
Automatically Adjusting Content Taxonomies

for Hierarchical Classification

Lei Tang
Dept. of CSE

Arizona State University
Tempe, AZ, U.S.
L.Tang@asu.edu

Jianping Zhang
America Online Inc.

22000 AOL way
Dulles, VA, U.S.

JZhang6805@aol.com

Huan Liu
Dept. of CSE

Arizona State University
Tempe, AZ, U.S.
huan.liu@asu.edu

Abstract

Hierarchical models have been shown to be effective
in content classification. However, the performance
of the model heavily depends on the given hierar-
chical taxonomy. We empirically show that different
taxonomies can result in significant differences in hi-
erarchical classification performance. Motivated by
some real application problems, we aim to modify a
content taxonomy automatically for different appli-
cations. In this work, we formulate the problem, dis-
cuss why it is feasible to achieve better performance
in terms of classification performance via adjusting
a given hierarchy, and present one effective solution
to find better hierarchies compared with that of the
given original hierarchy. Preliminary experiments on
some real world data sets are reported and discussed.

1 Introduction

Effectively organizing web content into topic cate-
gories of taxonomies facilitates content management
and retrieval. Many machine learning methods have
been applied to content categorization, but most of
them did not take advantage of the valuable infor-
mation embedded in a hierarchical taxonomy. These
methods are deemed as flat models. Methods exploit-
ing the category dependency in a content hierarchy
are called hierarchical models. It has been showed
that hierarchical models outperform flat models in

training efficiency, classification efficiency, and clas-
sification accuracy [4, 6, 3, 2, 8, 5]. Actually, the
improvements in accuracy heavily depends upon the
quality of the hierarchy. Content hierarchies are cre-
ated for ease of content management or access, so se-
mantically similar categories are grouped into a par-
ent category. Semantically similar categories may not
be similar in terms of lexical terms,so the hierarchy
might not be the best taxonomy for classification.
Moreover, even for the same categories, different peo-
ple might organize it into different hierarchies. This
motivates us to study different hierarchies.

In this paper, we empirically show that a bet-
ter hierarchy can be created for a human pro-
vided semantics-based hierarchy. We also describe
a method for creating such a hierarchy. On one
hand, we could totally ignore the original seman-
tics based hierarchy and create an entirely new hier-
archy using some hierarchical clustering algorithms.
The drawback of this approach is that it’s hard to
control the height of the hierarchy and the number
of sub-categories under a parent category. On the
other hand, we could start with the original hierarchy
and gradually modify it to achieve a better hierarchy.
This is the approach described in this paper.

The paper is organized as follows: We briefly in-
troduce some of the potential content categorization
applications in AOL [1] and formulate the problem.
Then we provide an algorithm for creating a better
hierarchy. We report experimental results on some
real-world data and conclude in Section 6.

2 A Challenge

Different real world applications may require different
content taxonomies. AOL’s guardian report product
reports child online activities including a list of web-
sites visited by the child to his/her guardians. To be
more informative, this list of visited websites should
be organized according their categories. For this ap-
plication, a shallow hierarchy is sufficient. Actually,
only top level categories such as sports, game etc. sat-
isfy the requirement of this application. On the other
hand, a deep hierarchy is more desirable for a news
feed classifier. For a bookmark management system,
users may want to adjust the taxonomy to best fit
his/her own need. Therefore, disparate hierarchical
models are suitable for different tasks.

However, the existing general hierarchy is so often
not designed for different applications so that its per-
formance can be unsatisfactory. Since the original
given hierarchy already provides some valuable infor-
mation, it is reasonable to modify the hierarchy to a
hierarchy with better classification performance than
the original given hierarchy. This raises the issue for
us to investigate different hierarchies in this work.

Actually, when we review the process of taxonomy
generation and data collection, we notice that there
might be some inconsistency between taxonomy and
classification. Taxonomies are generated based on se-
mantics difference, and different people might use dif-
ferent taxonomies on the same set of categories. But
for hierarchical classification, these hierarchies might
result in totally different performance. In this work,
we hope to bridge the gap between the taxonomy and
data. That is, given a taxonomy based on semantics,
we aim to generate a new taxonomy which is better
for classification.

