
i

i

i

A L2 Discrepancy Learning Process
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Abstract

In this paper, a discrepancy-based framework is first
presented for outlier and insider detections purpose.
Given any sequence of profiles, a local discrepancy
first identifies regions where the profiles are clumped
or scarce then a global L2 discrepancy summarizes
the overall distribution patterns of the data into one
real value. A L2 discrepancy learning process is for-
mulated to rank each profile in the sequence on the
basis of optimizing the L2 discrepancy value. This
L2 discrepancy learning process allows an access to
many levels of information about outliers and insiders
in the data. Experimental results are given to demon-
strate the application of the L2 discrepancy learning
process with different features data sets showing that
the algorithm efficiently detects the outliers and in-
siders in the data.

1 Introduction and motivation

Data mining can be defined as an information extrac-
tion activity whose goal is to discover hidden facts
contained in a data set; see a review in [1]. Pro-
cedures and algorithms designed to analyze the se-
quence of profiles1 are called data mining method,
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1In the sequel, we use the expressions ”data set”, ”sequence

of points” and ”sequence of profiles” with the same meaning.

using a combination of machine learning, statistical
analysis, modeling techniques and database technol-
ogy, data mining finds patterns and subtle relation-
ships in data and infers rules that allow the prediction
of future results.

Outlier and insider detections are an outstanding
data mining task that has a lot of practical applica-
tions in many different domains. For instance, outlier
detection can be defined as follows: Given a set of
data points or objects find subsequent profiles that
are considerably dissimilar, exceptional or inconsis-
tent with respect to the remaining data, see [2] for a
complete review.

In the present work, we are concerned by a new
outlier and insider definitions based on the mathe-
matical framework of discrepancy. Essentially, dis-
crepancy gives a global indication about the non-
uniformity of the distribution of a sequence of pro-
files in s-dimensional hypercube. Under this frame-
work, the local discrepancy identifies the sparse and
clumped regions among all multiresolution grid cells,
thereby L2 discrepancy summarizes the overall dis-
tribution patterns of the data into one real value.

Thus we derive a discrepancy learning process that
ranks each profile on the basis of optimizing the L2

discrepancy relaying only on the sequence profiles
without assuming any specific model form in the data
set or using any external parameters. This learning
process recovers the visibility of the data i.e. where
the data is considerably dissimilar(outliers) and more
similar(insiders). Nevertheless the learning process
allows an access to many quantitative levels of infor-
mation to track the most outliers and insiders.

2 Methods and approach

We are given a finite data sequence with N profiles
with a finite set of s variables describing properties of
a profile; the context will always show what is meant.
We are concerned with quantitative values for vari-
ables. Mathematically, the values for variables are in

Is =

s
∏

i=1

[ai, bi] ⊂ Rs. We scale and translate each

interval [ai, bi] to the interval [0, 1]. We can assume
Is = [0, 1)s without lost of generality. The sequence
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of profiles is X = {xn}1≤n≤N where each profile is an
s-dimensional vector xn = (xn,1, xn,2 . . . , xn,s) ∈ Is.

Our deterministic framework to profiles analysis
is based on the mathematical foundation of discrep-
ancy, the discrepancy will measure how evenly the
profiles are scattered in space, Is. In the next sub-
section 2.1, we recall from [5] the basic concepts of
the mathematical formulation of discrepancy.

2.1 Mathematical formulation of dis-

crepancy

Let λs denote the s-dimensional Lebesgue measure.
The Lebesgue measure is the standard way of assign-
ing a volume to subsets of Euclidean space, for in-
stance Is. It is used throughout real analysis, in par-
ticular to define Lebesgue integration. Sets which can
be assigned a volume are called Lebesgue measurable;
the volume or measure of the Lebesgue measurable
set J ⊂ Is is denoted by λs(J). We note by χJ the
characteristic function of a set J :

χJ (x) =

{

1 if x ∈ J,
0 if x /∈ J.

(1)

The function χJ has the value 1 on the set J , and
is zero elsewhere. The set of discontinuous points is
the boundary of the set J .

