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Abstract

Sequence segmentation and dimensionality reduction have

been used as methods for studying high-dimensional se-

quences — they both reduce the complexity of the repre-

sentation of the original data. In this paper we study the

interplay of these two techniques. We formulate the prob-

lem of segmenting a sequence while modeling it with a basis

of small size, thus essentially reducing the dimension of the

input sequence. We give three different algorithms for this

problem: all combine existing methods for sequence segmen-

tation and dimensionality reduction. For two of the proposed

algorithms we prove guarantees for the quality of the solu-

tions obtained. We describe experimental results on syn-

thetic and real datasets, including data on exchange rates

and genomic sequences. Our experiments show that the al-

gorithms indeed discover underlying structure in the data,

including both segmental structure and interdependencies

between the dimensions.

Keywords: segmentation, multidimensional data, PCA,

time series

1 Introduction

The goal in segmentation is to decompose the sequence
into a small number of homogeneous pieces, segments,
such that the data in each segment can be described
accurately by a simple model, for example a constant
plus noise. Segmentation algorithms are widely used
for extracting structure from sequences; there exist a
variety of applications where this approach has been
taken [12, 13, 16, 17, 19, 20]. Sequence segmentation
is suitable in the numerous cases where the underlying
process producing the sequence has several relatively
stable states, and in each state the sequence can be
assumed to be described by a simple model.

Naturally, dividing a sequence into homogeneous
segments does not yield a perfect description of the se-
quence. For a multidimensional time series, a segmenta-
tion of the series into k pieces leaves open the question
of the relationships between segments: are the represen-

tative values for different segments somehow connected
to each other?

Example. As a simple example consider the case
of analyzing a dataset of financial time series, such as
stock or currency prices. The dataset can be viewed as
a multidimensional time series; each stock or currency
time series forms a separate dimension having one
observation per time unit (day, hour, etc.). The set
of time series is naturally synchronized on the time
axis. Segmenting this financial dataset corresponds to
splitting the time into different phases for the economy,
such as recession, recovery, expansion, market behavior
after a terrorist attack, etc. On the other hand, it is
clear that there are a lot of interdependencies among
the dimensions. Many series can be explained in part
by using a small number of underlying variables, e.g., oil
price, general state of different sectors of the economy,
monetary policy, etc. Furthermore, the dependency of
a time series from the underlying variables might be
different at different periods of time. For example, the
stock of a biotech company might in general follow the
trend dictated by government support on R&D, but not
so much so during a period following the announcement
of a new exciting technology in the field. �

In this paper we study the following problem. Given
a multidimensional time series, find a small set of latent
variables and a segmentation of the series such that the
data in each segment can be explained well by some
(linear) combination of the latent variables. We call
this problem the basis segmentation problem. In the
previous example, we want to discover the time periods
of the market and the underlying variables that explain
the behavior of the financial time series well, but we
are also interested in how each series is affected by the
underlying variables during each time period.

The generative model behind our problem definition
is as follows. First we assume that a small number
of latent variables are present and responsible for the
generation of the whole d-dimensional sequence. We
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call such latent variables the basis of the sequence. The
values of the latent variables are d-dimensional vectors,
and the number m of the latent variables satisfies m < d;
typically, we want m to be considerably smaller than d.
The sequence consists of segments generated by different
states of the underlying process. In each state, a d-
dimensional vector is created by a linear combination
of the basis vectors using arbitrary coefficients. Data
points are generated from that vector by a noisy process.

Our problem formulation allows decomposing the
sequences into segments in which the data points are
explained by a model unique to the segment, yet the
whole sequence can be explained adequately by the
vectors of the basis.

To solve the basis segmentation problem, we com-
bine existing methods for sequence segmentation and
for dimensionality reduction. Both problems are very
well studied in the area of data analysis and they can
be used to reduce the complexity of the representation
of the original data. Our primary algorithmic tools are
(i) k-segmentation, an optimal algorithm based on dy-
namic programming for segmenting a sequence into k
pieces, and (ii) Principal Component Analysis (PCA),
one of the most commonly used methods for dimension-
ality reduction.

We give three different algorithms for solving the
basis segmentation problem, each of which combines k-
segmentation and PCA in different ways. For two of
our algorithms we are able to show that the cost of the
solutions they produce is at most 5 times the cost of the
optimal solution.

We have performed extensive experimentation with
synthetic and real datasets, and demonstrate the ability
of the approach to discover underlying structure in
multidimensional sequences.

The rest of the paper is organized as follows. First
we discuss related work in Section 2. Section 3 presents
the notation and defines the problem. In Section 4
we describe the three basic algorithms, and give the
theoretical bounds on the approximation ratio for two of
them. Empirical results on simulated and real data are
given in Section 5, and Section 6 is a short conclusion.

