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Abstract

We present a new data mining problem to discover fre-
quent agreement subtree patterns from a database of
rooted phylogenetic trees. This problem is a natural ex-
tension of the traditional MAST (maximum agreement
subtree) problem. To solve the problem, we first present
a novel canonical form for leaf-labeled trees and an effi-
cient tree expansion algorithm for generating candidate
subtrees level by level. We then show how to efficiently
discover all frequent agreement subtrees from a given
set of phylogenetic trees, through an Apriori-like data
mining approach. We discuss the correctness and com-
pleteness of the proposed method. Experimental results
demonstrate that the proposed method can discover in-
teresting patterns from different phylogenetic trees for
multiple species. The algorithms were implemented in
C++ and integrated into an online toolkit, which is fully
operational and accessible on the World Wide Web.

1 Introduction

Different theories concerning the evolutionary history of
the same set of species often result in different phyloge-
netic trees. This leads to a fundamental research prob-
lem in phylogenetics: how to determine to what extent
two different hypothetical phylogenetic trees regarding
the same set of taxa have in common. Traditionally, this
problem can be partially answered by computing a max-
imum agreement subtree (MAST) of the two data trees.
An agreement subtree between two trees 77 and T5 is
a substructure of T; and T on which the two trees are
the same [2, 9, 10, 11]. A maximum agreement subtree
(MAST) between T} and T, is an agreement subtree of
Ty and T5; furthermore there is no other agreement sub-
tree of T} and T that has more leaves than the MAST.

The MAST problem was first studied by Finden
and Gordon [10]. The authors developed a heuristic
algorithm for finding the MAST of two binary rooted
trees, which runs in time O(n®), where n is the num-
ber of nodes in a tree. Warnow et al. [11] later gave
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an O(n?) algorithm and Farach et al. [9] presented an
O(n'-®logn) algorithm with different constraint assump-
tions on tree topologies. When the MAST problem is
generalized from two trees to multiple trees, the prob-
lem was shown to be polynomial-time solvable for trees
with bounded degrees [2, 9]. For trees with unbounded
degrees, this problem is NP-hard [2]. An observation is
that a MAST of multiple trees is usually of small size
and thus uninformative, especially when a large number
of data trees are under consideration [11].

For example, a study 5497 [20] in TreeBASE [25]
shows that biologists built a set of five phylogenetic trees
for six Hamamelis-related species. Each of the five trees
depicts a hypothesis about the evolutionary history of
the six species. The six species are shown in Table 1,
and the five phylogenetic trees are shown in the first
two rows in Figure 1. The bottom row of Figure 1
shows three subtree patterns: sti, sts and st3. Here,
st; and sty are MASTs of the five phylogenetic trees,
since they are subtrees of all the five phylogenies and
no other subtrees occurring in all the five phylogenies
have sizes larger than that of st; and sts. The pattern
stz is a subtree of three data trees only, namely t;, t3
and t5, and therefore not a MAST of the five data trees.
Nevertheless, in phylogenetics, sts is not necessarily less
informative than st; or sty for two reasons: (i) the
number of leaves of st3 is prominently greater than that
of the two MAST patterns st; and ste; and (ii) st3
occurs in a majority of the data trees. Motivated by this
observation, we propose a new tree mining algorithm,
called Phylominer, to automatically discover all frequent
agreement subtrees from a given set of phylogenies, i.e.,
our algorithm will find out not only st; and sts, but
also st3, when applied to the above example.

1.1 Related Work Ordered tree mining problems
have been studied by several researchers. Asai et al.
[3] proposed a rightmost expansion algorithm to find
induced subtrees in rooted ordered trees. Almost in
the same period, Zaki independently developed similar
techniques capable of finding frequent embedded sub-
trees in a forest of rooted ordered trees [36]. Yang et al.
[35] studied the tree mining problem in the context of
XML management, by adapting the rightmost expan-
sion scheme to solving a frequent XML query pattern
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Table 1: The six species in the study 5497 stored in
TreeBASE.

Species name | Label |

Hamamelis_virginiana
Hamamelis_vernalis
Hamamelis_mexicana
Hamamelis_japonica
Fothergilla_major
Hamamelis_mollis

O U x| RN =

Figure 1: The five data trees obtained from the
study 5497 are displayed in the first two rows.
Three subtrees are displayed in the bottom row,
where st; and sty are MASTSs, but st3 is not.

discovery problem. Wang et al. [31] presented a dy-
namic programming algorithm for finding the consensus
of two general trees, which was applied to motif finding
in RNA secondary structures.

In the area of unordered tree mining, Xiao et al.
[33] proposed an efficient frequent subtree mining solu-
tion through path joining operations. Asai et al. [4]
and Nijssen et al. [23] independently discussed an es-
sentially identical unordered tree enumeration technique
for unordered subtree mining. More recently, Chi et al.
[7] reported a set of more complete algorithms to find
frequent induced subtrees in both rooted and unrooted
unordered trees. Shasha et al. [29] developed methods
to find cousin pairs in unordered trees with applications
to phylogeny. For a comprehensive survey of tree min-
ing methods and applications, the reader is referred to
[5].

In parallel with the tree mining research, graph min-
ing is a closely related field which has also been intensely
studied during the past decade. Kuramochi and Karypis
extended traditional frequent itemset algorithms [18] to

find frequent patterns in graph data. Yan and Han [34]
proposed a novel canonical graph form to find closed fre-
quent subgraphs. Huan et al. devised a different canoni-
cal form to efficiently discover frequent subgraphs in the
presence of isomorphism [14]. For the readers who are
interested in the state of the art of graph mining, please
refer to a survey paper [32] by Washio and Motoda.