A bounded set J is called Jordan measurable if
its boundary, δJ is of measure zero, λs(δJ) = 0. In
this case, the Lebesgue integral of its characteristic
function, χJ , exists, since the measure of the set of
discontinuous points of the function, χJ , is zero. The
value of this integral is called the content of J or its
(s-dimensional) volume,

λs(J) =

∫

Is

χJ (x)dx.(2)

An infinite sequence of profiles,
{

x`

}

, is called uni-

formly distributed or scattered in Is if, in the limit,
the number of profiles xn falling in any given subsets
J of Is is proportional to its volume. Mathematically,
{

x`

}

is uniformly distributed or scattered in Is if for

all Jordan measurable subsets J of Is

lim
N→∞

1

N

N
∑

`=1

χJ(x`) = λs(J),(3)

holds.
In practice, a sequence of profiles, X , have a finite

number of profiles, it is necessary to define some mea-
sure of uniformity for finite sequence of profiles. Such
a quantity is know as discrepancy. For a subinterval
J of Is the local discrepancy is defined by

DN (J, X) =
1

N

∑

1≤`≤N

χJ(x`) − λs(J).(4)

Thus the more uniformly space filling the sequence
of profiles is, the smaller its local discrepancy. The
local discrepancy allows us to observe locally how the
profiles are scattered in the domain Is. The posi-
tive value of the local discrepancy indicates a high
number of profiles share common characteristics in
J . Alternatively, the local discrepancy is also a spar-
sity indicator of profiles as a negative value indicates
that the presence of the profiles is considerably lower
in J . Therefore the mathematical formulation of the
local discrepancy handles the similarity and the spar-
sity which are an useful asset to measure globally how
a sequence of profiles is scattered in the domain Is.

2.2 L2 discrepancy for profiles analy-

sis

A scientific goal in data mining is to find groups of
profiles which are significantly correlated with each
other. In addition to identifying outlier profiles show-
ing an exceptional behaviors. Then a natural ques-
tion ” How should we select a global discrepancy
framework to derive this knowledge?”

By restricting the subinterval J to a certain class
of sets and taking a norm of DN (J, X) over this class,
various kinds of discrepancy can be defined as quan-
titative measures of the uniformity of sequence X .
Note that the important sets for describing what
is called the topological structure of the Euclidean

space Is are the open subsets J =
s

∏

i=1

]ai, bi[ with
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a = (a1, a2 . . . , as) and b = (b1, b2 . . . , bs) are in Is.
Therefore, the L2 integration of DN (J, X) over this
subrectangles J enable us to give a topological char-
acterization of the notion of complexities and fea-
tures of the sequence of profiles which is implicitly
framed in terms of the Euclidean distance, i.e. ex-
plicitly formulated via the metric topology based on
the Euclidean metric. The mathematical definition
of L2 discrepancy is

TN (X) =

[

∫

(a,b)∈I2s,ai<bi

(

DN(J, X)
)2

dadb

]
1

2

,(5)

This L2 discrepancy uses all multiresolution sub-
rectangles of Is, hence gives an indication without
loss of informational content of the sequence’s fea-
tures. Each subrectangle summarizes the information
of a group profiles that map into it by a value com-
puted via the equation 4. Thus by summing over all
multiresolution subrectangles, L2 discrepancy sum-
marizes the overall distribution patterns of the data
into one real value which can be computed directly
from the analytical formulas of L2 discrepancy:

(

TN (X)
)2

= A + B + 12−s,(6)

where

A =
1

N2

N
∑

n=1

N
∑

m=1

s
∏

i=1

(

1−max(xn,i, xm,i)
)

min(xn,i, xm,i),

and

B =
21−s

N

N
∑

n=1

s
∏

i=1

xn,i(1 − xn,i).

A detailed derivation of this analytical formulas of
L2 discrepancy is in the paper [4].

This analytical formulas of L2 discrepancy gauges
the irregularity of profiles distribution by using the
entire set of profiles conforming by that the holistic
nature of L2 discrepancy.

