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Abstract us with a unique solution if we can find a full rank
. ) o . square matrixX such thatd = WXX'H, WX >

Non-negative matrix factorization (NMF) is an unsu-5 -1 (. A possibleX is a rotation matrix, which

pervised subspace method that finds an approximate orthc?gonal matrix withX | = 1. NMF can some-

factorizationA ~ W H into non-negative factor$V’  imasjeam a parts-based basis vectors [11]. NMF gives

andH. In this paper, we introduce an one-sided NMF,q more direct interpretation than PCA due to non-
that imposes a non-negativity constraint Bn with-

. ' subtractive combinations of non-negative basis vectors.
out the non-negativity of/ so as to obtain only non- A4 some practical problems require non-negative ba-
negative basis vectors. In addition, we present an ongjs vectors. For example, pixels in digital images, term
side NMF that enforces a non-negativity constraint Ojequencies in text mining, and chemical concentrations
notW but H for the learning of non-subtractive combi- i, nioinformatics should be non-negative [5]. It has
nation of basis vectors tha_lt have arb_itrary sign_s. Finallyeen successfully applied to many problems including
we propose a non-negative centroid dimension redugay; qata mining [11, 17], gene expression data analysis
tion algorithm. [9, 4]. Non-negative dimension reduction is desirable

for handling the massive quantity of high-dimensional
1 Introduction data that require non-negativity constraints.

In many data mining problems, dimension reduction ' this paper, we introduce one-sided NMFs and a
is imperative for efficiently manipulating the massiveON-negative centroid dimension reduction algorithm.

quantity of high dimensional data, i.e. efficient classi-' N€ rest of this paper is organized as follows. We re-

fication [8], clustering [6], and faster searches [2]. T¢/!€W an algorithm for computing NMF based on mul-

be useful, the lower dimensional representation mudPlicative update rules (NMF/MUR) in Section 2, and
be a good approximation of the original dataset givef\ MF USIng alternating non-negativity constrained least
in its full space. There are several types of unsuSduares (NMF/ANNLS) in Section 3. In Section 4,
pervised low-rank dimension reduction methods of th&/€ Propose an one-sided NMF that imposes a non-
form A ~ W H, such as principal components analysid1égativity constraint ofi¥” without the non-negativity
(PCA) and non-negative matrix factorization (NMF).Of H so as tq obtain only non-negative basis VeCtPr_S'
NME constrains the elements & and & to be non- and an one-sided NMF that enforces a non-negativity

negative. Given a non-negative matrbof sizem x n constraint on noi? but H for the learning of non-
and a desired rank, NMF solves the following opti- subtractive combination of basis vectors that have ar-

mization problem: pitrary _signs. Sec_tion 5 presents experimental r_esults
illustrating properties of NMF/ANNLS and one-sided
(1.1) %111{1 |A-WH|3%, st. W,H >0, NMFs. In addition, the non-negative centroid dimen-
’ sion reduction is applied for text classification. Sum-
whereW € R™** is a basis matrixd € R¥*" ijsa mary is given in Section 6.
mixing matrix, andiW, H > 0 means that all elements
of W and H are non-negative. NMF does not provide



Table 1: Comparison among NMF algorithms for= 9 on the CBCL face recognition database [14(z¢, of

size361 x 2429) and the ORL database of faces [H{rr, Of size2576 x 400). We presented percentages of the
number of zero elements and percentages of the number of very small non-negative elements that are smaller than
10-8 in W and H. We also presented the Frobenius norm of the error||ide— W H ||, and convergence time

for each method. The convergence criterion is described in the Results section.

CBCL ORL
Methods NMF/MUR NMF/ANNLS | NMF/MUR NMF/ANNLS
W =0 (%) 0% 45% 0% 21%
H =0 (%) 2% 32% 0% 10%
0<W <1078 (%) 31% 45% 8% 21%
0< H <1078 (%) 31% 32% 5% 10%
|A—WH]| g 69.07 68.35 3.17 3.16
time (sec.) 198.2 37.4 219.5 26.1

Table 2: Comparison among NMF algorithms for= 25 on the CBCL data matri¥l¢ e of size361 x 2,429
and the ORL data matridor;, of size2,576 x 400. We presented percentages of the number of very small
non-negative elements that are smaller thén® in W and H.

