
Latent Semantic Analysis and Fiedler Embeddings∗

Bruce Hendrickson†

Abstract
Latent semantic analysis (LSA) is a method for information
retrieval and processing which is based upon the singular
value decomposition. It has a geometric interpretation in
which objects (e.g. documents and keywords) are placed in a
low-dimensional geometric space. In this paper, we derive an
alternative algebraic/geometric method for placing objects
in space to facilitate information analysis. We show that our
method is closely related to LSA, and essentially equivalent
for particular choices of scaling parameters. We then show
that our approach supports a number of generalizations and
extensions that existing LSA approaches cannot handle.

1 Introduction

Latent semantic analysis (LSA) is a well–known tool
for information retrieval and analysis. The canonical
example of LSA begins with a term–document matrix
in which matrix rows correspond to key-words or terms,
and matrix columns are documents. A nonzero value
in the matrix means that the corresponding document
contains the corresponding term. This vector space
model of information is due to Salton [14].

Instead of working directly with this matrix, LSA
replaces it with a low rank approximation using the sin-
gular value decomposition [6]. A variety of interpreta-
tions of LSA have been proposed. It is a noise reduction
technique in which only the most significant parts of the
term–document matrix are retained. Alternatively, it is
a method for mapping terms and documents into ge-
ometric spaces, after which geometric algorithms can
facilitate analysis.

The purpose of this paper is to derive a novel al-
gebraic algorithm for placing terms and documents in
space. Our approach is closely related to LSA, and we
show it to be essentially equivalent under certain scal-
ing choices. Whereas traditional LSA is motivated by
a matrix approximation argument, our alternative fol-
lows from a geometric optimization problem. Besides
providing a fresh perspective on LSA, we show that
our approach allows for novel generalizations and exten-
sions that are not possible with traditional approaches.

∗This work was supported by the LDRD program at Sandia

National Laboratories. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed-Martin Company,

for the U.S. DOE under contract number DE-AC-94AL85000.
†Discrete Algorithms & Math Dept., Sandia National Labs.

Email: bah@sandia.gov

For instance, our methodology supports queries that in-
volve both terms and documents, e.g. “with these terms
AND similar to these documents”. As another exam-
ple, unlike existing LSA techniques, our approach al-
lows for the consideration of term–term and document–
document similarities in generating the geometric em-
bedding. The former might come from co–citation or
link analysis, while the latter could be provided by a
thesaurus.

In §2 we review the intuition and mathematics
underlying traditional LSA. In §3 we introduce a simple
geometric optimization problem and derive an algebraic
solution. Then in §4 we demonstrate that the solution
to our geometric problem is essentially equivalent to
LSA. Finally, in §5, we discuss some of the benefits
of our alternative derivation, including some ideas for
extending LSA in new ways. In particular, we show how
it allows for new kinds of relationships to be included
in the same mathematical framework.

As we will discuss in §3, the geometric problem we
use to motivate our approach reduces to the calcula-
tion of eigenvectors of the Laplacian matrix of a graph.
Laplacian eigenvectors have been used in a wide range
of applications in combinatorial optimization including
graph partitioning [10], clustering [7], and linear ar-
rangement [11]. For some of the development in this
paper, we will be interested in the Laplacian eigenvec-
tors of bipartite graphs. The resulting matrix has a
natural 2× 2 block structure. Others have used Lapla-
cian eigenvectors of bipartite graphs e.g. Berry, et al. for
reordering term/document matrices [5], Dhillon [7] and
Zha, et al. [15] for data clustering, and Newton, et al. for
graph drawing [13]. But to our knowledge, the connec-
tion to LSA described in this paper is new. In a paper
similar in spirit to this one, Bartell, et al. have shown
that LSA is equivalent to a special case of a different
geometric optimization problem known as multidimen-
sional scaling [1].

2 Latent Semantic Analysis

In this section we briefly sketch the fundamental oper-
ations in latent semantic analysis (also known as latent
semantic indexing). We follow the traditional deriva-
tion in which LSA is motivated by an optimal matrix
approximation. More comprehensive presentations can

be found in some of the citations e.g. [6, 4, 2, 3].
The canonical example of LSA begins with a t × d

term–document matrix A. Each row of A is associated
with a keyword or term, and each column is a document.
A matrix entry A(i, j) is a non-negative value which en-
codes the importance of the term i in the document j.
There is an extensive literature on methods for gener-
ating such a matrix from a corpus of documents, but
the construction process is beyond the scope of the cur-
rent paper. Often, the term–document matrix is scaled
to achieve some attractive normalization property, or
to weight some terms or documents more heavily than
others. Thus, we will consider the more general scaled
term–document matrix B = DtADd, where Dt and Dd

are non-negative diagonal matrices of size d×d and t×t
respectively.