2.3 L2 Discrepancy learning process

The L2 discrepancy value captures the global degree
of isolation of the sequence of profiles in the domain,

more higher is the value of L2 discrepancy, more the
sequence is scarce in some parts of the domain. For
instance, if profiles are tightly coupled, they will tend
to occupy a small region of space by consequence the
TN (X) will have a higher value. However, if object
profiles are loosely coupled then their profiles tend to
occupy a large region space. Thus the TN (X) will
be a small value.

In practice, however, one have to response the fol-
lowing question: How different is a specific profile xn

from other profiles? For a response we need to mea-
sure the importance of each profile in the data set and
rank profile by the degree of similarity accordingly to
a specific criteria.

A L2 discrepancy learning process will rank each
profile on the basis of optimizing the L2 discrepancy,
i.e. the profile is far-sighted to minimize the L2 dis-
crepancy value by removed it from the sequence, the
profile only concerned to keep the same L2 discrep-
ancy value or finally the profile needs another point
to be added in its immediate neighborhood to mini-
mize the L2 discrepancy:

DEFINITION 1 A profile, xn, is called insider if
the L2 discrepancy value will be minimized by remov-
ing, xn, from the sequence of profiles.

A profile, xn,is called outlier if the L2 discrepancy
value will be maximized by removing, xn, from the
sequence of object profiles.

One of the key factors that will provide more in-
formation about the complexities and features in the
profiles, is to define a weighted L2 discrepancy that
will offer a learning framework with many levels of in-
formation about the interdependence in the profiles.

We introduce the weighted L2 discrepancy as:

(TN (X, ω))2 = |
1

(

N
∑

k=1

ωk)2

N
∑

n=1

ωn

N
∑

m=1

ωmfn,m(7)

−
21−s

(

N
∑

k=1

ωk)

N
∑

n=1

ωngn + 12−s|,
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where the notations are, xn = (xn,1, xn,2 . . . , xn,s),

gn =

s
∏

i=1

(

1 − xn,i

)

xn,i,

fn,m =

s
∏

i=1

(

1 − max(xn,i, xm,i)
)

min(xn,i, xm,i),

and the weights ω = (ωk)1≤k≤N are nonnegative re-
als.

Note that there is a neighborhood of ωu =
( 1

N )1≤n≤N , Oωu , such that the functions TN (X, ω)
is differentiable at any point ω in Oωu

. Thus, the
partial derivatives of TN (X, ω):

Sn =
∂TN

∂ωn
(ωu), 1 ≤ n ≤ N,

exist and are called the L2 discrepancy sensitivi-
ties.

Proposition 1 The L2 discrepancy sensitivity, Sn,
is given by the following analytical formulas:

Sn =

(

σn − σ
)

+2−s
(

γ − gn

)

TN (X)
,(8)

where σ = 1
N2

N
∑

n=1

N
∑

m=1

fn,m, σn = 1
N

N
∑

m=1

fn,m and

γ = 1
N

N
∑

m=1

gm.

Proof

By observing that

A(ω) =
1

(

N
∑

k=1

ωk)2

N
∑

k=1

ωk

N
∑

m=1

ωmfn,m

=
ω2

nfn,n

(

N
∑

k=1

ωk)2

+
2ωn

(

N
∑

k=1

ωk)2

N
∑

m 6=n

ωmfn,m

+
1

(
N

∑

k=1

ωk)2

N
∑

r 6=n

ωr

N
∑

m 6=n

ωmfr,m,

and

B(ω) =
1

(

N
∑

k=1

ωk)

N
∑

m=1

ωmgm

=
ωngn

(

N
∑

k=1

ωk

)

+
1

(

N
∑

k=1

ωk

)

N
∑

m 6=n

ωmgm.

The partial derivatives of A(ω) and B(ω) with respect
to ωn are

∂A

∂ωn
(ω) =

2ωnfn,n

(

N
∑

k=1

ωk)3

[

N
∑

m 6=n

ωm

]

+

2
(

N
∑

m 6=n

ωmfn,m

)

(

N
∑

k=1

ωk)3

[

N
∑

r 6=n

ωr

]

−

2

N
∑

r 6=n

ωr

N
∑

m 6=n

ωmfr,m

(

N
∑

k=1

ωk)3

,

and

∂B

∂ωn
(ω) =

gn

(

N
∑

k=1

ωk)2

[

N
∑

m 6=n

ωm

]
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−

N
∑

m 6=n

ωmgm

(
N

∑

k=1

ωk)2

.