2 Related work

Segmentation of time series has been considered in many
areas, starting from the classic paper of Bellman [4].
Many other formulations exist and the problem has
been studied extensively in various settings. To name
a few approaches, Himberg et al. [12] compare a large
number of different algorithms on real-world mobile-
device data. Keogh et al. [13] show how one can use
segmentation in order to obtain efficient indexing of
time series. Guha et al. [10] provide a graceful trade-

off between the running time and the quality of the
obtained solution. Azad et al. [2], Li [16], and Ramensky
et al. [20] apply segmentation on genomic sequences,
while Koivisto et al. [15] use segmentation to find blocks
on haplotypes. One should note that in statistics the
question of segmentation of a sequence or time series is
often called the change-point problem [6].

Dimensionality reduction through Principal Com-
ponent Analysis (PCA) and its variants is one of the
most widely used methods in data analysis [3, 7, 18].
Closer to our paper is the work by Attias [1] who ap-
plied Independent Factor Analysis in order to identify
a small number of statistically independent sources in
multidimensional time series. Also, Bingham et al. [5]
analysed dynamically evolving chat room discussions,
finding distinct topics of discussion. However, to the
best of our knowledge, this is the first paper that studies
the connections between segmentation and dimension-
ality reduction in multidimensional sequences.

In the experimental section, we compare our algo-
rithms with the (k, h)-segmentation method [8]. This
is a particular formulation of segmentation seeking to
find a segmentation into k segments and an assignment
of each segment to one of h labels (h < k). There-
fore, the (k, h)-segmentation model captures the idea
that segments of the same type might re-appear in the
sequence.

3 Problem definition

Consider a sequence X of n observations of d-dimen-
sional vectors. I.e., X = 〈x1 . . . xn〉 where xi ∈ R

d

for all i = 1, . . . , n. In matrix form X contains the
observations as its rows, so X is an n × d matrix. A
k-segmentation S of X is defined by k + 1 boundary
points 1 = b1 < b2 < . . . < bk < bk+1 = n + 1, yielding
segments S = 〈S1 . . . Sk〉, where Sj = 〈xbj

. . . xbj+1
−1〉.

Thus, S partitions the sequence X into continuous
intervals so that each point xi ∈ X belongs to exactly
one interval. We denote by j(i) ∈ {1, . . . , k} the
segment to which point xi belongs to, i.e., j(i) is the
index such that bj(i) ≤ i < bj(i)+1.

We will now consider basis-vector representations
of the data. We denote by V = {v1, . . . , vm} a set of
m basis vectors vt ∈ R

d, t = 1, . . . , m. The number
of basis vectors m is typically significantly smaller than
the number n of data points. In matrix form, V is an
m × d matrix containing the basis vectors as its rows.

Along with the basis vectors V , we need for each
segment the coefficients of a linear combination of the
basis vectors. For each segment Sj we have a set of
coefficients ajt ∈ R, for t = 1, . . . , m; in matrix notation,
A = (ajt) is an k × m matrix of coefficients. We often
indicate the size of a matrix as a subscript: for example,
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a matrix X of size n × d is written as Xn×d.
A basis segmentation consists of a k-segmentation

S = 〈S1 . . . Sk〉 of the input sequence X , a set V =
{v1, . . . , vm} of m < d basis vectors, and coefficients
A = (ajt), for j = 1, . . . , k and t = 1, . . . , m for each
segment and basis vector pair. We approximate the
sequence with piecewise constant linear combinations
of the basis vectors, i.e., all observations in segment Sj

are represented by the single vector

(3.1) uj =

m∑

t=1

ajtvt.

The problem we consider in this paper is the following.

Problem 1. Given a sequence X = 〈x1 . . . xn〉, and
integers k and m, find a basis segmentation (S, V, A)
that uses k segments and a basis of size m, so that the
reconstruction error

E(X ;S, V, A) =
n∑

i=1

||xi − uj(i)||
2

is minimized. The constant vector uj(i) for approximat-
ing segment Sj is given by Equation (3.1).

In other words, the goal is to find a small basis (m
vectors) such that the input sequence can be segmented
in k segments, and each segment can be described well
as a linear combination of the basis vectors.

The difficulty of the basis segmentation problem
stems from the interplay between segmentation and
dimensionality reduction. While we can segment a
sequence optimally in polynomial time, and we can
reduce the dimensionality of a sequence optimally in
polynomial time, it is not at all clear that the optimal
solution can be obtained by combining these two steps
that are in themselves optimal.

Whether the basis segmentation problem can be
solved in polynomial time, or if it is NP-hard, remains
an open problem. However, we can show that a
straightforward algorithm that first segments and then
performs dimensionality reduction can be no more than
a factor of 5 worse than the optimum.

4 The algorithms

We discuss three algorithms for solving the basis seg-
mentation problem, each of which combines segmenta-
tion and dimensionality reduction in a different way.
Matlab implementations of the methods are available
in http://www.cs.helsinki.fi/hiit bru/software/

4.1 Building blocks. All the algorithms combine
dynamic programming for k-segmentation with the

PCA technique for dimensionality reduction. We de-
scribe briefly these two basic ingredients.

