by building the centroids for each
class. Afterwards the Push step improves the position
of the prototypes with respect to the quality measures.
After the quality cannot be improved any further with
the push step, any candidate having a quality that is
below the quality of the complete set of prototypes is
split in the grow step. Afterwards the weights are reset
and the push step is started again. The algorithm
terminates if the quality does not improve after an
additional iteration of growing and pushing. Thus,
increasing the number of prototypes is only accepted

180

if the margin between the classes is increased and the
error confidence is reduced. In section 5.3, we will
demonstrate that PAG is capable to derive very small
prototype models that display high accuracy compared
to other methods of classification and kNN classification
in particular.

5 Visualizing Prototype Models

After deriving small and descriptive prototype models,
the next step is to exploit these class models for interac-
tive exploration of classification knowledge. Therefore,
we will adapt multi-dimensional scaling on the hyper-
bolic plane to displaying prototype models. After gen-
erally introducing this visualization technique, we will
turn to describe several possibilities for interactive ex-
ploration of prototype models and adjust the visualiza-
tion to these scenarios.

5.1 Weighted Multi-dimensional Scaling Our
goal is to visualize a set of feature vectors of arbitrary
dimensions on a two dimensional canvas or a screen.
For most high-dimensional data sets, it is impossible to
find a two dimensional image that exactly mirrors the
distance relationships between each of the data points.
However, to get a useful impression of a data distri-
bution, it is often enough to display an image that is
resembling the distance relationships as good as possi-
ble. Multi-dimensional scaling (MDS) as proposed by
Samon [13], uses optimization techniques to move a set
of 2D image points I into positions that resemble the
distance relationships for a given data set DB in a best
possible way. The principle idea of the algorithm is to
minimize a so-called stress function that compares the
distance matrix of DB to the distance matrix of the
image points I. If both matrices are the same with
respect to some scaling factor the stress is 0 and the
mapping is optimal. The stress functions used so far
were designed for visualizing a set of data objects that
are equally important. However, in our application of
visualizing prototype models, the distance relationships
that have to be displayed, provide different levels of im-
portance and thus not all distances should influence the
stress function in the same way. For example, since the
class membership of a test object only depends on the
prototypes, the distances between prototypes and test
objects should influence the stress function to a higher
degree than the distances to the other test objects. To
model such influences, we introduce a weight factor w; ;
for each distance in the distance matrix. These weights
are set with respect to the individual visualization task
and will be discussed in the next subsection. To achieve
a better distribution of the data points for visualization,
we use quadratic Euclidian distance for calculating the

distance matrix on the original data points.

DEFINITION 5.1. weighted stress function

Let D be the distance matriz over all elements o €
DB C R™ where D; j = d(0;,0;)* and let f'(0) : DB —
1 be a function assigning each element o € DB an image
point i € IR? at time t. Furthermore, let W be an
|D| x |D| weight matriz with w; ; = w;; and w; ; > 0.
The weighted stress function sigmaw for f' is defined
as follows:

n
o wi,j - (d(f*(0i), [*(05)) — Di;)?
ow(f") = Z Z Di
=1 j>1
An optimal mapping f°P! can now be considered
as a mapping providing a minimal value for the stress
function oy. The weights in our distance function now
achieve that some of the considered distances have an
increased or decreased influence on the quality of the
visualization. To calculate a good approximation of
foPt even for complex cases, we now apply the following
iteration method that is based on gradient descent:
We start with an arbitrary mapping of the data
object f° and calculate the stress function. Afterwards,
we derive a new position for each image point f°(o;)
by adding a correction factor V,, 4 to each of the d
components. V,, 4 is defined as following:

Formally, the d-th component of the image point
ft(0;) is calculated for iteration ¢ + 1 in the following
way.

7 01)a = fH(0i)a + Vci,d

After the update is calculated for each image point,
the stress function o is calculated again. The optimiza-
tion ends if the last iteration was not able to decrease
the stress function. Let use note that this method does
not necessarily find the global minimum. Thus, we have
to rerun the procedure several times with varying start
configurations and than choose the method providing
the smallest stress value.

