
Cone Cluster Labeling for Support Vector Clustering

Sei-Hyung Lee
Department of Computer Science

University of Massachusetts Lowell
MA 01854, U.S.A.
slee@cs.uml.edu

Karen M. Daniels
Department of Computer Science

University of Massachusetts Lowell
MA 01854, U.S.A.

kdaniels@cs.uml.edu

Abstract

Clustering forms natural groupings of data points that
maximize intra-cluster similarity and minimize inter-
cluster similarity. Support Vector Clustering (SVC) is
a clustering algorithm that can handle arbitrary cluster
shapes. One of the major SVC challenges is a cluster
labeling performance bottleneck. We propose a novel
cluster labeling algorithm that relies on approximate
coverings both in feature space and data space. Com-
parison with existing cluster labeling approaches sug-
gests that our strategy improves efficiency without sac-
rificing clustering quality.

1 Introduction

1.1 Clustering Overview Clustering is a natural
grouping or unsupervised classification of data into
groups [6]. Most clustering algorithms use one or a
combination of the following techniques: graph-based
[5, 9, 10, 7], density-based [8], model-based methods
using either a statistical approach or a neural network
approach, or optimization of a clustering criterion func-
tion. Constructing cluster boundaries is another pop-
ular technique [10, 11]. SVC is similar to a boundary-
finding clustering method except that it only finds cer-
tain points (called support vectors) on the boundary of
each cluster.

1.2 Support Vector Clustering As with support
vector machines [4], SVC uses a nonlinear mapping of
the data from the data space into a high-dimensional
feature space. Whereas support vector machines use a
linear separator in feature space in order to separate and
classify data points, SVC uses a minimal hypersphere
encompassing feature space images of data points [2, 3].
The minimal hypersphere corresponds to several disjoint
bounded regions in the data space that are contours
and are interpreted as clusters. The cluster labeling
challenge of SVC is to associate each data point with
a cluster, using only the available operations, without
explicitly constructing the contours in data space.

Given a finite set X ⊆ Rd of N distinct data points,
the minimal hypersphere of radius R enclosing all data
points’ images in the feature space can be described by
the following, as in [2]:

‖Φ(x)− a‖2 ≤ R2 ∀x ∈ X ,(1.1)

where Φ is a nonlinear mapping from data space to
feature space, Φ(x) is the feature space image of data
point x, ‖·‖ is the Euclidean norm, and a is the center
of the sphere. Therefore, data points can be categorized
into three groups based on the location of their images
in feature space: (1) points whose images are on
the surface of the minimal hypersphere are Support
Vectors (SVs), (2) points whose images are outside of
the minimal hypersphere are Bounded Support Vectors
(BSVs), and (3) points whose images are inside the
minimal hypersphere.

The mapping from data space to feature space is
determined by a kernel function, K : X ×X → R, that
defines the inner product of image points. As in other
SVC literature [1, 2], we use a Gaussian kernel given by
Eq. 1.2 below:

K(xi, xj) = e−q‖xi−xj‖2 = 〈Φ(xi) · Φ(xj)〉,(1.2)

where q is the width of the Gaussian kernel. From
Eq. 1.2, it immediately follows that,

K(xi, xi) = 1.(1.3)

This implies that all data point images are on the
surface of the unit ball in feature space.

Cluster labeling, the focus of this paper, has a goal
of grouping together data points that are in the same
contour obtained from the minimal hypersphere. Prior
work is discussed in Section 1.3. In that work, cluster
labeling has been an SVC performance bottleneck.

1.3 Cluster Labeling Traditional SVC cluster la-
beling algorithms are Complete Graph (CG) [2], Sup-
port Vector Graph (SVG) [2], Proximity Graph (PG)

482

[7], and Gradient Descent (GD) [1]. All these algo-
rithms group together data points by representing pairs
of data points using an adjacency structure (typically
a matrix). Each element records whether there is suf-
ficient evidence to conclude that the associated pair of
data points is in the same contour and therefore the
same cluster. Each connected component in the adja-
cency matrix is regarded as a cluster. CG requires a
O(N2) sized adjacency structure because it represents
all data point pairs. SVG represents pairs in which one
point is a support vector, so its adjacency structure only
uses O(NsvN) space, where Nsv is the number of sup-
port vectors. PG forms an adjacency structure from
a proximity graph that has only O(N) edges. The GD
method finds Stable Equilibrium Points (SEPs) that are
the nearest minimum point (of Eq. 1.4 below) for each
data point and then tests pairs of SEPs. GD’s adjacency
structure therefore uses O(N2

sep) space, where Nsep is
the number of SEPs.