Given a sequence X , the classic algorithm of Bell-
man [4] finds the optimal k-segmentation of X , in
the sense that the error of the original sequence to
a piecewise-constant representation with k segments is
minimized (in fact, the algorithm can be used to com-
pute optimal k-segmentations with piecewise polyno-
mial models). Bellman’s algorithm is based on dynamic
programming and the running time is O(n2k).

The method is based on computing an (n × k)-size
table ES , where the entry ES [i, p] denotes the error
of segmenting the prefix sequence 〈x1, . . . , xi〉 using p
segments. The computation is based on the equation

ES [i, p] = min
1≤j≤i

(ES [j − 1, p − 1]) + E[j, i]),

where E[j, i] is the error of representing the subsequence
〈xj , . . . , xi〉 with one segment.

The second fundamental data-analysis tool em-
ployed by our algorithms is Principal Component Anal-
ysis (PCA). Given a matrix Zn×d with points as rows,
the goal is to find a subspace L of dimension m < d
so that the residual error of the points of Z projected
onto L is minimized (or equivalently, the variance of the
points of Z projected onto L is maximized). The PCA
algorithm computes a matrix Y of rank m, and the de-
composition Y = AV of Y into the orthogonal basis V
of size m, such that

(4.2) Y = arg min
rank(Y ′)≤m

||Z − Y ′||F .

PCA is accomplished by eigenvalue decomposition on
the correlation matrix, or by Singular Value Decompo-
sition on the data matrix. The basis vectors v1, . . . , vm

are the eigenvectors of the correlation matrix or the
right singular vectors of the data matrix, respectively.1

4.2 Overview of the algorithms. Next we describe
our three algorithms. Briefly, they are as follows:

• Seg-PCA: First segment into k segments, then find
a basis of size m for the segment means.

• Seg-PCA-DP: First segment into k segments,
then find a basis of size m for the segment means,
and then refine the segmentation by using the
discovered basis.

• PCA-Seg: First do PCA to dimension m on the
whole data set. Then obtain the optimal segmen-
tation of the resulting m-dimensional sequence.

1The matrix norm || · ||F in Equation (4.2) is the Frobenius

norm, and this is the property that we will need for the rest of
our analysis, however, it is worth noting that Equation (4.2) holds
for all matrix norms induced by Lp vector norms.
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4.3 Algorithm 1: Seg-PCA. The first algorithm
we propose for the basis segmentation problem is called
Seg-PCA, and as we will show, it produces a solution
that is a factor 5 approximation to the optimal.

The algorithm works as follows: First, the optimal
k-segmentation is found for the sequence X in the
full d-dimensional space. Thus we obtain segments
S = (S1, . . . , Sk) and d-dimensional vectors u1, . . . , uk

representing the points in each segment. Then the
algorithm considers the set of the k vectors {u1, . . . , uk},
where each vector uj is weighted by |Sj |, the length of
segment Sj . We denote this set of weighted vectors by
US = {(u1, |S1|), . . . , (uk, |Sk|)}. Intuitively, the set US

is an approximation of the n d-dimensional points of
the sequence X with a set of k d-dimensional points.
In order to reduce the dimensionality from d to m we
perform PCA on the set of weighted points US .2 The
PCA computation gives for each segment vector uj an
approximate representation u′

j such that

(4.3) u′
j =

m∑

t=1

ajtvt, j = 1, . . . , k,

where {v1, . . . , vm} constitute a basis, and ajt are real-
valued coefficients. The vectors {u′

1, . . . , u
′
k} given by

Equation (4.3) lie on an m-dimensional space, and the
optimality of the weighted PCA guarantees that they
minimize the error

∑
j |Sj |||uj−u′

j ||
2 among all possible

k vectors lying on an m-dimensional space. The last
step of the Seg-PCA algorithm is to assign to each
segment Sj the vector u′

j computed by PCA.
As an insight into the Seg-PCA algorithm, note

that any data point xi is approximated by the mean
value of the segment j into which it belongs; denoted
by uj(i). The mean value uj(i) itself is approximated
as a linear combination of basis vectors: u′

j(i) =∑m

t=1 aj(i)tvt. Thus the error in representing the whole
data set is

n∑

i=1

||xi −
m∑

t=1

aj(i)tvt||
2

Next we show that the Seg-PCA algorithm yields
a solution to the basis segmentation problem that is at
most factor 5 from the optimal solution.

Theorem 4.1. Let X be a sequence of n points in R
d

and let k and m be numbers such that m < k < n
and m < d. If E(X, k, m) is the error achieved by the
Seg-PCA algorithm and E∗(X, k, m) is the error of the

2Considering PCA with weighted points is by definition equiv-
alent to replicating each point as many times as its corresponding
weight. Algorithmically, the weighted version of PCA can be per-
formed equally efficiently without replicating the points.

optimal solution to the basis segmentation problem, then
E(X, k, m) ≤ 5 E∗(X, k, m).