Our work differs from the above approaches in two
ways. First, in contrast to the general trees [3, 36, 23, 7]
studied by previous researchers, we are concerned with
leaf-labeled trees which are commonly used to model
evolutionary histories of related species. Second, our
work was directly motivated by the MAST problem
studied in computational phylogenetics. This makes
our algorithms unique, because the subtrees we mine
for are different from the patterns found in all the
previous tree mining papers. For example, Zaki’s
Treeminer is a powerful algorithm to mine embedded
subtrees from ordered trees, but his embedded subtree
definition is rather tolerant. By contrast, an agreement
subtree in the phylogeny context is unordered and
demands topological restrictions on valid embeddings.
Chi’s work is a recent breakthrough in unordered tree
mining; however, his algorithms find induced subtrees
from unordered trees defined in the generic tree scope,
rather than embedded subtrees from leaf-labeled trees
used in phylogeny research. Moreover, there are no
straightforward ways to adapt previous methods to the
problem which the proposed Phylominer is designed for.
Our tree mining method thus joins the many others
already developed [3, 36, 35, 31, 33, 4, 23, 7, 29]. The
difference is that the agreement subtrees to be mined
for are unordered and embedded. This makes the
problem at hand unique, which is drastically different
from previous subtree mining problems. Neither [37]
nor [6] can find exactly the frequent agreement subtrees
in multiple phylogenies as our algorithms do. Thus we
present the first algorithm to tackle this problem in the
interdisciplinary field of data mining and computational
phylogenetics.

1.2 Novel Contributions of Phylominer The
main contributions of this work are highlighted below:

e Proposes and formalizes a unique frequent agree-
ment subtree mining problem for rooted leaf-
labeled phylogenetic trees.

e Adopts an effective phylogeny-aware canonical
form, which is for the first time to be used in phy-
logenetic tree mining to facilitate dealing with iso-
morphism problems.

e Introduces a phylogeny-aware subtree pattern ex-
pansion scheme.

e Designs a novel algorithm, Phylominer, which is
useful for phylogeny research.

223



e Analyzes the correctness and complexity of Phy-
lominer.

The rest of the paper is organized as follows. Sec-
tion 2 presents basic concepts and terminologies. Sec-
tion 3 describes the Phylominer algorithms. Section 4
shows the correctness and completeness of the algo-
rithms. Section 5 presents experimental results. Section
6 briefly reports the implementation status. Section 7
concludes the paper.

2 Preliminaries

Let L denote a set of labels, with each label representing
an evolutionary unit. An evolutionary unit under
investigation can be a taxon, organism, species, protein,
gene, etc. Let the cardinality of L, denoted by |L|, be
k. Without loss of generality, L can be considered as a
set of k positive integers {ni,na,...,ng_1,nk}.
Phylogenetic tree. A phylogenetic tree ¢t on L is a
rooted leaf-labeled unordered tree in which (i) each leaf
is associated with a unique label drawn from L; (ii)
all internal nodes have no labels; and (iii) a special
node, denoted r(t), is designated as the root of the
tree. Furthermore, the fanout of each internal node is
at least two. The size of the phylogeny t is the number
of its leaves, which equals the cardinality of L. For
convenience, a tree t with k leaves is also called a k-leaf
tree.

Subtree. A tree st on SLis a subtreeof t on L, if SL C
L and st can be obtained by restricting ¢ to the leaf set
SL through pruning all leaves [ € L — SL. Formally,
the above definition can be represented by st = t|sr,
where t|sr, denotes the operation of restricting ¢ to SL
through leaf pruning, and = denotes the isomorphism
relationship between two trees.

Notice that, pruning a leaf may trigger an edge con-
traction for satisfying the requirement that the fanout
of any internal node must be at least 2. Mathematically,
let N; (Ng, respectively) represent the set of nodes in
t (st, respectively). We say st is a subtree of t, if there
exists a mapping from the nodes in Ng to the nodes
in N; such that the mapping is an injective function
f: N — Ny, satisfying the following properties for all
nodes u,v € Ng.:

e label(f(u)) = label(u) (label preservation);

o f(u) € desc(f(v)) if and only if u € desc(v), where
desc(v) is the set of descendants of node v (ancestor

preservation);
« LCA(f(),f(®)) = f(LCA(u,v)), where
LCA(u,v) is the least common ancestor of

u, v (least common ancestor preservation).

Figure 2 shows two different kinds of injective mappings
from two subtrees to tree t. From the mapping lines, it

Figure 2: The subtree st; is an induced subtree
of tree t with no edge contraction and the
subtree sty is an embedded subtree of ¢ due
to edge contractions.

can be seen that st; is an induced subtree of tree ¢ while
sty is an embedded subtree due to an edge contraction.
Both situations can be handled by our algorithms.
Agreement subtree. Let DT = {t1,t2,...,tm} be
a set of phylogenies on the leaf set L and let SL be a
subset of L. Then a leaf-labeled tree st on SL is an
agreement subtree (or AST) for all ¢; € DT, if st is a
subtree of every tree in DT, i.e., ti|sp = talsp... =
tm|sr = st.

Maximum agreement subtree. If st has the maxi-
mum number of leaves among all agreement subtrees for
DT, then st is a mazimum agreement subtree (MAST)
for DT. In Figure 1, both st; and sta are MASTs of
the five data trees in the figure.

Frequent agreement subtree. A subtree or pat-
tern p is said to be supported by a tree t if p is a
subtree of t. We define suppp; to be 1 if t; € DT
supports p; otherwise suppp; is 0. The support of
the subtree st = p with respect to DT is defined as
(X 1<i<m 8uPPp,i/|DT|) x 100%. An agreement subtree
is frequent if its support is greater than or equal to a
user-specified minimum support value, minsup. Our
goal is to find all frequent agreement subtrees (FASTS)
from a given set of phylogenies where the size, i.e. the
number of the leaves, of the subtrees is greater than or
equal to a user-specified parameter value minsize and
the support of the subtrees is greater than or equal to
minsup.

Maximum frequent agreement subtree. If st has
the maximum number of leaves among all frequent
agreement subtrees for DT, then st is a mazimum fre-
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quent agreement subtree (MFAST) for DT. Obviously,
a MFAST might have more leaves than a MAST. In
Figure 1, st3 is a MFAST of the five data trees in the
figure when the minsup is set to 50%.

It should be pointed out that the set of FAST
patterns is a super set of the set of MAST patterns.
The algorithm for FAST can find frequent agreement
subtrees occurring in a small portion of a given database
(e.g. with support = 10%), whereas the algorithm for
MAST always finds the maximum agreement subtrees
occurring in all trees in the database.