R2(x) = ‖Φ(x)− a‖2

= 1− 2
∑

j

βjK(xj , x) +
∑

i,j

βiβjK(xi, xj),(1.4)

where x ∈ Rd, βi is the Lagrange multiplier for xi, and
a =

∑
i βiΦ(xi) is the center of the minimal hypersphere

[2].
Deciding if a pair of data points xi and xj is in the

same contour is problematic because data space con-
tours cannot be explicitly constructed due to the nature
of the feature space mapping Φ. The aforementioned al-
gorithms therefore use an indirect strategy that relies on
the fact that every path connecting two data points in
different data space contours exits the contours in data
space and the image of the path in feature space exits
the minimal hypersphere. The algorithms use, as a path
in data space, the straight line segment xixj connecting
xi and xj . The line segment xixj is sampled. For sam-
ple point x′ in data space, Φ(x′) is outside the minimal
hypersphere if R2(x′) > R2, where R2(x′) is defined by
Eq. 1.4. If the image of every sample point along xixj

is inside the minimal hypersphere, then xi and xj are
determined to be in the same contour (hence cluster).

Unfortunately, the sampling approach creates a run-
ning time versus accuracy tradeoff. If m is the number of
sample points along a line segment, then solving Eq. 1.4
for each sample point introduces a multiplicative factor
of mNsv beyond the time proportional to the size of the
adjacency structure. The algorithms limit m to be a
small constant (typically 10 to 20) in order to limit run-
ning time. However, small values of m can also cause
two types of errors, false positive and false negative, as
shown in Figure 1.

xi xj

(a)

xi

xj

(b)

Figure 1: Problems in using line segment xixj , depicted
in data space: (a) sample points on xixj are all inside
the minimal hypersphere although xi and xj are in
different contours; (b) all sample points are outside the
minimal hypersphere although xi and xj are in the same
contour.

1.4 Overview This paper avoids the cluster labeling
problems listed in Section 1.3 by using a novel approach
that decides if two data points are in the same cluster
without sampling a path between them. The main idea
of this paper is to try to cover a key portion of the
minimal hypersphere in feature space using cones that
are anchored at each support vector in the feature space
and also correspond to hyperspheres in data space.
The union of the hyperspheres forms an approximate
covering of the data space contours. The union need not
be constructed; pairs of support vectors can be quickly
tested during the cluster labeling process and then the
remaining data points can be easily clustered. The
algorithm1, presented in Section 2, does not use sample
points. It works for data sets of arbitrary dimension,
and has been tested for up to 200 dimensions. The
results in Section 3 show that our new algorithm is faster
than traditional cluster labeling algorithms.

2 Cone Cluster Labeling

2.1 High-Level Approach We provide a new clus-
ter labeling algorithm that is quite different from tra-
ditional methods. For a given kernel width value, our
method does not sample a path between two data points
in order to judge if they belong in the same cluster. In-
stead, we leverage the geometry of the feature space to
help perform cluster labeling in the data space. First
we find an approximate covering for the minimal hyper-
sphere in feature space. This is described in Section 2.2.
Strictly speaking, the covering is not for the minimal hy-
persphere but for the intersection P between the surface
of the unit ball and the minimal hypersphere.

The approximate covering consists of a union of
cone-shaped regions. One region is associated with
each support vector’s feature space image. Let V =
{vi|vi is a support vector, 1 ≤ i ≤ Nsv} be the set of
SVs for a given q value. The region for support vector
vi is called a support vector cone and is denoted by Evi

.

1An earlier version of this work appears in [14].

