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Abstract

We present a methodology to automate the process of sig-
nal enhancement in particle physics by relying on multi-
variate classification techniques. The traditional subjective
approach based on visualizing potential peaks and man-
ually isolating them is supplanted by a fully automated
process that predicts signal events and exploits physical
constraints. Our experiments compare the performance of
several multivariate classification techniques (e.g., random
forests, Bayesian classification, support vector machines) for
signal identification using K* mass as a test case. We show
how information about physical constraints obtained from
kinematic fitting procedures can be used to enrich the orig-
inal feature representation. Finally, we suggest a form of
hypothesis testing to verify the presence of a particle of inter-
est on real data. Overall, our goal is to provide the particle
physics community with computational tools that obviate
manual and subjective interpretation of data patterns.

1 Introduction

Experiments in particle physics face the problem of
identifying elementary particles produced at frontier
energy colliders. Typical colliders have millions of
channels of electronics, producing terabytes of data per
second. These data are analyzed in real time and
reduced to a few terabytes per day that is stored for
later analysis. Of the billion particle collisions occurring
each second, only a few are of interest. Finding these
interesting — but possibly unanticipated — collisions
in such a massive data stream represents a challenging
test of forefront technology and computational power.
An energetic, strongly-interacting particle entering
a calorimeter causes a chain reaction of nuclear breakup
and particle production, resulting in a shower of parti-
cles passing through the detector. These signals must be
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reduced to the speed and directions of between roughly
2 and 8 objects emerging from the initial collision for
a convenient comparison with theoretical predictions.
Substantial processing of the recorded signals from each
collision reduces the amount of information to between
roughly 10 and 60 features that can be used to deter-
mine which of these different objects have produced any
particular cluster of energy in the detector. These fea-
tures can be usefully thought of as forming a feature
space. The dimensionality of this space and the def-
initions of each axis in the space depend on the sig-
nals recorded in each energy cluster. Examples of vari-
ables include calorimeter cluster parameters, number of
tracks associated with the event, invariant mass, energy,
momentum, spatial coordinates, etc.

1.1 Current Techniques for Particle Identifica-
tion. Current criteria for identifying each type of el-
ementary particle are crafted by hand at each experi-
ment. These criteria typically take the form of a set of
rigid cuts over the feature space. Often each individ-
ual cut requires that a particular feature have a value
greater than (or less than) some constant. These cuts
are determined by simulating how each object looks in
the detector, folding in expert knowledge of the underly-
ing physical processes leading to signals in the detector,
and trading off errors of Type I (i.e., failing to identify
true particles —false negatives) with errors of Type 11
(i.e., pointing to non-existing particles —false positives).
Figure 1 illustrates a particular scenario in the identifi-
cation of taus (77). The diagram looks at a specific re-
gion of a 2-dimensional feature space populated by these
particles. Decision boundaries were manually defined in
the form of two horizontal lines and one exponentially
decreasing line. No systematic procedure attending to
the probability density of this distribution, or the dis-
criminative power against background events, played a
role in the definition of these boundaries.

This approach has certain definite advantages. For
instance, the application of rigid cuts allows physicists
to impose their knowledge of the detector on the identi-
fication criteria through an accumulation of additional
requirements; requirements are commonly geometrical
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Figure 1: A particular scenario in the identification of
taus (77). Decision boundaries were manually defined
in the form of two horizontal lines and one exponentially
decreasing line. No systematic procedure attending
to the probability density of this distribution, or the
discriminative power against background events, played
a role in the definition of these boundaries (reproduced
from CDF internal note #7399 by Safonov).

in nature. In addition, rigid cuts are conveniently un-
derstood visually by considering one-dimensional pro-
jections of the full-dimensional space.

But the approach also has built-in limitations:

e No well-defined prescription exists for simultane-
ously combining the few dozen potentially useful
criteria to identify particles, leading to much argu-
ment and discussion in collaborations numbering
several hundred physicists.

e Cut-based object selection criteria are binary, not
easily continuously varied to optimize trade-offs be-
tween errors of Type I and errors of Type II. De-
spite tens of thousands of man-hours spent con-
structing and improving object identification at
each major collider experiment, the resulting cri-
teria are in some cases surprisingly suboptimal (a
single definite figure of merit with which to quantify
“optimal” does not even exist).