In this vector space model of information, a doc-
ument is described as a (weighted) vector of terms of
which it is comprised. Two documents are similar if
the inner product of their vectors is large. Thus, the
matrix BT B describes the set of inter-document simi-
larities. A query q is also a (weighted) vector of terms.
The answer to a query is a set of documents that are
similar to it, e.g. documents whose vectors have large
inner-products with the query vector, that is large val-
ues in BT q. (Most commonly, similarity is measured in
angular distance, that is, as a direction cosine between
the two vectors, which is just a normalized version of
the inner product.)

Unfortunately, this simple model has a variety of
well-known shortcomings. Most notably, small differ-
ences in vocabulary (e.g. car instead of automobile) can
make documents look different from queries, even if
their topics are overlapping. LSA attempts to address
this problem through compression and noise reduction.
Specifically, LSA uses matrix transformations to retain
only the most significant portions of B, and then per-
forms queries in this transformed space.

More formally, LSA is constructed around the sin-
gular value decomposition (SVD) of B,

B = UΣV T ,

Where U and V are orthogonal matrices and Σ is
diagonal and non-negative. The diagonal values of Σ
are ordered to be non-increasing. In LSA, the matrix is
approximated by a truncated SVD in which the first k
diagonal values of Σ are retained, but the rest are set
to zero. That is,

B ≈ Bk = UkΣkV T
k ,

where Uk is t × k, Σk is k × k and Vk is d × k. The
truncated SVD is the best rank k approximation to B
in the Frobenius norm.

The truncated SVD can be thought of as generat-
ing a k-dimensional embedding of the terms and docu-
ments. However, it is important to note that the term
coordinates and the document coordinates are distinct
entities. The notation in the field is inconsistent with
respect to the scaling factors, but we choose to define
the columns of Σ1/2

k V T
k as the document vectors and

Σ1/2
k UT

k as the term vectors.
With the truncated SVD approximation to B, the

inner-products required for document-document simi-
larities can now be approximated as BT B ≈ BT

k Bk =
(Σ1/2

k V T
k)T Σk(Σ1/2

k V T
k), that is, as the inner product of

document vectors, scaled by Σk.
Given a query vector q, we want to embed q

into the document space in such a way that inner
products with document vectors approximate BT q. It
is straightforward to see that this is achieved by letting
the transformed query vector q̂ be Σ1/2

k UT
k q, with a

standard, unscaled inner product. (N.B. Alternatively,
we could have used an inner product scaled by Σk as for
document-document comparisons, in which case q̂ would
be Σ−1/2

k UT
k q. Both approaches lead to interpretation

challenges since either the scaling of queries differs from
that of documents, or the inner product differs for
different kinds of questions.)

These procedures are summarized in Figure 1.

LSA document Embedding:
Given scaled term/document matrix B.
(1) Compute truncated SVD of B, UkΣkV T

k .
(2) The position of document i is Σ1/2

k V T
k ei.

Querying:
Given Document embedding, and query vector q.
(1) Compute query location = Σ1/2

k UT
k q.

(2) Return documents nearest to query point
(nearest in angular distance).

Figure 1: LSA algorithms for term/document embed-
dings and querying.

3 Graphs, Laplacian Eigenvectors, and Fiedler
Embeddings

As sketched above in §2, the traditional derivation of
LSA is based upon optimal matrix approximations. But
informally, the method succeeds in mapping documents
into geometric space in such a way that similar doc-
uments are close to each other. In this section, we
will pick up on this geometric closeness objective and
develop an alternative algebraic method that explicitly

tries to optimize closeness. For reasons that will be clear
shortly, we will call our approach a Fiedler embedding
algorithm. In §4, we will discuss the mathematical rela-
tionship between traditional LSA and our methodology.

Our approach begins with a graph G = (V,E) in
which V is a set of vertices and E is a set of vertex pairs
known as edges. An edge (i, j) connecting vertices i and
j has a non-negative weight wi,j which describes how
similar the two vertices are. Larger weights correspond
to a greater degree of similarity. In §4 we will look
at the special case where the vertices are terms and
documents, and the similarities are entries of the scaled
term–document matrix B. But for now, we will consider
the more abstract and general problem.