CBCL ORL

Methods NMF/MUR NMF/ANNLS | NMF/MUR  NMF/ANNLS
0< W <105 (%) 51% 64% 20% 31%
0< H <1078 (%) 42% 40% 13% 24%
[A—WH]|r 52.64 52.02 2.53 2.51
time (sec.) 673.6 601.6 769.8 597.5

2 NMF based on Multiplicative Update Rules wherew; is theith column of W, h; is theith row of

Lee and Seung [12] suggested an algorithm for com- )
puting NMF based on multiplicative update rules3 NMF _based  on Alternating
(NMF/MUR) of W and H, and proved that the Eu- Non-Negativity-Constrained Least Squares
clidean distancélA — W H||r is monotonically non- (NMF/ANNLS)

increasing under the update rules: Given a non-negative matrix € R™*" NMF based

(WTA),, on alternating non-negativity-cc_)n_s_trgine_d least squares
W, (NMF/ANNLS) starts W|Fh the |n|t|aI|z_at|on oW €
@ R™*F and H € RF*™ with non-negative values, and
forl <a<kandl <j<n, scales the columns df to unit Ly-norm. Then, it
iterates the following ANNLS until convergence:

Hqj — Haj

Wia o Wiy AT Jia min [WH — Al|2
W, N e .
ia ia (WHHT)¢G+E7 (32) I}HH —A”F, st. H > O7

for1 < i < mandl < a < k, wheree is @a which fixesIV and solves the optimization with respect
small positive value to avoid zero in the denominatorso /#, and

of the approximation$¥ and H. One can normalize

the columns of the basis matri¥ to unit norm. Then, (3.3) mwi/n |HTWT — AT |3, s.t. W >0,

the column vectors of¥/ are mapped to the surface

of a hypersphere. This normalization procedure cawhich fixesH and solves the optimization with respect
be explained by the scaling procedyre;/d;)(d;h;), to W. Paatero and Tapper [15] originally proposed
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Figure 1: The number of iterations for the convergence of NMF/MUR and NMF/ANNLSAvith25 on the CBCL

data matrixAcpcr, of size361 x 2429 and the ORL data matrido gy, of size2576 x 400. The convergence
criterion is described in the Results section.

using a constrained alternating least squares algorithproblem, i.e.ming, || BG, — A|%, so as to determine
to solve Eqn. (1.1). The columns of the basis malt¥ix the initial passive setB. A passive seP; (1 < j < n)

are normalized to unit,-norm at each iteration. When contains locations (rows) of the positive entries in the
k < m, the non-negative low-rank representation ofjth column ofG. The active se#; is merely the com-

A is given by H. The low-rank representation € plement of P;, which contains the row indices of el-
R**1 of a new data pointk € R™*! is computed ements that are constrained to equal zero, inthe

by solving following non-negativity-constrained leastcolumn of G. Thus, there are a set of passive sets
squares problem:

P = {P1,...,P,} and a set of active sets i4 =
. 9 A1, ..., A,}. This algorithm also makes a s&t of
(3.4) TR IWh =x]lz, st h=>0. ({:olumn indic}es of for solutions that are not optimal
Here, we adopt a fast algorithm for large scale non(S€€ [10, 3] for the description of the optimality test-
negativity-constrained least squares (NNLS) problem@9) and an infeasible solution skt that is a subset of
[18] to solve Eqgns. (3.2)-(3.4). Bro and de Jong [3} containing the indices for solutions that are currently
made a substantial speed improvement to Lawson affiféasible (i.e. column indices @ containing nega-
Hanson’s algorithm [10] for large scale NNLS prob-t'Ve, values). This aIgonthm COI’]SIS.tS of amain Iqop and
lems. This algorithm precomputes parts of the pse(@n inner Ioop._The main loop o_btalns _unconstralnt least
doinverse and the cross-product matrices that appesfuares s_olutlonS for the passive varlf':\bles for columns
in the normal equations for solving least squares proff G in 7. i.e.ming,. || BGF— Az|[3 usingPr, where
lems. Van Benthem and Keenan [18] devised an algd?+ @nd A are respectively the submatrices@fand
rithm that further improves the performance of NNLS/ obtained from the set of column indicgs The algo-
for multivariate data. This algorithm deals with the fol-lithm teérminates whert has been emptied. If there are
lowing NNLS optimization problem givel € R™** |nfef_:\S|bIe solutionsif # V))_, it makes them feasible in
andA € Rmxn: the inner loop by computinguing,, || BGx — Axn||%
using updatedP;,. The inner loop terminates when
(3.5) min [ BG — Al|%, st. G>0, H becomes empty. Then, the sBtis updated by re-