1.2 Objective of this Study. The purpose of this
analysis is to gain insight on how to increase the degree
of automation in the process of particle identification
by exploiting multivariate techniques and physical con-
straints (and thus avoiding manual and subjective cuts
over low-dimensional feature spaces). Traditional tech-
niques that exploit physical constraints use “kinematic
fitting” to improve measured quantities and to provide
a means to cut background. We propose an additional

step where a multivariate classification technique is in-
voked on Monte Carlo data to generate a predictive
model. The model is used to separate signal events
from background events. Applying the model to real
data results in a (predicted) signal distribution where
evidence for the existence of a particle of interest is en-
hanced. This paper extends previous work on the same
topic [1].

2 The Physical Experiment

We begin by describing the physical experiment. A
broad band energetic photon beam () hits a liquid
hydrogen target, the proton (p). The photon interacts
and produces a number of charged and uncharged
particles. We look for the following reactions:

(2.1) w — AK*T
(2.2) wp — AKTR°
(2.3) wp — Ktpra®

This is all complicated by various background reac-
tion which all have the same measured particles. Back-
ground reactions include the following:

(2.4) vp — KA
(2.5) vp — KTA*
(2.6) yp — KTX°
(2.7) vp— KtSta™
(2.8) vp— KT8 ot

Our data set contains information about the inci-
dent photon (v), and three charged particles, K+, p,
and 7~. While the charged particles are detected, the
uncharged ones are not seen, and must be inferred from
the missing mass (e.g., 7).

For each detected charged particle we measure the
momentum p and the polar angle 6 and azimuthal
angle ¢. From these quantities we can construct the
three vector, p = ip, + jpy + kp, where i, j and k
are the unit vectors. We also measure the Time-of-
Flight (TOF). From the TOF and momentum we can
calculate the mass m of the particle. Finally, for each
particle, we are able to construct a 4-vector, (E,p),
where E = /p? + m2.

In this particular paper we focus on identifying the
presence of K** (equation 2.1) after the photon-proton
interaction (yp). This is in practice not of real interest,
but stands as a convenient test case to assess the value
behind multivariate classification techniques. Invoking
these techniques is justified by the inherent difficulty
in separating signal events from background events



(many background reactions produce similar measured
particles).

2.1 Using Kinematic Fitting and Physical Con-
straints. Common practice in particle physics is to
take advantage of physical constraints such as en-
ergy and momentum conservation to improve measured
quantities and to provide a means to cut background.
We follow that approach through a technique known as
kinematic fitting [2]. For this technique we have cho-
sen to use the Lagrange multiplier method. First, the
unknown variables are divided into a set of measured
variables (7) and a set of unmeasured variables (§) such
as the missing momentum or the 4-vector for a decay
particle. For each constraint equation a new variable \;
is introduced. These variables are the Lagrange multi-
pliers. To find the best fit we minimize

(2.9) 27,6 X) = (7o — DTV iy — i) + 2XT f

by differentiating x? with respect to all the variables,
linearizing the constraint equations and iterating. Here
7o is a vector containing the initial guesses for the mea-

sured quantities, V is the covariance matrix comprising

the estimated errors on the measured quantities, and f
represents the constraints such as energy and momen-
tum conservation.

The solution for iteration v+1 depends on the result
of the previous iteration (v):

(2.10) &+ =& — (FFS~'Fe) ' FI'S'7,
(211) X = ST Fe(€T - &),
(2.12) 7 =i, — VEI X+,
where we define

ofi
( ) ( 77) J a,r]j

ofi
(2.14) (Fe)ij 76,
2.15) 7= f+ () (o —177),
2.16) S = (F)'V(E,

all evaluated at the vth iteration. We iterate until the
difference in magnitude between the current y? and the
previous value is less than or equal to Ax?2,, (i.e., until
the difference is less than 0.001) or the loop has reached
its maximum number of iterations (i.e., until the number
of iterations is 20).

