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Abstract

Non-negative matrix factorization (NMF) is an unsu-
pervised subspace method that finds an approximate
factorizationA ≈ WH into non-negative factorsW
andH. In this paper, we introduce an one-sided NMF
that imposes a non-negativity constraint onW with-
out the non-negativity ofH so as to obtain only non-
negative basis vectors. In addition, we present an one-
side NMF that enforces a non-negativity constraint on
notW butH for the learning of non-subtractive combi-
nation of basis vectors that have arbitrary signs. Finally,
we propose a non-negative centroid dimension reduc-
tion algorithm.

1 Introduction

In many data mining problems, dimension reduction
is imperative for efficiently manipulating the massive
quantity of high dimensional data, i.e. efficient classi-
fication [8], clustering [6], and faster searches [2]. To
be useful, the lower dimensional representation must
be a good approximation of the original dataset given
in its full space. There are several types of unsu-
pervised low-rank dimension reduction methods of the
form A ≈ WH, such as principal components analysis
(PCA) and non-negative matrix factorization (NMF).
NMF constrains the elements ofW andH to be non-
negative. Given a non-negative matrixA of sizem× n
and a desired rankk, NMF solves the following opti-
mization problem:

(1.1) min
W,H

‖A−WH‖2F , s.t. W,H ≥ 0,

whereW ∈ Rm×k is a basis matrix,H ∈ Rk×n is a
mixing matrix, andW,H ≥ 0 means that all elements
of W andH are non-negative. NMF does not provide

us with a unique solution if we can find a full rank
square matrixX such thatA = WXX−1H, WX ≥
0, X−1H ≥ 0. A possibleX is a rotation matrix, which
is an orthogonal matrix with|X| = 1. NMF can some-
times learn a parts-based basis vectors [11]. NMF gives
us more direct interpretation than PCA due to non-
subtractive combinations of non-negative basis vectors.
Also, some practical problems require non-negative ba-
sis vectors. For example, pixels in digital images, term
frequencies in text mining, and chemical concentrations
in bioinformatics should be non-negative [5]. It has
been successfully applied to many problems including
text data mining [11, 17], gene expression data analysis
[9, 4]. Non-negative dimension reduction is desirable
for handling the massive quantity of high-dimensional
data that require non-negativity constraints.

In this paper, we introduce one-sided NMFs and a
non-negative centroid dimension reduction algorithm.
The rest of this paper is organized as follows. We re-
view an algorithm for computing NMF based on mul-
tiplicative update rules (NMF/MUR) in Section 2, and
NMF using alternating non-negativity constrained least
squares (NMF/ANNLS) in Section 3. In Section 4,
we propose an one-sided NMF that imposes a non-
negativity constraint onW without the non-negativity
of H so as to obtain only non-negative basis vectors,
and an one-sided NMF that enforces a non-negativity
constraint on notW but H for the learning of non-
subtractive combination of basis vectors that have ar-
bitrary signs. Section 5 presents experimental results
illustrating properties of NMF/ANNLS and one-sided
NMFs. In addition, the non-negative centroid dimen-
sion reduction is applied for text classification. Sum-
mary is given in Section 6.



Table 1: Comparison among NMF algorithms fork = 9 on the CBCL face recognition database [14] (ACBCL of
size361× 2429) and the ORL database of faces [1] (AORL of size2576× 400). We presented percentages of the
number of zero elements and percentages of the number of very small non-negative elements that are smaller than
10−8 in W andH. We also presented the Frobenius norm of the error, i.e.‖A −WH‖F , and convergence time
for each method. The convergence criterion is described in the Results section.

CBCL ORL
Methods NMF/MUR NMF/ANNLS NMF/MUR NMF/ANNLS
W = 0 (%) 0% 45% 0% 21%
H = 0 (%) 2% 32% 0% 10%
0 ≤ W < 10−8 (%) 31% 45% 8% 21%
0 ≤ H < 10−8 (%) 31% 32% 5% 10%
‖A−WH‖F 69.07 68.35 3.17 3.16
time (sec.) 198.2 37.4 219.5 26.1

Table 2: Comparison among NMF algorithms fork = 25 on the CBCL data matrixACBCL of size361 × 2, 429
and the ORL data matrixAORL of size2, 576 × 400. We presented percentages of the number of very small
non-negative elements that are smaller than10−8 in W andH.