5.2 MDS on the Hyperbolic Plane Though MDS
usually finds useful mappings into an two dimensional
image space, we still might not be able to display
these image points in a meaningful way. The distances
calculated on the image points might still display a
large variation of distance values. Thus, if we want to
display all data objects including distant ones, we might
not be able to distinguish close objects. On the other
hand, if we zoom onto two very close objects, we cannot

181

display the distant objects at the same time. A method
that is capable of overcoming this problem is interactive
zooming on a hyperbolic plane as proposed in [14].

The hyperbolic plane (H2) is based on non-
Euclidian geometry which does not use the parallel ax-
iom. This axiom states that given a point and a straight
line there exists only one parallel line containing the
point. The H2 has a constant negative curvature and
provides an infinite number of parallel lines through a
particular point and for a particular line.

For visualization, the use of the hyperbolic space is
very interesting because it allows us to display all data
objects and to zoom onto a particular area at the same
time. This is achieved by using the Poincaré or fisheye
projection. The idea of the Poincaré projection is to
shrink the hyperbolic space into the unit circle. The
infinite H2 fits into this finite circle by exponentially
decreasing the size of displayed objects with the distance
to the middle of the circle, which is called the focus
point F'. Thus, objects in the middle of the circle are
zoomed in for closer investigation while all objects are
still visible, since even infinitely far away objects would
be displayed on the border of the circle. To interactively
explore a set of data objects, we can reassign the focus
point and thus zoom different areas of the data space.

Let F be the focus point and let x be an image
point. The transformation 7 of z into the H2 is
calculated as follows:

7(w) = F + tanh (s - | (F —2)]) - m

where s is a scaling factor describing the degree of
the curvature of space. A more extensive description
of interactive zooming on hyperbolic planes, is given in
[11]. Now, we can map any 2D data point derived by
multi-dimensional scaling into the hyperbolic space.

5.3 Visually Exploring Prototype Models After
we generally have described the most important under-
lying technique of our visualization suite, we will now
discuss the information that can be gained by the visual
exploration of prototype models and how weights in the
stress functions should be set to emphasize the impor-
tant distances. The knowledge that can be gained from
our visualization suite can be categorized into three dif-
ferent levels:

1. The Feature Space Level
At this level, we try to get information about the
general characteristics of a chosen feature space.
For many applications, the used feature transfor-
mation yields a very important influence on classi-
fication. If the provided features are not somehow

class 2

L
random noise

iris data

Figure 4: Visualization of two complete training sets.
The left set can be recognized as noise. The right data
set is the well-known iris set that displays well defined
class borders.

correlated to the classes of the objects, even very so-
phisticated classification algorithms will not find an
accurate class model. Thus, making observations of
a feature space without respecting a special classifi-
cation paradigm, yields important implications for
classification.

2. The Class Level
This level deals with analyzing the model for each
class. The key question here is: What is charac-
teristic for each class and what features are crucial
when distinguishing the classes. The rules derived
by decision trees partly answer this question be-
cause they describe the class borders. However, a
decision rule describes the class borders and thus,
this description might not be very informative if we
want to find out what is typical for a certain class.

3. The Object Level

The object level deals with particular classification
decisions. What is most important here is to
answer, why a certain object has been classified
to a certain class. Another important question is,
how likely is it that the classifier made a mistake.
By analyzing particular decisions, we also achieve
a better understanding of the classes.

Our proposed visualization suite allows to display
training and test objects offering the following possibil-
ities.