- _ _ moving indices of columns whose solutions are opti-
n . .
whereG € R*" is a solution. It is based on the ac-ma|. The passive setBr are updated accordingly.

tive/passive set method. It uses the unconstrained solggach unconstrained least squares solution is computed
tion GG,, obtained from the unconstrained least squares
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Figure 2: (Left panel) Basis images given by NMF/ANNLS for= 49 on the CBCL data matridcpcr, Of size
361 x 2,429 (||Acscr, — WH||p = 39.87s.t. Acger, > 0, W > 0andH > 0, elapsed time: 2116.4 sec.).
(Right panel) Basis images given by ONMF/L foe= 49 on the CBCL data matriX|Acpcr, — W H|| = 32.98
s.t. Acpcr > 0andW > 0, elapsed time: 52.6 sec.). Each columiifc R361%49 is a basis image of size
19 x 19. Zeros were drawn in white and larger positive values were drawn in darker gray.

by solving the normal equationB” BGs = BT As lowing LS and NNLS problems until convergence:
under certain set of columr§ given passive setBs.

In the subroutine for computing the unconstrained least ml}n |WH — Al|%,
squares problems, a set of unique passive Hets
{,...,U,} are found fromPs. For each unique pas- mmi/n IHTWT — AT|2., st. W > 0.

sive setld;, (1 < j < u), the system of normal equa-

tionsI'(U;, U;)G(U;, E;) = AU, E;) is solved inside  The columns of the basis matri¥’ are normalized
the subroutine, where = B”B, A = BT A, and€;  to unit Lo-norm at each iteration. This dimension
is a set of column indices sharing the same passive S@lduction algorithm can produce non-negative basis
of ;. This grouping strategy is an essential part thafectors. Wherk < m, the low-rank representation

contributes to the computational efficiency of this al-of 4 is given by H. The low-rank representatidm €
gorithm. Although there are several numerical methkx1 of a new data poink € R™*! is computed by

ods to solve normal equations, this algorithm uses thés|ving following LS problem:

LU factorization with pivoting and forward- and back-

substitution. More detailed explanations of this algo{4.6) min [|[Wh — x|[3.
rithm can be found in [18]. h

) On the other hand, we can think of the following
4 One-Sided NMF one-sided NMF only for the non-negativity &f. This
ecomposition is referred to as ONMF/R, where ‘R’

We suggest a new decomposition that imposes a coﬂ . . .
99 b P enotes that the right side factor has the nonnegativity

straint of non-negativity o/’ without non-negativity . . . o
gativity g y émposed. ONMF/R also begins with an initial guess of

of H so as to obtain only non-negative basis vectorW df > 0.and les th | Wt 7
This decomposition is referred to as ONMF/L, where’” 8Nd11 = Uandsca es the columns Bf to unit L-

‘L’ denotes that the left side factor has the nonnegativnorm‘ Then, it iteratively solves the following NNLS
ity imposed. Given a non-negative matrik € R™*" and LS problems:

and k, ONMF/L starts with an initial guess df €
R™*% > 0 andH € R¥*" and scales the columns of
W to unit Lo-norm. Then it iteratively solves the fol-

mhiTnHWH—AH%, s.t. H>0,

min |HTWT — AT|2.



The columns of the basis matri¥ are normalized to ization). Stemming was not applied. In the MEDLINE
unit Le-norm at each iteration. This dimension reducdataset, there are 30 natural language queries and
tion algorithm allow the entries of a basis matiiXto  relations giving relevance judgements between query
be of arbitrary sign. But, the coefficients of the linearand document. We prepared a term-document matrix
combination should be non-negative. Wheng m, of size5, 735 x 696 since only 696 documents among
the non-negative low-rank representation/dfs given 1,033 documents have matched with 30 queries.

by H. Hence, this decomposition can be used when
we want to obtain only a non-negative low-rank repy 5
resentation. The non-negative low-rank representatior)
h € R**! of a new data poink € R™*! is computed
by solving following NNLS problem:

Characteristics of NMFs We tested conver-

the other NMF algorithms using NNLS. We store the
Frobenius norm of the error, i.ef = |A — WH||p,

when testing convergence. The convergence criterion
4.7) min [|[Wh —x||3, s.t. h>0. was
h

