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Abstract

Large sparse linear systems are routinely solved using pre-
conditioned Krylov subspace methods, in which the suitabil-
ity and quality of the preconditioners play the vital role in
determining the convergence rate of the iteration scheme.
Selecting a suitable preconditioner for a specific sparse ma-
trix arising from a particular application presents a challeng-
ing task for many application scientists and engineers who
have little knowledge of preconditioned iterative methods. In
this paper, we propose to use data mining techniques to pre-
dict the solving status of general sparse matrices with incom-
plete LU factorization type preconditioners with parameters.
This work follows our previous work to use data mining tech-
niques to predict the solvability of general sparse matrices
with parameter-free matrix structure-based incomplete LU
type preconditioners. Our proposed method chooses some
points in the parameter space as samples. Studying the per-
formance of a typical preconditioner, e.g., ILUT, with these
sample parameters, we can get the main idea of what kinds
of combination of the parameters are favorable for a given
sparse matrix. If we can correctly predict the solving sta-
tus at these sample points, we may obtain an outline of the
parameter area(s) in which the sparse matrix can be solved.
We use support vector machine (SVM) classification to pre-
dict the solving status of the sparse linear systems by ILUT
with a specific set of parameters. We also use singular value
decomposition (SVD) and sparsified SVD to preprocess the
matrix features to improve the accuracy of prediction. We
focus our work on ILUT preconditioner, but the proposed
strategies should be applicable to other preconditioners with
parameters.
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1 Introduction

Mathematical modeling problems can usually be formu-
lated in the form of a system of linear or nonlinear par-
tial differential equations. The first task of computer
simulation of a mathematical modeling problem is to
convert the continuous modeling problem into a discrete
problem to be solved using a computer. The system of
partial differential equations can be discretized by many
numerical discretization methods which, in most cases,
yields a system of linear algebraic equations. The coef-
ficient matrices of such linear systems are usually large
and sparse, i.e., many entries have the numerical value
of zero.

The solution of large sparse linear systems (sparse
matrices) is one of the most important problems in
large scale scientific computing. For the past 50 years,
many direct and iterative methods have been developed
for this purpose [5, 20]. Among them, the precondi-
tioned Krylov subspace methods [20] (with a Krylov
iterative solver and a preconditioner) is considered the
preferred methods. The preconditioners employed in
the preconditioned iterative solvers usually determine
the overall convergence rate of the iteration procedure
[32]. However, selecting a suitable preconditioner for a
specific sparse matrix arising from a particular applica-
tion to achieve fast convergence is the combination of
art and science, and presents a challenging problem for
many application scientists and engineers who have lit-
tle knowledge of the preconditioned iterative methods
[14, 15, 16].

There is an enlarging gap between the development
of more and more sophisticated preconditioned iterative
solvers by the computational linear algebra community



and the ability to understand and to properly use
these solvers by the application scientists and engineers
to solve their more and more complex modeling and
simulation problems. High performance computers and
numerical algorithms will be less useful if they are
not matched with the intended application problems.
In the context of preconditioning, the use of a wrong
preconditioner may render an iteration process diverge.

There has been a considerable amount of effort
made by several researchers and organizations to col-
lect various sparse matrices in order to use them for
test purposes. The National Institute of Standard and
Technology (NIST) has been playing a leading role in
this endeavor and currently hosts one of the largest such
repositories: MatrixMarket [18]. Several other collec-
tions have been contributed by engineers, scientists and
numerical analysts, e.g., the well-known Harwell-Boeing
sparse matrix collection and the University of Florida
sparse matrix collections [2]. NIST has done some cat-
egorization work and published some preliminary infor-
mation on these matrices. For each matrix this infor-
mation includes its type, dimensions, condition num-
ber, nonzero structure, etc. MatrixMarket is becoming
a standard source of sparse matrices for testing various
direct and iterative solution methods. However, there is
no information regarding which matrix can be solved by
what method using what parameters. Such information
would be extremely helpful for application scientists and
engineers as it would enable them to choose suitable
sparse matrix solvers for certain class of applications.

