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Abstract called MOC model to a model for overlapping co-clustering.

Co-clustering or simultaneous clustering of rows and coisraf 1€ original algorithm is able to work with any regular
two-dimensional data matrices, is a data mining technigita weXPonential family distribution and corresponding Bregma
various applications such as text clustering and micrgamalysis. divergences, thereby making the model applicable for a wide
Most proposed co-clustering algorithms work on the datarioest variety of clustering distance functions. These algorithm

with special assumptions and they also assume the existérace Properties are important in areas where the algorithm is
number of mutually exclusive row and column clusters, bus it d€@ling with high-dimensional sparse data. Gaussian raodel

believed that such an ideal structure rarely exists in res.din @nd Euclidean distance are known to perform poorly in these
this paper, we propose an overlapping co-clustering motighwis  Situations. Therefore, these attributes are desirabledor

able to work with any regular exponential family distritartj and Proposed algorithm as well. _ _
corresponding Bregman divergences, thereby making theemod !N order to show the effectiveness of our algorithm, we
applicable to a wide variety of clustering distance funtsioThe Present experiments in which we used the proposed algo-
algorithm using a generative model is able to discover apgihg 'ithm to produce overlapping co-clustering for subsets of
co-clusters in the input data matrix. The necessary alyost Reuters and MovielLens data sets. We compare the clustering
are provided for this model, and the effectiveness of thehowet Fesults with the results produced by the original algorithm

is demonstrated through experiments on subsets of Reuters -Means and information theoretic co-clustering [4] (rere

MovieLens datasets compared to several other clusteritigaile.  after referred to as ITCC) algorithm in order to show that
using overlapping co-clustering would give us better rssul

1 Introduction in terms of recall and F-Measure.

Grouping similar objects together is called clustering hasl A brief word on notation: uppercase letters suchias
ping J 9 9 denote a matrix, whosé" row vector is represented as,