After evaluating ∂A
∂ωn

and ∂B
∂ωn

with all ωk set to 1
N ,

we obtain

∂A

∂ωn
(ωu) = 2

[ 1

N

N
∑

m=1

fn,m −
1

N2

N
∑

k=1

N
∑

m=1

fk,m

]

,

and

∂B

∂ωn
(ωu) = gn −

1

N

N
∑

m=1

gm.

Thus, the partial derivative Sn is given by the an-
alytical formulas:

Sn =

(

σn − σ
)

+2−s
(

γ − gn

)

TN (X)
,(9)

where σ = 1
N2

N
∑

n=1

N
∑

m=1

fn,m, σn = 1
N

N
∑

m=1

fn,m and

γ = 1
N

N
∑

m=1

gm.

Those are the first partial derivatives of TN (X, ω),
with respect to the weight, ωn, and evaluated at ωu =
( 1

N )1≤n≤N , i.e. weights of all profiles are identically
initialized.

Higher order sensitivities may be obtained in a
similar fashion, however, for our definition of out-
lier and insider, the first sensitivities are the most
important ones. Let h a very small real, we note by
wn

h = (ωi)1≤i≤N when ωn = 1
N + h and ωj = 1

N if
j 6= n. By using the law of the mean, we have

TN (X,wn
h) − TN (X) ≈ hSn.(10)

We assume that N is very large, and we choose
h = − 1

N . Therefore, these first sensitivities can be
used as a basis for monitoring the variation of L2

discrepancy value:

Proposition 2 When N is very large, we have

• If Sn > 0, the profile, xn, is an insider as the L2

discrepancy value is minimized by removing, xn,
from the sequence of profiles.

• If Sn < 0, the profile, xn,is an outlier as the L2

discrepancy value is maximized by removing, xn,
from the sequence of profiles.

The sign of the L2 discrepancy sensitivity can be
regarded as the oracle on spatial visibility for each
profile.

• If Sn < 0, the point xn is in a region quasi-
empty of sequence points, i.e. add more points
in its immediate neighborhood will minimize L2

discrepancy.

• If Sn > 0, the point xn is in a region where the
sequence is clumped, i.e. L2 discrepancy will
decrease if the point xn is removed.

• If Sn = 0, the point xn is in a region where the
sequence is uniformly distributed.

Nevertheless, the L2 discrepancy sensitivity mag-
nitudes can be used to define:

• Greatest rate of disimilarity (GRDS),

GRD = (
1

Ndis

∑

n,S(xn)<0

S(xn)2)1/2,(11)

• Greatest rate of similarity (GRS),

GRS = (
1

Nsi

∑

n,S(xn)>0

S(xn)2)1/2.(12)

• Ratio between disimilarity and similarity is de-
fined by

R =
GRDS

GRS
.

The parameters GRS and GRDS with the L2 dis-
crepancy value can be considered as the fingerprint of
the profiles distribution. The ratio R will be used as
measure of autocorrelation between the profiles. For
instance, when some profiles are considerably dissimi-
lar or inconsistent with respect to the remaining data,
the value of R will be high.
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3 Effectiveness analysis

In the previous section, two explicit formulas (6) and
(8) available for straightforward computation of the
L2 discrepancy and the discrepancy learning process,
the cost will require O(N2 × s) operations. In this
section, we conduct a effectiveness analysis, meaning
the effectiveness of the discrepancy learning process
for high-dimensional data, as is always the case in
data mining.