2.2 Generating Confidence Levels. For our pur-
poses, we are interested in using kinematic fitting to ob-
tain a confidence level (goodness of fit to the data). As

an example, let’s look into the fitting procedure as ap-
plied to the proton (p) and pi-minus (77) tracks with
the A hypothesis. Explicitly, the constraint equations
are as follows:

E,+E.—E\
ﬁp +ﬁTr _ﬁA
ean f=| {2 g:;pw el
(y — yp) —(z—2)p
(z — xp) — (2= 2zp)p

The x? distribution for this fit is the result of a
fit to the histogram using the functional form of a x?2
distribution with two degrees of freedom plus a flat
background term. Explicitly,

(2.18) ) =
where P is simply used for normalization. P, is a mea-
sure of how close the distribution in the histogram is to
an ideal x? distribution (in that case P, = 1). The equa-
tion above (2.18) serves to characterize the behavior of
the x? distribution. With two degrees of freedom we ex-
pect this distribution to be exponential. However, under
the presence of background events from other channels,
the distribution may differ; particular, we expect a wide
range of values for x? under background events. This is
compensated with Ps.

The Confidence Level (CL) is the primary measure
of the goodness of fit to the data and is given by the

equation
CL = / f(z;n)dz
X2

(2.19)

where f(z:n) is the x? probability density function with
n degrees of freedom (where we have assumed normally
distributed errors).

%C_PQXZ/Q + Pg.

3 Using Multivariate Classification Techniques

In addition to the traditional approach of kinematic fit-
ting, we suggest using multivariate classification tech-
niques for signal identification and enhancement. Our
approach consists of using the confidence levels (good-
ness of fit to the data described above) as new features
into a classification problem. The resulting model im-
plicitly uses kinematic-fitting results to further enhance
the signal of interest (e.g., to enhance K*7).

3.1 The Classification Problem. We begin by giv-
ing a brief overview of the classification problem [3, 4].
A classifier receives as input a set of training examples
T = {(x,9)}, where x = (a1, a2, -,ay) is a vector or
point in the input space (z € X'), and y is a point in the



Table 1: Columns 2-3: Mean accuracy performance (Acc.)

enclosed in parentheses represent standard deviations.
different misclassification costs.

with different misclassification costs. Numbers
Columns 4-5: Mean false positive rates (FPR) with

Analysis Technique Acc. Equal Costs

Acc. Unequal Costs

FPR Equal Costs FPR Unequal Costs

Naive Bayes 85.59 (0.86) 86.79* (0.78) 20.1 6.8
Support Vector Machines 87.69 (0.70) 88.29 (0.51) 18.7 1.6
Multilayer Perceptron 88.57 (0.85) 90.58 (0.73) 14.3 3.0
ADTree 88.90 (1.14) 90.81* (0.96) 11.5 3.7
Decision Tree 89.23 (0.93) 91.97* (0.87) 12.7 47
Random Forest 90.02 (1.12) 92.34* (0.95) 11.6 4.3

output space (y € V). We assume T consists of inde-
pendently and identically distributed (i.i.d.) examples
obtained according to a fixed but unknown joint prob-
ability distribution. The outcome of the classifier is a
function h (or hypothesis) mapping the input space to
the output space, h : X — ). Function h can then be
used to predict the class of previously unseen attribute
vectors.

3.2 Data for Analysis. In our study, the output
variable for each event indicates if the photon-proton
interaction resulted in the production of K** (positive
event) or not (negative event). FEach feature vector
x is made of 45 features. The first 4 features are
confidence level numbers derived from the kinematic fits
(Section 2.2). The next feature corresponds to the total
energy. The last 40 features characterize 8 particles
(3 of them detected and 5 inferred). Each particle is
represented by energy E, momentum p, polar angle 6,
azimuthal angle ¢, and mass squared m?.

Our data set is derived using the CEBAF large
angle spectrometer (CLAS). We gathered 1000 Monte
Carlo signal events and 6000 Monte Carlo background
events. The real data comprised about 13,500 events.

3.3 Using Monte Carlo Data and Variable Mis-
classification Costs. Our first set of experiments were
limited to Monte Carlo data for which the value of the
output variable of each event is known. Our study
compared the performance of several classification algo-
rithms in terms of predictive accuracy. We employed
several algorithms including decision trees, support-
vector machines, random forests, etc. We used the
machine-learning tool WEKA [5] with default param-
eters for all learning algorithms.