been used in variety of applications such as text, web-ldg an;, column vector is represented &5 and whose entry in
market-basket analysis. In these applications, data Blllysu] , risrep ; 3;
; row i and columry is represented ak; as well asX;;. X
represented as a contingency or co-occurrence table suc ts the transpose of matki ¢ J
as the term-document matrix in text analysis. Most effort- coon P X
has been devoted to one-way clustering, i.e., clusterirg on
dimension of the table based on similarities along the sgcon ) o o
dimension but recently there has been a growing inter&t-clustering can be applied in every situation where a data
in developing algorithms which are able to simultaneoudR@trix A is given in which its elements;; represent the
cluster both dimensions of the contingency tables. relation between its rows and its columng, and we are
Most proposed methods partition the data into no}g_oklngfor subsets of rows with certain cc_)herenqe propsrti
overlapping areas, where each data item belongs to only h@ subset of the columns. Almost all interesting variants
cluster. Butin some applications, we are trying to find grouf co-clustering problem are NP-complete. In the simplest
ings of data where some data points could belong to m&@Se where we have a binary matrix, a co-cluster corresponds
than one cluster and thus overlapping clustering is more ¥p-2 bi-clique in the corresponding bipartite graph which
propriate. For example, in text processing, when clusté}-a problem known to be NP-complete [11]. For more
ing documents into topic categories, documents may contdfneral cases where we have a matrix with real values, the
multiple relevant topics and an overlapping clusteringimigcomplex'ty is necessarily higher than this simple casesesin
be more relevant. one can use the solution for solving the more restricted
In this paper, we extend an approach to one-way modéf/'sion.
based overlapping clustering introduced BY [1], hereafter Co-Clustering has been used successfully in biological
applications (See[11] for a complete survey), information
retrieval and text mining, collaborative filter- ing, recom
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tomers with similar interests toward a group of productse Th true generative modéll[1]. Considering all features of thi
results can be used for target marketing in recommendatidgorithm (hereafter referred to as MOC), we propose an
systems[|[b]. One commonly used example of this appliatension to it in order to derive our desired co-clustering
tion is for data matrices where rows indicate customers amdorithm. We review the MOC algorithm in the next
columns represent movies [9]. subsection and then we propose our extension.
Other model-based clustering and co-clustering ap-
proaches that tried to solve the mentioned problems are [#@- Model-Based Overlapping Clustering (MOC) We
sented inl[B] 4], [6][7]18] and[10]. present a brief description of Model-Based Overlapping
clustering following the same notation inl [1]. Given a set
2.1 Mixture Models for Overlapping Co-Clustering of n data points, we represent them by.a< d matrix X,
Many algorithms have been proposed for co-clusteiing [1sjch thatX; denotes the*" data point andX; represents
but most of them assume the existence of a number of miits-;*" feature value. In the MOC, every poidt; has
ally exclusive row and column clusters. Although this can lzecorresponding-dimensional boolean membership vector
the first step toward extracting knowledge from contingendy; where k is the desired number of clusters. Th&
tables, it is believed that such an ideal structure rareigtexcomponent\/ of this membership vector is a binary value
in real datal[1D0]. indicating whetherX; belongs to theht" cluster. So,
Even for one-way clustering, there are few algorithnmsultiple 1's encode that the point belongs to several clusters.
known as “soft” clustering algorithms which can identify  In this algorithm, the probability of generating all data
overlapping clusters. They first perform probabilisticftso points is
clustering by mixture modeling and then make a hard as- ; ,
signment of each data point to one or more clusters using a p(X18) = p(X|M, 4) = [[;; p(X7|M;, &)
threshold on cluster membership probability. where A is the so-called activity matrix of this model. In
Mixture models has been used to develop soft clustéie MOC, every element] is interpreted as the activity of
ing algorithms and one can use them for developing soft @uster, while generating thg*" feature of data. In this
clustering algorithms as well. Obviously, we can use mixodel,© = {M, A} are the parameters pfand X;’s are
ture models to cluster rows and columns separately in eonditionally independent givel/; and A7. Furthermore, it
der to produce a “soft” co-clustering. But unfortunatelg this assumed thai can be the density function of any regular
process is unaware of the correspondence between rowsexpsbnential family distribution, and also assume that the
columns. A good co-clustering algorithm should be able épectation parameter correspondingXp is of the form
take advantage of interrelations between rows and colummg.A, so thatE[X;] = M, A.
This process is also ineffective in detecting homogeneous Using the above assumptions and the bijection between
blocks [12]. Because of these problems and believing thagular exponential distributions and regular Bregmaeiv
using two models for rows and columns is not parsimonioufances([2], the conditional density can be represented as:
a block mixture model has been proposed.id [12]. The pro- . _ , _
posed Block Mixture Model is an extension to the formula- P(X|M;, A7) oc exp{—dy(X], M; A7)}
tion of mixture models for the two-dimensional case. Th‘Whered¢ is the Bregman divergence corresponding to the
have also proposed several learning schemes for estimagiRgsen exponential density The MOC tries to selecd/

the parameters of the proposed model. and A that maximize the probability of generating all data
However, there are two problems with using the tradipints:

tional mixture model formulation. First, the value of the

threshold for which we make a hard assignment of each data p(X, M, A) = p(M, A)p(A|M, A) =

point to one or more clusters is difficult to learn from given p(M)p(A)p(X|M, A) =

data. Secondly, one can argue that this is not a natural an Hiyhp(Mih)) (thj p(AZ)) (Hi_’j p(X7| M, Aj))

true generative model for overlapping clustering. In migtu

modeling, according to the underlying assumption, a d&gsuming independence 8f andA and a uniform distrib-

point is generated only from one mixture component and tdon for A over a sufficiently large compact set implies that

membership probability simply gives the probability oftha (M, A) = p(M)p(A) o« p(M). Then, maximizing the log-

data point being generated from the corresponding mixtdi€lihood of the joint probability gives

component. However, in overlapping clustering, the model

should be able to activate multiple mixture components to .

generate a data point if it belongs to several clusters. minaz,A [Zw dp(Xig, (MA)ij) = 32 5 log O‘ih}
Recently, a model-based clustering algorithm has bee,

L ; : . .wHereaih = p(M}") is the (Bernoulli) prior probability of
proposed which is able to identify overlapping C|USter$'gS'thez'th point having a membershifl;, to theh® cluster.