CBCL ORL
Methods NMF/MUR NMF/ANNLS NMF/MUR NMF/ANNLS
0 ≤ W < 10−8 (%) 51% 64% 20% 31%
0 ≤ H < 10−8 (%) 42% 40% 13% 24%
‖A−WH‖F 52.64 52.02 2.53 2.51
time (sec.) 673.6 601.6 769.8 597.5

2 NMF based on Multiplicative Update Rules
(NMF/MUR)

Lee and Seung [12] suggested an algorithm for com-
puting NMF based on multiplicative update rules
(NMF/MUR) of W and H, and proved that the Eu-
clidean distance‖A − WH‖F is monotonically non-
increasing under the update rules:

Haj ← Haj
(WT A)aj

(WT WH)aj + ε
,

for 1 ≤ a ≤ k and1 ≤ j ≤ n,

Wia ← Wia
(AHT )ia

(WHHT )ia + ε
,

for 1 ≤ i ≤ m and 1 ≤ a ≤ k, where ε is a
small positive value to avoid zero in the denominators
of the approximationsW andH. One can normalize
the columns of the basis matrixW to unit norm. Then,
the column vectors ofW are mapped to the surface
of a hypersphere. This normalization procedure can
be explained by the scaling procedure(wi/di)(dihi),

wherewi is theith column ofW , hi is theith row of
H, anddi is ‖wi‖2.

3 NMF based on Alternating
Non-Negativity-Constrained Least Squares
(NMF/ANNLS)

Given a non-negative matrixA ∈ Rm×n, NMF based
on alternating non-negativity-constrained least squares
(NMF/ANNLS) starts with the initialization ofW ∈
Rm×k andH ∈ Rk×n with non-negative values, and
scales the columns ofW to unit L2-norm. Then, it
iterates the following ANNLS until convergence:

(3.2) min
H
‖WH −A‖2F , s.t. H ≥ 0,

which fixesW and solves the optimization with respect
to H, and

(3.3) min
W

‖HT WT −AT ‖2F , s.t. W ≥ 0,

which fixesH and solves the optimization with respect
to W . Paatero and Tapper [15] originally proposed
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Figure 1: The number of iterations for the convergence of NMF/MUR and NMF/ANNLS withk = 25 on the CBCL
data matrixACBCL of size361 × 2429 and the ORL data matrixAORL of size2576 × 400. The convergence
criterion is described in the Results section.

using a constrained alternating least squares algorithm
to solve Eqn. (1.1). The columns of the basis matrixW
are normalized to unitL2-norm at each iteration. When
k < m, the non-negative low-rank representation of
A is given byH. The low-rank representationh ∈
Rk×1 of a new data pointx ∈ Rm×1 is computed
by solving following non-negativity-constrained least
squares problem:

(3.4) min
h
‖Wh− x‖22, s.t. h ≥ 0.

Here, we adopt a fast algorithm for large scale non-
negativity-constrained least squares (NNLS) problems
[18] to solve Eqns. (3.2)-(3.4). Bro and de Jong [3]
made a substantial speed improvement to Lawson and
Hanson’s algorithm [10] for large scale NNLS prob-
lems. This algorithm precomputes parts of the pseu-
doinverse and the cross-product matrices that appear
in the normal equations for solving least squares prob-
lems. Van Benthem and Keenan [18] devised an algo-
rithm that further improves the performance of NNLS
for multivariate data. This algorithm deals with the fol-
lowing NNLS optimization problem givenB ∈ Rm×k

andA ∈ Rm×n:

(3.5) min
G
‖BG−A‖2F , s.t. G ≥ 0,

whereG ∈ Rk×n is a solution. It is based on the ac-
tive/passive set method. It uses the unconstrained solu-
tion Gu obtained from the unconstrained least squares

problem, i.e.minGu ‖BGu − A‖2F , so as to determine
the initial passive setsP. A passive setPj (1 ≤ j ≤ n)
contains locations (rows) of the positive entries in the
jth column ofG. The active setAj is merely the com-
plement ofPj , which contains the row indices of el-
ements that are constrained to equal zero, in thejth
column of G. Thus, there are a set of passive sets
P = {P1, . . . ,Pn} and a set of active sets isA =
{A1, . . . ,An}. This algorithm also makes a setF of
column indices ofG for solutions that are not optimal
(See [10, 3] for the description of the optimality test-
ing) and an infeasible solution setH that is a subset of
F containing the indices for solutions that are currently
infeasible (i.e. column indices ofG containing nega-
tive values). This algorithm consists of a main loop and
an inner loop. The main loop obtains unconstraint least
squares solutions for the passive variables for columns
of G inF , i.e. minGF ‖BGF−AF‖2F usingPF , where
GF andAF are respectively the submatrices ofG and
A obtained from the set of column indicesF . The algo-
rithm terminates whenF has been emptied. If there are
infeasible solutions (H 6= ∅), it makes them feasible in
the inner loop by computingminGH ‖BGH − AH‖2F
using updatedPH. The inner loop terminates when
H becomes empty. Then, the setF is updated by re-
moving indices of columns whose solutions are opti-
mal. The passive setsPF are updated accordingly.
Each unconstrained least squares solution is computed