To gain knowledge about the complete feature
space, we can display the complete training set using
MDS. Since we want to judge the characteristics of the
complete feature space, we apply a uniform weight of 1
to each distance relationship. We use the same weight
regardless of the class or type of each displayed object

182

prototype for class 0
prototypes for class 0 12
n]
- prototype for class 1
L]
n "
prototypes forclass | W g

L}
B prototypes for class 2 prototype for class 2
L]

‘ k-Means prototype model for iris data ‘ ‘ S&B prototype model for iris data ‘

Figure 5: Two different compression levels for the iris
data. Left: 10 times compressed data with k-means
(k =10% - |TR.|). Right: Prototype model derived by
PAG.

because shifting the error to a certain kind of distance
might mislead the viewer. For example, emphasizing
the distances between the objects of different classes
might cause the impression the data objects are well-
separable even if they are not. If the number of training
objects gets rather large, we also offer the possibility
to reduce the training objects to a number that is
easier to visualize and examine. We achieve this by
running k-means clustering on the objects for each
class. To determine the parameter k£ for each class, we
multiply the number of data objects for that class with
a compression factor. Thus, the percentage of used data
objects is the same for each class. Figure 4 shows two
example data sets. When looking at the left data set, it
becomes quite obvious that the objects of both classes
are mixed in all areas of this feature space. Thus, trying
out a modified feature transformation, might not be a
bad idea. On the other hand, we can recognize that it
should be easy to find a classifier separating the classes
for the iris data set displayed on the left side.

Though this method often offers useful insight,
it is not descriptive enough to explore classification
knowledge as demanded on the class level. For this
task, displaying the complete training data set offers
too many instances for finding out what is typical for
a certain class. To allow a general understanding of
a class, we need to reduce the training data to the
concepts hidden within each class. Therefore, we apply
PAG to derive small and highly descriptive prototype
models. Due to the small number of prototypes for
each class, we can now further analyze each prototype
to understand each concept characterizing each class.
For this task, we employed a weight of 1 for distances
between prototypes of different classes and distances
between test objects and prototypes. For the distance of
the additional test instances to each other and distances

®

W
prototype " " '
W 0-00 | |

4 prototype 0-01
a0 : .

petallength petalidth sepallength sepalwidth
Attribute

»
prototype 0-02

interactive H-MDS view

Figure 6: Exploring prototype and class knowledge with
APMs.

between the prototypes of the same class, we assign a
small weight for example 0.0001. These rather small
weights are used because the distance relationships of
the test instances to each other are usually rather
unimportant. On the other hand the distances to
prototypes should be modelled as accurately as possible
since these distance relationships are responsible for the
classification result. Neglecting the distances between
the prototypes of the same class, turned out to be
beneficial because we are usually not interested in the
exact distance of the prototypes for the same class. In
our experiments, it turned out that the distances to
the prototypes of other classes are usually sufficient for
understanding the structure of classes. However, if we
want to get an impression of the relative distance of the
prototype within the same class as well, we can increase
the weight to 1 as well.

In figure 5, we compare the prototype models
derived by k-Means for the iris data set to those derived
by PAG. Let us note that both models achieved the
same classification accuracy, however PAG succeeded
to reduce each class to a single concept for each class.

To explore single prototypes and compare them to
other objects we display a feature vector as histogram
where each feature value is represented by a bin. A
comparison can now be done by displaying the bins
for each object next to each other as can be seen in
figure 6. For the iris example, we now recognize that
class one is characterized by rather small values for the
first three attributes while the other two classes provide
rather high values for these attributes. Thus, we have
drawn general conclusions from a kNN based classifier.
The data objects to be displayed can be chosen by
simply clicking the image points in the MDS view of
the prototype model. The smaller objects around the
prototypes are test instances that can be displayed
to get an impression of how prototypes represent the
training set.