483

We call our algorithm ‘Cone Cluster Labeling’ (CCL)
because of its reliance on cones.

Let B be the surface of the feature space unit ball.
A hypersphere Svi centered on vi in the data space
maps to a subset of Evi ∩ B. Section 2.3 derives the
radius of Svi , which is shown to be the same for all
support vectors. Having only one radius contributes to
the speed of CCL. The union ∪i(Svi) is an approximate
covering of the data space contours P ′, where Φ(P ′) ⊆
P . However, the union is not explicitly constructed.
Rather, cluster labeling is done in two phases, as
described in Section 2.4. The first phase clusters
support vectors while the second clusters the remaining
data points. We regard two support vectors vi and vj as
connected if their hyperspheres overlap: (Svi∩Svj) 6= ∅.
Forming the transitive closure of the connected relation
yields a set of support vector clusters. The final step is a
clustering for data points that are not support vectors.
For each such data point, we assign the closest support
vector’s cluster label. Proofs are in [14].

2.2 Approximate Covering in Feature Space
This section forms a collection of support vector cones
that approximately cover P . Let Θi = 6 (Φ(vi)Oa),
where O is the feature space origin and a is the center of
the minimal hypersphere (see Figure 2(a)). In feature
space, each support vector has its own cone Evi that
covers a part of P . We define the support vector cone
Evi to be the infinite cone with axis

−−−→
Φ(vi) and base angle

Θi. Lemma 2.1 below shows that Θi = Θj = Θ for all
vi, vj ∈ V .

Lemma 2.1. 6 (Φ(vi)Oa) = 6 (Φ(vj)Oa), ∀vi, vj ∈ V .

To approximately cover P , we denote by a′ the
intersection of −→a with the surface of the unit ball
(see Figure 2(b)). The point a′ is a common point
of intersection for all the support vector cones. Thus,
((∪i(Evi)) ∩ P) ≈ P .

2.3 Approximate Covering in Data Space To
approximately cover P ′ in data space using support
vector cones, we find a hypersphere Svi in data space
associated with each Evi

in feature space. Since all
support vector cones have the same base angle Θ, all
Svi have the same radius and each is centered at vi.

Lemma 2.2. Each data point whose image is inside
(Evi

∩ P) is at distance ≤ ‖vi − gi‖ from vi, where
gi ∈ Rd is such that 6 (Φ(vi)OΦ(gi)) = Θ.

The claim implies that (Evi ∩ P) corresponds to a
hypersphere Svi

in the data space centered at vi with
radius ‖vi − gi‖. Since (∪i(Evi)) ∩ P approximately
covers P , ∪i(Svi

) approximately covers P ′.

The next task is to obtain ‖vi − gi‖ in data
space. Because ‖Φ(vi)‖ = 1 = ‖a′‖, cos(Θ) =
cos(6 (Φ(vi)OΦ(gi))) = cos(6 (Φ(vi)Oa′)) = 〈Φ(vi) · a′〉.
Thus, we can solve for ‖vi − gi‖ as follows:

‖vi − gi‖ =

√
− ln(cos(Θ))

q
.(2.5)

Note that because Θ = 6 (Φ(vi)Oa′) is the same
for all vi ∈ V , all Svi have the same radii. We therefore
denote ‖vi − gi‖ by Z. We now need to obtain 〈Φ(vi)·a′〉
in order to calculate cos(Θ). To do this, we first show in
Lemma 2.3 that 〈Φ(vi)·a′〉=‖a‖ , ∀ vi ∈ V (see Figure 2
(c)). We then show that ‖a‖ =

√
1−R2 (see Figure 2

(d)).

Lemma 2.3. 〈Φ(vi) · a′〉 = ‖a‖ , ∀vi ∈ V .

Corollary 2.1.
−−−−→
Φ(vi)a is orthogonal to −→a .

Lemma 2.4. 〈Φ(vi) · a〉 = 1−R2 = ‖a‖2 , ∀vi ∈ V .

