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Abstract

The design, implementation, and archiving of very large
sky surveys is playing an increasingly important role
in today’s astronomy research. However, these data
archives will necessarily be geographically distributed.
To fully exploit the potential of this data, we believe
that capabilities ought to be provided allowing users
a more communication-efficient alternative to multi-
ple archive data analysis than first down-loading the
archives fully to a centralized site.

In this paper, we describe the architecture of a sys-
tem, DEMAC, for the distributed mining of massive as-
tronomical catalogs. The system is designed to sit on
top of the existing national virtual observatory envi-
ronment and provide tools for distributed data mining
(as web services) without requiring datasets to be fully
down-loaded to a centralized server. To illustrate the
potential effectiveness of DEMAC, we carry out a case
study using distributed principal component analysis
(PCA) for detecting fundamental planes of astronomical
parameters. In particular, PCA enables dimensionality
reduction within a set of correlated physical parameters,
such as a reduction of a 3-dimensional data distribution
(in astronomer’s observed units) to a planar data dis-
tribution (in fundamental physical units). Fundamen-
tal physical insights are thereby enabled through effi-
cient access to distributed multi-dimensional data sets.
Keywords: distributed data mining, astronomy cata-
logs.

1 Introduction

The design, implementation, and archiving of very large
sky surveys is playing an increasingly important role in
today’s astronomy research. Many projects today (e.g.
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GALEX All-Sky Survey), and many more projects in
the near future (e.g. WISE All-Sky Survey and LSST
Large Synoptic Survey!) are destined to produce enor-
mous catalogs (tables) of astronomical sources (tuples).
These catalogs will necessarily be geographically dis-
tributed. It is this virtual collection of gigabyte, ter-
abyte, and (eventually) petabyte catalogs that will sig-
nificantly increase science return and enable remarkable
new scientific discoveries through the integration and
cross-correlation of data across these multiple survey
dimensions [20]. Astronomers will be unable to fully
tap the riches of this data without a new paradigm
for astro-informatics that involves distributed database
queries and data mining across distributed virtual tables
of joined and integrated sky survey catalogs [4, 5].

The development and deployment of a National Vir-
tual Observatory (NVO) [24] is a step toward a solution
of this problem. However, processing, mining, and an-
alyzing these distributed and vast data collections are
fundamentally challenging tasks since most off-the-shelf
data mining systems require the data to be down-loaded
to a single location before further analysis. This im-
poses serious scalability constraints on the data mining
system and fundamentally hinders the scientific discov-
ery process. Figure 1 further illustrates this technical
problem. The left part depicts the current data flow in
the NVO. Through web services, data is selected and
down-loaded from multiple sky-surveys.

If distributed data repositories are to be really
accessible by a larger community, then technology ought
to be developed for supporting distributed data analysis
that can reduce, as much as possible, communication
requirements among the data servers and the client
machines. Communication-efficient distributed data
mining (DDM) techniques will allow a large number of
users simultaneously to perform advanced data analysis
without necessarily down-loading large volumes of data
to their respective client machines.

In this paper, we describe the architecture of a
system, DEMAC, for the distributed exploration of
massive astronomical catalogs. The primary purpose
of DEMAC is to provide a collection of data mining
tools based on various DDM algorithms. DEMAC
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(a) Current data flow is restricted because of data ownership
and bandwidth considerations.

(b) Distributed data mining algorithms can process large
amounts of data using a small amount of communication.
The users get the data mining output rather than raw data.

Figure 1: Data flow for distributed data mining embedded in the NVO.

is designed to reside on top of the existing NVO
environment and provide tools for data mining (as
web services) without requiring datasets to be down-
loaded to a centralized server. Consider again Figure
1. DEMAC requires a relatively simple modification
— the addition a distributed data mining functionality
in the sky servers. This allows DDM to be carried
out without having to down-load large tables to the
users’ desktop or some other remote machine. Instead,
the users will only down-load the output of the data
mining process (a data mining model); the actual data
mining from multiple data servers will be performed
using communication-efficient DDM algorithms. The
algorithms we develop sacrifice perfect accuracy for
communication savings. They offer approximate results
at a considerably lower communication cost than that
of exact results through centralization. As such, we see
DEMAUC as serving the role of an exploratory “browser”.
Users can quickly get (generally quite accurate) results
for their distributed queries at low communication cost.
Armed with these results, users can focus in on a specific
query or portion of the datasets, and down-load for more
intricate analysis.