183

Set PAG | IVQaG | ICF | k-means | centroid | kNN NB J48 | SVM
bal.-scale 91.2 80.2 | 81.5 83.5 73.8 90.4 | 90.6 | 76.3 91.2
breast-w 97.1 96.7 | 95.1 96.6 96.1 | 97.1 | 96.0 | 94.3 96.0
colic 79.3 74.4 | 78.8 75.3 70.1 80.4 | 73.1 | 84.0 84.2
credit-g 70.9 74.9 | 75.4 70.1 67.3 | 753 | 744 | 71.8 | 77.1
diabetis 74.5 76.0 | 74.9 71.5 729 | 753 | 76.0 | 73.8 | 76.8
hepatitis 86.5 81.2 | 82.3 85.8 79.4 | 83.2 | 839 | 76.8 81.9
ionosphere 87.7 88.6 | 88.9 88.0 74.1 87.5 | 81.8 | 89.2 89.7
iris 96.7 95.3 | 92,6 97.3 92.7 | 96.7 | 94.7 | 94.7 95.3
labor 94.7 89.4 | 82.5 82.4 73.7 | 84.2 | 86.0 | 86.0 91.2
sonar 80.3 77.4 | 81.3 87.0 69.7 | 86.1 | 68.8 | 74.5 83.7
soybean 91.7 90.2 | 90.8 91.9 79.2 | 925 | 925 | 934 | 94.6
lyase 80.0 75.9 | 65.5 7.7 71.7 | 83.2 | 59.5 | 47.6 | 80.1
cell growth 71.2 70.7 | 65.0 70.3 36.4 | 73.0 | 35.4 | 43.7 69.1
Signal Transd. | 72.0 70.4 | 61.3 70.7 49.6 | 68.2 | 44.7 | 49.1 63.9

Table 1: Comparison of classification accuracies in percent.

prototype 1-00

3184

classified obejctD (1-01)

prototype 1-02

nipilla\mdlh petallength sepalwisith _sepallength
Aftribute

Moo Co1 Wiz

histogram view

‘ interactive classification scenario ‘

Figure 7: Analyzing a classification decision by analyz-
ing the neigborhood of the classified instance.

To analyze particular classification decisions, we
display the data objects within the prototype model
with MDS. However, since MDS is not exact, we can-
not rely on the visualization of the distance relationships
between the prototypes and classified objects, especially
if the prototype model contains various prototypes for
each class. Thus, we can select to display an MDS visu-
alization containing only the data object and the closest
prototypes from each of the classes. Since only these
prototypes are relevant for the classification decision,
we do not need any other objects to understand the de-
cision. For this visualization, we emphasize the weights
of the distances between the data objects and the proto-
types by a weight of 1 and shift the visualization error
to the distances between the prototypes by weighting
them with a small value like 0.0001. The zoomed MDS
visualization only displays the number of classes |C| plus
one data object and thus the stress function of MDS is
now mainly dependent on |C| + 1 distances. Thus, the
visualization of the classification scenario usually gives

a quite good impression of the distance relationships
leading to a class decision. To get a verification that
the displayed image gives a correct impression, we ad-
ditionally provide the possibility to calculate the exact
distances in the original feature space as well. In the iris
example displayed in figure 7, we can now recognize that
the data object is closest to the prototype of class 1. A
comparison using the histogram view reveals that the
proximity to the closest prototype is mainly based on
the first three attribute values because the next nearest
prototype has similar values for the fourth feature.

6 Experimental Evaluation

6.1 Test bed Our experiments were performed on
14 different data sets. To have a broad and comparable
set of well known classification tasks, we employed 11
data sets from the UCI [12] machine learning repository.
However, since many of these problems are described
by a comparably small number of training objects,
these problems are not well suited to demonstrate the
capability of PAG to describe even complex, multi-
modal classes. Thus, we additionally used 3 amino-acid-
sequence data sets that were taken from the Swissprot
[1] protein database and were labelled with respect to
Gene Ontology [4]. For these datasets, we employed the
feature transformation proposed in [6]. The data sets
and their characteristics are displayed in table 2.

6.2 Performance of Push and Grow In this sec-
tion, we compare the classification performance of PAG
to 8 other classification methods. The first 5 approaches
are kNN-based methods like PAG. The first is a basic
kNN classifier. To compare PAG with a state-of-the art
instance reduction technique, we use ICF as proposed
in [3]. As stated before, prototype models can be de-
rived by other methods than PAG as well. Thus, we

184

Name classes | # Objects
balance-scale 3 625
breast-w 2 699
colic 2 368
credit-g 2 1000
diabetis 2 768
hepatitis 2 155
ionosphere 2 351
iris 3 150
labor 2 57
sonar 2 208
soybean 19 683
lyase sequ. 35 1640
cell growth 36 4401
signal transd. 39 2208

