
Detecting the Change of Clustering Structure in Categorical Data

Streams

Keke Chen ∗ Ling Liu †

Abstract

Analyzing clustering structures in data streams can
provide critical information for making decision in real-
time. In this paper, we present a framework for
detecting the change of critical clustering structure
in categorical data streams. The framework consists
of the Hierarchical Entropy Tree structure (HE-Tree)
and the extended ACE clustering algorithm. HE-
Tree can efficiently capture the entropy property of the
categorical data streams and allow us to draw precise
clustering information from the data stream for high-
quality BkPLots with the extended ACE algorithm.

1 Introduction

With the deployment of wide-area sensor systems and
Internet-based continuous-query applications, process-
ing stream data has become a critical task. As an im-
portant method in data analysis, recently clustering has
attracted more and more attention in analyzing and
monitoring streaming data [5, 1]. The initial results
have shown that clustering stream data can provide im-
portant clues about new emerging data patterns so that
the decision makers can predict the coming events and
react in near real time. Stream data clustering is espe-
cially important to the time-critical areas such as dis-
aster monitoring, anti-terrorism, and network intrusion
detection. As many of such applications also include a
large amount of categorical data, clustering the categori-
cal data streams becomes an interesting and challenging
problem. We believe that the change of clustering struc-
ture can be related to the emerging interesting patterns.
To our knowledge, none has addressed the problem of
monitoring the change of clustering structure for cate-
gorical data streams.

The change of critical clustering structure in data
streams involves three forms: new emerging clusters,
disappearing clusters that is caused by the convergence
of growing clusters, and drifting cluster centers that is

∗Georgia Institute of Technology, kekechen@cc.gatech.edu
†Georgia Institute of Technology, lingliu@cc.gatech.edu. This

research is partially supported by NSF CNS, NSF CCR, NSF ITR,
DoE SciDAC, DARPA, CERCS Research Grant, IBM Faculty
Award, IBM SUR grant, HP Equipment Grant, and LLNL LDRD

caused by expanding clusters. The first two forms can
be effectively indicated by the change of the “Best K”
number of clusters.

We have developed the BKPlot method and ACE
algorithm [3] for identifying the critical clustering struc-
ture in static categorical datasets. However, identify-
ing critical clustering structures in data streams brings
particular challenges, primarily in restricted processing
time and memory consumption. In this paper, we pro-
pose a framework for monitoring the change of critical
clustering structure in categorical data streams. The
key idea is based on the summarization tree structure,
called Hierarchical Entropy Tree (HE-Tree for short),
and the extended ACE clustering algorithm working on
the HE-Tree structure. HE-Tree utilizes a small amount
of memory to summarize the entropy property of the
data streams. It groups the data records into a bunch
of sub-clusters located at the HE-Tree leaf nodes. The
extended ACE algorithm is able to handle the snap-
shot sub-clusters (often a few hundreds) and generates
snapshot BKPlots for identifying the Best K at certain
time interval. The difference between clustering struc-
tures can be conveniently identified by comparing the
features of the consecutive snapshot BKPlots.

2 Entropy-based Categorical Clustering

The framework is based on entropy-based categorical
clustering. Due to the space limitation, please refer to
the paper [3] for the detailed introduction. Below, we
give only the necessary notations and definitions that
are used in HE-Tree and the extended ACE algorithm.

Notations and Definitions Consider that a dataset
S with N records and d columns, is a sample set of the
discrete random vector X = (x1, x2, . . . , xd). For each
component xj , 1 6 j 6 d, xj takes a value from the
domain Aj . Aj is conceptually different from Ak(k 6= j).
There are a finite number of distinct categorical values
in domain(Aj) and we denote the number of distinct
values as |Aj |. Let p(xj = v), v ∈ Aj , represent
the probability of xj = v, we define the estimated
entropy of the dataset S as follows. Ĥ(X) = H(X|S) =
−∑d

j=1

∑
v∈Aj

p(xj = v|S) log2 p(xj = v|S)

502

o # of clusters

Expected Entropy

....

Figure 1: Sketch of expected
entropy curve.

o # of
clusters

I(k)

x
x

The candidates
for best k

x

o

Figure 2: Sketch of ECG
graph.