At present, we are in the design phase of the project.
The purpose of this paper is to describe the basic
architecture and to present a case study illustrating
the potential effectiveness of DEMAC. The case study
uses one of the DDM algorithms that will be included
in DEMAC: distributed principal component analysis
(PCA). In a simulated environment, the study inves-
tigates the accuracy of the distributed PCA algorithm
with respect to its communication savings (relative to

centralization). PCA is used to detect fundamental
planes of astronomical parameters. Astronomers have
previously discovered cases where the observed param-
eters measured for a particular class of astronomical
objects (such as elliptical galaxies) are strongly corre-
lated, as a result of universal astrophysical processes
(such as gravity). PCA will find such correlations in
the form of principal components. An example of this
is the reduction of a 3-dimensional scatter plot of ellip-
tical galaxy parameters to a planar data distribution.
The explanation of this plane follows from fundamen-
tal astrophysical processes within galaxies, and thus the
resulting data distribution is labeled the Fundamental
Plane of Elliptical Galaxies. The important physical
insights that astronomers have derived from this funda-
mental plane suggest that similar new physical insights
and scientific discoveries may come from new analy-
sis of combinations of other astronomical parameters.
Since these multiple parameters are now necessarily dis-
tributed across geographically dispersed data archives,
it is scientifically valuable to explore distributed PCA
on larger astronomical data collections and for greater
numbers of astrophysical parameters. The application
of communication-efficient distributed PCA and other
DDM algorithms will likely enable the discovery of new
fundamental planes, and thus produce new scientific in-
sights into our Universe.

2 Related Work

2.1 Analysis of Large Data Collections There
are several instances in the Astronomy and Space Sci-



ences research communities where data mining is be-
ing applied to large data collections [22]. Some dedi-
cated data mining projects include F-MASS [11], Class-
X [10], the Auton Astrostatistics Project [3]. In essen-
tially none of these cases does the project involve truly
DDM [21]. Through a past NASA-funded project, K.
Borne applied some very basic DDM concepts to astro-
nomical data mining [8]. However, the primary accom-
plishments focused only on centralized co-location of the
data sources [6, 7].

One of the first large-scale attempts at grid data
mining for astronomy is the U.S. National Science Foun-
dation (NSF) funded GRIST [13], project. The GRIST
goals include application of grid computing and web
services (service-oriented architectures) to mining large
distributed data collections. GRIST is focused on one
particular data modality: images. Hence, GRIST aims
to deliver mining on the pixel planes within multiple
distributed astronomical image collections. The project
that we are proposing here is aimed at another data
modality: catalogs (tables) of astronomical source at-
tributes. GRIST and other projects also strive for exact
results, which usually requires data centralization and
co-location, which further requires significant computa-
tional and communications resources. DEMAC will pro-
duce approximate results without requiring data cen-
tralization (low communication overhead). Users can
quickly get (generally quite accurate) results for their
distributed queries at low communication cost. Armed
with these results, users can focus in on a specific query
or portion of the datasets, and down-load for more in-
tricate analysis.

The U.S. National Virtual Observatory (NVO) [24]
is a large scale effort funded by the NSF to develop
a information technology infrastructure enabling easy
and robust access to distributed astronomical archives.
It will provide services for users to search and gather
data across multiple archives and some basic statistical
analysis and visualization functions. It will also provide
a framework for new services to be made available by
outside parties. These services can provide, among
other things, specialized data analysis capabilities. As
such, we envision DEMAC to fit nicely into the NVO as
a new service.