Proof. Let u1, . . . , uk be the vectors of the segments
S1, . . . , Sk found by the optimal segmentation. Then,
if E(X, k) =

∑n

i=1 ||xi − uj(i)||
2, we have E(X, k) ≤

E∗(X, k, m). The reason is that for d > m the error
of an optimal basis segmentation of size d is at most as
large as the error of an optimal basis segmentation of
size m. The algorithm performs PCA on the weighted
points US = {u1|S1|, . . . , uk|Sk|}, and it finds an m-
basis decomposition U ′ = AV , such that each segment
Sj is represented by the point u′

j =
∑m

t=1 ajtvt, j =
1, . . . , k. The error of the Seg-PCA algorithm is

E(X, k, m) =

n∑

i=1

||xi − u′
j(i)||

2

=

k∑

j=1

∑

i∈Sj

||xi − u′
j ||

2

(∗)
=

k∑

j=1

|Sj | ||uj − u′
j ||

2

+

k∑

j=1

∑

i∈Sj

||xi − uj ||
2

=

k∑

j=1

|Sj | ||uj − u′
j ||

2 + E(X, k)

≤
k∑

j=1

|Sj | ||uj − u′
j ||

2 + E∗(X, k, m).(4.4)

Equality (∗) follows from Lemma 4.1 below. We now

proceed with bounding the term
∑k

j=1 |Sj | ||uj − u′
j ||

2.
Notice that the values u′

j are the optimal values found
by PCA for the weighted points uj . Therefore, if u∗

j are
the optimal values for the basis segmentation problem,
such that u∗

j can be written with an optimal m-basis
V ∗, then

k∑

j=1

|Sj | ||uj − u′
j ||

2 ≤
k∑

j=1

|Sj | ||uj − u∗
j ||

2

≤ 2

n∑

i=1

||xi − u∗
j(i)||

2

+2

k∑

j=1

∑

i∈Sj

||xi − uj ||
2

≤ 2E∗(X, k, m) + 2E(X, k)

≤ 4E∗(X, k, m).(4.5)

The first inequality above comes from the optimality of
PCA in the Frobenius norm, and the second inequality
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is the “double triangle inequality” for the square of
distances. Finally, by u∗

j(i) we denote the point in the

set {u∗
1, . . . , u

∗
k} that it is the closest to uj(i).

The claim E(X, k, m) ≤ 5E∗(X, k, m) follows now
from Equations (4.4) and (4.5). �

Lemma 4.1. Let {x1, . . . , xn} be a set of n points in R
d

and let x̄ be their coordinate-wise average. Then, for
any point y ∈ R

d, we have

n∑

i=1

||xi − y||2 = n · ||x̄ − y||2 +
n∑

i=1

||xi − x̄||2.

Proof. A straightforward computation. �

Note that Lemma 4.1 can be used in the proof of
Theorem 4.1 since each vector uj is the average of all
points xi in the segment Sj .

4.4 Algorithm 2: Seg-PCA-DP. Our second al-
gorithm is an extension of the previous one. As previ-
ously, we start by obtaining the optimal k-segmentation
on the original sequence X , and finding the represen-
tative vectors uj for each segment (the means of the
segments). We then perform PCA on the weighted set
{(u1, |S1|) . . . , (uk, |Sk|)} and we obtain vectors u′

j that
can be expressed with a basis V of size m.

The novel step of the algorithm Seg-PCA-DP

is to adjust the segmentation boundaries by taking
into account the basis V found by PCA. Such an
adjustment can be done by a second application of
dynamic programming. The crucial observation is that
now we assume that the vector basis V is known. Given
V we can evaluate the goodness of representing each
subsegment Sab = 〈xa . . . xb〉 of the sequence X by a
single vector uab on the subspace spanned by V . In
particular, the representation error of a segment S is∑

i∈S ||xi − u||2, where u =
∑m

t=1 atvt is chosen so
that it minimizes ||µ − u||2 where µ is the mean of the
segment S. This is equivalent3 to finding the vector
u =

∑m

t=1 atvt that minimizes directly
∑

i∈S ||xi − u||2.
In other words, the representative vector u for a segment
S is the projection of the mean of the points in S onto
the subspace spanned by V .

Since the representation error of every potential
segment can be computed efficiently given the basis
V , and since the total error of a segmentation can be
decomposed into the errors of its segments, dynamic
programming can be applied to compute the optimal
k-segmentation given the basis V . Notice that the
first two steps of the algorithm are identical to the
Seg-PCA algorithm, while the last step can only

3We omit the proof due to space limitations.

improve the cost of the solution. Therefore, the same
approximation factor of 5 holds also Seg-PCA-DP.
One can also iterate the process in a EM fashion: Given
a segmentation S(i), compute a new basis V (i+1), and
given the basis V (i+1) compute a new segmentation
S(i+1). The process is repeated until the representation
error does not decrease anymore.