3 Problem Formulation

Before we formalize our problem, we present several
definitions concerning hierarchies as below:

Definition 1 (Consistent Hierarchy) Given
a hierarchy H and a set of categories S, if the
categories at the leaf nodes of H is the same as S,
then H is a consistent hierarchy with respect to S.

If the categories of a data set D are S, we say, H
is a consistent hierarchy for D, or H and D are
consistent.

Definition 2 (Optimal Hierarchy)

Hopt = arg max
H

p(D|H)

= arg max
H

log p(D|H)

where H is a consistent hierarchy for given data D.

In other words, the optimal hierarchy given a data
set should be the one with maximum likelihood. The
brute-force approach to find the optimal hierarchy
is to try all the possible consistent hierarchies and
output the optimal one. Unfortunately, even for a
very small set of categories, there could be a huge
number of consistent hierarchies. It is impractical to
try all the possible hierarchies and pick the optimal.
Thus, a more effective way should be explored.

The given hierarchy provides valuable information
for classification and help reduce the search space to
find the intended optimal hierarchy. To incorporate
this knowledge into our problem formulation, we first
give the definition of hierarchy difference.

Definition 3 (Similar Hierarchy) If two hierar-
chies H and H ′ are both consistent with respect to
a set of categories S, then H and H ′ are similar.

Definition 4 (Hierarchy Difference) Hierarchy
difference is the minimum number of elementary
operations(see below) to transform a hierarchy H
into the hierarchy H ′ that is similar to H. Suppose
the minimum number of operations is k, we denote
the difference between H and H ′ as

‖ H ′ −H ‖= k

In order to change a hierarchy to its similar hier-
archy, we have three elementary operations:

Lift : roll up one node to upper level;
Shift : push down one node to its sibling;
Merge : merge two nodes to form a super node;

As shown in Figure 1, H1 is the original hierarchy.
H2, H3 and H4 are obtained by lifting Node 6 to its
upper level, shifting Node 3 under its sibling Node

1

2 3 4

5 6

42

35 6

1

72

3 45 6

1

(H1) (H2)

(H3) (H4)

2 3 4

5

6

1

Figure 1: Hierarchy Elementary Operations

2, and merging Node 3 and 4, respectively. Node 7
is a newly generated node after modification. As the
set of leaf node in our problem always remains un-
changed, we do not require the operation of splitting
one node into two.

Given explicit hierarchy difference, we have the
constrained optimal hierarchy:

Definition 5 (Constrained Optimal Hierarchy)
Given a hierarchy H0, if there exists a sequence of
hierarchies Q = {H1,H2, · · · ,Hn} such that

p(D|Hi) ≥ p(D|Hi−1)
‖ Hi −Hi−1 ‖ = 1 (1 ≤ i ≤ n)

and

∀H ′ s.t. ‖ H ′ −Hn ‖= 1
we have p(D|H ′) ≤ p(D|Hn)

then Hn is a constrained optimal hierarchy for H0

and D.

We assume that the optimal hierarchy for the data
should reside among one of the constrained optimal
hierarchies. If we consider the problem as an exact
search problem, then a given hierarchy can be con-
sidered as a good starting point which can reach the
optimal one following a short path. Then, we formu-
late our challenge as follows:

Hierarchy Search Problem: Given data D, and
a hierarchy taxonomy H, Can we find a hierarchy
Hopt such that

Hopt = arg max
H

log p(D|H)

where H is a constrained optimal hierarchy for D and
H0.

We can consider hierarchy search problem as
searching in the hierarchy space. Our assumption as-
sumes that the optimal hierarchy should reside within
the vicinity of the given hierarchy. In nature, each
constrained optimal hierarchy is a local optima start-
ing from the given hierarchy. And the optimal hier-
archy should be one of the constrained optimal hier-
archies.