2.2 Distributed Data Mining DDM is a relatively
new technology that has been enjoying considerable
interest in the recent past [17]. DDM algorithms
strive to analyze the data in a distributed manner
without down-loading all of the data to a single site
(which is usually necessary for a regular centralized data
mining system). DDM algorithm naturally fall into two
categories according to whether the data is distributed

horizontally (with each site having some of the tuples) or
vertically (with each site having some of the attributes
for all tuples). In the latter case, it is assumed that the
sites have an associated unique id used for matching. In
other words, consider a tuple ¢ and assume site A has a
part of this tuple, t4, and B has the remaining part tp.
Then, the id associated with ¢4 equals the id associated
with tg.2

The NVO can be seen as a case of vertically
distributed data, assuming ids have been generated
by a cross-matching service. With this assumption,
DDM algorithms for vertically partitioned data can
be applied. These include algorithms for principal
component analysis (PCA), Bayesian network learning,
clustering, and supervised classification (see [17] for
references).

Some DDM frameworks and systems have been de-
veloped. The JAM framework for meta-learning based
classification over homogeneously distributed data was
developed by Stolfo et al. [26]. The Collective Data
Mining framework for data mining over heterogeneously
distributed data was developed by Kargupta et al. [14].
In this framework an algorithm for distributed PCA was
developed. We leave the comparison of this algorithm
to the one we give later for future work. A client-server
architecture for a data mining system, the Kensington
System, we developed by Chattratichat et al. [9].

3 Data  Analysis Problem:
Distributed Virtual Catalogs

We illustrate the problem with two archives: the Sloan
Digital Sky Survey (SDSS) [25] and the 2-Micron All-
Sky Survey (2MASS) [1]. Each of these has a simplified
catalog containing records for a large number of astro-
nomical point sources, upward of 100 million for SDSS
and 470 million for 2MASS. Each record contains sky co-
ordinates (ra,dec) identifying the sources’ position in the
celestial sphere as well as many other attributes (460+
for SDSS; 420+ for 2MASS). While each of these cata-
logs individually provides valuable data for scientific ex-
ploration, together their value increases significantly. In
particular, efficient analysis of the virtual catalog formed
by joining these catalogs would enhance their scientific
value significantly. Henceforth, we use “virtual catalog”
and “virtual table”, interchangeably.

To form the virtual catalog, records in each catalog
must first be matched based on their position in the
celestial sphere. Consider record ¢ from SDSS and
s from 2MASS with sky coordinates t[ra,dec] and
s[ra,dec]. Each record represents a set of observations

Analyzing

2Each id is unique to the site at which it resides; no two tuples

at site A have the same id.



about an astronomical object e.g. a galaxy. The sky
coordinates are used to determine if ¢ and s match,
i.e. are close enough that ¢ and s represents the same
astronomical object. The issue of how matching is done
will be discussed later. For each match (¢, s), the result
is a record t > s in the virtual catalog with all of the
attributes of ¢t and s. As described earlier, the virtual
catalog provides valuable data that neither SDSS or
2MASS alone can provide.

DEMAC addresses the data analysis problem of de-
veloping communication-efficient algorithms for analyz-
ing user-defined subsets of virtual catalogs. The algo-
rithms allow the user to specify a region R in the sky
and a virtual catalog, then efficiently analyze the subset
of tuples from that catalog with sky coordinates in R.
Importantly, the algorithms we develop do not require
that the base catalogs first be centralized and the virtual
catalog explicitly realized. Moreover, the algorithms are
not intended to be a substitute for exact, centralization-
based methods currently being developed as part of the
NVO. Rather, they are intended to complement these
methods by providing, quick, communication-efficient
approximate results to allow browsing. Such brows-
ing will allow the user to better focus their exact,
communication-expensive, queries.

EXAMPLE 1. The all data release of 2MASS contains
attribute, “K band means surface brightness” (Kmsb).
Data release four of SDSS contains galaxy attributes
“redshift” (rs), “petrosian I band angular effective ra-
dius” (Iaer) and “velocity dispersion” (vd). To produce
a physical variable, consider composite attribute “pet-
rosian I band effective radius” (Ier) formed by the prod-
uct of laer and rs. Note, since Iaer and rs are both at
the same repository (SDSS), then, from the standpoint
of distributed computation, we may assume ler is con-
tained in SDSS.