Figure 2: (Left panel) Basis images given by NMF/ANNLS fork = 49 on the CBCL data matrixACBCL of size
361 × 2, 429 (‖ACBCL − WH‖F = 39.87 s.t. ACBCL ≥ 0, W ≥ 0 andH ≥ 0, elapsed time: 2116.4 sec.).
(Right panel) Basis images given by ONMF/L fork = 49 on the CBCL data matrix (‖ACBCL −WH‖F = 32.98
s.t. ACBCL ≥ 0 andW ≥ 0, elapsed time: 52.6 sec.). Each column ofW ∈ R361×49 is a basis image of size
19× 19. Zeros were drawn in white and larger positive values were drawn in darker gray.

by solving the normal equationsBT BGS = BT AS
under certain set of columnsS given passive setsPS .
In the subroutine for computing the unconstrained least
squares problems, a set of unique passive setsU =
{U1, . . . ,Uu} are found fromPS . For each unique pas-
sive setUj , (1 ≤ j ≤ u), the system of normal equa-
tionsΓ(Uj ,Uj)G(Uj , Ej) = ∆(Uj , Ej) is solved inside
the subroutine, whereΓ = BT B, ∆ = BT A, andEj

is a set of column indices sharing the same passive set
of Uj . This grouping strategy is an essential part that
contributes to the computational efficiency of this al-
gorithm. Although there are several numerical meth-
ods to solve normal equations, this algorithm uses the
LU factorization with pivoting and forward- and back-
substitution. More detailed explanations of this algo-
rithm can be found in [18].

4 One-Sided NMF

We suggest a new decomposition that imposes a con-
straint of non-negativity onW without non-negativity
of H so as to obtain only non-negative basis vectors.
This decomposition is referred to as ONMF/L, where
‘L’ denotes that the left side factor has the nonnegativ-
ity imposed. Given a non-negative matrixA ∈ Rm×n

and k, ONMF/L starts with an initial guess ofW ∈
Rm×k ≥ 0 andH ∈ Rk×n and scales the columns of
W to unit L2-norm. Then it iteratively solves the fol-

lowing LS and NNLS problems until convergence:

min
H
‖WH −A‖2F ,

min
W

‖HT WT −AT ‖2F , s.t. W ≥ 0.

The columns of the basis matrixW are normalized
to unit L2-norm at each iteration. This dimension
reduction algorithm can produce non-negative basis
vectors. Whenk ¿ m, the low-rank representation
of A is given byH. The low-rank representationh ∈
Rk×1 of a new data pointx ∈ Rm×1 is computed by
solving following LS problem:

(4.6) min
h
‖Wh− x‖22.

On the other hand, we can think of the following
one-sided NMF only for the non-negativity ofH. This
decomposition is referred to as ONMF/R, where ‘R’
denotes that the right side factor has the nonnegativity
imposed. ONMF/R also begins with an initial guess of
W andH ≥ 0 and scales the columns ofW to unitL2-
norm. Then, it iteratively solves the following NNLS
and LS problems:

min
H
‖WH −A‖2F , s.t. H ≥ 0,

min
W

‖HT WT −AT ‖2F .



The columns of the basis matrixW are normalized to
unit L2-norm at each iteration. This dimension reduc-
tion algorithm allow the entries of a basis matrixW to
be of arbitrary sign. But, the coefficients of the linear
combination should be non-negative. Whenk ¿ m,
the non-negative low-rank representation ofA is given
by H. Hence, this decomposition can be used when
we want to obtain only a non-negative low-rank rep-
resentation. The non-negative low-rank representation
h ∈ Rk×1 of a new data pointx ∈ Rm×1 is computed
by solving following NNLS problem:

(4.7) min
h
‖Wh− x‖22, s.t. h ≥ 0.