Soybean-small BkPlot, by ACE

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11 12

K

D
el

ta2 I

The candidates
for best k

Figure 3: Finding the best k
with BKPlot.

Let CK = {C1, C2, . . . , CK} represent a partition of
dataset S and nk be the number of records in the cluster
Ck. It has been shown [6, 2] that categorical clustering
is equivalent to minimizing 1

dN

∑K
k=1 nkĤ(Ck), which is

named as the “expected entropy” of the partition CK ,
and notated as H̄(CK).

Incremental Entropy While expected-entropy de-
scribes the average intra-cluster quality, incremental en-
tropy is a measure used to describe the similarity be-
tween any two clusters [3]. Intuitively, merging the
two clusters that are similar in the inherent structure
will not increase the disorderliness (expected-entropy)
of the partition, while merging very dissimilar ones will
inevitably bring larger disorderliness. Therefore, this in-
crease of expected entropy has some correlation with the
similarity between clusters. Let Cp ∪ Cq represent the
mergence of two clusters Cp and Cq, and Cp and Cq have
np and nq members, respectively. We name Im(Cp, Cq)
= (np + nq)Ĥ(Cp ∪ Cq)− (npĤ(Cp) + nqĤ(Cq)) > 0
as the “Incremental Entropy (IE)” of merging the clus-
ters Cp and Cq. Note that Im(Cp, Cq) is always non-
negative [3] and Im(Cp, Cq) = 0 suggests that the two
clusters have the identical structure regardless of the
cluster size. IE plays an important role in constructing
a hierarchical clustering scheme, where minimizing IE
measure is equivalent to minimizing expected-entropy.

BKPlot method The BkPlot method is used to iden-
tify the best K number of clusters in categorical data.
Let the neighboring partitions be two clustering schemes
having K and K + 1 number of clusters, respectively.
The basic idea of BKPlot is to investigate the entropy
difference between any two optimal neighboring parti-
tions and to find what is related to the critical cluster-
ing structure. Let the expected-entropy of the optimal
partition be H̄opt(CK) = min{H̄i(CK)}, where H̄i(CK)
be any possible K-cluster partitions. We define the
increasing rate of entropy between the optimal neigh-
boring partitions as I(K) = H̄opt(CK) − H̄opt(CK+1).

The important result [3] is that I(K) curve (the En-
tropy Characteristic Graph (ECG), Figure 2) implies
two levels of difference between the neighboring par-
titions, which are important to understand where the
critical clustering structure emerges. An ECG shows
that the similar partition schemes with different K are
at the same “plateau”. From plateau to plateau there
are the critical points implying the significant change
of clustering structure. These critical points are high-
lighted in the second-order differential of ECG, which is
named as “Best-K Plot (BKPlot)”.

Exact BKPlots cannot be achieved in practice, since
I(K) is based on the optimal K-cluster scheme which
involves entropy minimization. However, since we only
pay attention to the peak points, approximate but
accurate BKPlots are possible to get. A hierarchical
clustering algorithm ACE in [3] is proposed to generate
high-quality BKPlots. However, we can not apply ACE
algorithm directly to data streams due to its non-linear
complexity.

3 HE-Tree: Summarizing Clustering Structure
of Categorical Data Streams

In this section, we design the summarization structure
− Hierarchical Entropy Tree (HE-Tree). The basic idea
of HE-Tree is to coarsely but rapidly assign the records
from the data stream onto hundreds of subclusters.
These subclusters will be enough to give us an accurate
sketch of the clustering structure. A HE-Tree consists
of two key components:

1. HE-node structure, which summarizes the entropy
characteristics of a group of records and facilitate
fast processing of stream data items;

2. Incremental-Entropy based lookup/assigning algo-
rithm, which helps to adapt the changing clustering
structure.

Given the fixed height h and fanout f , HE-Tree
is constructed in two stages, where the Incremental
Entropy metric plays an important role:

503

1. the growing stage, which grows the tree to full size;

2. the absorbing stage, which absorb the new coming
items into the leaf nodes of the full tree.