Consequently, we have:

Z =

√
− ln(

√
1−R2)
q

.(2.6)

2.4 Assign Cluster Labels Table 1 below shows
the CCL algorithm. For the given q value, it first
computes Z using Eq. 2.6. Next, support vectors
are clustered by finding connected components in the
resulting adjacency structure. Connected components
can be efficiently found using a standard algorithm such
as Depth First Search. Each connected component
corresponds to a cluster. Therefore, the output of
FindConnComponents() is an array of size N that
contains cluster labels. Finally, the remaining data
points are clustered. Each is assigned the cluster label
of the nearest support vector.

CCL(X ,q,V)
compute Z for q using Eq. 2.6
AdjacencyMatrix ← Construct connectivity matrix
// assign cluster labels to the support vectors
Labels ← FindConnComponents(AdjacencyMatrix)
// assign cluster label to the rest of data
for each x ∈ X , where x /∈ V

idx ← find the nearest SV from x
Labels[x] ← Labels[xidx]

end for
return Labels

Table 1: Main algorithm of Cone Cluster Labeling

484

Θ

a

)(
i

vΦ)(jvΦ
a

Θ

0

(a)

)(
i

vΦ)(jvΦ

'a

a

Θ

0

(b)

)(
i

vΦ)(
j

vΦ

'a

a

')(avi •Φ

R

(c)

0

)(
i

vΦ)(
j

vΦ

'a

')(avi •Φ

R

av
i

•Φ=∆)(

(d)

0

. .

.

=|| ||a

R R

Θ
Θ

Θ Θ

Γ

Θ

Figure 2: Developing an approximate cover of part of P , where vi and vj are support vectors and Φ(vi) and Φ(vj)
are their feature space images, respectively. (a) Θ = 6 (Φ(vi)Oa)= 6 (Φ(vj)Oa). (b) a′ is intersection of −→a with
the surface of the unit ball. (c) the length ‖a‖ is < Φ(vi) · a′ >. (d) ∆ = < Φ(vi) · a > = 1 − R2 = ‖a‖2. Note
this is only a two-dimensional illustration; the actual feature space is high-dimensional.

The worst-case asymptotic running time complexity
for FindConnComponents() is in O(N2

sv). The time
complexity of the CCL for loop is in O((N −Nsv)Nsv).
Therefore, this algorithm uses time in O(NNsv) for each
q value. Note that, unlike previous cluster labeling
algorithms, this time does not depend on a number of
sample points. Detailed execution time comparisons are
given in Section 3.

3 Results

CCL provides high-quality clustering using less compu-
tation time than existing cluster labeling algorithms.

We compare three different types of execution times
as well as total time of CCL with respect to 4 cluster
labeling approaches introduced in Section 1.3: CG,
SVG, PG, and GD. Times are for 1) preprocessing and
constructing the adjacency matrix, 2) finding connected
components from the adjacency matrix (this clusters
some data points), and 3) clustering remaining data
points. Worst-case asymptotic time complexity and
actual running time comparisons are given in Table 2
with the data set of Figure 3.

The total of the three actual execution times is mea-

Figure 3: Left: dataset (N=98), right: cluster result (2
clusters). Data is a subset of data from the authors of
[10].

sured and divided by the number of q values2 to com-
pute average times. Since a cluster labeling algorithm
receives q as an input and produces a cluster result,
the average time is appropriate as a measurement for
execution time comparison. To test high-dimensional
datasets without outliers or strongly overlapping clus-
ters, we created datasets with different dimensions.
CCL worked well with these high-dimensional data. De-
tails of these and all of our two and three-dimensional
experiments can be found at [14].

2A list of q values is generated by our method in [13].

485

CG SVG PG GD CCL
Adjacency Matrix Size O(N2) O(NsvN) O(N2) O(N2

sep) O(N2
sv)

Preprocessing O(NlogN) O(mN2k) O(1)

Adjacency O(mN2Nsv) O(mNN2
sv) O(mNNsv) O(mN2

sepNsv) O(N2
sv)

Connected Component O(N2) O(NsvN) O(N2) O(N2
sep) O(N2

sv)

Remaining Clustering O((N −Nsv)Nsv) O(N −Nsep) O((N −Nsv)Nsv)

Total Asymptotic Time O(mN2Nsv) O(mNN2
sv) O(N2 + mNNsv) O(mN2(k + Nsv)) O(NNsv)

Preprocessing 0 0 0.04 50.74 0.54
Adjacency 32.51 24.78 6.43 63.13 0.16

Connected Component 1.13 0.22 0.04 0.03 0.0005
Remaining Clustering 0 0 0.002 0.003 0.001
Total Execution Time 33.64 25.00 6.52 113.90 0.702

Table 2: Worst-case asymptotic running times for a single q value and average execution times for 22 q values in
seconds, where k is the number of iterations for GD to converge to a SEP.