3 Frequent Agreement Subtree Discovery

To solve the tree isomorphism problem which is gen-
erally believed to make pattern mining in unordered
trees more sophisticated than that in ordered trees,
we propose a new canonical form for leaf-labeled trees.
This canonical form will allow us to represent each leaf-
labeled unordered tree by using one unique ordered tree.
Based on this canonical form, we then introduce the
concept of equivalence classes, suggesting an efficient
candidate subtree generation strategy.

3.1 Canonical Form The basic assumption of the
proposed canonical form for rooted phylogenetic trees
is a total ordering scheme among leaf labels in L, which
conforms to the integer comparison property, i.e., the
orderingof Lis1 <2< ...<n<n+1<.... Based
on this leaf label ordering scheme, the canonical form of
a leaf-labeled unordered tree ¢ requires an assignment of
virtual labels to all originally unlabeled internal nodes.
To be more specific, given a phylogenetic tree ¢, each
internal node of ¢ will be assigned to a virtual label,
which is the smallest integer label among all the integer
labels of its child nodes. Once all internal nodes have
obtained virtual labels, we can define a canonical form
as follows.

The canonical form of a leaf-labeled unordered tree
is a specially designed leaf-labeled ordered tree, in which
all sibling nodes (including both leaf nodes and internal
nodes) follow a normalized order, such that for every
sibling pair (v,u), node v always appears before node
u in the depth first traversal (DFT) order if label(v) <
label(u).

According to the above definition, it is not difficult
to see that any rooted phylogenetic tree with N leaves
can be transferred to its canonical form by a straight-
forward O(IN) DFT-like algorithm, which visits every
node of the tree in a bottom-up manner and during the
visit of each internal node, the algorithm reorders all
its child nodes. This procedure to transfer a tree to its
canonical form is called a normalization procedure.

Figure 3 shows an example of three different ordered
representations of the same unordered tree. It can be
seen that t3 is in the canonical form whereas ¢t; and

to are not. However, once t; and 2 are normalized
to their canonical forms, the isomorphism between the
three rooted trees becomes obvious.

S A,

ty t, tg

Figure 3: Three ordered representations of the
same unordered tree.

Property 1. A direct pruning of the last leaf, based on
the DFT order, of a tree in its canonical form results in
a subtree that is still in a canonical form.

Property 2. A direct pruning of the second last leaf,
based on the DFT order, of a tree in its canonical form
results in a subtree that is still in a canonical form.

Here, a direct pruning means a pruning of a leaf
without further normalizing the resulting tree. In
Section 3.4, it will be shown that the direct pruning
properties suggest an efficient joining scheme regarding
how to arrange the last leaves of two k-leaf subtrees
to obtain (k + 1)-leaf subtrees in their canonical form
without going through further normalization.

Once we assign virtual labels to internal nodes and

define the canonical form for leaf-labeled trees, the
following terms can be clearly defined.
Weight scheme. After all internal nodes are labeled,
every leaf ¢ € n can be associated with a weight, denoted
w(i), which is an ordered label list by concatenating the
labels of all the nodes along the path from the root to
the leaf.

For example, the weights of the leaves of ¢3 in Fig-

ure 3 are the following: w(1) is “1,1,1”, w(4) is “1, 3,47,
w(b) is “1,1,5”, and so on. The weights of leaf nodes
can be compared from the most significant (leftmost) el-
ement down to the least significant (rightmost) element.
For example, the weight order of the leaves in tree t3 in
Figure 3 is w(4) > w(6) > w(3) > w(5) > w(2) > w(1).
Heaviest leaf. The heaviest leaf, denoted [}, of a tree ¢
is the leaf with the heaviest weight among all the leaves
of the tree. If ¢ is in its canonical form, the I is always
the last leaf of ¢ according to the DFT order, i.e. the
rightmost leaf of ¢.
(k — 1)-prefix tree. Given any k-leaf tree ¢ in its
canonical form, we define its (k— 1)-prefix tree to be the
(k — 1)-leaf subtree obtained by pruning the rightmost
leaf (i.e. the heaviest leaf) from t. We use tn, to
represent the (k — 1)-prefix tree of t.

3.2 Equivalence Class For two different trees ¢t and
t' in their canonical forms respectively, we say they
are in the same equivalence class, if their respective

225



(k — 1)-prefix trees are isomorphic to each other, i.e.,
they share the same (k — 1)-prefix tree. The relation
“sharing the same prefix tree with each other” for a
set of subtrees is an equivalence relation, because the
relation on these subtrees is reflective, symmetric and
transitive. The equivalence relation partitions a set of
k-leaf subtrees into disjoint subsets called equivalence
classes. Consider the trees in Figure 4. Trees t; and
ty are in an equivalence class, because they share the
same (k — 1)-prefix tree, denoted by core;; t3 and ¢4
are in another equivalence class, since they share the
same (k — 1)-prefix tree, denoted by cores. Note that
in tree t;, after pruning the rightmost leaf labeled 4,
the parent, p, of this leaf has a single child labeled
3, violating the property that each internal node must
have at least two children. Hence p is removed (edge
contraction), yielding core;. Similarly, in tree t5, after
pruning the rightmost leaf labeled 8, the root has a
single child, violating the property that each internal
node must have at least two children. Hence the root
is removed too, yielding the subtree in the circle. Note
also that in determining whether a subtree is isomorphic
to another subtree, we take into account not only their
topologies but also node labels in them.

Figure 4: Four trees are grouped into two equiv-
alence classes. Trees t; and t, are in the same
equivalence class, while trees t3 and ¢4 are in an-
other equivalence class.

The heaviest subtree. Given a tree ¢, the heaviest
subtree of ¢, denoted by sty;, is defined as the subtree
rooted at the parent of the heaviest leaf of t. The
heaviest subtree will be used to describe our candidate
generation algorithm, where our main concern is how
to join two heaviest subtrees. This is because when two
trees are in the same equivalence class, their differences
must have been restricted to the heaviest subtrees.
Otherwise, they can not be in the same equivalence
class.