(58) fprev - fcurr

<1074,
fprev

5 Experimental Results and Discussion
5.1 Datase_t_s DescriptionWe used the CBCL where forev @nd fe.., are the Frobenius norms in
face recognition database [14], the ORL database @fe previous and current convergence tests respectively.

faces [1], and the MEDLINE information retrieval The initial Frobenius norm was computed by the ran-
dataset. The CBCL face database contains 2,42fbm initial guess ofV andH.

faces with19 x 19 grayscale PGM format images . . :
in the training set. We built a big matrixic ey, We implemented algorithms in Matlab 6.5 [13].

of size (19 - 19) x 2429. The ORL database of All our experiments were performed on a Pentiumlll

faces [1] contains ten different images of each of 4§O0MHz machine with 512MB memory running Win-

distinct subjects. For some subjects, the images Wepﬁwszoot?. Ir} Table Il we pres%nted percentagefs r?f
taken at different times, varying the lighting, facialN® NUMDeEr of zero elements and percentages of the

expressions (open/closed eyes, smiling/not smilin umber of very small non-negative elements that are

_8 :
and facial details (glasses/no glasses). All the imagednaller thanl0™= in W and H. We also presented

were taken against a dark homogeneous backgrou 'ed Frobenius nor?j of ;[he err(r)]r, "qtl;l(; VKlf\L/III‘lfMUR
The faces are in an upright, frontal position with@N¢ convergence time for €ach method.

tolerance for some side movement. The files are als':oOUId only yield a few percentage of the number of the
in PGM format. The size of each image i$2 x 92 exact zero elements il on the CBCL dataset. We

pixels, with 256 grey levels per pixel. We reduceoalso observed a number of elements within the range
il . -8 . _

the size of the images to6 x 46 pixels and built a of [0, 107%). On the other hand, NMF/ANNLS intro

big matrix Aoz, of size (56 - 46) x 400. MEDLINE duced many the exact zeros. NMF/ANNLS produced

consists of 1,033 abstracts from medical journals sparser basis images and more accurate decompositions

(available  from ftp://ftp.cs.cornell.edu/pub/smart).("I\e/l'l': smatlrl1er|LAt; (;/VtH HF? W:ihm shclart(ra]r t'm?hthan
This dataset has been extensively used as a bench- on the both datasets. Figure 1 shows the num-

mark collection in information retrieval that aims at er of iterations for the convergence of NMF/MUR and

extracting documents that are relevant to user’'s quer ,MF/ANNLS with k = 25 on the CBCL dataset and
effectively and efficiently. We obtained a MEDLINE e ORL dataset. NMF/ANNLS consistently converged
term-document matrix of siz&.735 x 1.033 in the within fewer numbers of iterations than NMF/MUR.

form of Matlab sparse arrays generated by Text t3)—|owever, the fewer number of iterations generally does

; ; ) t mean quicker convergence. NMF/ANNLS con-
Matrix Generator (TMG) (available from http:// sc- no i
group.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/)Ye"9ed in much less seconds than NMF/MUR when

TMG applies common filtering techniques (e.g. re—k = 9 (see Table 1), but it showed convergence speed

moval of common words, removal of words that areSlmllar to that of NMF/MUR wherk = 25 (see Table

too infrequent or frequent, removal of words that arg)'

too short or too long, etc) to reduce the size of the  We observed that ONMF/L generated holistic basis
term dictionary. The matrix was provided by using theémages instead of parts-based basis images (See Figure
simplest term-weighting scheme (i.e. term frequenc®). However, we would like to emphasize that ONMF/L

local function, with no global weighting and normal- generates non-negative basis vectors. In ONMF/R, it



Table 3: Five-fold cross-validation (CV) errors (%) on the MEDLINE information retrieval dataset (30 categories,
Ay eprine Of size5,735 x 696). We used NMF/ANNLS, ONMF/L, and ONMF/R in order to obtainka
dimensional representation. For classification, we used the 1-nearest neighbor classifier (1-NN) hasedron

or cosine similarity in the reducdddimensional space on the MEDLINE dataset.