The L2 discrepancy remains valid as a measure of
the uniformity only if the number of points, N , has
to grow exponentially with the dimension, s. Math-
ematically speaking,

Proposition 3 For any sequence of profiles X =
{xi}1≤i≤N in Is with N ≤ 2s, we have

12−s ≤ T2
N (X).(13)

Proof

By using the definition of the local discrepancy as
formulated in equation (4), we have

1

N
E(Nλs(J)) ≤

∣

∣

∣
DN(J, X)

∣

∣

∣
,(14)

where E(r) is the distance between the real number
r to the nearest integer. Thus

1

N2

[

∫

(a,b)∈I2s,ai<bi

(

E(Nλs(J))
)2

dadb

]

≤ T2
N (X),

(15)

where λs(J) =

s
∏

i=1

(

bi − ai

)

.

Let 0 < v = max
1≤i≤s

(

bi − ai

)

< 1, then Nλs(J) ≤

Nvs. Thus if the dimension s is high and the number
of profiles N is relatively small such that Nvs < 1,
then E(Nλs(J)) = Nλs(J) accordingly to the defin-
ition of E(.), we have

12−s =
s

∏

i=1

[

∫

(ai,bi)∈I2,ai<bi

(

bi−ai

)2

daidbi

]

≤ T2
N (X).

(16)

Table 1: Smallest value of N for which the bound
(16) is not valid. The sequence X was generated as
a random sequence

s 6 8 10 12 14

N 70 310 1,100 4,500 17, 000
12−s

(T2

N
(X))

1.0700 1.0500 1.1600 1.09860 1.0355

2s
−1

N
1.1100 1.2100 1.0700 1.0989 1.0376

Knowing that the root mean square expectation of
TN for a random sequence X in Is is given by, see
[4],

µ(T2
N (X)) =

12−s

N
(2s − 1).

Using the inequality 16, thus,

N < 2s.

The condition ”if the dimension s is high and the
number of profiles N is relatively small” is mathe-
matically equivalent to N < 2s as the average value
of v is 1

2 .
The table 1 shows the smallest values N for which

the bound (16) is not valid when the sequence X is
generated in a random fashion using different dimen-
sions, s. When the dimension, s, is high, we conclude
that the bound (16) is not valid when the number of
points N is greater than 2s − 1 and only beyond this
number, the L2 discrepancy remains valid as a mea-
sure of the uniformity.

4 Numerical illustrations

We implemented the algorithm using the Fortran 90
programming language for computation and C pro-
gramming language for graphics using OpenGl on
IBM RS/6000 cluster. We used a 32 bit floating-point
type to represent the attributes of the points and the
computed values are rounded to four significant dig-
its. In all the coming experiments, we compute first
σ and γ and they are used to compute the L2 dis-
crepancy and L2 discrepancy learning process(DLP).
This appears to work well enough to minimize the
execution time.
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Table 2: Computed values of DLP parameters for
random data and Gaussian data.

Data Random Gaussian

T 2
N

(X) 2.0107E-6 0.0104

GRDS 0.0242 0.0553

GRS 0.0489 0.0363

R 0.4948 1.5234

4.1 Outlier and insider detections in

random and Gaussian data sets

For testing, we used two families of synthetic data
sets with s = 2. The first data set have 104 profiles,
randomly generated, (r1, r2) ∈ (0, 1)2. The second
data set is a transformation of the first data set into
a Gaussian distribution x =

√

−2 log(r1) cos(2πr2)

and y =
√

−2 log(r1) sin(2πr2) and scaled to [0, 1)2.
Figures 1 (a) and (b) show the two dimensional ran-
dom and Gaussian data sets where color is encoded
from blue (low values) to red (high values), the black
color is the background of the graphics and is not re-
lated to the values generated by the DLP. The values
of DLP parameters are listed in table 2. Gaussian
data set has the higher discrepancy and GRS values,
this is due to the fact that the Gaussian data set
becomes more sparse and clumped than the random
data set. The higher GRDS value is due to the fact
that the Gaussian data set has more isolated points
than the random data set. The higher value of R
is reflecting the fact that the Gaussian data set has
profiles with exceptional spatial distribution with re-
spect to the remaining data.

4.2 Insider and outlier detections in

lower dimensional projections

The essential idea behind this experiments is to show
that the value L2 discrepancy informs about low den-
sity or sparsity of profiles. The sparsity of data is
indicated by a high discrepancy value. This test
uses 3D orthogonal projection (28, 29, 30) of Sobol
sequence in [0, 1)30 given in [6].