4 Approximate Solution

There exist some problems that prevent us from di-
rectly finding an effective solution for the hierarchy
search problem.
• How to estimate the likelihood of data given a

hierarchy (P (D|H) in Definition 2)?
• While the hierarchy search problem proposes to

select the best among the constrained optimal hier-
archies, it is extremely computational expensive in
reality to obtain all the constrained optimal hierar-
chies.
• How to find the neighbors of a hierarchy? Ac-

tually there could be a huge number of neighbors by
performing only one elementary operation to a spe-
cific hierarchy especially when the number of nodes
in the tree is large. Moreover, not all these operations
lead to a better hierarchy. We need to filter out some
bad movement in the hierarchy space.

So, rather than find the exact solution, we pro-
pose to use some heuristics to get an approximate
solution. For the first problem, instead of directly
estimating the likelihood of data given a hierarchy,
we use some statistics to estimate the goodness of a
hierarchy. Since in most classification tasks, people
focus on macro-averaged recall or f-measure [7, 5], we
use them as the classification performance of a hier-
archical model to measure its likelihood. In particu-
lar, we use macro-averaged recall as our criterion to
help estimate the conditional likelihood. Concerning
the second problem, we exploit a greedy approach to
find the best constrained hierarchy. That is, in each
search step, we always choose the neighbor node with
largest likelihood improvement until we reach a con-

strained optimal hierarchy.
Even so, we still need to consider the number of

neighbors of a hierarchy, which actually could be huge
by considering all the possible operations. Here, we
use several reasonable heuristics to decrease the pos-
sible space. Before we present the heuristics, we’d
like to give several definitions which facilitate the de-
scription of the heuristics.

Definition 6 (High Miss/Low Miss) For a node
in the hierarchy, if it’s misclassified at the parent
level, then this misclassification is called High Miss.
If it is misclassified as its sibling under the same par-
ent node, then it’s a Low Miss.

Heuristic 1 If the High Miss of one node is signif-
icantly larger than the Low Miss of one node, that
is,

High Miss > Low Miss + δ

where δ is a user defined parameter, we lift this node
to the upper level.

Definition 7 (Ambiguity Score) Given two
classes A and B, suppose the percentage of class A
classified as class B is PAB, and the percentage of
class B classified as Class A is PBA, then ambiguity
score = PAB + PBA.

Heuristic 2 We can calculate the Ambiguity Score
for each pair of categories under the same parent
node. For each subtree in the hierarchy, we pick
the pair A and B with highest ambiguity score. If
|PAB − PBA| ≤ γ where γ is a predefined threshold,
then we merge A and B to form a super category;
Otherwise, if PAB > PBA + γ, we shift Class A as
B’s child; If PBA > PAB + γ, then we shift Class B
under Class A.

Based on these three heuristics, the search space of
hierarchies is sharply condensed. Then we can use a
wrapper model to search for better hierarchies. The
detailed algorithm is in Figure 2.

5 Experiments

We apply our algorithm to two real world data sets
provided by AOL [1]: one is a data set concerning

Input: A hierarchy H0, training data T and a vali-
dation set V
Output: A approximate optimal hierarchy Hopt Al-
gorithm:
1. scorebest = 0, Hlist = {H0}
2. flag = false(To denote whether or not the hier-
archy is changed)
3. For each hierarchy Hi in Hlist, build a hierarchical
model based on T and evaluate its performance on V .
If the corresponding statistic(macro recall) score is
larger than scorebest, then flag = true, scorebest =
score and Hopt = Hi.
4. If flag == false, return Hopt.
5. After Hlist is empty, according to Heuristic 1
and 2, generate neighbors for Hopt by checking each
node in Hopt. Add all these neighbors to Hlist.
6. If Hlist is empty, return Hopt; Otherwise, goto
step 2.

Figure 2: Hierarchy Search Algorithm

the topic of social study(Soc) obtained from AOL’s
web directory; the other one is Kids’ data collected
by AOL’kids department(Kids). Each data set is as-
sociated with a hierarchical taxonomy. The general
information of these two data sets is shown in Table 1.