k=230 k =100
Methods 1-NN (L2) 1-NN (cosine)| 1-NN (L2) 1-NN (cosine)
NMF/ANNLS | 43.97% 37.93% 37.36% 30.17%
ONMF/L 38.22% 34.20% 38.21% 25.29%
ONMF/R 42.81% 37.50% 44.10% 33.34%
k=150 k =200
Methods 1-NN (L3) 1-NN (cosine)| 1-NN (Ls) 1-NN (cosine)
NMF/ANNLS | 39.50% 32.90% 40.80% 30.17%
ONMF/L 41.23% 26.01% 42.24% 25.43%
ONMF/R 54.03% 36.78% 58.77% 38.36%

is hard to interpret the negative elements in the basiag data, we used the following non-negative centroid
components of the matriid’ due to the lack of intu- dimension reduction algorithm. Given a non-negative
itive meaning. On the other hand, positive coefficientsnatrix A € R™*™ with p classes, the non-negative cen-
in H make non-subtractive combination of basis vectroid dimension reduction algorithm solves the follow-
tors. ONMF/L and ONMF/R have a computationaling NNLS problem:

merit that they usually converge faster than NMF/MU . 2

or NMF/ANNLS. In addition, they produce a bettef(5'9) I?IICDHCHC ~ Allp, st Ho 20,
approximation of the original dataset given in its fu"whereC € R™*P is a non-negative centroid matrix

space due to their only one-sided non-negativity const ihe given input matrix4. The non-negative lower-

straint. dimensional representation of is given by Ho €
RP*™_ The non-negative low-rank representatiore

5.3 Text Classification Table 3 shows that five-fold R?*! of a new test data point € R™*! is computed

cross-validation (CV) errors (%) on the MEDLINE in- by solving following NNLS problem:

formation retrieval dataset. We obtained reduéed (5.10) min |Ch — x|2, s.t. h > 0.

dimensional representations of training and test data h 2 -

by NMF/ANNLS, ONMF/L, and ONMF/R. Then, we Then, we can assign the new data point by using

classified test data points by the 1-nearest neighb@earest neighbors based bs-norm or cosine similar-

classifier (1-NN) based oh,-norm or cosine similar- ity. This algorithm is the same as the centroid dimen-

ity in the reducedk-dimensional space. Overall, the sion reduction algorithm [7] with non-negativity con-

cross-validation errors were not small. This is an exstraints.

pegtable result_ since _NMF does not _have any d|s_cr|m|- Table 4 shows that five-fold CV errors (%) on

native power since it is an unsupervised dimension r%ﬁe MEDLINE information retrieval dataset by using

duction algorithm. Also, one important issue is the se:

lection of the parametét. When the optimal value of the non-negatlve centroid dimension reductlon._ WE.E
ST . obtained better results than those of Table 3 since it
k is significantly smaller thamin(m,n), we can re-

; . akes advantage of class information. Interestingly, the
duce computational costs and storage requirements

. : . gst result in Table 4 yielded more favorable results
dimension reduction. LDA/EVD-QRD [16] produced .
lower five-fold CV errors of 20.40% and 14.79% for.than LDA/EVPTQRD on the MEDLINE dataset despite
1-NN based orl,-norm and cosine similarity, respec- Its non-negativity constraints.
tively. This is an expectable result since it is a su-
pervised dimension reduction that maximizes betwee® Summary

class scatter and minimizes within-class scatter. . . .
We designed an one-sided NME ~ W H that im-

In order to incorporate class information in train-poses a non-negativity constraint & without the



Table 4: Five-fold cross-validation (CV) errors (%)
on the MEDLINE information retrieval dataset (30 [6]

categories, i.ep

30). We used a non-negative

centroid dimension reduction to obtaipalimensional
representation. For classification, we useddtheearest
neighbor classifier{-NN) based or’.5-norm or cosine
similarity in the reduceg@-dimensional space.

non-negativity off so as to obtain only non-negative [10]

Methods| x-NN (L2) k-NN (cosine)
k=1 15.09% 13.36%
k=5 17.96% 13.65%
k=10 18.25% 12.78%
k=15 19.83% 13.07%
k=20 20.11% 13.93%

(5]

[7]

(8]

9]

basis vectors. Also, we devised an one-side NMF that

enforces a non-negativity constraint on ot but H

for the learning of non-subtractive combination of basis

vectors that have arbitrary signs. Finally, we proposed
a non-negative centroid dimension reduction algorithm22]

It is a supervised dimension reduction algorithm under

non-negativity constraints.

that a low-rank representation obtained from this algo-

rithm could well discriminate text documents since itisj; 4

using a centroid matrix to incorporate a priori knowl-

edge of class labels of training data.
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