Procedure: Phylominer(DT, 4, §)
Input: DT, a set of phylogenetic trees.

d, a global variable for minsup.

8, a cutoff value of tree size.
Output: FST, a set of frequent subtrees.

1. FST + g;

2. F» +frequent 2-leaf subtrees;

3. FST « FSTU Fy;

4. EClassess +equivalence classes of Fy;

5. k=2

6. while (k <6 and |F| > k+1)

7. begin

8. Fy1 = Grow_Subtrees(EClassesy, k);
9. FST = FST U Fyq;

10. EClassespy1 +equivalence classes of Fj1;
11. k=k+1;

12. end;

13. return FST;

Figure 5: Algorithm for finding frequent subtrees in a
database of trees.

3.3 Algorithmic Framework The proposed Phy-
lominer algorithm is an Apriori-like data mining method,
which progressively enumerates all candidate subtrees
from a set of phylogenetic trees [1, 36]. The algorithm
is summarized in Figure 5. Initially, Phylominer enumer-
ates all % 2-leaf subtrees, which we can obtain by
combinatorially assigning 2 different labels from L to a
2-leaf unlabeled tree skeleton. During each of the sub-
sequent iterations, the algorithm calls the subroutine
Grow_Subtrees (line 8 in Figure 5) to find frequent sub-
trees whose sizes are greater than the previous frequent
subtrees by one leaf node. Thus, the core of this Apriori-
like algorithm is how to design an efficient Grow_Subtrees
algorithm to systematically generate candidates, level
by level.

3.4 Candidate Generation Our candidate genera-
tion method adopts a pairwise joining scheme. In order
for two frequent k-leaf trees to be eligible for further
joining, the two subtrees must be in the same equiva-
lence class. Since the nature of equivalence classes sug-
gests a pattern expansion scheme through a rightmost
joining approach (reminiscent of the rightmost exten-
sion schemes in [3, 36]), the focus of joining is thus on
how to form a new (k + 1)-leaf tree by correctly glu-
ing the 2 rightmost leaves of the two k-leaf trees to the
isomorphic part of the two k-leaf trees. Note that the
isomorphic part of the two k-leaf trees is the (k — 1)-
prefix tree shared by them.

Depending on what kind of topological similarities
the two to-be-joined k-leaf trees have, there are two
cases in which the joining operations can be performed.
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In each case, our analysis shows that joining two k-leaf
trees can produce at most 4 different candidate (k +1)-
leaf trees.

O O
@ ® @ ®
3y '3-2

Q Q /%@
g 0 S B O 0
& é}@ @ ® d ®
ig-2

Ja-1

e Case 1 When the two trees have the same topology,
we further consider two sub cases.

Case 1.1 When both the heaviest subtrees of the
two trees are binary trees, four potential candidates
can be generated. To facilitate the explanation
of our algorithm, we hereafter adopt Newick nota-
tion [25] to represent leaf-labeled trees. In Newick
notation, we can use (It,hl1) and (It, hly) to rep-
resent the heaviest subtrees of ¢; and ¢, respec-
tively, where hl; and hly are the heaviest leaves
in t; and ty respectively, and It denotes the left
subtree in both heaviest trees since the left sub-
trees of the two heaviest subtrees must be the
same. QObviously, in the expanded candidate tree,
hly and hls could be siblings. Two possible candi-
dates having hl; and hl2 as siblings are denoted ®
by ju; = (It, smaller(hiy, hiz), greater(hly, hiz)) é)

Figure 6: An example for Case 1.1, which shows
that joining ¢3_;1 and t3_2 can produce at most
four candidates js_1, ja—2, ja_3 and ji_4.

$by

and jjg) = (It, (smaller(hly, hlz), greater(hly, hlz))) OO0

respectively.  Here, the greater(hli,hls) and

smaller(hly, hly) will return whichever is greater ® G ®
and smaller respectively between the two integers igq ig_p

representing the greatest leaves from the two trees.

(Each leaf has an integer label and hence we can
compare two leaves by comparing their integers.)
Examples of jj;; and jjp) are illustrated by the 4-
leaf trees js—1 and js o respectively in Figure 6.
Another way to perform the joining operation on
two k-leaf trees is to take one tree as the skele-
ton, which will then be expanded by adding the
heaviest leaf from the other tree to get a (k + 1)-
leaf tree. From Section 2, pruning a leaf from a
tree may introduce edge contractions. It is easy to
see that, as a reverse operation, to attach a new
leaf to a tree may introduce a new internal node
as the opposite effect to the edge contraction oper-
ation. Therefore, two additional candidates which
should also be considered are jig) = ((It, hiy1), hl2)
and Ja = ((1t, hly), hly). Examples of Ji3] and Ji4)
are illustrated by the two 4-leaf trees j;_3 and j4—4
respectively in Figure 6. Notice that, although jio
is generated by putting hl; and hly as siblings, jjo
actually introduces a new internal node.

Case 1.2 When both the heaviest subtrees of
the two trees are multi-forked trees, two po-
tential candidates can be generated. Suppose
that (sti,...,stm,hl1) and (sti,...,Sty,, his) are
the heaviest subtrees of t; and t¢» respectively,
where sti,...st, are the m sibling subtrees
(or branches) of hl; and hls (m > 2 since the
two trees are multi-forked). The expanded
candidates can be in either the form of jj; =
(st1,...,Stm,smaller(hly, hl2), greater(hla, hly))
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Figure 7: An example for Case 1.2, which shows
that joining ¢33 and t3_s can produce at most
two candidates js 1 and js_o.

or the form of Jp2) =
(st1,..., 8tm, (smaller(hly, hls), greater(hly, hls))).
Figure 7 shows examples of jj;) and jpg.