Table 2: Summary of the used datasets

Set PAG LVQaG ICF k-means
bal-scale | 187.5 (1) | 175.8 (1) | 6.1 (34) | 23.4 (9)
breast-w 3214 (1) | 314.6 (1) | 2L.1 (17) | 11.5 (30)
colic 166.7 (1) | 166.7 (1) | 5.9 (31) | 3.0 (62)
creditg 150.0 (1) | 450.0 (1) | 7.9 (63) | 205 (24)
diabetis 3462 (1) | 345.6 (1) | 5.9 (65) | 1L.5 (33)
hepatitis 165 (2) | 698 (1) | 55 (14) | 200 (4)
ionosphere | 160.7 (1) | 143.6 (1) 3.0 (58) 3.3 (53)
iris 450 (1) | 450 (1) | 2.1(23) | 225 (2)
labor 257 (1) | 22,3 (1) | L7(17) | 2.2 (13)
sonar 93.8 (1) 72 (1) 2.6 (41) 2.7 (39)
soybean 26.7 (1) 58 (6) | 2.6 (14) 4.4(8)
Tyase 125 (4) | 2.1(45) | 1.4 (33) | 10.1 (5)
cell growth | 11.7 (10) 7.4(11) 2.5 (49) | 11.1 (11)
Signal Tra. | 4.3 (13) | 2.1(24) | 1.6 (35) | 2.0 (19)

Table 3: Comparison of data compression rates.

compare to a centroid based classifier and derive proto-
type models using k-Means clustering. Let us note that
we used a wide variety of values for k£ to find an opti-
mal setting for all comparison partners. Last but not
least, we tested a variant of PAG using learning vector
quantization [10] instead of the proposed push step. We
called this variant "LVQ and Grow” (LVQaG). The re-
maining 3 classifiers were taken from the weka machine
learning software [16] to demonstrate that PAG offers
comparable accuracies to other established classification
paradigms. Therefore, we compare to naive Bayes, a
J48 decision tree and a support vector machine using
a polynomial or a linear kernel function. Table 1 dis-
plays the achieved classification accuracy in percent for
10-fold cross validation.

The results demonstrate that PAG offered highly
accurate classification on all 14 data sets. For 5
datasets, PAG offered the best performance compared
to all 8 other classifiers. Let us note that only support
vector machines dominated more problems, i.e. 7 data
sets. On 10 out of 14 data sets PAG outperformed ICF

and on 9 out of 14 data sets PAG offered better accuracy
than using prototype models that were derived by k-
Means. Using simple centroids as prototypes always
provided a lesser accuracy for any of the data sets.
Another very important result is that PAG performed
better than LVQaG on 11 out of 14 data sets. Thus,
the push step demonstrated to be better suited for
optimizing the position of data objects. To conclude,
PAG provided the best classification performance for
all NN-based classification approaches.

This observation is especially interesting when com-
paring the compression ratio of all four instance reduc-
tion techniques. Table 3 contains the compression ratio
of PAG, LVQaG, k-Means and ICF, i.e. the factor by
which the method decreases the number of instances in
the training base. Additionally, the average number of
instances/prototypes per class is displayed in brackets.
The parameter settings for all methods were chosen to
provide maximum accuracy. For all 15 data sets, PAG
represented the given training data while achieving a
higher compression level than any of the other methods.
For the first 9 data sets, it even achieved a maximum
compression by representing each class by a single pro-
totype. The only data sets where PAG was forced to
use a significantly larger number of prototypes, are the
three protein sequence problems. However, these data
sets contain complex, multi-modal classes. Since PAG
increased the number of used prototypes for these data
sets, the found prototype models demonstrate the capa-
bility of PAG to react to multi-modal data and thus to
increase the size of the prototype model, if necessary.

6.3 Further Examples for Visual Class Knowl-
edge In this section, we present some additional exam-
ples for the visualization of class knowledge. All three
examples where taken from the 14 training data sets
to ensure that APMs offer high classification accuracy.
This is important because analyzing a classifier that
is performing badly, might lead to misleading assump-
tions.