It is attractive to use machine learning techniques
to help application scientists and engineers to choose
suitable preconditioners for their particular application
problems. Sparse matrices arising from different appli-
cations do have certain different features. These fea-
tures may be represented by the sizes and the locations
of their nonzero entries. If we can determine and ex-
tract these matrix features, and study and learn how
the performance of the preconditioned Krylov subspace
methods is related to these matrix features, we may be
able to predict the performance of these preconditioned
iterative methods to solve other sparse matrices that
may have the same or similar features.

The idea of using matrix features and data min-
ing techniques to predict the possibility of solving a
sparse matrix by come preconditioners was first pro-
posed in [33]. Over the years, we have made significant
progress in extracting matrix features [25, 24], in us-
ing data mining techniques and matrix features to pre-
dict the condition numbers of sparse matrices [27, 26],
and in using data mining techniques and matrix fea-
tures to predict the solving status of sparse matrices
by matrix structure-based incomplete LU type precon-

ditioners such as ILU(0) and ILU(k) [28, 30, 29].

Different approaches with similar aims in scientific
computing have been proposed by other researchers.
Houstis et al. successfully built PYTHIA II and other
recommender systems for computational science appli-
cations [10, 11, 12]. Eijkhout et al. are exploiting the
concept of automatic and self-adapting numerical lin-
ear algebra algorithms and software for, among other
things, solving sparse linear systems [6, 7, 4, 31].

The process of extracting sparse matrix features
and the identified 66 matrix features are described
elsewhere [24, 25, 23]. In this paper we continue our
previous work to predict the solving status of a sparse
linear system with a certain preconditioned solver. The
preconditioner we work on in this paper is ILUT [19],
one of the popular preconditioners with many successful
applications. Unlike ILU(0) or ILU(k), ILUT needs two
preset parameters and it only works well under some
sets of values of these parameters. Different sparse
linear systems usually can be solved with ILUT with
different parameters. Our aim in this paper is to predict
with which parameter sets the sparse linear systems can
be solved by ILUT.

This paper is organized as follows: Section 2 ex-
plains the problem encountered in predicting the solv-
ing status of a sparse linear system using ILUT and our
method to resolve the problem. Singular value decom-
position (SVD) and sparsified SVD are introduced in
Section 3. The experiments are carried out and the re-
sults are reported in Section 4. The conclusion of this
paper is in Section 5.

2 ILUT Parameter Space

ILUT is a kind of incomplete LU preconditioner with
double dropping strategies. It is one of the most popular
preconditioners with many successful applications [16,
14]. In this paper, we will still use the preconditioned
GMRES (PGMRES) as our choice of preconditioned
Krylov subspace method, i.e., we use the iteration solver
GMRES with the ILUT preconditioner. PGMRES with
ILUT can solve some sparse linear systems that would
fail other preconditioners like ILU(0) (e.g., the matrix
F2DB in the Harwell-Boeing collection). With ILUT,
PGMRES may reduce the number of iterations to lower
the computational time [20].

Corresponding to the two dropping strategies, there
are two parameters used in ILUT. One is tolerance value
tol, the other is the number of fill-in [fil. Since the
[ fil parameter may be related to the size of the matrix
in question, we normalize it by using the number of
nonzero entries of the row in question. This parameter is
called the fill-in rate filr, i.e., the ratio of the number of
fill-in elements to the number of original nonzero entries



of each row. In this paper, we will use the fill-in rate filr
instead of [ fil in ILUT. Whether a sparse linear system
can be solved by ILUT and the number of iterations the
PGMRES will take are closely related to the values of
these two parameters. Given a sparse linear system,
we want to predict all the possible combination of
the parameters with which the linear system can be
solved. This is a quite hard problem, as both of
the parameters may take real positive values, and the
possible combination of the parameters may construct
arbitrary areas in a two-dimensional parameter space.
The left subfigure in Figure 1 illustrates the parameter
space of ILUT for a particular sparse linear system. The
closed grey area represents the parameter area within
which the sparse linear system can be solved. As the
area may be irregular and open and there may exist
more than one such areas, it is very difficult to find
some analytic functions to describe such area(s).