4.5 Algorithm 3: PCA-Seg. Our last algorithm,
PCA-Seg, has the advantage that it does not perform
segmentation on a high-dimensional space, which can be
a time-consuming process. The algorithm performs an
optimal rank-m approximation to the original data, and
then it finds the optimal k-segmentation on the rank-
reduced data.

First PCA is used to compute Un×d = Bn×mVm×d

as an optimal rank-m approximation to the data Xn×d.
Instead of performing segmentation in the original (d-
dimensional) space, PCA-Seg algorithm projects the
data X onto the subspace spanned by V and then finds
the optimal k-segmentation on the projected data.

Since PCA approximates X by U , the projected
data can be written as UV T = BV V T = B, where the
last simplification uses the orthogonality of the basis
vectors of V . Therefore, the k-segmentation step is
performed on the low-dimensional data B = (bit), where
i = 1, . . . , n and t = 1, . . . , m. The representation error
of a segment S is simply

∑
i∈S ||bi − µbi

||2 where µbi
is

the mean of the segment S. The total reconstruction
error of algorithm PCA-Seg is

k∑

j=1

∑

i:bi∈Sj

||xi −
m∑

t=1

aSjtvt||
2 =

n∑

i=1

||xi −
m∑

t=1

aj(i)tvt||
2

where the aSjt’s are chosen so that they minimize
||µSj

−
∑m

t=1 aSjtvt||2, with µSj
being the mean of

segment Sj .

4.6 Complexity of the algorithms. The compo-
nents of the algorithms have polynomial complexity. For
PCA/SVD, the complexity for n rows with d dimensions
is O(nd2 + d3). For dynamic programming, the com-
plexity is O(n2k). This assumes that the initial costs
of describing each of the O(n2) potential segments by
one level can be computed in unit time per segment.
Thus the dynamic programming dominates the com-
plexity. For the last algorithm, PCA-Seg, notice that
the segmentation on the data Bn×m is faster than the
segmentation of the original data Xn×d by a factor of
d/m. Therefore, PCA-Seg is a faster algorithm than
the other two, however, the empirical results show that
in many cases it produces solutions of the poorest qual-
ity.
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d k m s Seg-PCA Seg-PCA-DP PCA-Seg Seg (k, h)

10 10 4 0.05 1710 1710 1769 1707 1785
10 10 4 0.1 3741 3741 3780 3727 3829
10 10 4 0.15 6485 6485 6543 6466 6568
10 10 4 0.25 7790 7790 7887 7772 7811

10 5 4 0.05 2603 2603 2648 2603 2603
10 5 4 0.1 4764 4764 4851 4764 4764
10 5 4 0.15 6230 6230 6304 6230 6230
10 5 4 0.25 8286 8286 8330 8286 8287

20 10 5 0.05 7065 7065 7141 7028 7134
20 10 5 0.1 10510 10510 10610 10475 10781
20 10 5 0.15 14520 14520 14646 14486 14640
20 10 5 0.25 17187 17187 17370 17152 17291

Table 1: Reconstruction errors for generated data at true k and m (n = 1000). s is the standard deviation of the
data. Seg is the error of the k-segmentation and (k, h) is the error of the (k, h) segmentation; no dimensionality
reduction takes place in these two methods.

k m Seg-PCA Seg-PCA-DP PCA-Seg Seg (k, h)

10 3 4382 4381 4393 3310 5026
15 3 3091 3074 3078 1750 4153
20 3 2694 2676 2679 1244 3838

10 4 3608 3608 3618 3310 4140
15 4 2255 2245 2248 1750 3231
20 4 1839 1820 1821 1244 2577

10 5 3436 3436 3454 3310 3388

Table 2: Reconstruction errors for the exchange rate data (n = 2567 and d = 12).

5 Experimental results

In this section we empirically evaluate the three algo-
rithms on generated and real-life data sets. All three
algorithms output both segment boundaries and ba-
sis vectors, and thus comparing their results is quite
straightforward.

In all our figures, the grayscale in each subplot is
spread linearly from highest negative (white) to highest
positive (black) value, and so blocks with similar shades
correspond to their coefficients having similar values.

5.1 Generated data. To study the solutions pro-
duced by the different algorithms, we generated artificial
data as follows. We first created m random, orthogo-
nal, unit-norm, d-dimensional basis vectors vt. We then
chose the boundaries of k segments at random for a
sequence of length n = 1000. For each segment j =
1, . . . , k, the basis vectors vt were mixed with random
coefficients cjt to produce the mean µj =

∑m

t=1 cjtvt of
the segment; data points belonging to the segment were
then drawn from a Gaussian distribution N (µj , s

2).
The data was made zero mean and unit variance in
each dimension. We used three sets of the parameters

(d, k, m) to generate the data: (10, 10, 4), (10, 5, 4), and
(20, 10, 5). Furthermore, we varied the standard devia-
tion as s = 0.05, 0.1, 0.15, 0.25.