The first example, displayed in figure 9, is the
labor data set distinguishing good jobs from bad jobs.
We chose this example to demonstrate the necessity
of generalization and instance reduction in order to
understand the classes. The left side displays the
complete data set using MDS. Though we see that
feature vectors for bad jobs are mainly displayed on the
right side of the visualization, it is difficult to recognize
a clear pattern for the classes. The reason for this
problem is that visualizing a large number of vectors
often displays high stress values. Thus, even if there
are well-defined class borders, the probability that these
borders are clearly displayed in MDS decreases with the

185

75

50

25 H
o -

LT U HI AN

farmity

Cell_Size_Uni Bare_Nuclei Cell_Shape_UNomal_Nuecle Marginal_AdhClump_ThicknBland_ChiomaSingle_Epi_C

1 prototype I (malign)

Iitoses

nifarmity ali esian B3 tin

== prototype II (malign)

mm prototype (belign)

Figure 8: The left circle displays the prototype model and some example objects for the breast-w data set. The

histogram displays the feature values of the prototypes.

% bad jobs
prototype for
bad job L

» i

good jobs

Prototype for

Figure 9: The left image is a MDS display of the labor
data set. The right image displays the corresponding
prototype model and some example objects.

number of data objects. An additional problem that is
independent of visualization, are noise objects blurring
the class borders. The right side of figure 9 displays the
prototype model. In this view, it becomes quite clear
that a linear separation works out quite well for this
data set.

Figure 10 is an example for the impact of the
introduced weighted stress function. The class model on
the left set displays a classification model of the balance-
scale dataset comprising 5 prototypes. Additional to
the prototypes, we added 11 test instances that are
correctly classified. The left side displays an unweighted
MDS visualization. Two of the instances are displayed
in an area that is nearer to some prototype of the
incorrect class. Let us note that even trying several start
configuration did not help to correct this misleading
effect. The right side, on the other hand, displays
a correct image with respect to the class assignment
by assigning small weights (w=0.0001) to the distances

e
L] »
- ®
[]
u u |
®» . ‘. " E
u * B
® " ® . []
® L]
L] L]
. .
': Incorrectly ™. @ ®
. - placed test
instances

Figure 10: Unweighted (left side) and weighted (right
side) MDS visualization of a prototype model for the
balance scale data set. The test instances are only
displayed on the correct side for the weighted MDS.

between test instances and prototypes of the same class.
Of course, the right side does not display the exact
distance relationships as well, but it can shift error to
unimportant information. Thus, the displayed image of
the class model is easier to understand.

Our last example, is the ”breast-w” data set distin-
guishing belign from malign tumors of breast cancer pa-
tients. Figure 8 displays the prototype models contain-
ing two prototypes for class "malign” and one for class
"belign”. Since we achieved a classification accuracy of
97.1 %, we can assume that the class model is a quite
good description of the data. To analyze all three pro-
totypes, we employ the histogram view. From this view
of prototype models, we can derive that a patient whose
tumor displays small values in most of the features has
a very good chance that the tumor is belign. The proto-
type for the class ”"belign” displays rather small values

186

for all features compared to those of the malign class.

7 Conclusions

In this paper, we proposed APMs a classification sys-
tem that is based on nearest prototype classification and
a visualization suite that is capable to display high-
dimensional data sets for classification. The idea of
APMs is to describe each class by a minimal set of proto-
types that are generalized from the objects of the train-
ing set. Working with small prototype models increases
the speed of classification, achieves accurate classifica-
tion and allows us to browse and understand the class
models with data visualization techniques. Therefore,
we introduce the algorithm "Push and Grow” (PAG)
which is based on a quality measure that favors large
margins between classes and thus prefers general class
models. The algorithm employs two different steps in-
creasing the model quality. The second part of an APM
is a visualization suite to interactively explore the proto-
types and data objects. This suite employs weighted in-
teractive multi-dimensional scaling (MDS) and projects
high dimensional feature vectors into the hyperbolic
space. MDS is needed to project high-dimensional data
objects and prototypes into a 2D image. By assign-
ing weights to distances in MDS, we achieve that the
visualization emphasizes the more important distance
relationships. Our visualization suite allows us to an-
alyze the data space, class models and individual clas-
sification scenarios. In our experimental evaluation, we
demonstrate the good classification accuracy of PAG
compared to 8 other classification methods on 14 data
sets. Furthermore, we show that PAG provides smaller
class models than the compared methods of instance
reduction and prototype classification. Finally, we dis-
play some examples of how APMs can be used to derive
knowledge about classes and data distributions.