Summary Table. Since computing cluster entropy is
based on counting the occurrences of categorical values
in each column, summary table is used to keep the
counters for each cluster. For each categorical value
vij ∈ Aj , we have an element T [vij] in summary table
as the counter.
Nodes in HE-Tree. HE-Tree is a balanced tree sim-
ilar to B-tree, where each internal node contains only
the aggregation information of its child nodes and the
entries in the leaf nodes represents the summary (Sum-
mary Table) of the subclusters. As shown in Figure 4,
each entry in leaf node also contains a summary table,
and there are also a Im table (Incremental Entropy ta-
ble) with (f + 1)2 entries and a heap of f entries. Im

table, together with the heap, keeps track of the mini-
mum Im for locating the pair of entries for merging.

Let a summary table represented with a vector
~s and the entropy characteristic of any internal node
Ci denoted as ECi(ni, ~si), where ni is the number of
records summarized by this node. Let Cij , 1 6 j 6 f
represent the child nodes of Ci. HE-Tree maintains the
following property.

ECi(n,~s) =
f∑

j=1

ECij(nij , ~sij) = ECi(
f∑

j=1

nij ,

f∑

j=1

~sij)

The key of HE-Tree is to approximately minimize the
overall expected entropy by locally minimizing the
expected entropy of the selected branch H̄(Cf

i) in every
update of the tree.
Growing Phase. The tree grows until the number
of leaf nodes reaches dnc/fe. The first subroutine is
locating the target leaf node for insertion. The search
begins at the root node. Let e denote the inserted record
and ei denote one of the entry in current node. Since
each entry in the internal node is the summarization of
its sub-tree, we can find the most similar entry to e by
finding the minimum Im among Im(e, ei), i = 1..f , i.e.

et = argminei{Im(e, ei), i = 1..f}

Iteratively, the same criterion is applied to the selected
child node until a leaf node is reached. In the target leaf
node, the new record is merged to the identical entry ei,
Im(e, ei) 6= 0, if it exists, otherwise, the new record goes
to an empty entry.

When the target leaf node is full, a split operation
is applied. In the split algorithm, first we partition the
entries into two groups, which is done in two steps: 1)the
most dissimilar pair of pivot entries (er, es) are found in

the target node, which have the maximum Im among
all possible pairs.

(er, es) = argmaxer,es{Im(er, es), i = 1..f}
2) With the two as the seed clusters, the rest entries
are then assigned to the two clusters so that the overall
expected-entropy of the partition keeps minimized. Af-
ter grouping, a new node is generated accommodating
one of the two groups, which is pointed by a new entry
in the parent node. The insertion/splitting continues
until the number of leaf entries reaches nc, and then the
growing phase is turned to the absorbing phase.
Absorbing Phase. In this phase, the same locating
algorithm is applied to locate the target leaf node for
the new record. Instead of insertion in the leaf node, we
merge the most similar two items among the f+1 items
– the f entries in the leaf node plus the new record.
This allows the tree to rapidly adapt to the change of
clustering structure in the leaf level. Im table and the
heap are used to efficiently select the most similar two
for merging.

3.1 Setting of Parameters The setting of the two
parameters f and nc can affect the efficiency and
quality of summarization. Let h be the height of the
tree (root is at level 1). For simplicity, we always
construct full trees and allow nc = fh to vary from
hundreds to thousands. In experiment, we show that
a smaller f always results in faster summarization, but
can undermine the quality of summarization when the
clustering structure is changing dramatically. On the
other hand, larger f increases the ability adapting to the
change of clustering structure but also increases the cost
in the absorbing phase. To tradeoff the performance and
robustness, we can set the tree to be 2 ∼3 layers, with
f = 10 ∼ 20.

3.2 Complexity of HE-Tree In the growing phase,
about fh records are inserted into the tree and each
record needs at most O(hf) comparison to locate the
target node. In the absorption phase, besides the cost
of locating, each insertion also costs O(f) IE calculation
that costs O(dmf) totally. Therefore, the cost for most
insertions will be O((h + dm)f). With the fixed setting
of small f and h, the total cost is only dominated by
the factor dm, i.e., the sum of column cardinalities.
Similarly, we can infer that a HE-Tree needs O((dm +
f)fh+1) memory, which is also determined by dm.

4 Framework for Monitoring the Change of
Clustering Structure

With the HE-Tree and the extended ACE algorithm,
which clusters only the sub-clusters at the HE-Tree
leaf entries, we can precisely monitor the change of

504

Summary
Table

Pointer
to child

Leaf
Entries

Non-leaf
Entries

I_m table Heap
Summary

Table I_m table Heap

Figure 4: The structure of HE-
Tree.