For comparison, we also show results on plain k-
segmentation, and on (k, h)-segmentation [8] (recall the
description of the latter problem from Section 2). We
chose h so that the number of parameters in our model
and the data model of (k, h)-segmentation are as close
as possible: h = dm(d + k)/de.

Table 1 shows the reconstruction errors of the
three algorithms on the generated data, rounded to
the nearest integer. We also show the error of plain
k-segmentation and (k, h)-segmentation, in which the
reconstruction error is measured as the difference be-
tween a data point and the segment mean. The plain
k-segmentation can be seen as a baseline method since
it does not reduce the dimensionality of the data; (k, h)-
segmentation poses further constraints on the levels of
the segments, giving rise to an increase in the recon-
struction error. Algorithm PCA-Seg has a slightly
larger error than the other two algorithms, as it op-
erates on a rank-reduced space.

We then compared the estimated segment bound-
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k m Seg-PCA Seg-PCA-DP PCA-Seg Seg

10 2 6634 6516 6713 5747
10 3 6214 6190 6287 5747
10 4 6001 5998 5985 5747
10 5 5835 5835 5854 5747

15 2 5895 5744 5910 4608
15 3 5374 5330 5368 4608
15 4 4981 4972 4984 4608
15 5 4765 4764 4781 4608

20 2 5489 5309 5349 3828
20 3 4659 4655 4672 3828
20 4 4251 4249 4267 3828
20 5 4020 4018 4031 3828

25 2 5035 4918 4936 3254
25 3 4144 4136 4155 3254
25 4 3714 3711 3728 3254
25 5 3477 3476 3489 3254

Table 3: Reconstruction errors for human chromosome 22 (n = 697 and d = 16).
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Figure 1: Basis segmentation of data on exchange rates
(n = 2567, d = 12). The segment-wise coefficients ajt

for k = 20 and m = 4, algorithms Seg-PCA, Seg-

PCA-DP and PCA-Seg.

aries to the true boundaries, by measuring the sum of
distances between the boundaries. The boundaries are
recovered almost perfectly. The sum of distances be-
tween true and estimated boundaries was 10 elements
(out of 1000) in the worst case (d = 20, k = 10, m =
5, s = 0.25), and 0 to 2 for all datasets with s < 0.25.

5.2 Exchange rates. As a first experiment on real
data, we applied our algorithms on exchange-rate data
on 12 currencies in dollars; the 2567 observations of

1 2 3 4
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BEF
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FRF

DEM

JPY

NLG

NZD

ESP

SEK

CHF

GBP

Figure 2: Basis vectors of the exchange rate data
at Algorithms Seg-PCA and Seg-PCA-DP at k =
20, m = 4.

daily rates are from 1986 to 1996. The 12 currencies
are AUD, BEF, CAD, FRF, DEM, JPY, NLG, NZD,
ESP, SEK, CHF and GBP. The data were made zero
mean and unit variance in each dimension. The data is
available at UCI KDD archive [11].

The segmentations found by the three algorithms
are shown in Figure 1, where parameter values k = 20
and m = 4 are chosen as an example. The results
are quite similar, and the changes in the original data
are captured nicely (remember that white is smallest,
and black largest value). The reconstruction errors are
shown in Table 2 for k = 10, 15, 20 and m = 3, 4, 5. Also
the reconstruction errors have only small differences.

Figure 2 shows the basis vectors for the case k = 20
and m = 4 for algorithms Seg-PCA and Seg-PCA-

DP, which use the same set of basis vectors. The
basis vectors are ordered according to their importance.
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k m Seg-PCA Seg-PCA-DP PCA-Seg Seg

10 2 3633 3618 3675 3181
10 3 3355 3355 3375 3181
10 4 3221 3221 3246 3181
10 5 3195 3195 3218 3181

15 2 3375 3237 3314 2593
15 3 2937 2867 2882 2593
15 4 2691 2691 2699 2593
15 5 2649 2649 2661 2593

20 2 3196 3023 3092 2205
20 3 2588 2534 2538 2205
20 4 2318 2318 2325 2205
20 5 2271 2271 2284 2205

25 2 3000 2923 2984 1914
25 3 2339 2288 2292 1914
25 4 2054 2051 2056 1914
25 5 1994 1994 1998 1914

Table 4: Reconstruction errors for human chromosome 22 + zebrafish chromosome 25 (n = 1031 and d = 16).
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Figure 3: Segmentation on DEM of the exchange rate
data (n = 2567, d = 12) for k = 20 and m = 4,
algorithms Seg-PCA, Seg-PCA-DP and PCA-Seg.