maxys, 4 logp(X, M, A) =



3 Modéd-Based Overlapping Co-Clustering Our extension to co-clustering can also be reached in an-

Our proposed approach for overlapping co-clustering is @ther way: According to the MOC model, the activity matrix
spired from one-way overlapping clustering. We considglementd; denotes the activity of clustér when generat-
two boolean membership vectors, one for each data pditf the;*" feature of data. Each row of " corresponds to a
and one for each feature. We interpret the activity matfigature which is represented by cluster activities while-ge
in the MOC model in a different way that would help us t§rating it. Therefor_e,_ each feature qan_be represented as a
extend the concept to the co-clustering case. We see e¥R${0r Of cluster activity values. In this view, we can cérst
element of activity matrixA’ as representing the extent thaoWs of AT (features ofX) using MOC again. We would
j*h feature would contribute in generating that feature if tfgave for each feature a membership vector which we call
corresponding data point belonged to only clustein other Nmx: @nd one activity matriX’. . so that the expectation
words, we consider each data value as generated by paPfpmeter corresponding 1 is of the formN;C, so that
contributions based on different clusters that the comedp E[4]] = N;C or E[A7] = CN.
ing data point belongs to. The membership vector simply Based_ on either of thesg inter_pretations, the probability
shows which clusters take part in generating a particutar f&1 generating all the data points will be
ture. _ _ p(X|0) = p(X|M,C,N) =T, ; p(X]|M;,C, N7)

In order to extend the idea to the co-clustering case, ’
we assume that the value of these partial contributigps N this model,© = {M,C, N} are the parameters of
(partial contribution of featurg in a data point that belongs@nd-X; are conditionally independent givedd;, ' and N7.
to data clusterh) is determined by which categories th&robability density can be any regular exponential family
corresponding feature belongs to. In other words, each &igribution, where the expectation parameter corresjpgnd
of the categories that the feature belongs to, has a shdre ife X7 IS of the formMiCN.J. o
feature contributiond’ . Therefore, we can take an approach YSing these assumptions and the bijection between reg-

for modelingA-Zl similar to the approach taken for modelinglar exponential distributions and regular Bregman diver-

Xf. We consider a membership vectd for each feature ences I_?], the conditional density can pe represented as
indicating the feature clusters that this feature belomgs t  p(X;|M;, A7, N7, C) o exp{—ds(X], M;CN’)}

We also consider matri€’ whereC, indicates the activity
of feature clustet while generating a data point that belon

to data clustek. Using a similar notation as MOC, we woul aussian densityl, is the squared Euclidean distanke [2].

Ty A oo ,
hav?:E[Ai I= NZCtorE[AJ] I_ Ci\/z ider the t One can estimate the parametérsf the most likely model
or a concrete example, [€t us consider the ter xplaining the data by maximizing the log-likelihood of the

document matrix. When a document is about to be bul ‘bserved data. The joint distribution &f, M, N andC is
depending on which clusters it belongs to, the weight of o &en by: ' Y
! ;

specific word would be the sum of the contributions of th
word from the clusters that the document belongs to. Each  p(X, M,C, N) = p(M, C, N)p(A|M,C, N)
word can also be _selgcted from several word clusters and thus = p(M)p(C)p(N)p(X|M,C, N)

each word contribution can be derived from several word . ,
clusters that the word belongs to. In co-clustering, we as- = (Hi,h P(Mzh)) (Hi,j P(Cf)) (Hj,lp(NlJ))
sume that instead of words contributing to form document j P

clusters, word clusters would contribute to form a document (Hi,j p(X]|M;, CF, N ))

cluster. In other words, instead of viewing each docume&g in MOC, we assume that/, C' and N are independent
cluster as a collection of words, we view a document clus ’ :

) _Tc?freach other apriori and’ is distributed uniformly over a
as a collection of word clusters, where each word cluster '§L?fficiently large compact set, implying that)7, C, N) —

collection of related words. AT
M N M)p(N). Then, the log-
This interpretation leads to a similar approach for moﬁée"%%(ocd)gg th)e Cjt)ilr)]i dilfr(ibu)tion gei\rlle;naxmlzmg €09
eling word clusters. So, instead of assuming one activation

matrix that takes care of each specific feature contribution max logp(X,M,C,N) =
toward document clusters, we view the contribution; 6f M,C.N

feature for generating clustéras the sum of contributions N _
from several different feature clusters. So, instead ofimat Anax ZP(Mi )+ ZP(NzJ)
A, we considelC N” whereC' is ak x [ matrix andN is T Lk gl

al x m matrix containingm boolean membership vectors

representing whether the corresponding feature belongs to — Z d¢(Xij, M;CN7)| =
specific feature cluster. i

wheredy, is the Bregman divergence corresponding to the
osen exponential density. For example, ifp is the