It should be pointed out that the two expansions
in Case 1.2 are similar to the first two expansions
in Case 1.1. However, the latter two expansions
in Case 1.1 are no longer applicable in Case 1.2.
This inapplicability can be seen by contradiction.
Let us assume that the third expansion considered
in Case 1.1 is also applicable in Case 1.2. Thus,
for example, we would expect the merged subtree
to be ((1,2, 3), 8), which does support (1,2, 3), but
not (1,2,8) at the same time. This is because
by pruning 3 from the imaginary ((1,2,3),8), the
resulting subtree should be ((1,2),8). Thus the
third expansion is impossible. A similar argument
prevents the fourth expansion in Case 1.1 from
being considered in Case 1.2. In fact, this same
argument applies to all other sub cases in which
expansion schemes are considered.

Case 2 When the two heaviest subtrees have
different topologies, only one candidate (k + 1)-
leaf tree can be generated. Since the two heaviest
subtrees are different from each other, one of them



can be further identified as the larger tree, and the
other one the smaller tree.

Formally, let h(t) and s(t) denote the height and
the size of a tree t respectively. Given two trees t;
and to, t; is identified to be larger than ¢, if either
of the following rules holds.

Rule 1 h(ty) > h(tz). It means the nesting level of
t; is greater than that of ta.

Rule 2 s(t1) > s(t2). This case can happen only
when h(t1) = h(t2). In this case, the fanout of the
root of t2 must be 2. Otherwise rule 1 will apply.

Let t; and t, be denoted by (timp,hl1) and
(t2hip, hl2) respectively. When ¢ is larger than t,,
hl; must be the heaviest leaf in the expanded sub-
tree, and there must exist a subtree lst in tipy
which is isomorphic to tap,. Letting st be replaced
by t2, we can then obtain the (t1pp ® hlz, hlq) as
the final expanded tree, where @ denotes the gluing
operation. This joining operation can be easily un-
derstood if the larger tree is taken as an umbrella
under which a part of it is replaced by the whole
smaller tree. Figure 8 and Figure 9 show exam-
ples for rule 1 and rule 2 respectively. Please note
that in Figure 9, the dotted rectangle delimits the
heaviest subtree of tree t3 5.

@,

Q ®
0w
I

Figure 8: An example for rule 1 of Case 2, which
shows that joining ¢t3_; and ¢t3_5 can produce only
one candidate tree j;_1.

LEMMA 3.1. The joining operation can be done in
O(k) time, where k is the number of leaves of the two
data trees.

The overall algorithm for discovering all frequent (k+1)-
leaf trees from all k-leaf trees is shown in Figure 10. For
each pair of k-leaf frequent subtrees that are in the same
equivalence class, the subroutine Phylo_Join is called
at line 5 to generate all possible candidate subtrees of

Figure 9: An example for rule 2 of Case 2, which
shows that joining ¢3_; and ¢t3_5 can produce only
one candidate tree js_1.

size k + 1 based on the above case analyses. For each
ck+1 produced by the Phylo_Join subroutine to become a
candidate tree cyy1, it will go through downward closure
checking.! If the cjy1 can pass the downward closure
checking, Grow_Subtrees then appends it to Ck41 and
later it will go through the frequency counting phase;
otherwise the cgy1 can be safely discarded. There is no
need to check whether a ¢y is already in Cg41 or not,
since each particular cgy1 can be generated only once
based on the equivalence class design.

3.5 Frequency Counting Once candidate subtrees
are generated from each joining iteration, Phylominer
computes the support for each candidate by checking
the number of its occurrences in the given data trees.
Given a candidate tree st on SL and a data tree ¢
on L, t|sr can be obtained by pruning all leaves [ €
L — SL from t. Obviously, the candidate pattern st is
a subtree of ¢ if and only if ¢|gz will be isomorphic to
st. The isomorphism between two trees can be verified
by calculating their partition metric value.? To be more
specific, two trees are isomorphic to each other, if and
only if the partition metric value of the two trees is 0.
The most efficient algorithm to calculate the partition
metric has the time complexity of O(NV)[8], which is the
algorithm we adopted for the pattern verification in the
frequency counting procedure.

TThe downward closure checking is performed by hashing on

the leaf sets of those k-leaf trees.

2The partition metric treats each phylogenetic tree as an
unrooted tree and analyzes the partitions of taxa resulting from
removing one edge at a time from the tree. By removing one edge
from a tree, we are able to partition that tree. The metric value
between two trees is defined as the number of edges in a tree for
which there is no equivalent (in the sense of creating the same
partitions) edge in the other tree.

228



Procedure: Grow_Subtrees(EClassesy, k)
Input: EClassesy, the equivalence classes for
frequent k-leaf trees.
k, tree size.
Output: Fj1, a set of frequent (k + 1)-leaf trees.
1. Ciy1 < 0, EClassesg1 + ;
2. for each aec € EClassesy, do
3. if |aec| > 2 then
4 for each pair of elements z,y € aec
that are not on the same leaf set do

5. Cy1 < Phylo_Join(z, y);

6. for each cjy1 € Cjyq do

7. if Downward_Closure_Checking(cy41) =

TRUE then

8. freq + Frequency_Count(cg41);

9. if (freq > ¢) then

10. Fr1 < Frg1 U cppr;

11. if cpip ¢ EClassesg41 then

12. EClassesgy1 <
EClassesg+1 U Chip;

13. register cg4+1 t0 Chip;

14. Fpy1 = UEClassesgy1;
15. return Fjq;

Figure 10: Algorithm for finding all frequent (k+ 1)-leaf
trees based on k-leaf trees.

4 Correctness and Complexity Analysis

We present in this section a series of lemmas and
theorems concerning the proposed algorithms, omitting
their proofs due to space limitation.

LEMMA 4.1. (Correctness) Any subtree discovered
by Phylominer is a frequent agreement subtree.

LEMMA 4.2. (Completeness) It is sufficient to con-
sider only trees in the same equivalence class for joining
operations. In other words, the joining operation is
complete without missing any frequent subtree.

LEMMA 4.3. (Non-Redundancy Candidate Gen-
eration) Fach candidate tree is generated once at most.

LEMMA 4.4. (Automatic Canonicalization) The
candidate trees produced by the Phylo_Join procedure
are in their canonical form automatically.

This automatic normalization property is a main factor
contributing to the efficiency of the algorithm.

THEOREM 4.1. Phylominer correctly finds all frequent
agreement subtrees.