The importance of a vector is measured as the amount
of variability of the data it accounts for. We see
that the first basis vector has a large negative value
(light) for AUD, CAD and JPY which thus behave
similarly, whereas SEK and NZD (dark) behave in the
opposite manner. Similarly, for the second and third
basis vectors we can find a few extreme currencies, and
the fourth shows only minor distinctions between the
currencies. (The basis vectors of algorithm PCA-Seg

are quite similar to those in Figure 2.) Combining
Figures 1 and 2 we see which currencies have the largest
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Figure 4: Basis segmentation of data on human chr 22
(n = 697, d = 16). The segment-wise coefficients ajt for
k = 15 and m = 2, algorithms Seg-PCA, Seg-PCA-

DP and PCA-Seg.

contribution (large ajt) in each segment.
In Figure 3 we show the segmentation for a single

currency, DEM, for the different algorithms at k = 20
and m = 4. Also the constant levels approximating
the data at each segment are shown. We see that the
piecewise structure of the currency is captured well in
the segmentations found by different algorithms. Also
the segmentations found by different algorithms are very
similar.
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chr k m Seg-PCA Seg-PCA-DP PCA-Seg Seg

1 25 3 69251 69232 70201 68240
1 50 2 61929 61429 62960 58467
1 50 3 60736 60367 61092 58467

2 40 3 84640 84610 84667 82676
2 45 3 82443 82390 82429 80180

3 50 3 58024 57378 57389 54815
3 60 3 55361 54880 54963 51990
3 70 3 53235 52817 52915 49705

13 50 2 24229 24059 24123 20799
13 50 3 22580 22450 22766 20799
13 50 4 21788 21774 22651 20799

14 50 2 20483 20154 20174 17846
14 50 3 19549 19362 19441 17846
14 50 4 18915 18795 19263 17846

Table 5: Reconstruction errors for human chromosomes 1 (n = 2259), 2 (n = 2377), 3 (n = 1952), 13 (n = 956)
and 14 (n = 882); the data consist of the frequencies of all 3-letter words, so d = 64.

k Seg-PCA Seg-PCA-DP PCA-Seg Seg (k, h)

7 9429 9429 9644 9409 9409
10 8545 8542 8764 8454 8454
15 7961 7935 8071 7684 7785

Table 6: Reconstruction errors for the El Niño data with m = 5 (n = 1480 and d = 10).

5.3 Genome sequences. Another application of our
method is on mining the structure of genome sequences.
The existence of segments in DNA sequences is well
documented [16, 19], and discovering a vector basis
could shed more light to the composition of the different
genomic segments.

To demonstrate the validity of our approach we ex-
perimented on small chromosomes of both human (chro-
mosome 22) and zebrafish (chromosome 25). We con-
verted the sequenced regions of these chromosomes into
multidimensional time series by counting frequencies of
2-letter words in fixed-sized overlapping windows. Thus
the dimension of the resulting time series is d = 42 = 16.
The data were normalized to have zero mean and unit
variance in each dimension separately. We used window
size of 500 kilobase pairs (Kbp), overlapping by 50 Kbp,
which resulted in 697 and 334 windows for the human
and zebrafish chromosomes, respectively.

The resulting 16-dimensional time series, as well as
the results of the different algorithms on the human
chromosome are shown in Figure 4 for k = 15 and
m = 2. The corresponding basis vectors are shown in
Figure 6. All the algorithms find segmentations with
similar boundaries and similar basis vector coefficients.
For instance, by observing the basis vectors one notes
that the words ‘AA’, ‘AT’, ‘TA’, ‘TT’ are described by

a similar high positive value in the second basis vector.
The algorithms Seg-PCA and Seg-PCA-DP produce
a basis vector with high values for ‘AC’ and ‘CG’, while
PCA-Seg produces a vector with high values for ‘GT’
and ‘TG’.

We also experimented on a concatenation of the hu-
man and zebrafish chromosomes. The idea is to check
if the algorithms can discover the point where the two
chromosomes were concatenated. The results are shown
in Figures 5 and 7, for the same parameters as before:
k = 15 and m = 2. The boundary between the species is
at position 697, and all algorithms produce a boundary
point close to this position. The coefficients are almost
identical for all algorithms. The first vector is domi-
nated by the value of ‘CG’. The second vector is pre-
dominately used in the zebrafish section of the sequence.
It is also notable that the zebrafish section of the data
is described by the algorithms to be very different from
the rest of the sequence. In this experiment, the algo-
rithms discover the “true” segment boundaries, and give
some insight into which dimensions behave similarly in
a segment.

Reconstruction errors on the sequences are dis-
played in Tables 3 and 4 for various values of the pa-
rameters k and m. In one case algorithm PCA-Seg

is the best (human chromosome 22, k = 10, m = 4),
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Figure 5: Basis segmentation of data on human chr 22
+ zebrafish chr 25 (n = 1031, d = 16). The segment-
wise coefficients ajt for k = 15 and m = 2, algorithms
Seg-PCA, Seg-PCA-DP and PCA-Seg. The species
boundary is located at position 697.

but in most cases it has the largest error. Algorithm
Seg-PCA is in general very close to Seg-PCA-DP.