First we reduced the original size of the input space
through a feature selection process, using information
gain as the evaluation metric [4]. The number of fea-

tures was reduced from 45 to 5 (the final set included
information on the confidence levels). For each algo-
rithm we varied the amount of misclassification costs.
Table 1 shows our results. The first column describes
the multivariate classification techniques used for our
experiments. The second column shows accuracy es-
timations with equal misclassifications costs; the third
column shows accuracy estimations where the cost of a
false positive is 3 times more expensive than the cost
of a false negative. Each result is the average of 5 tri-
als of 10-fold cross validation each [4]. An asterisk at
the top right of a number implies the difference is sig-
nificant at the p = 0.01 level (assuming a two-tailed
t-student distribution). Overall there is a significant in-
crease in performance by adding a penalty when misla-
belling background events as target events. In addition,
Table 1 shows how for this particular domain, varying
misclassification costs can yield a significant reduction
in the false positive rate (FPR %, columus 4-5).

Our results denote a preference for the strategy
behind “random forests”. We have observed similar
results in other experiments [6]. Random forests have
the ability to reduce the variance and bias components
of error by voting over multiple decision trees using
on each tree a random selection of features [7]. They
exhibit robust behavior against problems with multiple
systematic errors as is common to problems in particle
physics.

3.4 Signal Enhancement on Real Data. Our
next set of experiments used real data for which the
value of the output variable of an event is unknown.
In this case the problem is not to maximize accuracy
performance (i.e., minimize a risk functional such as
zero-one loss) but instead to provide enough evidence
to believe that the signal event occurred multiple times
during the photon-proton interaction. The goal is to
find a technique able to enhance the signal distribution



over the background distribution.

Our approach to deal with the signal enhancement
problem is as follows. Applying a multivariate technique
M on Monte Carlo data yields a predictive model hjy.
One can then apply hj; on the real data to generate
a histogram for the predicted signal distribution. If
model hp; exhibits good performance, we expect the
histogram generated through hj,; to provide evidence
for the occurrence of the desired signal.

To illustrate our approach Figure 2 (upper) shows
a histogram generated with all real data; the z-axis cor-
responds to the squared mass (m?) of the signal particle
(K*T). Figure 2 (middle) shows a histogram generated
by taking only those events predicted as signal on the
real data by a classification model. Kinematic fitting
variables were part of the feature vectors. We employed
random forests as the classification technique; the de-
rived information helps isolate and enhance the signal
distribution. Figure 2 (lower) shows the corresponding
histogram using random forests with cost sensitive clas-
sification and kinematic fitting variables. The resulting
histogram shows an even larger enhancement over the
signal distribution.

3.5 Measuring the Quality of Signal Enhance-
ment. Lastly, we face the problem of assessing the qual-
ity of the signal enhancement process. Traditionally, a
form of hypothesis-testing is used to determine if the
bump on Figure 2 (upper) can be interpreted as coming
from a distribution other than the background distribu-
tion. We claim this approach has several limitations as
explained next.

The classical methodology works as follows. The
real data is fit by a Breit-Weigner function together
with a background function [8]. One possibility for the
combined signal-background function is as follows:

(3.20) f(z) = BW(z) + BG(z)

where BW(x) is the Breit-Weigner function (similar to
a Gaussian distribution):

(I'/2)
(@~ Xo)? + (T/2)?
where X and I" are parameters specifying the mean and

width of the distribution. The background function is
defined as follows:

(3.21) BW(z) =

(3.22)  BG(z) = a(l +b(x — p) + c(z — p)?)

where a, b, and ¢ are parameters describing the amount
of background, shape and curvature of the distribution.
The fitting is done over a user-defined range [X;, X|
with a mean of p. In our case consider z as the
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Figure 2: Histograms using (upper) real data (mid-
dle) predicted signals on real data by random forests,
and (lower) predicted signals on real data by random
forests using cost-sensitive information. The x-axis cor-

. . 2
responds to K*T squared mass (units are in G*;Y ).

squared mass; equation 3.20 can then be used to
model the histogram for real data (Figure 2 upper).
After estimating all parameters (e.g., using maximum
likelihood estimation) a a figure of merit responds to the
question: what is the probability that this background
(as represented by the polynomial) fluctuated and gave
rise to this Breit-Wigner distribution?.