THEOREM 4.2. The time complexity of Phylominer is
O(|F|?MN), where |F| is the cardinality of the frequent
subtree set, M is the number of data trees, and N is
the size of the label set.

Notice that this is a very pessimistic upper bound for
two reasons. First, the actual number of data trees
involved in the verification phase for each candidate
tree is far less than M. With pattern size growing, the
number of data trees that need to be verified against
each pattern drops quickly. Second, the pairwise joining
operation occurs only in the same equivalence class.
Consequently, |F|? is a very loose upper bound for the
number of joining operations. Notice also that this
is a pseudo polynomial time algorithm, since |F| is
not an input parameter, but a value derived from the
output, i.e. the total number of the discovered frequent
agreement subtrees. To be more precise, the time
complexity of the proposed algorithm is dependent on
the number of qualified patterns, which is exponential
in terms of the cardinality of the union set of leaf sets of
all trees. Therefore, the algorithm has an exponential
complexity in the worst case. In a typical case, however,
the number of qualified patterns is much less, leading to
a dramatically low running time complexity.

5 Experiments and Results

5.1 Synthetic Datasets For correctness verification
and performance evaluation purposes, a tree generator
is implemented in C++ to generate synthetic datasets
subject to user specified parameters. The basic idea be-
hind the data generator is similar to, but more powerful
than, the one used in COMPONENT/[24]. COMPO-
NENT can generate binary leaf-labeled trees only while
the generator developed in this work can generate leaf-
labeled trees of various degrees by generalizing the al-
gorithm described in [13]. Table 2 lists the parameters
and their default values, where fanout of a node is the
number of children of that node.

5.2 Performance Analysis The proposed tree min-
ing algorithms were implemented in C++. A series of
experiments have been conducted to evaluate the per-
formance of the algorithms on synthetic data, run under
the Solaris operating system on a SUN Ultra 60 work-
station.

Figure 11 shows how changing the database size of
synthetic datasets affects the overall running time of
the algorithm Phylominer. The eight datasets generated
for this experiment contained different numbers of trees
ranging from 100 to 800, where each tree had the same
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Table 2: Parameters and their default values used in the
synthetic dataset generator.

Notation | Parameter Default
setting
|DT| The size of the dataset DT 600
|S| The cardinality of 10
the leaf label set
LF The largest fanout 5
SF The smallest fanout 2
150
—o— Total running time
— 120 F| — & —1nitialization time
g
~ 90 -
E _a
S 60
£
£ 30 f
m o
0
0 200 400 600 800 1000

Number of trees

Figure 11: Scalability of Phylominer with respect to
the dataset size.

number of leaves (this number was 15). The minsup
value was set to 30%. Other parameters had default
values as shown in Table 2. It can be seen from Figure
11 that the total running time scales up linearly with
respect to the size of datasets. This happens because
the more trees a dataset contains, the more time is
needed for frequency counting in the dataset. Another
measurement represented by the dashed line in the
figure shows that the time spent on the initialization
stage of the algorithm scales up linearly with the size of
datasets. This happens because the initialization step
essentially comprises two operations. One of them is
2-leaf patterns enumeration, where the number of 2-
leaf patterns is related to the size of the label set only
regardless of how many trees a dataset contains. On
the other hand, the more trees a dataset contains, the
more time is needed in preparing the supporting tree
ID lists. This is the reason why the initialization time
scales up linearly with the size of datasets. In general,
when frequent patterns with size larger than 2 is limited,
which is usually true, the initialization step dominates
the running time.

Figure 12 shows the number of patterns obtained
from the same set of experiments. It can be seen from
the figure that with the increasing number of trees in
different datasets on the same leaf label set, the num-
bers of patterns decreases to a stable value. The reason

800
700
600
500
400
300
200
100

Number of patterns

0 200 400 600

Number of trees

800 1000

Figure 12: Effect of the database size on the number
of frequent patterns discovered.

is that, in general, the more randomly generated trees
a dataset has, the less consensus information is embod-
ied in the dataset. This explains why the number of
patterns declines with the increase of dataset sizes. On
the other hand, although the number of frequent sub-
trees with more leaves could drop dramatically to zero
due to the increasing of minsup value, the initialization
set will guarantee that the final mining result contains
at least all 2-leaf subtrees, the number of which is a
fixed value. This explains why the number of qualified
patterns reaches a stable value.

Figure 13 shows how changing minsup affects the
number of patterns discovered by the algorithm. The
data used in this experiment contains 200 synthetic
trees, with each tree having 15 leaves. The values
of the other parameters are as shown in Table 2. It
can be seen from the figure that as minsup increases,
the number of qualified patterns drops quickly. This
experimental result can be well justified by the following
analysis. When minsup goes up, the number of qualified
patterns at k > 3 level drops. Consequently, the number
of patterns with size k + 1 will drop in a non-linear
way. This effect will be cascadingly propagated from the
smaller-sized subtree levels to the larger-sized subtree
levels in trees. Finally, the total number of qualified
patterns will drop. It can also be observed that once
the minsup value reaches a certain point, 0.8 in this
case, the number of patterns reaches a stable value.
This happens because the number of 2-leaf subtrees
embedded in these data trees is always the same. As
already mentioned, making up the initial set of the
mining algorithm, these 2-leaf subtrees will appear in
all mining results regardless of what the minsup values
will be, because their support values are always 100%.

Figure 14 shows how changing minsup affects the
running time of Phylominer on the same dataset used
in the previous experiment. This figure shows that
as minsup increases, the running time of Phylominer
drops quickly. This can be explained by the fact that
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Figure 13: Effect of minsup on the number of frequent
patterns discovered.
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Figure 14: Effect of minsup on the running time of
Phylominer.

the number of discovered patterns actually decreases
with the increasing of minsup. Consequently, fewer
valid pairwise joinings in each equivalence class will be
performed. As a joint result of the above two factors,
the overall running time drops quickly.