Data Stream

HE-Tree at T1 HE-Tree at T2

Snapshots

dumped

Best K =2

-0.02

0

0.02

0.04

1 2 3 4 5 6 7 8 9 10

K

D
el

ta
2 I

B e s t K = 2 , 3 , 5

-0.01

0.01

0.03

1 2 3 4 5 6 7 8 9 10

K

BkPlots

Time interval t
for snapshots

Figure 5: Framework for Monitoring
Categorial Data Streams.

C11

r rows

r rows

r rows

0 0

s cols s cols s cols

0 0C3

C4

C12

C21

C22

 0

0

r rows

s cols

C11 C22C21C12

C1 C4C3C2

All data

Figure 6: Clustering structure of
DS1

clustering structure in the categorical data stream. The
framework is illustrated in Figure 5. The working
mechanism can be described as follows.

1. The records from the data stream are inserted into
the HE-Tree sequentially.

2. At certain time interval ∆t, the summary tables
in the leaf nodes are dumped out (to a piece of
memory or to hard disk).

3. The extended ACE algorithm are performed on the
snapshot as soon as it is dumped, the result of
which generates a BKPlot.

The consecutive BKPlots are analyzed to see the dif-
ference between the clustering structures. A BKPlot
can be represented as a function B(K), where K is
the number of clusters. Without loss of generality,
we suppose the first κ distinctive Ks on BKPlots are
Γ = {k1, k2, . . . kκ}. Let Γold and Γnew represent two set
of Ks on the consecutive BKPlots, respectively. There
are two kinds of important differences that we need to
notice.

1. If Γold 6= Γnew, the clustering structure is dramati-
cally changed.

2. If Γold = Γnew, but at certain ki that |B(knew
i) −

B(kold
i)| > θ, where θ is a threshold for raising an

alarm, some minor change of clustering structure
happens.

5 Initial Experimental Results

The goal of the experiments is two-fold. 1) We in-
vestigate the parameter setting of HE-Tree and give
the estimate of appropriate settings; 2) We want to
show that HE-Tree summarization together with the
extended ACE algorithm can provide high-quality mon-
itoring.
Datasets The synthetic dataset DS1 has a two-layered
clustering structure (Figure 6) with 30 attributes and

N rows. It has four equal-sized clusters in the top
layer. Each cluster has random categorical values
selected from {‘0’,‘1’,‘2’,‘3’,‘4’, ‘5’} in some distinct set
of attributes (the dark area in Figure 6), while the
rest attributes are set to ‘0’. Two of the four clusters
also have clustering structure in the second layer. This
dataset is primarily used in exploring the setting of HE-
Tree parameters. We also use a real discretized dataset,
“US Census 1990 Data ”, which has 68 dimensions and
about 2 million records, the detailed clustering structure
can be find in the paper [4].

Cost of DS1 with different
fanout

0

20

40

60

80

10k 30k 50k 70k 90k
of data records

T
im

e
(s

ec
o

n
d

s)

f=30
f=20
f=10

Figure 7: Cost of HE-Tree
summarization with differ-
ent fanout f .

0

0.2

0.4

0.6

0.8

10k 30k 50k 70k 90k
of data records

E
rr

o
r

ra
te

 (
%

)

f=30
f=20
f=10

Figure 8: Error rate on
unordered records

5.1 Parameter Setting for HE-Tree For simplic-
ity, we always use full trees in the experiment. Intu-
itively, for a fixed f , the higher the tree , the finer the
granularity of summarization can be delivered. Since
the clustering structures of less than 20 clusters are most
interesting, a short tree with less than one thousand
sub-clusters will be enough for generating a high-quality
BKPlot. Thus, we fix h = 2 with varying fan-out f from
10 to 30 in experiments. The results are based on 20
randomly generated datasets in DS1 structure.

Figure 7 shows the linear complexity of HE-Tree
summarization, which is consistent with our analysis.
Figure 8 shows the effect of different settings to the qual-
ity of clustering result for “Unordered DS1”. Unordered

505

DS1 randomly orders the records from different clusters.
Thus, any considerably long segment of the unordered
DS1 stream contains the same primary clustering struc-
ture. The result shows some variances for different f ,
but overall the error rates are similar and low due to
the unchanged clustering structure.