Algorithm 1 MOCC

arany > ds(Xij, (MCN)s5) while Row or Column Clusters changés
J {Assume having fixed column clusterihg
> Updatea
= logain — Y _log B > UpdateM {N andC is assumed known and we try
ih il to optimizeM }

> UpdateC {M andN is assumed known and we try
wherea;;, = p(M}) is the (Bernoulli) prior probability of to optimizeC'}

thei'" point (i.e. document) having a membershif);, to {Assume having fixed row clusterifg
the h'" row cluster and3;, = p(N;) is the (Bernoulli) > Update
prior probability of the;j*" feature (i.e. word) having a > UpdateN {M andC is assumed known and we try
membershigV;; to thel*" column cluster. to optimizeN }

> UpdateC {M andN is assumed known and we try
4 Algorithmsand Analysis to optimizeC'}

In this section, we propose and analyze algorithms for esti€nd while

mating the overlapping co-clustering model given an obser-

vation matrixX. In particular, from a given observation ma-

trix X, we want to estimate the prior matricesand 3, the Sincer, and; are the probabilities of Bernoulli random
membership matrice/ and N and finally the activity ma- Variables, we use the sample mean of the sufficient statistic
trix C' so as to maximize the log-likelihood of the observatidRT the maximum likelihood estimate. The sufficient statis-
matrix X, assuming (X, M, C, N), the joint distribution of tics for Bernoulli is just the indicator of the event. Thuset

(X, M, N,C). maximum likelihood estimates of the priarg andy; are
The key idea behind the estimation is similar to most —1yg
algorithms for co-clustering. Each optimization step dstss Th = ' Zui S{M}=1}

of two similar sub-steps. In each sub-step, we assume thad

clustering for one dimension of is fixed and we optimize

the objective function considering the other dimension. In W= % Zj ]l{le:l}

the first sub-step, we assume we have fixed column clusters

and we try to find optimal row clustering which optimize¥herel 4 is the indicator function ofi.

the the objective function. In the second sub-step, we assum

row clusters being fixed and we do column clustering. 4.2 Updating M/ and N We optimize membership matrix
Using this approach, each of these sub-steps wouldddn the first sub-step where we assume that we have a fixed

reduced to an optimization problem similar f6 [1] with theolumn clustering and therefore the matrfi is assumed

difference that in each sub-step, we use information okthirfixed. If we use an alternating minimization technique, for

from the other sub-step to enhance the clustering resuét. BgivenX,C andV, the update fon/ has to minimize

outline of the entire optimization process is showed in Blg.

Basically we use a minimization technique that alternates ;5 do(Xijs (MCN)ij)

between updating and, M and N andC. Because the Thjs gbjective function is similar to the objective functio

two sub-steps mentioned are similar, we will focus on thinimized in [1]. This is an integer optimization problem

first sub-step: having fixed column clusters and trying to fingh there is no known polynomial time algorithm for solving

arow clustering which optimizes the objective function.  this problem. We basically use a similar algorithm proposed

_ ) ) in [@] with some changes in order to handle the new objective
4.1 Updating a and 3 The prior matricesx and 3 are f;nction.

directly calculated from the current estimate /af and NV For optimizingV' in the second sub-step, we follow the

respectively. If we assume thaj, and u;, represents the same procedure. Actually if one thinks of the transpose of
prior probability of any row belonging to row clustérand marix X, then row clusters foX are column clusters for

the prior probability of any column belonging to columny 7 gnq vice versa. Therefore, the procedure for optimizing

cluster! respectively, then, for a particular raw M is directly applicable to the optimization d¥ if we
Ml 1-MP considerX” as the input matrix.
aip = m, * (1 =) ' Since the optimization fob/ is an integer optimization
and for a particular columg, problem, one simple approach is considering a real relax-
N l ation and allowingM to take values in0, 1]. Although
B = 7 (1 — )N the real relaxation approach seems simple, the optimizatio



problem resulting from it is not always simple for all Breg-  Effectively, UpdateM searches ovér permutations,
man divergences. In the general case, the relaxed optimigach starting with a different cluster turned “on”. The othe
tion problem may not be convex and has inequality coentries of the permutation are obtained greedily baseden th
straints. In order to avoid that, we try to solve the integdescribed search procedure. The algorithm has a worst case
optimization problem directly and without doing real relaxunning time ofO(k?®) and is capable of running with any
ation. distance function.