For future work, we plan to extend our visualization
suite to directly display the data objects that are repre-
sented by the feature vectors. This is an interesting task
for prototypes because there is no single underlying ob-
ject, but a complete set of objects. Another interesting
idea is visualizing the closest points on the class border
for a given data object. This way, it is possible to derive
the smallest modification of a feature vector that would
cause another classification result. To extend PAG for
other data spaces, we plan to apply PAG to text vectors
and graph-represented data objects.

References

[1] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter,
A. Estreicher, E. Gasteiger, M. Martin, K. Michoud,
C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider.

187

2l

B3l

(4]

[5]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

(15]

[16]

”The SWISS-PROT Protein Knowledgebase and its
Supplement TrEMBL in 2003”. Nucleic Acid Research,
31:365—370, 2003.

H. Brighton and C. Mellish. On the consistency of
information filters for lazy learning algorithms. In
PKDD, pages 283-288, 1999.

H. Brighton and C. Mellish. Advances in instance
selection for instance-based learning algorithms. Data
Mining and Knowledge Discovery, 6:153-172, 2002.

T. G. O. Consortium. ”Gene Ontology: Tool for the
Unification of Biology”. Nature Genetics, 25:25-29,
2000.

C. Cortes and V. Vapnik. ”Support-Vector Networks”.
Machine Learning, 20(3):273-297, 1995.

M. Deshpande and G. Karypis. Evaluation of tech-
niques for classifying biological sequences. In PAKDD
’02: Proceedings of the 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining,
pages 417-431, London, UK, 2002.

E.-H. Han and G. Karypis. ”Centroid-Based Docu-
ment Classification: Analysis and Experimental Re-
sults”. In Proc. 4th Furopean Conf. on Principles of
Data Mining and Knowledge Discovery (PKDD’00),
Lyon, France, Lecture Notes in Computer Science
(LNCS), Springer, pages 1910: 424-431, 2000.

J. Han and M. Kamber. ”Data Mining Concepts and
Techniques”. Morgan Kaufmann Publishers, 2001.

T. Kohonen. ”Learning Vector Quantization”. Tech-
nical Report, Helsinki Univ. of Tech., 1986.

T. Kohonen. ”"Improved versions of learning vector
quantization”. In IJCNN International Joint Confer-
ence in Neural Networks, Washington DC., USA, pages
545-550, 1990.

R. Lamping, R. Rao, and P. Pirolli. A focus+context
technique based on hyperbolic geometry for viewing
large hierarchies. In in Proc. ACM SIGCHI Conference
on Human Factors in Computer Systems,Denver, CO,
USA, pages 401-408, 1995.

U. of Irvine. Uci machine learning repository.
"http://www.ics.uci.edu/ mlearn/MLRepository.html”,
2005.

J. Samon Jr. A none-linear mapping for data structure
analysis. IFEFE Transactions on Computers., 18:401—
409, 1969.

J. Walter and H. Ritter. On interactive visualization
of high-dimensional data using the hyperbolic plane.
In Proc. 8th int. Conference on KDD SIGKDD’02,
Edmonton, Alberte, CA, pages 123-132, 2002.

H. Wilson and T. Martinez. Instance pruning tech-
niques. In Proc. 14th Int. Conf. on Machine Learning,
pages 403—411. Morgan Kaufmann Publishers, 1997.

I. Witten and E. Frank. ”Data Mining: Practical
Machine Learning Tools and Techniques with Jave
Implementations”. Morgan Kaufmann, 1999.