A principal component analysis over a region of sky
R on the virtual table with columns log(Ier), log(vd), and
Kmsb is interesting in that it can allow the identification
of a “fundamental plane” (the logarithms are used to
place all wvariables on the same scale). Indeed, if
the first two principal components capture most of the
variance, then these two variables define a fundamental
plane. The existence of such things points to interesting
astrophysical behaviors. We develop a communication-
efficient distributed algorithm for approximating the
principal components of a virtual table.

4 DEMAC - A System for Distributed
Exploration of Massive Astronomical
Catalogs

This section describes the high level architecture design
of the DEMAC system. DEMAC is designed as an addi-
tional web-service which seamlessly integrates into the
NVO. It consists of two basic services. The main one is
a web-service providing DDM capabilities for vertically
distributed sky surveys (WS-DDM). The second one,
which is intensively used by WS-DDM, is a web-service
providing cross-matching capabilities for vertically dis-
tributed sky surveys (WS-CM). Cross-matching of sky
surveys is a complex topic which is dealt with, in it-
self, under other NASA funded projects. Thus, our im-
plementation of this web-service is designed to supply
bare minimum capabilities which are required in order
to provide distributed data mining capabilities.

To provide a distributed data mining service,
DEMAC relies on other services of the NVO such as
the ability to select and down-load from a sky survey
in an SQL-like fashion. Key to our approach is that
these services be used not over the web, through the
NVO, but rather by local agents which are co-located
with the respective sky survey. In this way, the DDM
service avoids bandwidth and storage bottlenecks, and
overcomes restrictions which are due to data ownership
concerns. Agents, in turn, take part in executing ef-
ficient distributed data mining algorithms, which are
highly communication-efficient. It is the outcome of the
data mining algorithm, rather than the selected data ta-
ble, that is provided to the end-user. With the removal
of the network bandwidth bottleneck, the main factor
limiting the scalability of the distributed data mining
service would be database access. For database access,
DEMAC uses the SQL-like interface provided to the dif-
ferent sky-surveys to the NVO.

4.1 WS-DDM - DDM for Heterogeneously
Distributed Sky-Surveys This web-service allows
running a DDM algorithm (one will be discussed later)
on a selection of sky-surveys. The user applies exist-
ing NVO services to locate sky-surveys and define the
portion of the sky to be data mined. The user then
applies WS-CM to select a cross-matching scheme for
those sky-surveys. This specifies how the tuples are
matched across surveys to define the virtual table to
be analyzed. Following these two preliminary phases
the user submits the data mining task.

Execution of the data mining task is scheduled
according to resource availability. Specifically, the
size of the virtual table selected by the user dictates
scheduling. Having allocated the required resources, the
data mining algorithm is carried on by agents which are



co-located with the selected sky-surveys. Those agents
access the sky-survey through the SQL-like interface it
exposes to the NVO and communicate with each other
directly, over the Internet. When the algorithm has
terminated, results are provided to the user using a web-
interface.

4.2 WS-CM - Cross-Matching for Heteroge-
neously Distributed Sky-Surveys Central to the
DDM algorithms we develop is that the virtual table
can be treated as vertically partitioned (see Section 2
for the definition). To achieve this, match indices are
created and co-located with each sky survey. Specifi-
cally, for each pair of surveys (tables) T' and S, a distinct
pair of match indices must be kept, one at each survey.
Each index is a list of pointers; both indices have the
same number of entries. The t* entry in T"s list points
to a tuple t; and the it* entry in S’s list points to s;
such that ¢; and s; match. Tuples in T and S which do
not have a match, do not have a corresponding entry in
either index. Clearly, algorithms assuming a vertically
partitioned virtual table can be implemented on top of
these indices.

Creating these indices is not an easy job. Indeed,
cross-matching sources is a complex problem for which
no single best solution exists. The WS-CM web-service
is not intended to address this problem. Instead it uses
already existing solutions (e.g., the cross-matching ser-
vice already provided by the NVO), and is designed to
allow other solutions to be plugged in easily. Moreover,
cross-matching the entirety of two large surveys is a very
time-consuming job and requires centralizing (at least)
the ra, dec coordinates of all tuples from both.

Importantly, the indices do not need to be created
each time a data mining task is run. Instead, provided
sky survey data is static (it generally is), each pair
of indices only need be created once. Then any data
mining task can use them. In particular the DDM tasks
we develop can use them. The net result is the ability
to mine virtual tables at low communication cost.