5 Experimental Results and Discussion

5.1 Datasets DescriptionWe used the CBCL
face recognition database [14], the ORL database of
faces [1], and the MEDLINE information retrieval
dataset. The CBCL face database contains 2,429
faces with 19 × 19 grayscale PGM format images
in the training set. We built a big matrixACBCL

of size (19 · 19) × 2429. The ORL database of
faces [1] contains ten different images of each of 40
distinct subjects. For some subjects, the images were
taken at different times, varying the lighting, facial
expressions (open/closed eyes, smiling/not smiling)
and facial details (glasses/no glasses). All the images
were taken against a dark homogeneous background.
The faces are in an upright, frontal position with
tolerance for some side movement. The files are also
in PGM format. The size of each image is112 × 92
pixels, with 256 grey levels per pixel. We reduced
the size of the images to56 × 46 pixels and built a
big matrixAORL of size(56 · 46) × 400. MEDLINE
consists of 1, 033 abstracts from medical journals
(available from ftp://ftp.cs.cornell.edu/pub/smart).
This dataset has been extensively used as a bench-
mark collection in information retrieval that aims at
extracting documents that are relevant to user’s query,
effectively and efficiently. We obtained a MEDLINE
term-document matrix of size5, 735 × 1, 033 in the
form of Matlab sparse arrays generated by Text to
Matrix Generator (TMG) (available from http:// sc-
group.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/).
TMG applies common filtering techniques (e.g. re-
moval of common words, removal of words that are
too infrequent or frequent, removal of words that are
too short or too long, etc) to reduce the size of the
term dictionary. The matrix was provided by using the
simplest term-weighting scheme (i.e. term frequency
local function, with no global weighting and normal-

ization). Stemming was not applied. In the MEDLINE
dataset, there are 30 natural language queries and
relations giving relevance judgements between query
and document. We prepared a term-document matrix
of size5, 735 × 696 since only 696 documents among
1,033 documents have matched with 30 queries.

5.2 Characteristics of NMFs We tested conver-
gence every 10 iterations for NMF and 5 iterations for
the other NMF algorithms using NNLS. We store the
Frobenius norm of the error, i.e.f = ‖A − WH‖F ,
when testing convergence. The convergence criterion
was

(5.8)
fprev − fcurr

fprev
< 10−4,

where fprev and fcurr are the Frobenius norms in
the previous and current convergence tests respectively.
The initial Frobenius norm was computed by the ran-
dom initial guess ofW andH.

We implemented algorithms in Matlab 6.5 [13].
All our experiments were performed on a PentiumIII
600MHz machine with 512MB memory running Win-
dows2000. In Table 1, we presented percentages of
the number of zero elements and percentages of the
number of very small non-negative elements that are
smaller than10−8 in W and H. We also presented
the Frobenius norm of the error, i.e.‖A − WH‖F ,
and convergence time for each method. NMF/MUR
could only yield a few percentage of the number of the
exact zero elements inH on the CBCL dataset. We
also observed a number of elements within the range
of [0, 10−8). On the other hand, NMF/ANNLS intro-
duced many the exact zeros. NMF/ANNLS produced
sparser basis images and more accurate decompositions
(i.e., smaller‖A − WH‖F ) within shorter time than
NMF on the both datasets. Figure 1 shows the num-
ber of iterations for the convergence of NMF/MUR and
NMF/ANNLS with k = 25 on the CBCL dataset and
the ORL dataset. NMF/ANNLS consistently converged
within fewer numbers of iterations than NMF/MUR.
However, the fewer number of iterations generally does
not mean quicker convergence. NMF/ANNLS con-
verged in much less seconds than NMF/MUR when
k = 9 (see Table 1), but it showed convergence speed
similar to that of NMF/MUR whenk = 25 (see Table
2).

We observed that ONMF/L generated holistic basis
images instead of parts-based basis images (See Figure
2). However, we would like to emphasize that ONMF/L
generates non-negative basis vectors. In ONMF/R, it



Table 3: Five-fold cross-validation (CV) errors (%) on the MEDLINE information retrieval dataset (30 categories,
AMEDLINE of size 5, 735 × 696). We used NMF/ANNLS, ONMF/L, and ONMF/R in order to obtain ak-
dimensional representation. For classification, we used the 1-nearest neighbor classifier (1-NN) based onL2-norm
or cosine similarity in the reducedk-dimensional space on the MEDLINE dataset.