“Ordered DS1” shows a more interesting scenario,
where the clustering structure is dramatically changed
in the stream. We observed that the setting of f may
significantly affect the quality of monitoring. Figure 9
shows the result of sequentially processing the clusters
C11 to C4. Apparently, the more the entries in a leaf
node are, the finer granularity the IE-based merging can
be done. It shows that increasing f from 10 to 20 can
considerably reduce the error, but from 20 to 30 the
quality is not significantly improved. Balanced with the
time cost and the robustness, f = 20 seems the best for
efficiently adapting the change of structure.

5.2 Robustness of HE-Tree/Extended ACE We
run the experiment on the real US Census data to test
the robustness of the framework. A small sample set
of 500 records is used to show the original clustering
structure, and two large sample sets with 10K and 100K,
respectively, simulates two data streams. The sample
sets are uniformly drawn from the original dataset in
order to preserve the same clustering structure. All
BKPlots (Figure 10) strongly suggest the best K is
3, while K=2 is probably another candidate, which is
consistent with the visualized clustering structure in
Figure 11. The result shows that HE-Tree combined
with the extended ACE method is a robust approach
for monitoring the change of clustering structure.

0

2

4

6

10k 30k 50k 70k 90k
of data records

E
rr

o
r

ra
te

 (
%

)

f=30
f=20
f=10

Figure 9: Error rate on
ordered records

-0.02

0

0.02

0.04

0.06

1 3 5 7 9 11K

D
el

ta
2

I(
K

)

ACE, N=500

HE-Tree/Extended
ACE, N=10K
HETree/Extended
ACE, N=100K

Figure 10: BKPlots for
Census data.

5.3 Monitoring the Changes We also demonstrate
the progressive monitoring results of the data stream
Census-stream. We partition the census dataset into
four parts and mix the parts sequentially so that the
special clustering structures appear in different stages
as Figure 11 shows. At first snapshot, there are clearly
two clusters; in the second one, the third one emerges;
finally, a two-layer clustering structure (K=2 and 3)

Data Evolving

-0.02
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

1 3 5 7 9 11

K

D
el

ta2
I(

K
)

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 3 5 7 9 11

K

D
el

ta2
I(

K
)

-0.01

0

0.01

0.02

0.03

0.04

0.05

1 3 5 7 9 11

K

D
el

ta2
I(

K
)

Figure 11: Monitoring Census-stream.

appears in the third snapshot.

6 Conclusion

In this paper, we address the problem of detecting
the change of clustering structure in categorical data
streams, with the combination of the BKPlot method
and the Hierarchical Entropy Tree (HE-Tree) algorithm.
HE-Tree summarizes the stream clustering structure
into a small number of leaf nodes. In order to observe
the change of clustering structure, snapshots of the leaf
entries of HE-Tree are dumped in certain time interval,
which is then processed by the extended ACE clustering
algorithm to generate high-quality BKPlots. With
the snapshot BKPlots we can conveniently identify
whether and how the clustering structure in the stream
is changed.

References

[1] Aggarwal, C. C., Han, J., Wang, J., and Yu, P. S.
A framework for clustering evolving data streams.
Proc. of Very Large Databases Conference (VLDB)
(2004).

[2] Barbara, D., Li, Y., and Couto, J. Coolcat:
an entropy-based algorithm for categorical clustering.
Proc. of ACM Conf. on Information and Knowledge
Mgt. (CIKM) (2002).

[3] Chen, K., and Liu, L. The “best k” for entropy-based
categorical clustering. Proc. of Intl. Conf. on Scien-
tific and Statistical Database Management (SSDBM)
(2005).

[4] Chen, K., and Liu, L. iVIBRATE: Interactive visual-
ization based framework for clustering large datasets.
To appear in ACM Transaction on Information Sys-
tems (2006).

[5] Guha, S., Meyerson, A., Mishra, N., Motwani,
R., and O’Callaghan, L. Clustering data streams:
Theory and practice. IEEE Trans. on Knowledge and
Data Eng. 15 (2003).

[6] Li, T., Ma, S., and Ogihara, M. Entropy-based
criterion in categorical clustering. Proc. of Intl. Conf.
on Machine Learning (ICML) (2004).

506