The problem here like in(J1] is a more general form i _
of the subset sum problem: Given a setkofeal numbers Algorithm 2 UpdateM Algorithm
ai,...,a; and a target number, find a subset such that ™ Initialize assignment vectdm|: x to all zeros
the sum over the subset is the closest possible ttn our > {Separate search thread for each initial cluster turned
problem, we use Bregman divergence to measure closenes8n”}
and we have multiple target numbers to which we want thefor » = 1to k do
sum to be close. Similar to the configuration ifi [1], the > Turn "on” only the h*" cluster, i.e., setn(h) =

problem can be viewed as findifd;* such that 1Lm(i) =0,ifi =h
> Set theh! threadt;, to be ‘active’
M; = arg min dy(X;, M;CN) > Compute objective functiofy, = d(xz, nCNT)
M;€{0,1}* > {Run over all possible sizes-(1) of clusters turned
m k “on”
= arg min Y do(Xij, Y MICLNT) for r=2tokdo
TR =1 h=1 if threadt,, is still ‘active’ then
> Set/gld = ¢,
Therefore, we haven target numbersX;s, ..., X;,, and > From the restk — r + 1) clusters, find best
for each target numbek;;, we should choose the subset cluster to turn "on”
from C1 N7, ... CxNJ. The total loss is the sum of the if best cluster to turn "on” i then
individual losses, and the problem is to find a singlethat > Turn "on” thep®” cluster, i.e.yn(p) = 1
minimizes the total loss. Using this observation that each > Compute objective functiont, —
point is more likely to be put in low number of clusters, d(z,mCNT)
we modify the algorithm proposed ihl[1] which we call end if
UpdateM (Algorithn®). There is no theoretical claim that if ¢4 < ¢), then
this algorithm is optimal but empirical evidence presented > ﬁh_: o9l
in [] and also in sectiof 3.2 suggest that it is an efficient &> Set theh" threadt,, to be ‘inactive’
algorithm. end if
The algorithm UpdateM first turns “on” one cluster and end if

then in a greedy manner, searches for the next best cluster to 4 for
be turned “on” so as to minimize the loss function. If such gy for
a cluster is found, then it would be the second cluster turned, ggt,,, — mo, £ = d(z, moCNT)

‘on”. Then, it continues this process with the currently . ring the bestn over all threads using,, h=1,...,k

turned “on clusters_. In gen_eral, fi clusters are turngq > If bestm over threads is worse tham, setm = mq
“on”, UpdateM considers turning each one of the remaining

(k — h) clusters "on”, one at a time. If, at any step, turning

"on” each one of the remainin@ — %) clusters increases the ) i i .

loss function, the search process is terminated. Otheyitisé-3 Updating C' The next step is updating the activity

picks the besth + 1)t cluster to turn “on”, and repeats thdnatrix ' where we don't have the integer restrictions that

search for the next best on the remainihg-h — 1) clusters, W& had forM and N. The only constraint that such an
Ideally, this procedure should use all possible permufi2date needs to satisfy is thaf CV stays in the domain

tions as an order for turning “on” clusters to figure out iy ¢- For the squared loss case, since the domainisfR,

lowest loss achieved along that particular permutatiod, ahe problem of

finally choose the best membership vector among all per- ming | X — MCN|?

mutations. Obviously, this approach would be infeasible j;,st the standard least squares problem that can be solved
practice. Instead, UpdateM starts withso-called threads, exactly by

one thread for each one of theclusters turned “on”. Then, gt Tht

in each thread, it performs the above search procedure for C=MX(NT),

adding the next “on” cluster, till no such clusters are foundhere M1 is the pseudo-inverse af/, and is equal to

or all of them have been turned “on”. (MTM)=*M7T in caseM ™ M is invertible.