A clear limitation of the traditional approach is
the subjectivity with which the data is used to decide
the focus of the experiment. The range [X;, X ] over
which the analysis is done is decided after looking at the
data. In this case the sampling error goes unaccounted
for. In addition, an optimization technique is needed to
estimate the value of many parameters simultaneously.



Rather than following the traditional approach, we
propose a two step process. The first step is simply to
visually compare the difference between Figure 2 (mid-
dle) and Figure 2 (lower) with respect to the hypotheti-
cal form of the signal distribution as dictated by Monte
Carlo data (assuming the Monte Carlo adequately mod-
els the background and signal). This can serve as a fast
way to verify that our empirical distributions look close
to the hypothetical true signal distribution (see Figure 3
lower). In our case both signal distributions on real data
look very similar to the hypothetical true signal.

Background Monte Carlo
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Figure 3: Histograms using Monte Carlo data for (up-
per) background distribution and (lower) Signal Distri-
bution. These are hypothetical distributions assuming
the Monte Carlo adequately models the background and
signal. The x-axis corresponds to K*T squared mass

(units are in Gif ).

The second step is to compare the distribution of
error on both the Monte Carlo data and the real data
using our classification model. The rationale is as fol-
lows. If the real data is made of only background events
and does not contain the particle under study, we would
expect the proportion of events predicted as signal in the
real data, v, to be similar to the false positive rate, d,
found when the model was tested on Monte Carlo data.
This rate would simply stand as the inherent inaccu-

racy exhibited by the model. On the other hand, the
presence of the particle under study in real data would
generate a proportion of events predicted as signal 1
higher than that of § (i.e., we would expect ¥ > ).
One could approximate these rates by repeated experi-
ments to come up with estimates of their means (s, )
and standard deviations (o5, oy) for both error distribu-
tions. A form of hypothesis testing can then be applied
with the null hypothesis asserting Hy : § = ¢ and the
alternative hypothesis asserting Hy : 6 < 1.

We applied the step described above to our data.
For the Monte Carlo data we used a form of random sub-
sampling by randomly dividing the data into a training
set (using 90% of the data) and a testing set (using
10% of the data); we repeated this 30 times to yield
error estimates for us = and o,. In the case of real
data we tested a classification model (random forests)
on a random sample corresponding to 10% of the data
and repeated this 30 times to obtain estimates for us
and oy. Assuming a Gaussian distribution for both
error models we obtained the following results. Using
random forests with no cost sensitive classification the
null hypothesis is rejected with a confidence value of p =
0.09 (i.e., the probability of rejecting the null hypothesis
when it is in fact true is 9%); using random forests
with cost sensitive classification the null hypothesis is
rejected with a confidence value of p = 0.19 (i.e., the
probability of rejecting the null hypothesis when it
is in fact true is 19%). These are reasonable values
that suggest the presence of K** on the data. Our
proposed methodology thus provides a way to determine
the presence of a particle of interest (with a confidence
value) without the problem of manually identifying
regions of interest over the mass histogram.

4 Conclusions and Future Work

Our study exploits information derived from physical
constraints in the forms of confidence levels (using kine-
matic fitting) to enrich the set of original features for
classification. We suggest generating a predictive model
over Monte Carlo data to produce a distribution over
real data where a signal of interest is enhanced. Our
model integrates information about physical constraints
and exploits classification techniques to automate the
process of signal identification and enhancement.

One unexplored area is to determine the degree to
which multivariate classification techniques contribute
to signal enhancement without any information derived
from kinematic fitting. It is important to understand
how current classification techniques can exploit infor-
mation derived from physical constraints.

Our approach obviates forming decisions “a posteri-

i” about the interestingness of a bump signal protrud-

or1



ing above a background distribution; this is important
to avoid the risk of finding patterns stemming from ran-
dom sampling. Our study simply shows how a classifica-
tion model trained “a priori” on Monte Carlo data can
be used to identify possible signal events. Our method-
ology performs a form of hypothesis testing comparing
the distribution of error rates. Future work will ad-
dress how to compare both distributions attending to
additional properties (e.g., mean, variance, skewness,
kurtosis, etc.).
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