Our goal is to place the vertices of the graph into
a low-dimensional geometric space in such a way that
similar vertices are close to each other (i.e., edge lengths
will be short). Geometric embeddings of graphs can be
useful for a variety of reasons, but for the purposes of
this paper, our eventual goal is the same of the goals of
LSA. We hope to use geometric proximity as a way to
identify vertices that are similar to each other, even if
they don’t have an edge between them.

The geometric embedding problem can be posed as
an algebraic minimization. There are many ways to
mathematically describe such an embedding, but one
will be particularly useful. Specifically, we choose to
find points in k space that minimize the weighted sum of
the square of edge lengths. That is, if pr is the location
of vertex r, then

Minimize
∑

(r,s)∈E

wr,s|pr − ps|2

If the number of vertices is n, and the geometric space
has dimensionality k, then the positions of the vertices
can be considered to be an n× k matrix X. Define the
Laplacian matrix L as follows.

L(i, j) =

 −wi,j if eij ∈ E∑
k wi,k if i = j
0 Otherwise.

That is, the Laplacian is the negative of the matrix
of weights, except that the diagonal values are chosen
to make row-sums zero. Note that L is symmetric
and positive semi-definite. After a bit of algebra, our
minimization problem can now be rewritten as

Minimize Trace(XT LX)(3.1)

This minimization problem is poorly posed for three
reasons. First, it is invariant under translations. To
avoid this problem we can add a constraint to make the
median of the point set be the origin. That is,

(Constraint 1) XT
i 1n = 0 for i = 1 . . . k,(3.2)

where 1n denotes the vector of n ones.
Second, even with this constraint the minimization

problem has the trivial solution of placing all the
vertices at the origin. To avoid this, we can simply
insist that the sum of squares of each coordinate value
is nonzero. That is,

(Constraint 2) for i = 1, . . . , k XT
i Xi = δi(3.3)

for some positive values δi. Without loss of generality,
we will choose to order the axes so that the δi values are
non-increasing. We will have more to say about these
values when we compare the Laplacian approach to LSA
in §4.

Finally, we want to ensure that each coordinate
conveys distinct information. We accomplish this by
imposing the constraint that the vector of coordinate
values in each dimension is orthogonal to the coordinate
values from any other dimension.

(Constraint 3) for i 6= j XT
i Xj = 0.(3.4)

Denoting the diagonal matrix of δ values by ∆,
we can combine constraints 2 and 3, resulting in the
following optimization problem.

Minimize Trace(XT LX)(3.5)
Subject to :

(i) XT
i 1n = 0 for i = 1 . . . k,

(ii) XT X = ∆

L is positive semi-definite, and it has an eigenvector
proportional to 1n with eigenvalue 0. If the graph is
connected, then all other eigenvalues are positive [8, 9].
Now sort the eigenvalues λi in non-decreasing order,
and let the corresponding normalized eigenvectors form
a matrix Q so that L = QT ΛQ. Note that constraint (i)
disallows columns of X from having any component in
Q1, but since the eigenvectors of a symmetric matrix
are orthogonal, all other eigenvectors of L satisfy this
constraint.

We can represent X in terms of Q; that is, let
X = QZ for some n × k matrix Z. Our constrained
minimization problem can now be written as

Minimize Trace(ZT QT LQZ) = Trace(ZT ΛZ)(3.6)
Subject to :

(i)Z(1, ∗) = 0
(ii)ZT Z = ∆

The first constraint is a consequence of the exclusion
of any contribution from the first eigenvector of L
bh(the constant vector). It is not hard to see that
the solution to (3.6) is to have the columns of Z span

the space spanned by the unit vectors e2, . . . , ek+1.
Furthermore, the large values of ∆ should be paired
with the small values of Λ. Recall that the diagonal
entries in Λ are non-decreasing, while those of ∆ are
non-increasing. If these diagonal matrices have non-
repeating values, then Z = ∆1/2[e2, . . . , ek+1]. (If
∆ or Λ have repeated values, then the solution is
degenerate and any basis for the subspace spanned by
the corresponding columns of repeated values are also
minimizers.)