In case of I-divergence or un-normalized relative en- We clustered the movies based on the user recommen-
tropy, the problemming d; (X, MCN) is similar to the dations to rediscover genres, based on the belief that
problem studied in’J1]. similarity in recommendation profiles of movies gives

an indication about whether they are in related genres.
5 Experiments

In this section, we describe the details of our experimeri@t Data Reuters21578 is currently a very widely used
that demonstrate the improved performance of MOCC on test collection for text categorization research. The
two real-world data sets, compared to the MOC model, K- data was originally collected and labelled by Carnegie

Means and information-theoretic co-clustering ITCC)oalg ~ Group, Inc. and Reuters, LB We created a subset
rithm. from this dataset in the following way: In order to

have overlapping classes in the dataset, we removed

5.1 Methodology We use two datasets in our experiments: ~ all those topics which had less than 100 documents
movie recommendation data, and text documents. We use and therefore we also removed all those documents
subsets of original datasets with the characteristic that t ~ that ended up without a topic. We then had 3149
points in the subset have natural overlapping grouping as documents belongingto at least one of the six remaining
explained later on. Using the full data sets is computatipna ~ topics. We used document frequency as a feature
expensive. Therefore, we use these subsets of data in selection criterion for decreasing the dimensionality of
order to make the datasets computationally reasonable to data to1000. We removed words which had very high
run experiments. But it should be noted that using smaller document frequencies until we got dimensionality of
datasets doesn’t make the task much easier, since clugterin 1000. We call this subseRD.

a small number of points in a high-dimensional space is d . | hodol imil h
still a difficult task. Using these subsets of original datas We used an experimental methodology similar to the one

similar to the ones used in the MOC paper also allows foruged to demonstrate the_ .effectiveness of the MO.C model.
consistent comparison with the MOC method. For each dataset, we initialized the MOC clustering algo-

rithm by running k-means clustering, where the Euclidian

100k Movielens dataset - movie recommendations This  distance was used as the similarity measure and the number
is a publicly available dataset from the movie re®f clusters was set to the number of underlying categories in
ommendation system developed at the University @fe dataset. The clustering result of MOC, was then used to
Minnesotall. The dataset contains00, 000 ratings initialize the MOCC clustering algorithm. For all methods,
for 1682 movies by943 users. It has user ratings fothe number of row clusters was chosen betweemd 10.
every movie in the collection: users give ratings on Ehe number of column clusters for MOCC and ITCC were
scale ofl — 5, with 1 indicating extreme dislike andchosen betweenand10 in order to investigate its effect on
5 indicating strong approval. There a9é3 users in the co-clustering result.
this dataset, but the mean and median number of users In order to compare clustering results, we use precision,
voting on any movie aré9 and27 respectively. Each recall, and F-measure calculated over pairs of points, as
user has rated at least 20 movies. defined in[[1]. For each pair of points that share at least one
As a result, if each movie in this dataset is represent;f‘éJHSter n the overlapping cluste_nn_g result_s, thgse rmeasu

%y to estimate whether the prediction of this pair as being i

as a vector of ratings over all the users, the vect lust t with t 10 th derlvi
is high-dimensional but typically very sparse. Eac € same cluster was correct with respect fo the underlying

movie has information about the different genres th pe categories in the data. Precision is calculated as the
this movie belongs to. If each genre is considered a raction of pairs correctly put in the same cluster, recathie

separate category or cluster, then this dataset also ggtlon of actual pairs that were identified, and F-mea®ure

. . the harmonic mean of precision and recall.
naturally overlapping clusters. Many movies beIonS P

to multiple genres, e.g., Aliens belongs 3ogenre Precision—. Number of Correctly Identified Pairs
categories: action, horror and science fiction. Like Number of Identified Pairs
in [, we created 2 subsets from the Movielens dataset:

Recall— Number of Correctly Identified Pairs
e Mvl: 679 movies from the 3 genres. Animation, - Number of True Pairs

Children’s and Comedy;

2xPrecisiorxRecall
e Mv2: 232 movies from the 3 genres. thriller, F-measure= |X3>rec|3|oerecaII

action and adventure.

Thttp://www.grouplens.org Zhttp://www.daviddlewis.com/resources/testcollecsiauters21578/



[ Datasets] MOCC | MOC [ K-Means | ITCC ] Amongst the four methods, ITCC has slightly better
Mv1-El | 0.63+0.01 | 0.60+0.04 | 0.54+0.01 | 0.28+0.01 precision in most cases but due to its poor recall, its olveral
Mv1-E2 | 0.63+0.01 | 0.51£0.03 | 0.48£0.02 | 0.22+0.01 performance in terms of F-Measure is significantly worse
MVZ2-E1 | 05310.01 | 0.49£0.04 | 0.43:0.01 | 0.32£0.02 than the other methods.