Finally, we experimented with human chromosomes
1, 2, 3, 13 and 14. We divided the sequenced regions
of these chromosomes into nonoverlapping 100 Kbp
windows, making the number of data points much larger
than in the previous cases. In this experiment we
count the frequencies of 3-letter words in each window,
producing a time series of dimension d = 43 = 64; recall
that in the previous experiments we used 2-letter words
resulting in 16-dimensional data. Reconstruction errors
for the long sequences of 3-letter words are displayed in
Table 5. Algorithm Seg-PCA-DP is always the best
of the three algorithms, but the differences are usually
not very large. One noteworthy feature is that m = 3
or m = 4 is sufficient to get reconstruction errors very
close to the segmentation error in the full-dimensional
space.

5.4 El Niño data. We also experimented on data
on El Niño [11] that contains oceanographic and sur-
face meteorological readings taken from a series of buoys
positioned throughout the equatorial Pacific. We se-
lected 2 buoys having 1480 common dates of measure-
ments, and constructed 10-dimensional data of zonal
winds, meridional winds, relative humidity, air temper-
ature, and sea surface temperature of the 2 buoys. We
selected the number of basis vectors as m = 5, corre-
sponding to the number of significant eigenvalues in the
covariance matrix of the data. The data was made zero
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Figure 6: Basis vectors, human chr 22 (k = 15, m = 2).

mean and unit variance in each dimension separately.
Table 6 shows the reconstruction errors for k = 7, 10
and 15 segments.

Naturally, the error decreases as k increases. It
is evident that the reconstruction error of plain k-
segmentation is quite close to that of algorithms Seg-

PCA and Seg-PCA-DP, meaning that the dimension-
ality reduction from 10 to 5 does not hurt the accuracy
much.

Figure 8 shows the original data together with the
segment-wise coefficients ajt as grayscale images, for
each of the three algorithms Seg-PCA, Seg-PCA-

DPand PCA-Seg for k = 7, 10, 15. Looking at the
original data suggests that the block structure found
makes sense. The segment boundaries are seen as
the change points of the coefficient values; there are
slight differences between the boundaries of the three
algorithms.

To help interpreting the results of Figure 8, the basis
vectors are shown in Figure 9 for k = 15; the cases
at other k are quite similar. One notes that the zonal
and meridional winds often behave similarly in PCA
(dimensions 1 to 2, and 6 to 7), as do the air and sea
surface temperatures (dimensions 4 to 5, and 9 to 10);
this is not very surprising, considering the nature of the
data. Again, we can identify a few significant features
in each basis vector as the ones having a very light or
very dark value in Figure 9.

6 Conclusions

We have introduced the basis segmentation problem,
given three algorithms for it, and presented empirical
results on their performance. The results show that the
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25 (k = 15, m = 2).

Seg-PCA and Seg-PCA-DP algorithms perform very
well in practice, finding the true generating model in
simulated data, and almost always yielding the smallest
errors on real data. These observations are supported
by the factor 5 approximability result. On the other
hand, algorithm PCA-Seg in general produces results
not too far from the other two algorithms, and is faster
by a factor of d/m.

We have also discussed experimental results on real
data that demonstrate the possible applications of our
approach in sequence analysis; the general methodology
and problem setting can be applied in analyzing multi-
dimensional time series, such as in our examples with
exchange-rate data, or in bioinformatics in discovering
hidden structure in genomic sequences. A fascinating
future theme would be to look for possibilities of on-
line segmentation and dimensionality reduction, in the
spirit of [14, 9].

Several open problems still remain with respect to
the basis segmentation problem. First, what is the com-
putational complexity of the problem? The components
of the problem, segmentation and dimensionality reduc-
tion, are polynomial in at least some forms, but it is not
clear whether this translates to a polynomial-time solu-
tion. No very simple reduction for proving NP-hardness
seems apparent.

The practical applications of the basis segmentation
algorithms are also interesting: how strong is the latent
structure in real data, i.e., do the different segments
in some cases really have an underlying common basis?
Our experiments point to this direction.
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Figure 8: Basis segmentation of data on El Niño (n =
1480, d = 10). The segment-wise coefficients ajt for
m = 5, algorithms Seg-PCA, Seg-PCA-DP and
PCA-Seg. Top: k = 7, middle: k = 10, bottom:
k = 15.
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Figure 9: Basis vectors of Algorithms Seg-PCA and
Seg-PCA-DP (left) and PCA-Seg (right) on the El
Niño data for k = 15, m = 5. Vertical axis: Dimensions
1 to 5 give the zonal wind, meridional wind, relative
humidity, air temperature, and sea surface temperature
of one buoy, and dimensions 6 to 10 of another buoy
respectively.
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