Soc Kids

#classes 69 244

#nodes in the hierarchy 83 299

Height of the hierarchy 4 5

#instances 5248 15795

Table 1: Real-world Data Description

For this problem, we use macro-averaged recall to
calibrate the conditional likelihood of data given a
hierarchy. We set δ in Heuristic 1 to 0 and γ in
Heuristic 2 to 0.01. Here, we use the training data
as the validation data in the algorithm as well. That
is, we keep adjusting the hierarchy until no training
errors can be reduced. When we build the hierarchi-
cal model for hierarchy modification, we select 500
features using information gain at each node before
building the classifier [7]. After we obtain the ad-
justed hierarchy,we evaluate it by selecting different
number of features at each node to build the hierar-

500 1000 2000 5000 7500 10000
0.35

0.4

0.45

0.5

Feature Number

M
ac

ro
 R

ec
al

l

Original Hierarchy
Adjusted Hierarchy

500 1000 2000 5000 7500 10000

0.35

0.4

0.45

Feature Number

M
ac

ro
 F

−
m

ea
su

re

Original Hierarchy
Adjusted Hierarchy

Figure 3: Soc Performance

500 1000 2000 5000 7500 10000

0.35

0.4

0.45

0.5

Feature Number

M
ac

ro
 R

ec
al

l

Original Hierarchy
Adjusted Hierarchy

500 1000 2000 5000 7500 10000
0.25

0.3

0.35

0.4

0.45

Feature Number

M
ac

ro
 F

−
m

ea
su

re

Original Hierarchy
Adjusted Hierarchy

Figure 4: Kids Performance

chical model. As shown in Figure 3 and Figure 4,
significant improvement over the original taxonomy
is observed on both data sets in terms of macro recall
and macro F-measure, especially when the number of
features is relatively small. This shows that we can
automatically adjust the content taxonomies for more
accurate classifiers. One interesting result is: for Soc,
when we select more and more features, the difference
between the newly generated hierarchy and given hi-
erarchy wanes. However, for Kids, the difference is
independent of the number of features we selected.

6 Conclusions

Hierarchical models have been shown to be effective
for classification when we have a predefined taxonomy
in hand. Rather than taking it for granted, we sug-
gest that the given hierarchy does not necessarily lead
to the best classification performance, and propose to
modify the original given hierarchy by studying the
training data. We formulate the problem and provide
an approximate solution by providing several heuris-
tics. The real-world application data shows that our
algorithm finds a better hierarchy which is similar
to the given hierarchy but improves the classification
significantly, especially when only a few features are
selected. It is noticed that the hierarchy search space
is highly connected and the greedy search in each step
still generates too many neighbors. We are currently
working on more efficient and effective methods.

References

[1] America Online Inc. http://www.aol.com/.

[2] Lijuan Cai and Thomas Hofmann. Hierarchical
document categorization with support vector ma-
chines. In CIKM ’04, pages 78–87, 2004.

[3] Susan Dumais and Hao Chen. Hierarchical clas-
sification of web content. In SIGIR ’00, pages
256–263, 2000.

[4] Daphne Koller and Mehran Sahami. Hierarchi-
cally classifying documents using very few words.
In ICML ’97, pages 170–178, 1997.

[5] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun
Zeng, Zheng Chen, and Wei-Ying Ma. Sup-
port vector machines classification with a very
large-scale taxonomy. SIGKDD Explor. Newsl.,
7(1):36–43, 2005.

[6] Andrew McCallum, Ronald Rosenfeld, Tom M.
Mitchell, and Andrew Y. Ng. Improving text clas-
sification by shrinkage in a hierarchy of classes. In
ICML ’98, pages 359–367, 1998.

[7] Lei Tang and Huan Liu. Bias analysis in text
classification for highly skewed data. In ICDM’05,
2005.

[8] Yiming Yang, Jian Zhang, and Bryan Kisiel. A
scalability analysis of classifiers in text categoriza-
tion. In SIGIR ’03, pages 96–103, 2003.