We propose to solve this problem by first choosing
some points in the parameter space as samples. Study-
ing the performance of ILUT with these sample parame-
ters, we can get the main idea of what kinds of combina-
tion of the parameters are favorable for a given sparse
linear system. In the right subfigure in Figure 1, the
dots represent sample points. If we can correctly predict
the solving status of a spars linear system at these sam-
ple points (red dot means that with the sample param-
eters the sparse linear system cannot be solved; black
dot means it can be solved), we may obtain an outline of
the parameter area(s) in which the sparse linear system
can be solved. We use support vector machine (SVM)
classification to predict the solving status of the sparse
linear systems by ILUT with a specific set of parame-
ters. We also use singular value decomposition (SVD)
and sparsified SVD to preprocess the matrix features to
improve the accuracy of prediction.

3 SVD and Sparsified SVD

3.1 Singular Value Decomposition Singular
Value Decomposition (SVD) [9] is a popular method in
data mining and information retrieval [3]. It is usually
used to reduce the dimensionality of the original
dataset.

Let A be a feature matrix of dimension n x m
representing the original dataset. The rows of the
matrix correspond to data objects and the columns to
attributes. The singular value decomposition of the
matrix A is [9)

A=UHVT,
where U is an n X n orthonormal matrix, H =
diag[o1,09,...,05] (s = min{m,n}) is an n x m diag-

onal matrix whose nonnegative diagonal entries are in
a descending order, and V7 is an m x m orthonormal

matrix. The number of nonzero diagonals of H is equal
to the rank of the matrix A.

Due to the arrangement of the singular values in
the matrix H (in a descending order), the SVD trans-
formation has the property that the maximal variation
among the objects is captured in the first dimension,
as o1 > o; for 4 > 2. Similarly much of the remain-
ing variations is captured in the second dimension, and
so on. Thus, a transformed matrix with a much lower
dimension can be constructed to represent the original
matrix faithfully. Define

Ay = UcHy V)L,

where Uy, contains the first k& columns of U, H}, contains
the first k nonzero diagonals of H, and V;! contains the
first k rows of V7. The rank of the matrix A is k.
With k being usually small, the dimensionality of the
dataset has been reduced dramatically from min{m,n}
to k (assuming all attributes are linearly independent).
It has been established that Ay, is the best k dimensional
approximation of A in the sense of Frobenius norm.

In data mining applications, the use of Ay to
represent A has another important function. The
removed part Er = A — Ay can be considered as the
noise in the original dataset A [1]. Thus, in many cases,
mining on the reduced dataset A may yield better
results than mining on the original dataset A.

To avoid a potential confusion, we point out here
that the matrix A is the feature space of all test sparse
matrices with all the extracted features. It is not any
of the sparse matrix in the linear systems to be solved.

3.2 Sparsified SVD The SVD sparsification con-
cept was proposed by Gao and Zhang in [8] for reduc-
ing the storage cost and enhancing the performance of
SVD in text retrieval applications. Several sparsifica-
tion strategies were proposed and experimented in [8].
The one that we used in this paper is the simplest one.

After reducing the rank of the SVD matrices, we
set some small size entries, which are smaller than a
certain threshold €, in Uy and VI, to zero. We refer
to this operation as the dropping operation [8]. For
example, given a threshold value €, we drop u;; in Uy
if |u;j| < e. Similarly, an element v;; in V! is also
dropped if |v;;| < e. Let Uy denote Uy with dropped
elements and V: denote V" with dropped elements, we
can represent the sparsified data matrix Ay, with

Ay, = UpHyV, .