5.3 Datasets from COMPONENT and Tree-
BASE We present here the experimental result on
the “peg.nex” data obtained from the COMPONENT
tool[24]. The file “peg.nex” consists of 9 different trees
for 11 species. Table 3 shows the results with differ-
ent support values. When minsup was 33%, Phylominer
found a total of 480 frequent subtrees. Among them,
the maximum frequent agreement subtrees have 8 leaves
(as shown in the “Size of MFAST” column). When
minsup was 100%, Phylominer found a total of 251 fre-
quent agreement subtrees, among which the maximum
frequent agreement subtrees have 7 leaves.

Finally, the algorithm was applied to the dataset
in Figure 1. The result is shown in Table 4. From
this table, it can be seen that with minsup decreasing,
the running time goes up, and the total number of
interesting patterns goes up as well. The maximum

Table 3: Experimental results on peg.nex.

minsup | Time | Number of | Number of | Size of

(ms) FAST MFAST MFAST
100% 34 251 3 7
89% 35 251 3 7
"% 35 251 3 7
66% 63 285 1 8
55% 70 285 1 8
44% 70 285 1 8
33% 150 480 4 8

Table 4: Data mining result on the five trees of the
study 5497 in TreeBASE.

minsup | Time | Number of | Number of | Size of
(ms) FAST MFAST MFAST
100% 30 30 9 3
80% 30 30 9 3
60% 40 55 3 5
50% 63 91 9 5

frequent agreement subtrees have three leaves only when
minsup is set to 100%, while the maximum frequent
subtrees have 5 leaves when minsup drops to 50%.

Experimental results on these real datasets show
that the proposed algorithm can systematically discover
all interesting frequent agreement subtree patterns in
data trees. These frequent agreement trees are expected
to reveal more consensus information which could not
be previously discovered by the traditional MAST algo-
rithms. The proposed algorithm requires that the user
input a support value. In practice, it is suggested that
the user set the support threshold to a reasonably large
value (e.g. 50%). Then use a strategy similar to “di-
vide and conquer” or “ binary search” to try different
threshold values depending on the number of patterns
discovered. For example, if there are too many patterns
discovered, try a support of 75%; if there are too few
patterns found, try a support of 25%, and so on. The
patterns could be used for phylogeny clustering, for ex-
ample, to construct phylogenetic islands, which is useful
in tree surfing [25].

6 An Online Tree Mining Engine

An online tree mining toolkit has been developed, which
utilizes Perl scripts and HTML pages to wrap up the
core mining engine, so that users can easily interact with
the mining engine over the Internet. Figure 15 shows
the system’s interface and the mining result when the

231



File Edit ‘View Favorites Tools Help

a Frequent Agreement Subtree Mining - Microsoft Internet Explorer

=10i x|

@Back S R d @ ;‘J | /'-r‘Search ' Favarkes (gl Media Q?! AR o

Address i@_"f http:/faria. njit. edujmediadbFastimain. heml

B |us®

Home TreeBASE users General users
ofithm IMining frequent subtrees Sample trees Mining frecuent subtrees Sample trees o
El[ Subtree 83: (Fothergilla major, (Hamamelis_japonica A
TREELG16 =1 (Hamameli s_mexicana, Hamamelis_vernalis), Hamamelis_mollis));
TREE1517 )
TREE1513
TREE1G19 TEEEL B0
Input  |TREELGIS TERATEES
Trees : Subtres 84: (Fothergilla major, (Hamamelis_japonica,
(Hamamelis_mexicana, Hamamelis virginiana), Hamamelis mollis)
= 2
B TRIE1516
Maxsize: |5 TREE1E12
Minsup: IU-5 Subtree 85: ((Fothergilla major,
((Hamamelis mexicana, Hamamelis vernalis), Hamamelis wirginiz
: F
Rooted: 5
Submit Feset TREE1519
s 2 TEEE1515
Please choose different input tree sets —
Subtree 86: (Fothergzilla major,
(Hamamelis_japonica, Hamamelis mollis, el
(Hamamelis vernalis, Hamamelis wvirginiana))); :2
TREE1516 -Jll
=zl | 3
[& [ [ [SJviocalintranet 7

Figure 15: The online tree mining engine interface.

engine works on the dataset shown in Figure 1.

In Figure 15, the main menu of the system is
displayed in the top frame; the bottom left frame shows
the dataset input with appropriate mining parameter
settings; and the right frame shows the mining result.
When clicking on any subtree link in the right frame, the
user will be redirected to a separate window where the
subtree is shown in a Java applet. When the user clicks
on the link for a data tree that supports a subtree, the
data tree will be displayed in another window, which will
highlight the supported subtree by showing its leaves in
red color and decorating them with red bullets.

7 Conclusion

We presented in this paper a set of new data mining
algorithms, called Phylominer, for automatically discov-
ering frequent agreement subtrees from multiple rooted
phylogenetic trees. The correctness and completeness
of the algorithms were discussed. The algorithms were
implemented in C++ and integrated into our phyloge-
netic tree mining engine. The experimental results on
synthetic leaf-labeled trees and phylogenetic tree data
showed the scalability and effectiveness of the proposed
algorithms. These algorithms will be useful in not only
phylogeny research but also other domains where data
can be modeled as leaf-labeled trees. Future work in-
cludes (i) applying Phylominer to multiple phylogenies
built from different species and studying the biologi-
cal significance of discovered patterns, (ii) applying the
work to tree classification [21] and super-tree construc-

tion [26], and (iii) extending the work to find frequent
substructures in phylogenetic networks [22]. We also
plan to compare alternative pattern generation meth-
ods including depth-first, breadth-first and apriori-like
techniques and evaluate their relative performance and
efficiency.

Acknowledgment

We thank the SDM anonymous reviewers for their con-
structive suggestions which helped improve the content
and presentation of this paper.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. of the 11th International Conference on Data
Engineering, 1995.

[2] A. Amir. Maximum agreement subtree in a set of
evolutionary trees: metrics and efficient algorithms.
SIAM Journal on Computing, 26(6):1656-1669, 1996.

[3] T. Asai, K. Abe, S. Kawasoe, H. Sakamoto,
H. Arimura, and S. Arikawa. Efficiently mining fre-
quent substructures from semi-structured data. In
Proc. of International Workshop on Information &
Electrical Engineering, pages 59-64, Suwon, Korea,
2002.