Note that for each group of surveys and each cross-
matching scheme of interest, there need be an separate
index held at each survey. However, again, these
indices are computed off-line (not at query time). Thus,
keeping different indices for each group and scheme does
not affect query-processing communication cost.

4.3 Definitions and Notation In the next section
we describe a DDM algorithm to be used as part of the
WS-DDM web service. It assumes that the participat-
ing sites have the appropriate alignment indices. Hence,
for simplicity, we describe the algorithms under the as-
sumption that the data in each site is perfectly aligned

— the it" tuple of each site match (sites have exactly
the same number of tuples). This assumption can be
emulated without problem using the matching indices.

Let M denote an n x m matrix with real-valued
entries. This matrix represents a dataset of m tu-
ples from R™. Let M7 denote the j* column and
M (i) denote the i*" entry of this column. Let p(M7)

denote the sample mean of this column, 2isa Mi (@) 1M @
Let Var(M7) denote the sample variance of thls col—

Dia M) -MIGPE -y Cov(M7,M*) denote

n—1
the sample covariance of the j** and k** columns,
n N kY% (s .
i (p(M7)— M ()] [p(M™)—M (z)] Note, Var(MJ) —

n—1

Cov(M3, M?7)). Finally, let Cov(M) denote the covari-
ance matriz of M i.e. the m x m matrix whose (j, k)"
entry is Cov(M7, MF).

Assume this dataset has been vertically distributed
over two sites S4 and Sg. Since we are assuming that
the data at the sites is perfectly aligned, then S4 has
the first p attributes and Sp has the last ¢ attributes
(p+q = m). Let A denote the n x p matrix representing
the dataset held by S4, and B denote the n x ¢ matrix
representing the dataset held by Sg. Let A : B denote
the concatenation of the datasets i.e. M = A : B. The
jt* column of A : B is denoted [A : B)Y.

Next we describe a communication-efficient algo-
rithm for PCA on M vertically distributed over two
sites. The algorithm easily extends to more than two
sites, but, for simplicity, we only discuss the two site
scenario. Later we examine its effectiveness through
a case study. We have also developed a distributed
algorithm for decision tree induction (supervised clas-
sification) [12] and are in the process of developing a
distributed algorithm for outlier detection.

Following a standard practise in applied statistics,
we pre-process M by normalizing so that u(M7) = 0
and Var(M7) = 1. This is achieved by replacing each

entry M7 (i) with % Since both p(M7) and
Var(M?) can be computed without any communication,
then normalizing can be performed without any com-
munication. Henceforth, we assume p(M7) = 0 and
Var(M7) =1

Let Ay > Ay > > An > 0 denote the
eigenvalues of Cov(M) and vy,vs, ..., v, the associated
eigenvectors® (pairwise orthonormal). The j** principal
direction of M is v;. The jth principal component is
denoted z; and equals Mv; (the projection of M along
the jt* direction).

umn,

3SWe assume the eigenvectors are column vectors i.e. m X 1

matrices.



5 Virtual
Analysis

Catalog Principal Component

PCA is a well-established data analysis technique used
in a large number of disciplines: astronomy, computer
science, biology, chemistry, climatology, geology, etc.
Quoting [15] page 1: “The central idea of PCA is to
reduce the dimensionality of a data set consisting of a
large number of interrelated variables, while retaining as
much as possible of the variation present in the dataset.”
Next we provide a very brief overview of PCA, for a
more detailed treatment, the reader is referred to [15].

The j* principal component, z;, is, by definition, a
linear combination of the columns of M — the k** column
has coefficient v;(k). The sample variance of z; equals
A;j. The principal components are all uncorrelated i.e.
have zero pairwise sample covariances. Let Z, (1 <r <
m) denote the nxr matrix with columns 21, . .., z,. This
is the dataset projected onto the subspace defined by the
first r principal directions. If r = m, then Z,, is simply
a different way of representing exactly the same dataset,
because M can be recovered completely as M = Z,,VT
where T denotes matrix transpose.*

However, if » < m, then Z, is a lossy, lower di-
mensional representationrof M. The amount of loss is

. . A
typically quantified as, %in‘ . )\;
=1

, the “proportion of vari-

ance” captured by the lower dimensional representation.
If r is chosen so that a large amount of the variance is
captured, then, intuitively, Z,, captures many of the
important features of M. So, subsequent analysis on
Z, can be quite fruitful at revealing structure not easily
found by examination of M directly. Our case study
employs this idea.