The sparsified SVD method is equivalent to further
removing noise from the dataset Ap. Denote E, =
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Figure 2: Singular value decomposition and reduced dimension.

Ay — Ayp, we have
A=A, + Ey + E..

4 Experiments and Results

We conduct some experiments to test the prediction ac-
curacy of the solving status of the 319 sparse linear
systems by PGMRES with preconditioner ILUT with
different parameter sets. The sparse linear systems are
constructed by using sparse matrices from MatrixMar-
ket [18]. The parameter setting in PGMRES is the
same as that used in our previous paper [29]. To be
specific, the right hand sides of the linear systems are
constructed by assuming that the solutions are a vector
of all ones. The initial guessed solutions are a vector
of all zeros. The maximum number of iterations is 500.
The convergence stopping criterion is that the 2-norm
of the residual vectors is reduced by 7 orders of mag-
nitude. The iterative method used is GMRES(20) and
the preconditioner is ILUT. We use SV M L9kt [13] for
SVM classification [21, 22] and Matlab [17] for SVD.
The results are obtained by using a 5-fold cross valida-
tion. Detailed description about the SVM classification
and its application to the matrix preconditioner predic-
tion can be found in [23, 29].

4.1 Prediction with SVM Classification In this
section we test the accuracy of predicting the solving
status of sparse linear systems with the combination of
parameters using SVM classification. For the parameter
tol, we choose the most often used values 0.1, 0.01,
0.001, 0.0001 and 0.00001. For the parameter filr, the
sample values we choose are 1, 2, 3, 4, and 5. The
kernel we used in SVM classification is RBF, which is
expressed by:

2
_ lz—=51|
202

RBF : K(z,z;) =e
Figure 3 shows the average prediction accuracy with
different combination of the parameters. Here o is set
to be 0.1 in RBF kernel. We can see that the highest
prediction accuracy 92.79% is obtained with tol = 0.001
and filr = 1. The lowest prediction accuracy 83.6991%
is obtained with tol = 0.0001 and filr = 3. Generally
speaking, when tol is high, e.g., tol = 0.1 and filr is low,
e.g. filr = 1, the prediction accuracy is better. With
the increase of filr and the decrease of tol, prediction
accuracy becomes lower.
Figure 4 also shows the average prediction accuracy
with different combination of parameters. The differ-
ence from Figure 3 is that o is set to be 0.01 in RBF



tol
0.1 | 0921630 | 0.909091 | 0.902821 | 0.915361 | 0.915361
0.01 | 0.921630 | 0.909091 | 0.899687 | 0.902821 | 0.921630
0.001 | 0.927900 | 0.902821 | 0.868339 | 0.862069 | 0.858934
0.0001 | 0.912226 | 0.899687 | 0.836991 | 0.843260 | 0.884013
0.00001 | 0.924765 | 0.899687 | 0.843260 | 0.862069 | 0.865204
1 2 3 4 5 fir >

Figure 3: Prediction accuracy of SVM classification (o = 0.1).

kernel. However, it does not depict the same prediction
accuracy distribution as shown in Figure 3. Here the
highest prediction accuracy area is on the upper-right
corner of the figure, with tol from 0.1 to 0.01 and filr
from 4 to 5.

Figure 5 is obtained by setting o to be 0.001 in RBF
kernel. This figure shows another prediction accuracy
pattern. This time the highest prediction accuracy is
achieved with tol = 0.01 or filr = 1.

Figure 6 is obtained by setting ¢ to be 0.0001 in
RBF kernel. Its highest prediction accuracy area is also
on the upper-right corner of the figure, like in Figure 4
but much longer. To be specific, it is the area with tol
from 0.1 to 0.01 and filr from 2 to 5.