It follows that a solution to Eq. 3.5 is

X = ∆1/2[Q2, . . . , Qk+1].(3.7)

That is, the coordinates of vertex i are just the ith
entries of eigenvectors 2, . . . , k + 1 of L, scaled by the
square roots of the δ values. We will call this solution
a Fiedler embedding in honor of Miroslav Fiedler’s
pioneering work exploring the relationships between
graphs and Laplacian eigenvectors. It is worth noting
that these eigenvectors are also low energy oscilations
for certain mass and spring systems.

3.1 Queries Once we have embedded the graph in
space, we can use geometry to identify pairs of similar
vertices. Two vertices might not have an edge between
them, but they might still be similar if they have many
neighbors in common. Since the Fiedler embedding tries
to keep edge lengths short, vertices sharing neighbors
should be placed close to each other. So given a
vertex, its geometrically nearest neighbors are natural
candidates for similarity. In this discussion, Euclidean
distance is the most natural metric, but as noted above,
LSA traditionally uses angular distance, measured by
direction cosines.

Now suppose we want to add a new vertex to the
geometric space, and this vertex is known to be similar
to some of the vertices we have already placed. In the
language of LSA, this new vertex corresponds to a query
and its known similarity values comprise a query vector.
Once the new vertex is given coordinates, we could use
geometric algorithms to find nearby vertices, and these
would be the output of the query.

As with the derivation of the Fiedler embedding, we
wish to place this new vertex into the space in such a
way that it is near to vertices it is known to be similar to.
Mimicking the development above, we will position the
new vertex to minimize the (weighted) sum of squares
of distances to the vertices it has an edge to. That is,
we wish to find a position px which solves

Minimize
∑

(s,x)∈E

ws,x|ps − px|2.

Setting the derivative to zero, it is easy to see that

the solution to this problem is

px =
∑

(s,x)∈E

ws,xps/
∑

(s,x)∈E

ws,x = ∆1/2QT q/||q||1.

where q is the vector of similarity values for the new
vertex (values of w in the derivation above).

To summarize, the Fiedler procedure for construct-
ing coordinates and querying are sketched in Figure 2.

Fiedler Embedding:
Given a graph, W , a non-negative, symmetric

matrix of vertex similarities, and ∆ a diagonal,
non-negative matrix of coordinate scalings.

(1) Generate Laplacian matrix L from W .
(2) Compute eigenvectors uj corresponding to the

k + 1 smallest eigenvalues of L.
(3) Let Q = [u2, . . . , uk+1].
(4) Position of vertex i is ∆1/2QT ei.

Querying:
Given Graph embedding and new entity with

similarity/query vector q.
(1) Compute query point = ∆1/2QT q/||q||1.
(2) Return vertices nearest to query point

(nearest in Euclidean distance).

Figure 2: Fiedler algorithms for graph embedding and
querying.

4 Relationship Between LSA and Fiedler
Embeddings

Comparing Figures (2) and (1), two differences stand
out. First, one is using Laplacian eigenvectors and
the other uses left and right singular vectors. Below
we argue for the essential equivalence of these two
decompositions. Second, the Fiedler approach involves
scaling by ∆ (the normalization constraints from the
minimization problem) while LSA uses scaling by the
singular values Σk. As the normalization values were
unspecified in the derivation of the Laplacian approach,
we can, if desired, choose to set them equal to the
singular values.

The Fiedler embedding from §3 involves small eigen-
vectors of a Laplacian matrix, while the LSA embed-
ding uses large singular vectors from the scaled term–
document matrix. Although seemingly quite different,
these spaces are very closely related. To see this, inter-
pret the scaled term–document matrix to express simi-
larities between terms and documents. Now imagine a
graph in which terms and documents are both treated

as vertices, and similarity values come from the cor-
responding entries in the scaled term–document ma-
trix. The Laplacian matrix of this graph will have
a block structure, reflecting the bipartite graph that
comes from having only term/document similarities but
no term/term or document/document entries. That is,

L =
(

D1 −B
−BT D2

)
,(4.8)

where D1 and D2 are diagonal matrices which make
the row sums zero. The Fiedler embedding consists of
eigenvectors of this matrix with small eigenvalues.