To our knowledge, the problem of vertically dis-
tributed PCA computation was first addressed by Kar-
gupta et al. [18] based on sampling and communication
of dominant eigenvectors. Later, Kargupta and Putta-
gunta [16] developed a technique based on random pro-
jections. Our method is a slightly revised version of this
work. We describe a distributed algorithm for approx-
imating Cov(A : B). Clearly, PCA can be performed
from Cov(A : B) without any further communication.

Recall that A : B is normalized to have zero column
sample mean and unit sample variance. As a result,
Cov([A : BYi,[A : BF) = ZislABV OB (oo, jg
the inner product between [A : B} and [A : B]* divided
by n — 1. Clearly this inner product can be computed
without communication when [A : B and [A : B]* are
at the same site (i.e. 1 < j,k<porp+1<jk<

ISince V is a square matrix with orthonormal columns, then
basic linear algebra shows that VV7T equals the m x m identity

matrix.

p+q)- Tt suffices to show how the inner product can be
approximated across different sites, in effect, how AT B
can be approximated. The key idea is based on the
following fact echoing the observation made in [23] that
high-dimensional random vectors are nearly orthogonal.
A similar result was proved elsewhere [2].

Fact 1. Let R be an £ x n matriz each of whose
entries are drawn independently from a distribution with
variance one and mean zero. It follows that E[RTR] =
LI, where I, is the n X n identity matrix.

We will use the Algorithm 1 for computing A7 B.
The result is obtained at both sites.® The algorithm has
a user-defined parameter £ (the number of rows in the
random matrix).

Algorithm 1 Distributed Covariance Matrix Algo-
rithm
1. S4 sends Sp a random number generator seed. [1
message]
2. S4 and Sp generate an £ x n random matrix R.
Each entry is generated independently and identically
from any distribution with mean zero and variance
one.
3. S4 sends RA to Sp; Sp sends RB to S4. [4mf
messages]

4. S4 and S compute D = (RA)T#.

From Fact 1, it can be seen that E[D] = w

= ATB. Hence, on expectation, the algorithm is cor-
rect. However, its communication cost (bytes) di-
vided by the cost of the centralization-based algorithm,
% + %, is small if /£ << n. Indeed ¢ provides a
“knob” for tuning the trade-off between communication-
efficiency and accuracy. Later we present experiments

measuring this trade-off.

6 Case Study: Finding Galactic Fundamental
Planes

The identification of certain correlations among param-
eters has led to important discoveries in astronomy.
For example, the class of elliptical and spiral galaxies
(including dwarfs) have been found to occupy a two
dimensional space inside a three dimensional space of
observed parameters, radius, mean surface brightness
and velocity dispersion (described earlier in Example
1). This plane has been referred to as the Fundamental
Plane([19]).

5In the communication cost calculations, we assume a message

requires 4 bytes of transmission.



This section presents a case study involving the de-
tection of a fundamental plane among galaxy parame-
ters distributed across two catalogs: 2MASS and SDSS
(the problem was described earlier in Example 1). Our
goal in this paper is to demonstrate that, using our dis-
tributed covariance matrix algorithm to approximate
the principal components, we can find a very similar
fundamental plane as that obtained by applying a cen-
tralized PCA. Our ultimate goal is to enable new dis-
coveries in astronomy through our DDM algorithms and
DEMAC system. Therefore, we argue that DEMAC
could provide a valuable tool for astronomers wishing
to explore many parameter spaces across different cat-
alogs for fundamental planes.