Table 1 describes the total prediction accuracy of
SVM classification with different ¢ values. In calculat-
ing the total prediction accuracy we take into account
all the combinations of parameters. The table shows
that the value of o does not affect the total prediction
accuracy much. All the total average prediction accu-
racy are between 89% and 90%, which means that SVM
classification works well for solving status prediction. In
the latter experiments, we set o = 0.001, as it provides
a good prediction accuracy and takes less time to train
than using ¢ = 0.01.

4.2 Applying SVD In many data mining applica-
tions, using SVD to preprocess data can improve the
performance of data mining algorithms. In this section,
we first apply SVD to the original data set of feature
space and then use SVM classification to predict the
solving status of the sparse linear systems to see if it
can improve the prediction accuracy. To compare the
results obtained with or without SVD, we set ¢ = 0.001
in RBF in this section. The size of the original feature
matrix to apply SVD is 319 x 66.

Table 2 shows the prediction accuracy obtained by
applying SVD with rank & = 60 in preprocessing. The
highest prediction accuracy 92.163% is obtained with
tol = 0.01 and filr = 4, which is similar to the highest

prediction accuracy in Figure 3. The lowest prediction
accuracy 84.6395% is obtained with tol = 0.0001 and
filr = 3, which is a little bit higher than the lowest
prediction accuracy in Figure 3. The high prediction
accuracy areas lie on the row with tol = 0.01 and the
column with filr = 1.

Table 3 is obtained with using k = 50 in SVD. The
high prediction accuracy pattern is exactly the same
as the one showed in Table 2. Actually, most of the
combinations of the tol and filr parameters have same
accuracy as in Table 2.

Table 4 is obtained with using k¥ = 40 in SVD. Its
high prediction accuracy pattern is quite different from
the ones in Table 2 and Table 3. The high prediction
accuracy area lies in the first two rows with tol = 0.1
and tol = 0.01.

Table 5 is obtained with using ¥ = 30 in SVD. In
this table the high prediction accuracy area lies in the
column with filr = 2.

Table 6 is obtained with using £ = 20 in SVD. In
this table the high prediction accuracy area lies in the
area with tol = 0.01 and filr from 3 to 5.

To sum up all the patterns of high prediction
accuracy areas appear in Table 2 - Table 6, we can see
that high prediction accuracy is usually obtained with
tol = 0.1 and tol = 0.01, or filr =1 and filr = 2.

Table 7 shows the total prediction accuracy after ap-
plying SVD with different rank. The total prediction ac-
curacy without SVD with the same o value is 0.894044,
which is the same as applying SVD with £ = 60. When
we choose k = 50, the total prediction accuracy after ap-
plying SVD is 0.894169, a little higher than that without
using SVD. But from then on, with the decrease of rank
k, the total prediction accuracy also drops. This table
shows that applying SVD can improve the accuracy a
little in this experiment. However, even the the rank &
is set to be very small, e.g., less than one third of the
number of attributes, the total prediction accuracy will
not drop much.



tol

0.1 | 0.890282 0.912226 0.899687 0.915361 0.915361
0.01 | 0.896552 0.896552 0.890282 0.921630 0.921630
0.001 | 0.905956 | 0.896552 | 0.855799 | 0.880878 | 0.874608
0.0001 | 0.890282 | 0.902821 | 0.884013 | 0.890282 | 0.924765
0.00001 | 0.899687 | 0.909091 | 0.874608 | 0.884013 | 0.899687
1 2 3 4 5 i
Figure 4: Prediction accuracy of SVM classification (o = 0.01).
tol
0.1] 0.905956 0.899687 0.890282 0.899687 0.899687
0.01 | 0.909091 0.909091 0.918495 0.921630 0.918495
0.001 | 0.905956 0.899687 0.846395 0.862069 0.868339
0.0001 | 0.905956 0.905956 0.874608 0.849530 0.902821
0.00001 | 0.905956 0.905956 0.880878 0.868339 0.896552 >
1 2 3 4 5 filr

Figure 5: Prediction accuracy of SVM classification (¢ = 0.001).