Now consider the space used in traditional LSA.
Recall that the left and right singular vectors of B are
closely related to the eigenvectors of a larger matrix M ,
where

M =
(

0 B
BT 0

)
.(4.9)

That is, if (σ, u, v) comprises a singular triplet of B,
then (σ, v : u) is an eigen pair of M , where u : v
indicates concatenation of u and v. So the space
used in LSA consists of eigenvectors of M with large
eigenvalues. The matrix I − M will have identical
eigenvectors to M , but the ordering of the eigenvalues
will be reversed. Consequently, LSA can be considered
to be a projection into the space of the eigenvectors of
the smallest eigenvalues of

I −M =
(

I −B
−BT I

)
.(4.10)

A comparison of Eq. 4.10 with Eq. 4.8 illustrates the
close similarity between the spaces utilized by LSA and
by the Fiedler embedding. The matrices are identical in
the case where D1 and D2 are identity matrices. This
will happen when the term–document matrix has been
scaled to be doubly stochastic, that is, to have unity row
and column sums. Recall, however, that LSA uses the
first k eigenvectors, while the Fiedler embedding skips
the first and uses the next k since it knows that the first
is a constant vector.

Now consider querying operations in the LSA and
Fiedler approaches. In the term–document setting, a
query will be a vector of terms, so in the language
of eigenvectors of I = M it will only have nonzeros
in the first t entries of a larger t + d vector. The
query operations from Figs. 1 and 2 are structurally
similar. As discussed above the spaces represented by
Uk in LSA and QT in the Fiedler embedding are very
closely related. The scaling values ∆ in the Fiedler
approach are free parameters, and so, if desired, can be
chosen to be equal to the singular values Σk. With this
equivalence, the only remaining difference in the query

operation has to do with normalization of the output
vector. Since LSA typically uses direction cosines, this
normalization is irrelevant. The normalization by ||q||1
in the Fiedler algorithm is appropriate for a Euclidean
distance metric.

In summary, the Fiedler embedding approach to
information retrieval is very closely related to LSA
in the case where the data is represented as a term–
document matrix. When B is scaled to be doubly
stochastic, the eigenspaces uses by the two approaches
are identical, except that LSA uses the first k vectors
while the Fiedler embedding uses the second through
the k + 1st. If the normalization values in the Fiedler
embedding are chosen to be the singular values of B,
then the query operations are also very closely related.

However, there are no obvious reasons to choose
these particular scalings. In fact, a doubly stochastic
scaling of the term–document matrix forces all terms
and documents to be treated equally, which may be
undesirable. Instead, consider both LSA and the Fiedler
embedding to be classes of algorithms with some free
parameters. The discussion above argues that these
algorithms are closely related and overlap for some
choices of parameter settings.

5 Benefits of Fiedler Retrieval

As explained in §2, the Fiedler retrieval approach intro-
duced in §3 can be viewed as a close cousin to traditional
LSA. We believe it provides several distinct advantages
over traditional LSA formulations. It provides a simple
and intuitive way to explain the power of LSA. But it
also has some more concrete advantages.

• The Fiedler embedding is an explicit attempt to
place similar objects near to each other. This ob-
jective is often alluded to in the LSA literature, but
with traditional presentations of LSA the mathe-
matical underpinnings of nearness are opaque.

• Unlike traditional LSA, in Fiedler retrieval terms
and documents are treated equivalently and co-
located in the same space. As itemized below,
this creates opportunities for several extensions to
traditional LSA. It is worth noting that algorithms
for symmetric eigenvalue computations are closely
related to SVD algorithms, so the cost of Fiedler
retrieval should be similar to that of the SVD
computation. With terms and documents being
equivalent, algorithms for queries are simplified
and unified. This disproves a claim made by
Deerwester, et al. [6]. “... it is not possible to make
a single configuration of points in space that will
allow both between [term/document] and within
[term/term] comparisons.” Among the extensions

made possible by the Fiedler viewpoint are the
following.

– In the standard development of LSA it is as-
sumed that the only usable information is
term/document connections. LSA does not
naturally allow for inclusion of any additional
information related to term/term or docu-
ment/document similarities. However, noth-
ing in the derivation of the Fiedler retrieval
algorithm from §3 exploited the bipartite na-
ture of the graph. That is, the diagonal
blocks of the Laplacian matrix need not be
diagonal matrices. In other words, we could
have explicitly added information about docu-
ment/document or term/term similarities into
our construction. For instance, citation anal-
ysis or hyperlinks could have provided docu-
ment/document similarities or a thesaurus or
dictionary could have offered term/term simi-
larities. In a web setting, link and text analy-
sis can be combined into a common algebraic
framework. In a recommender system, prod-
uct/product similarities could be included, en-
hancing current methods that just include
consumer/product information. Fiedler re-
trieval allows for a principled inclusion of such
information.