Mv2-E2 | 0.524+0.02 | 0.43£0.06 | 0.36+0.02 | 0.25+0.02 - .

=0E3 | 035001 T 025002 03001 [ 0200001 Results folRD dataset were similar to movie dgtaset re-
RDE4 | 0310001 | 02700.02 | 0.2600.01 | 0.1350.00 sults. Results show that for the MOCC algorithm, increasing
the number of document clusters has less impact on recall
_ compared to the other three methods and the gap in perfor-
Table 2: Comparison of results of MOCC, MOC and Ky ance between MOCC and the other methods in terms of
Means algorithm on all datasets in terms of F-MeasMel .| and F-Measure grows. Results also show that the per-

andMv2 are two datasets described in secfiod 5.1, E1, Bgmance of MOCC improves as the number of word clusters
E3 and E4 represents different experiments correspondingy-reases.

computed number of row and column clusters equéb6),
(10, 10), (6,10) and(6, 12).

6 Conclusions

5.2 Results Table[l presents the results of MOCC versddis paper has introduced a generative model for overlap-
MOC, K-Means and ITCC algorithms in terms of precisioRiNg co-clustering, MOCC, based on generalizing the MOC
and recall for the datasets described in sedfigh 5.1 for §¢del presented iriL[1]. It uses a generic alternating mini-
lected experiments. Each reported result is an average dyigation algorithm for fitting this model to empirical data.
ten trials. We have presented promising experimental results on real

Tablel2 presents the same results in terms of F-Meastif@Vs abstracts and movie data. In particular, we have shown
Table[d shows that for all domains, even though thereg¥dence that MOCC produces more accurate overlapping
no considerable difference between these methods in tefiy$ters than the MOC model, which are significantly better
of precision in most cases, the MOCC model has the b#¥n non-overlapping clusters based on K-Means and ITCC
recall by a large margin compared to the other three metho@gorithms.
therefore MOCC consistently outperforms the other two
methods in terms of overall F-measure as shown in fable References
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formance decreases more significantly. The MOCC method (KDD), August 2005.
consistently performs better than the three other methods 2] Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon,
terms of recall and F-Measure. It is worth noting that for ~and Joydeep Ghosh. Clustering with bregman divergences.
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Precision Recall

Datasets] MOCC | MOC [ K-Means | ITCC MOCC | MOC | K-Means [ ITCC

Mv1-E1l | 0.60+0.01 [ 0.614+0.01 | 0.60+0.00 [ 0.63+0.01 | 0.67+0.02 | 0.5%+0.09 [ 0.48+0.02 | 0.19+0.01
Mv1-E2 | 0.62£0.01 | 0.614+0.01 | 0.60+0.00 | 0.65+0.01 | 0.65+0.02 | 0.44+0.05 [ 0.40+0.03 | 0.13+0.01
Mv2-E1 | 0.46+0.01 | 0.47+0.02 | 0.48£0.01 | 0.5440.01 | 0.62+0.02 | 0.5140.07 | 0.39+0.01 | 0.23+0.02
Mv2-E2 | 0.48+0.01 | 0.49+0.02 | 0.49+0.01 | 0.5740.02 | 0.58+0.04 | 0.404+0.11 | 0.29+0.03 | 0.16+0.02
RD-E3 | 0.22£0.01 [ 0.23+0.01 | 0.22£0.01 [ 0.23+0.00 | 0.51+0.03 | 0.42+:0.08 [ 0.48+0.02 | 0.18+0.01
RD-E4 | 0.2310.00 | 0.23+0.02 | 0.23£0.00 | 0.23+0.00 | 0.48+0.03 | 0.33+0.03 [ 0.30+0.03 | 0.09-0.00

Table 1: Comparison of results of MOCC, MOC and K-Means athjor on all datasets in terms of precision and recall.
Mv1andMv2 are two datasets described in secfion 5.1, E1, E2, E3 anddedsents different experiments corresponding

to computed number of row and column clusters equéb6), (10, 10), (6, 10) and(6, 12).
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Figure 1: Effect of increasing number of row clusters on f@ieq, recall and F-Measure fdfvl dataset.
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