4.3 Applying Sparsified SVD In sparsified SVD
(SSVD), we drop small entries in the Uy and VI ma-
trices. This method can save memory space, it can also
improve the performance of data mining algorithms in
some applications [8]. In this section, we conduct some
experiments on preprocessing the original matrix fea-
tures using sparsified SVD and then use SVM classifi-
cation to predict the solving status of the sparse linear
systems to see if it can improve the prediction accuracy.
To compare the results obtained with or without SSVD
and with SVD, we set ¢ = 0.001 in RBF and k£ = 50 in
SVD.

Tables 8 - 10 list the prediction accuracy of using
SSVD with a decreasing value for the dropping thresh-
old e. Table 8 shows the average prediction accuracy af-
ter applying SSVD with € = 0.01 using different combi-
nations of tol and filr. The highest prediction accuracy
92.163% is obtained with tol = 0.01 and filr = 4, which
is similar to the highest prediction accuracy in Figure
3 and the same as using SVD method. The lowest pre-
diction accuracy 82.4451% is obtained with tol = 0.001
and filr = 3, which is a little lower than the lowest pre-
diction accuracy obtained by without using SSVD and
by using SVD. The high prediction accuracy area in this
table lies in the area with tol = 0.01 and filr from 3 to
5.

Table 9 shows the average prediction accuracy after
applying SSVD with ¢ = 0.001. Besides the high

prediction accuracy area appears in Table 8, there is
one more small area with tol = 0.1 and filr from 4 to
5.

Table 10 shows the average prediction accuracy
after applying SSVD with € = 0.0001. This time the
high prediction accuracy area is exactly the same as the
ones in Table 9.

We have also tested the prediction accuracy after
applying SSVD with e = 0.00001. But the results are
the same as the ones in Table 10 so we just omit it
here. From the three tables in this section, we can see
that the area with tol = 0.01 and filr from 3 to 5
is the area that works best for SSVD. High prediction
accuracy can be obtained by using parameters in this
area with whichever € values.

Table 11 shows the total prediction accuracy after
applying SSVD with different dropping threshold e.
With the decrease of ¢, the total accuracy drops as less
elements in the matrix are set to be 0. Same accuracy
is obtained with ¢ = 0.0001 and € = 0.00001, as after a
certain € value, no more elements in the matrix will be
dropped. The best accuracy obtained by SSVD in this
example is 88.2132%, which is lower than using SVD or
without using any preprocessing method.

5 Conclusion

We have proposed a method to predict the solving status
of a sparse linear system using PGMRES with ILUT,



tol

0.1 | 0.899687 0.909091 0.905956 0.905956 0.905956

0.01 | 0.893417 0.909091 0.909091 0.915361 0.915361

0.001 | 0.890282 0.899687 0.865204 0.849530 0.896552

0.0001 | 0.890282 0.896552 0.868339 0.846395 0.896552

0.00001 | 0.890282 0.896552 0.874608 0.865204 0.887147

1 2

>
3 4 5 filr

Figure 6: Prediction accuracy of SVM classification (o = 0.0001).

o 0.1

0.01 0.001 0.0001

Total Accuracy | 0.892414

0.897304 | 0.894044 | 0.891285

Table 1: Total prediction accuracy of SVM classification with different o.

which has two parameters. The problem is hard as it is
difficult to predict all the possible areas in the parameter
space that a given sparse linear system can be solved.
We choose some sample points in the parameter space
to predict the solving status of sparse linear systems
at such sample points. Then we can have an idea of
the outline of the area in the parameter space that the
sparse linear system can be solved.

We used SVM classification in prediction and ex-
perimented SVD and sparsified SVD to preprocess the
matrix features. The experimental results show that us-
ing SVM classification alone the total average accuracy
of prediction on all the sample points are above 89%.
The SVD method can improve the accuracy a little bit
but the sparsified SVD method does not work well in
this problem. We also analyzed in detail the area pat-
terns in parameter space that can obtain high prediction
accuracy in each prediction method.