k = 30 k = 100
Methods 1-NN (L2) 1-NN (cosine) 1-NN (L2) 1-NN (cosine)
NMF/ANNLS 43.97% 37.93% 37.36% 30.17%
ONMF/L 38.22% 34.20% 38.21% 25.29%
ONMF/R 42.81% 37.50% 44.10% 33.34%

k = 150 k = 200
Methods 1-NN (L2) 1-NN (cosine) 1-NN (L2) 1-NN (cosine)
NMF/ANNLS 39.50% 32.90% 40.80% 30.17%
ONMF/L 41.23% 26.01% 42.24% 25.43%
ONMF/R 54.03% 36.78% 58.77% 38.36%

is hard to interpret the negative elements in the basis
components of the matrixW due to the lack of intu-
itive meaning. On the other hand, positive coefficients
in H make non-subtractive combination of basis vec-
tors. ONMF/L and ONMF/R have a computational
merit that they usually converge faster than NMF/MUR
or NMF/ANNLS. In addition, they produce a better
approximation of the original dataset given in its full
space due to their only one-sided non-negativity con-
straint.

5.3 Text Classification Table 3 shows that five-fold
cross-validation (CV) errors (%) on the MEDLINE in-
formation retrieval dataset. We obtained reducedk-
dimensional representations of training and test data
by NMF/ANNLS, ONMF/L, and ONMF/R. Then, we
classified test data points by the 1-nearest neighbor
classifier (1-NN) based onL2-norm or cosine similar-
ity in the reducedk-dimensional space. Overall, the
cross-validation errors were not small. This is an ex-
pectable result since NMF does not have any discrimi-
native power since it is an unsupervised dimension re-
duction algorithm. Also, one important issue is the se-
lection of the parameterk. When the optimal value of
k is significantly smaller thanmin(m,n), we can re-
duce computational costs and storage requirements by
dimension reduction. LDA/EVD-QRD [16] produced
lower five-fold CV errors of 20.40% and 14.79% for
1-NN based onL2-norm and cosine similarity, respec-
tively. This is an expectable result since it is a su-
pervised dimension reduction that maximizes between-
class scatter and minimizes within-class scatter.

In order to incorporate class information in train-

ing data, we used the following non-negative centroid
dimension reduction algorithm. Given a non-negative
matrixA ∈ Rm×n with p classes, the non-negative cen-
troid dimension reduction algorithm solves the follow-
ing NNLS problem:

(5.9) min
HC

‖CHC −A‖2F , s.t. HC ≥ 0,

whereC ∈ Rm×p is a non-negative centroid matrix
of the given input matrixA. The non-negative lower-
dimensional representation ofA is given by HC ∈
Rp×n. The non-negative low-rank representationh ∈
Rp×1 of a new test data pointx ∈ Rm×1 is computed
by solving following NNLS problem:

(5.10) min
h
‖Ch− x‖22, s.t. h ≥ 0.

Then, we can assign the new data point by usingκ-
nearest neighbors based onL2-norm or cosine similar-
ity. This algorithm is the same as the centroid dimen-
sion reduction algorithm [7] with non-negativity con-
straints.

Table 4 shows that five-fold CV errors (%) on
the MEDLINE information retrieval dataset by using
the non-negative centroid dimension reduction. We
obtained better results than those of Table 3 since it
takes advantage of class information. Interestingly, the
best result in Table 4 yielded more favorable results
than LDA/EVD-QRD on the MEDLINE dataset despite
its non-negativity constraints.

6 Summary

We designed an one-sided NMFA ≈ WH that im-
poses a non-negativity constraint onW without the



Table 4: Five-fold cross-validation (CV) errors (%)
on the MEDLINE information retrieval dataset (30
categories, i.ep = 30). We used a non-negative
centroid dimension reduction to obtain ap-dimensional
representation. For classification, we used theκ-nearest
neighbor classifier (κ-NN) based onL2-norm or cosine
similarity in the reducedp-dimensional space.

Methods κ-NN (L2) κ-NN (cosine)
κ = 1 15.09% 13.36%
κ = 5 17.96% 13.65%
κ = 10 18.25% 12.78%
κ = 15 19.83% 13.07%
κ = 20 20.11% 13.93%

non-negativity ofH so as to obtain only non-negative
basis vectors. Also, we devised an one-side NMF that
enforces a non-negativity constraint on notW but H
for the learning of non-subtractive combination of basis
vectors that have arbitrary signs. Finally, we proposed
a non-negative centroid dimension reduction algorithm.
It is a supervised dimension reduction algorithm under
non-negativity constraints. Our experiments showed
that a low-rank representation obtained from this algo-
rithm could well discriminate text documents since it is
using a centroid matrix to incorporate a priori knowl-
edge of class labels of training data.
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