[4] T. Asai, H. Arimura, T. Uno, and S. Nakano. Discover-
ing frequent substructures in large unordered trees. In
Proc. of the 6th International Conference on Discovery
Science, 2003.

[6] Y. Chi, S. Nijssen, R. R. Muntz, and J. N. Kok.
Frequent subtree mining - an overview. Fundamenta

232



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

Informaticae, Special Issue on Graph and Tree Mining,
2005.

Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining
closed and maximal frequent subtrees from databases
of labeled rooted trees. IEEE Transactions on Knowl-
edge and Data Engineering, 17(2):190-202, 2005.

Y. Chi, Y. Yang, and R. R. Muntz. Indexing and
mining free trees. In Proc. of IEEE International
Conference on Data Mining, 2003.

W. H. E. Day. Optimal algorithms for comparing trees
with labeled leaves. Journal of Classification, 1:7-28,
1985.

M. Farach, T. Przytycka, and M. Thorup. Maximum
agreement subtree in a set of evolutionary trees: met-
rics and efficient algorithms. Information Processing
Letters, 55:297-301, 1995.

C. R. Finden and A. D. Gordon. Obtaining common
pruned trees. Journal of Classification, 2:255-276,
1985.

G. Ganeshkumar and T. Warnow. Finding a maximum
compatible tree for a bounded number of trees with
bounded degree is solvable in polynomial time. In
Proc. of the 1st International Workshop on Algorithms
in Bioinformatics, pages 156-163, 2001.

M. Garofalakis and A. Kumar. Correlating XML
data streams using tree-edit distance embeddings. In
Proc. of the 22nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, 2003.
S. Holmes and P. Diaconis. Random walks on trees and
matchings. Electronic Journal of Probability, 7, 2002.
J. Huan, W. Wang, and J. Prins. Efficient mining
of frequent subgraph in the presence of isomorphism.
In Proc. of the 3rd IEEE International Conference on
Data Mining, pages 549-552, 2003.

M. Y. Kao, T. W. Lam, T. M. Przytycka, W. K. Sung,
and H. F. Ting. General techniques for comparing
unrooted evolutionary trees. In Proc. of the 29th
annual ACM Symposium on Theory of Computing,
pages 5465, El Paso, Texas, 1997.

P. Kilpelainen and H. Mannila. Ordered and un-
ordered tree inclusion. STAM Journal on Computing,
24(2):340-356, 1995.

E. Kubicka, G. Kubicka, and F. R. McMorris. An
algorithm to find agreement subtrees. Journal of
Classification, 12:91-99, 1995.

M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. of the 1st IEEE International
Conference on Data Mining, pages 313-320, 2001.

T. W. Lam, W. K. Sung, and H. F. Ting. Com-
puting the unrooted maximum agreement subtree in
sub-quadratic time. Nordic journal of Computing,
3(4):295-322, 1996.

J. T. Li, A. L. Bogle, A. S. Klein, and M. J. Donoghue.
Phylogeny and biogeography of hamamelis (hamamel-
idaceae). Harvard Papers in Botany, 5:171-178, 2000.
M. Kuramochi, M. Deshpande, and G. Karypis. Fre-
quent sub-structure-based approaches for classifying
chemical compounds. In Proc. of the 3rd IEEE In-
ternational Conference on Data Mining, pages 35-42,
2003.

B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder,

233

23]

[24]

[25]

[26]

[27]

28]

29]

(30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

A. Tholse, A. Padolina, J. Sun, and R. Timme. Phy-
logenetic networks: Modeling, reconstructibility, and
accuracy. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 1(1):13-23, 2004.

S. Nijssen and J. N. Kok. Efficient discovery of frequent
unordered trees: Proofs. Technical Report, Leiden
Institute of Advanced Computer Science, Netherlands,
Jan. 2003.

R.D. M. Page. COMPONENT User’s Manual(Release
1.5), 1989. University of Auckland, Auckland.

W. H. Piel, M. J. Donoghue, and M. J. Sanderson.
TreeBASE: A database of phylogenetic information.
In Proc. of the 2nd International Workshop of Species
2000, 2000.

C. Semple and M. Steel. A supertree method for
rooted trees. Discrete Applied Mathematics, 105:147—
158, 2000.

R. Shamir and D. Tsur. Faster subtree isomorphism.
Journal of Algorithms, 33(2):267-280, 1999.

D. Shasha, J. T. L. Wang, and R. Giugno. Algorith-
mics and applications of tree and graph searching. In
Proc. of the ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pages 39—
52, 2002.

D. Shasha, J. T. L. Wang, and S. Zhang. Unordered
tree mining with applications to phylogeny. In Proc. of
the 20th International Conference on Data Engineer-
ing, pages 708-719, 2004.

M. Steel and D. Penny. Distributions of tree compar-
ison metrics — some new results. Systematic Biology,
42(2):126-141, 1993.

J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang,
and K. M. Currey. An algorithm for finding the largest
approximately common substructures of two trees.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(8):889-895, 1998.

T. Washio and H. Motoda. State of the art of
graph-based data mining. ACM SIGKDD Ezplorations
Newsletter, 5(1), July 2003.

Y. Xiao, J. Yao, Z. Li, and M. Dunham. Efficient
data mining for maximal frequent subtrees. In Proc. of
IEEFE International Conference on Data Mining, 2003.
X. Yan and J. Han. CloseGraph: Mining closed
frequent graph patterns. In Proc. of ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2003.

L. Yang, M. L. Lee, and W. Hsu. Efficient mining of
XML query patterns for caching. In Proc. of the 29th
International Conference on Very Large Databases,
Berlin, Germany, 2003.

M. J. Zaki. Efficiently mining frequent trees in a
forest. In Proc. of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 71-80, 2002.

M. J. Zaki. Efficiently mining frequent trees in a forest:
Algorithms and applications. IEEE Transaction on
Knowledge and Data Engineering, Special Issue on
Mining Biological Data, W. Wang and J. Yang (eds.),
17(8):1021-1035, 2005.