Our study is one part of a broader effort to build
a data mining techniques based intelligent precondi-
tioner recommendation system for application scientists
and engineers [23]. The intelligent recommendation sys-
tem will work as follows: when a matrix is submitted
through an interface, the preprocessing unit calculates
the attributes of the matrix and passes on the attributes
to the classification tool. The classification tool predicts
which preconditioner would work best for the matrix as
well as the suitable parameters. Then it sends the sug-
gestions back to the interface. The matrix is saved in
the database. It is solved using different sets of precon-
ditioned solvers and the results are stored in the respec-
tive solver tables. The data mining tool periodically
searches (mines) the database for rules and knowledge,
and saves what it obtains in the knowledgebase. With
more and more matrices stored in the database, the pre-

dictions (recommendations) given by the system will be
more and more accurate.
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tol filr=1 | filr=2 | filr=3 | filr=4 | filr=5
01 0.877743 | 0.887147 | 0.880878 | 0.887147 | 0.887147
0.01 0.862069 | 0.890282 | 0.909091 | 0.918495 | 0.915361
0.001 | 0.874608 | 0.893417 | 0.858934 | 0.852665 | 0.880878
0.0001 | 0.880878 | 0.902821 | 0.874608 | 0.855799 | 0.890282
0.00001 | 0.884013 | 0.899687 | 0.884013 | 0.868339 | 0.890282

Table 6: Prediction accuracy after applying SVD with k& = 20.

K

60

50

40

30

20

tol

0.894044

0.894169

0.892790

0.889279

0.884263

Table 7: Total prediction accuracy after applying SVD with different rank.

tol filr=1| filr=2 | filr =3 | filr=4 | filr=5
0.1 0.909091 | 0.896552 | 0.877743 | 0.896552 | 0.896552
0.01 0.896552 | 0.899687 | 0.902821 | 0.92163 | 0.912226
0.001 | 0.902821 | 0.887147 | 0.824451 | 0.84953 | 0.858934
0.0001 | 0.887147 | 0.890282 | 0.852665 | 0.846395 | 0.890282
0.00001 | 0.893417 | 0.890282 | 0.852665 | 0.846395 | 0.871473

Table 8: Prediction accuracy after applying SSVD with € = 0.01.

tol filr=1 | filr=2 | filr=3 | filr=4 | filr=5
01 0.899687 | 0.899687 | 0.887147 | 0.902821 | 0.902821
0.01 0.899687 | 0.899687 | 0.902821 | 0.915361 | 0.912226
0.001 | 0.902821 | 0.890282 | 0.84326 | 0.858934 | 0.865204
0.0001 | 0.887147 | 0.890282 | 0.858934 | 0.84953 | 0.899687
0.00001 | 0.890282 | 0.893417 | 0.868339 | 0.846395 | 0.887147

Table 9: Prediction accuracy after applying SSVD with ¢ = 0.001.

tol filr=1| filr=2 | filr=3 | filr=4 | filr=5
0.1 0.899687 | 0.899687 | 0.887147 | 0.902821 | 0.902821
0.01 0.899687 | 0.899687 | 0.902821 | 0.915361 | 0.912226
0.001 | 0.902821 | 0.890282 | 0.84326 | 0.862069 | 0.865204
0.0001 | 0.887147 | 0.890282 | 0.858934 | 0.84953 | 0.899687
0.00001 | 0.890282 | 0.893417 | 0.868339 | 0.84953 | 0.887147

Table 10: Prediction accuracy after applying SSVD with ¢ = 0.0001.

€

0.01

0.001

0.0001

0.00001

Total

Accuracy

0.882132

0.886144

0.886395

0.886395

Table 11: Total prediction accuracy after applying SSVD with different dropping threshold.