Figure 2 shows a 2D projections visualization.

Table 3: Computed values of DLP parameters for 3D
Sobol sequence and 2D projections.

Data (28, 29) (28, 30) (29, 30) (28, 29, 30)

T 2
N

(X) 1.6470E-7 4.5357E-7 2.7389E-5 2.3470E-6

GRDS 2.0984E-3 9.0162E-3 3.3140E-3 1.233E-3

GRS 2.8116E-3 0.0160 3.6074E-3 1.597E-3
R 0.7400 0.900 0.914 0.770

The top, the colormap is coded using values of
the discrepancy learning process computed over 3D
sequence,(28, 29, 30). But below, the colormap is
coded using values of the DLP computed for each
2D projection.

The values of the L2 discrepancy are listed in table
3 with N = 4096 points. An interesting observation
is that the 2D projection (29, 30) has the higher dis-
crepancy and that indicates the sparsity of profiles
and its visualization shows outliers(points with blue
color) as points in a region of low density. However,
the visualization of (28, 29) and (28, 30) projections
show that outlier profiles in 3D are not directly com-
parable to one in 2D.

In general, the lower dimensional projections with
low discrepancy are not suitable to detect sparsity as
the full feature descriptions of the sequence in high
dimensional often do not exist in the lower dimen-
sional projections with low discrepancy.

4.3 Outlier detection in falsified data

We tested our outlier detection technique on the fol-
lowing real data set: ColorMoments (s = 9, N =
68, 040). This data set represents a collections of real
images. ColorMoments are image features extracted
from a Corel image collection2. We have deliberately
falsified the first 1000 points of the data set by in-
troducing 17 points among them with considerably
dissimilar attributes. We plot the data as (n, Sn)
where n is the indice of the profile xn and Sn is the
value of of the DLP for xn. Figure 3 shows the result-

2See http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeature.html
for more information
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Table 4: Computed values of DLP parameters for
actual and falsified data sets.

Data Actual Falsified

T 2
N

(X) 0.2175E-06 0.9684E-09

GRDS 0.2582E-03 0.3047E-05

GRS 0.2658E-03 0.1592E-05

R 0.9714 1.9139

ing visualization for the falsified data. Table 4 lists
all L2 discrepancy parameters. The DLP, S(xn), re-
ports information accordingly to the change in the
real distribution, i.e. maintain an excellent detec-
tion rate, and the ratio between GRDS and GRDS,
R = GRDS

GRS , confirms the changes in the actual data.

5 Conclusion

Outlier mining is a new area of research, especially
for computational mathematics. It is becoming an
important activity for many companies, especially
in scientific measurement. We presented new defi-
nition for outlier and insider mining using a deter-
ministic and a holistic framework based on the well
established theory of discrepancy. Beginning with
a mathematical formulation of the local discrepancy
that handles the similarity and the sparsity. and us-
ing a mathematical definition of L2 discrepancy as a
global measure of the discrepancy of the sequence of
profiles.

A L2 discrepancy learning process ranks each point
on the basis of optimizing the L2 discrepancy value.
This L2 discrepancy learning process allows an ac-
cess to many levels of information about outliers and
insiders in the data.

Experimental results showed that the L2 discrep-
ancy learning process captured the actual features of
the data via the parameters L2 discrepancy value, the
greatest rate of disimilarity, GRDS, and the greatest
rate of similarity, GRS. The ratio between GRDS
and GRDS, R = GRDS

GRS , can be used as an indicator
of the changes in the data set.

In future work we will further investigate the usage

of this L2 discrepancy learning process in real cases.
Also we look to study a parallel implementation as
the algorithm lends itself to parallelism and can map
efficiently onto parallel computers. Thus it fit the
requirement of high-performance data mining that,
refers to developing efficient parallel algorithms for
data-mining techniques.
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Figure 1: Outliers in a random distribution data and
synthetic Gaussian data
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Figure 2: Comparaison of outliers in 3D Sobol se-
quence and in lower dimensional projections.
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Figure 3: Detection of deliberately falsified data
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