In our study we measure the accuracy of our dis-
tributed algorithm in terms of the similarity between its
results and those of a centralized approach. We examine
accuracy at various amounts of communication allowed
the distributed algorithm in order to assess the trade-
off described at the end of Section 5. For each amount
of communication allowed, we ran the distributed algo-
rithm 100 times with a different random matrix and re-
port the average result (except where otherwise noted).
For the purposes of our study, a real distributed envi-
ronment is not necessary. Thus, for simplicity, we used
a single machine and simulated a distributed environ-
ment.

We prepare our test data as follows. Using the
web interfaces of 2MASS®, SDSS” and and the SDSS
object cross id tool, we obtained an aggregate dataset
involving attributes from 2MASS and SDSS lying in the
sky region between right ascension (ra) 150 and 200,
declination (dec) 0 and 15. The aggregated dataset had
the following attributes from SDSS: Petrosian I band
angular effective radius (Iaer), redshift (rs), and velocity
dispersion (vd);® and had the following attribute from
2MASS: K band mean surface brightness (Kmsb).?
After removing tuples with missing attributes, we had
a 1307 tuple dataset with four attributes. We produced
a new attribute, logarithm Petrosian I band effective
radius (log(Ier)), as log(Iaer*rs) and a new attribute,
logarithm velocity dispersion (log(vd)), by applying the
logarithm to vd. We dropped all attributes except
those to obtain the three attribute dataset, log(Ier),
log(vd), Kmsb. Finally, we normalized each column by
subtracting its mean from each entry and dividing by

Shttp://irsa.ipac.caltech.edu/applications/Gator/

Thttp://cas.sdss.org/astro/en/tools/crossid /upload.asp

8petroRad_i (galaxy view), z (SpecObj view) and velDisp
(SpecObj view) in SDSS DR4

9k _mnsurfb_eff in the extended source
catalog in the All Sky Data Release,
http://www.ipac.caltech.edu/2mass/releases/allsky /index.html

its sample standard deviation (as described in Section
4.3).

We applied PCA directly to this dataset to obtain
the centralization based results. Then we treated this
dataset as if it were distributed (assuming cross match
indices have been created as described earlier).!® This
data can be thought of as a virtual table with attributes
log(Ier) and log(vd) located at one site and attribute
Kmsb at another. Finally, we applied our distributed
covariance matrix algorithm and computed the principal
components from the resulting matrix. Note, our
dataset is somewhat small and not necessarily indicative
of a scenario where DEMAC would be used in practice.
However, for the purposes of our study (accuracy with
respect to communication) it suffices. Producing even
a centralized, cross-matched data set of this size is a
tedious job. This is because of the communication
limitations currently imposed by the NVO (the cross-
matching tool has an upper-limit on the number of
tuples in its output). This fact only bolsters support
for our system as it aims to reduce communication.

Figure 2 shows the percentage of variance captured
as a function of communication percentage (i.e. at 15%,
the distributed algorithm uses 0.15(1307)(3)(4) = 2353
bytes). Error bars indicate standard deviation — recall
the percentage of variance captured numbers are aver-
ages over 100 trials. First observe that the percentage
captured by the centralized approach, 90.5%, replicates
the known result that a fundamental plane exists among
these parameters. Indeed the dataset fits fairly nicely on
the plane formed by the first two PCs. Also observe that
the percentage of variance captured by the distributed
algorithm (including one standard deviation) using as
little as 10% communication never strays more than 5
percent from 90.5%. This is a reasonably accurate re-
sult indicating that the distributed algorithm identifies
the existence of a plane using 90% less communication.
As such, this provides evidence that the distributed al-
gorithm would serve as a good browser allowing the user
to get decent approximate results at a sharply reduced
communication cost. In turn, if these results arouse the
user’s interest, she can go through the trouble of cen-
tralizing the data and carrying out an exact analysis.

Interestingly, the average percentage captured by
the distributed algorithm appears to approach the true
percentage captured, 90.5%, very slowly (as the commu-
nication percentage approaches infinity, the average per-
centage captured must approach 90.5%). At the present
we don’t have an explanation for the slow approach.

TUATI of the preprocessing steps described above could have been
carried out without any distributed computation, thus, need not
enter into our simulation.
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Figure 2: Communication percentage vs. percent of
variance captured, (log(Ier), log(vd), Kmsb) dataset.

However, as the communication increases, the standard
deviation decreases substantially (as expected).