– Similarly, Fiedler retrieval supports queries
that include both term and document similar-
ities. For example, one could search for doc-
uments similar to a few particular documents
and a few specific terms. These kinds or cross-
queries are problematic for traditional LSA.

– LSA is traditionally constrained to capturing
the relationships between two classes of ob-
jects, e.g. terms and documents. It is un-
clear how to extend the standard methodol-
ogy to more object classes, e.g. terms, doc-
uments and authors. Fiedler retrieval is not
limited in this way. The Laplacian matrix
will have a logical block structure, with as
many block-rows and block-columns as object
classes. That is, the rows and colums of the
matrix will have entries for terms, documents
and authors. The diagonal blocks will cap-
ture similarities between objects of the same
type (e.g. authors with authors), while the
off-diagonal blocks will encode similarities be-
tween disparated types. Several researchers
have recently proposed to solve this problem
by extending the term–document matrix to
higher dimension and using multilinear alge-

bra techniques (e.g. the TOPHITS approach
of Kolda and Bader [12]). Although these ap-
proaches are mathematically elegant, compu-
tations on tensors are much more challeng-
ing than those on matrices. With Fiedler re-
trieval, we retain many of the advantages of
tensors, while retaining the algorithmic and
mathematical benefits of working with two-
dimensional matrices.

Acknowledgements

The ideas in this paper have benefitted from discussions
with Tammy Kolda, Liz Jessup, Mike Berry, Inderjit
Dhillon, Brett Bader, Erik Boman, Chris Ding and
Petros Drineas.

References

[1] B. T. Bartell, G. W. Cottrell, and R. K. Belew,
Latent semantic indexing is an optimal special case
of multidimensional scaling, in Proc. Annual Interna-
tional ACM SIGIR Conf. Research and Development
in Information Retrieval, ACM, 1992, pp. 161–167.

[2] M. Berry and M. Browne, Understanding Search
Engines: Mathematical Modeling and Text Retrieval,
SIAM, Philadelphia, 1999.

[3] M. Berry, Z. Drmac, and E. Jessup, Matrices,
vector spaces, and information retrieval, SIAM Review,
41 (1999), pp. 335–362.

[4] M. Berry, S. Dumais, and G. O’Brien, Using lin-
ear algebra for intelligent information retrieval, SIAM
Review, 37 (1995), pp. 573–595.

[5] M. W. Berry, B. Hendrickson, and P. Ragha-
van, Sparse matrix reordering schemes for browsing
hypertext, in Lectures in Applied Mathematics, vol. 32,
AMS, 1996, pp. 99–123.

[6] S. Deerwester, S. Dumais, G. Furnas, T. Lan-
dauer, and R. Harshman, Indexing by latent seman-
tic analysis, Journal of the American Society for Infor-
mation Science, 41 (1990), pp. 391–407.

[7] I. S. Dhillon, Co-clustering documents and words
using bipartite spectral graph partitioning, in Proc. 7th
Intl. Conf. Knowledge Discovery & Data Mining, ACM,
2001.

[8] M. Fiedler, Algebraic connectivity of graphs, Czech.
Math. Journal, 23 (1973), pp. 298–305.

[9] , A property of eigenvectors of nonnegative sym-
metric matrices and its application to graph theory,
Czech. Math. Journal, 25 (1975), pp. 619–633.

[10] B. Hendrickson and R. Leland, An improved spec-
tral graph partitioning algorithm for mapping paral-
lel computations, SIAM J. Sci. Comput., 16 (1995),
pp. 452–469.

[11] M. Juvan and B. Mohar, Optimal linear labelings
and eigenvalues of graphs, Discrete Appl Math., 36
(1992), pp. 153–168.

[12] T. G. Kolda, B. W. Bader, and J. P. Kenny,
Higher-order web link analysis using multilinear alge-
bra, in Proc. IEEE Intl. Conf. Data Mining, November
2005.

[13] M. C. Newton, O. Sykora, and I. Vrto, Two new
heuristics for the 2-sided bipartite crossing number, in
Proc. 10th Intl. Symp. Graph Drawing, Lecture Notes
in Computer Science 2528, Springer, 2002, pp. 312–319.

[14] G. Salton and M. McGill, Introduction to Modern
Information Retrieval, McGraw Hill, New York, 1983.

[15] H. Zha, X. He, C. Ding, M. Gu, and H. Simon,
Bipartite graph partitioning and data clustering, in
Proc. 10th Intl. Conf. Info. & Knowledge Mgmt., ACM,
2001.