4 Conclusion and Future Work

Existing SVC cluster labeling algorithms, such as CG,
SVG, PG, and GD, sample a line segment to decide
whether a pair of data points is in the same cluster.
This creates a tradeoff between cluster labeling time and
clustering quality. Our Cone Cluster Labeling method
uses a novel covering approach that avoids sampling.
Using the geometry of the feature space, we find an
approximate covering for the intersection of the minimal
hypersphere and the surface of the unit ball. This maps
to an approximate cover of the contours in data space.
The cover uses hyperspheres in data space, centered
on support vectors. Without constructing the union
of these hyperspheres, data points are clustered quickly
and effectively.

Cone Cluster Labeling quickly produces high-
quality clusterings. Our experiments suggest that it op-
erates well even in high dimensions. Future work will
seek tighter and more complete coverage in the feature
space and data space. We would also like to reduce
the size of the kernel width value at which this method
produces its best clustering.

References

[1] J. Lee and D. Lee, An Improved Cluster Labeling
Method for Support Vector Clustering, IEEE Transac-
tions on pattern analysis and machine intelligence, 27
(2005), pp. 461–464.

[2] A. Ben-Hur, D. Horn, H. Siegelmann, and V. Vapnik,
Support vector clustering, Journal of Machine Learning
Research 2, 2001, pp. 125–137.

[3] B. Schölkopf, O. Burges, and V. Vapnik, Extracting
support data for a given task, First International Con-
ference on Knowledge Discovery and Data Mining,
1995, pp. 252–257.

[4] C. J. Burges, A Tutorial on Support Vector Machines
for Pattern Recognition, Data Mining and Knowledge
Discovery, 2 (1998), pp. 121–167.

[5] E. Hartuv and R. Shamir,A clustering algorithm based
on graph connectivity, Information Processing Letters,
76 (2000), pp. 175–181.

[6] A. Jain, N. Murty, and P. Flynn, Data Clustering: A
Review, ACMCS, 31 (1999), pp. 264–323.

[7] J. Yang, V. Estivill-Castro, and S. Chalup, Support
Vector Clustering Through Proximity Graph Modeling,
Proceedings, 9th International Conference on Neural
Information Processing (ICONIP’02), 2002, pp. 898–
903.

[8] M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-
based algorithm for discovering clusters in large spatial
databases with noise, Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining(KDD’96), Portland, OR,
1996, pp. 226–231.

[9] I. Jonyer, L. Holder, and D. Cook, Graph-Based Hier-
archical Conceptual Clustering, International Journal
on Artificial Intelligence Tools, 10 (2001), pp. 107–135.

[10] D. Harel and Y. Koren, Clustering spatial data using
random walks, Knowledge Discovery and Data Mining
(KDD’01), 2001, pp. 281–286.

[11] V. Estivill-Castro and I. Lee, Automatic Clustering
via Boundary Extraction for Mining Massive Point-
data sets, In Proceedings of the 5th International
Conference on Geocomputation, 2000.

[12] C. Blake and C. Merz, UCI repository of machine
learning databases, 1998.

[13] S. Lee and K. Daniels, Gaussian Kernel Width Gener-
ator for Support Vector Clustering, International Con-
ference on Bioinformatics and its Applications, 2004,
pp. 151–162.

[14] S. Lee, Gaussian Kernel Width Selection and Fast
Cluster Labeling for Support Vector Clustering, Doc-
toral Thesis and Tech. Report 2005-009, Department of
Computer Science, University of Massachusetts Lowell,
2005.

486