To analyze the accuracy of the actual principal
components computed by the distributed algorithm, we
consider the data projected onto each pair of PCs. The
projection onto the true first and second PC ought
to appear with much scatter in both directions as it
represents the view of the data perpendicular to the
plane. And, the projections onto the first, third and
second, third PCs ought to appear more “flattened” as
they represent the view of the data perpendicular to
the edge of the plane. Figure 3 displays the results.
The left column depicts the projections onto the PCs
computed by the centralized analysis (true PCs). Here
we see the fundamental plane. The right column
depicts the projections onto the PCs computed by our
distributed algorithm at 15% communication (for one
random matrix and not the average over 100 trials). We
see a similar pattern, indicating that the PCs computed
by the distributed algorithm are quite accurate in the
sense that they produce very similar projections as those
produced by the true PCs.

Furthermore we quantitatively compared the pro-
jections onto the true PCs (“true projections”) and
those onto the PCs computed by the distributed al-
gorithm (“distributed projections”) as follows. Let
x1,...,%, denote a true projection (say onto the first
and second PCs) and y1,...,y, the corresponding dis-
tributed projection. Here z; is the i** data tuple pro-
jected onto the true PCs and y; is the projection onto
the PCs computed by the distributed algorithm. The
normalized, square distance (NSD) between two tuples

is =77 (where |[|.|| denotes the 2-norm). For each of
the three pairs of PCs, we computed the average NSD
and its standard deviation. For PCs 1 and 2, 1 and 3,
2 and 3, the averages and standard deviations are 0.007
and 0.00069, 0.0048 and 0.00056, 0.0036 and 0.00022.
These are quite small indicating very good accuracy.

In closing, it is important to stress that we are not
claiming that the actual projections can be computed in
a communication-efficient fashion (they can’t). Rather,
that the PCs computed in a distributed fashion are
accurate as measured by the projection similarity with
the true PCs.

Comments: We acknowledge that our simplified
experimental environment does not take into account
overhead imposed by web services, e.g. variable resource
availability. However, this study’s purpose is to exam-
ine the basic accuracy versus communication trade-off
of our algorithm in order to justify its potential use. A
more detailed, real-world study is left to future work.
We also acknowledge that a straight-forward uniform
sampling technique could also be used to approximate
PCA. The sites choose a uniform sample of entries in
their alignment indices (the same ids on each site), and
centralize the corresponding tuples. These tuples are
then joined to form a uniform sample of the virtual
catalog of interest. We leave to future work a com-
parison between this sampling technique and our PCA
algorithm.

7 Conclusions

We described the architecture of a system, DEMAC, for
the distributed exploration of massive astronomical cat-
alogs. DEMAC is designed to reside on top of the exist-
ing U.S. national virtual observatory environment and
provide tools for data mining (as web services) without
requiring datasets to be down-loaded to a centralized
server. Instead, the users only down-load the output
of the data mining process (a data mining model); the
actual data mining from multiple data servers are per-
formed using communication-efficient DDM algorithms.
The distributed algorithms we have developed sacrifice
perfect accuracy for communication savings. They offer
approximate results at a considerably lower communi-
cation cost than that of exact results through central-
ization. As such, we see DEMAC as serving the role of
an exploratory “browser”. Users can quickly get (gener-
ally quite accurate) results for their distributed queries
at low communication cost. Armed with these results,
users can focus in on a specific query or portion of the
datasets, and down-load for more intricate analysis.

To illustrate the potential effectiveness of our sys-
tem, we carried out a case study using distributed prin-
cipal component analysis (PCA) for detecting funda-



mental planes of astronomical parameters. We ob-
served our distributed algorithm to identify a funda-
mental plane (observed through centralized analysis) at
reduced communication cost.

In closing, we envision our system to increase
the ease with which large, geographically distributed
astronomy catalogs can be explored, by providing quick,
low-communication solutions. Such benefit will allow
astronomers to better tap the riches of distributed
virtual tables formed from joined and integrated sky
survey catalogs.
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Figure 3: Projections onto all pairs of PCs; communication percentage 15%, (log(Ier), log(vd), Kmsb) dataset.
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