Mining When Classes are Imbalanced, Rare Events Matter More, and Errors Have Costs Attached

Nitesh V. Chawla
University of Notre Dame
http://www.nd.edu/~nchawla
nchawla@nd.edu

Overview

- Introduction
- Sampling Methods
- Moving Decision Threshold
- Classifiers’ Objective Functions
- Evaluation Measures

IEEE ICDM noted "Dealing with Non-static, Unbalanced and Cost-sensitive Data” among the 10 Challenging Problems in Data Mining Research
Small Class Matters, and Matters More

Data set is Imbalanced, if the classes are unequally distributed

Class of interest (minority class) is often much smaller or rarer

But, the cost of error on the minority class can have a bigger bite

Typical Prediction Model
The one in a 100, one in a 1000, one in 100,000, and one in a million event

- Real-world has abundance of scenarios with such imbalance in class distributions
 - Fraud detection
 - Disease prediction
 - Intrusion detection
 - Text categorization
 - Bioinformatics
 - Direct marketing
 - Terrorist attack
 - Physics simulations
 - Climate

Nitesh Chawla, SIAM 2009 Tutorial
Imagine a disease that has a prevalence of 1 in a million people. I invent a test that is 99% accurate. I am obviously excited. But, when applied to a million, it returns positive for 10,000 (remember, it is 99% accurate). Priors tell us otherwise. There is one in a million infected --- 99% accurate test is inaccurate 9,999 times out of 10,000.
Yes, measuring performance presents challenges

- A “fruit-bowl” of measures. No more comparing apples and oranges. Take your favorite. But, how do we really compare?
 - Accuracy (CAREFUL)
 - Balanced accuracy (better)
 - AUROC (different ways of computing, potentially)
 - F-measure (requires a threshold)
 - Precision @ Top 20 (where are the positive cases in the ranking)
 - G-mean
 - Probability loss measures such as negative cross entropy and brier score (how well calibrated are the models?)

Fruit for thought. We will return to this.

Countering Class Imbalance: Some Popular Solutions in Data Mining

- Sampling
 - Oversampling
 - Undersampling
 - ...Variations and combinations of the two
- Adapting learning algorithms by modifying objective functions or changing decision thresholds
 - Decision trees
 - Neural Networks
 - SVMs
- Ensemble based methods

(all of the above can also be combined together!)
Overview

- Introduction
- Sampling Methods
- Moving Decision Threshold
- Classifiers’ Objective Functions
- Evaluation Measures

Sampling: Add or remove until satisfactory performance

- Undersampling dictates removal of majority class examples
- Oversampling dictates removal of minority class examples
Undersampling

- Randomly remove majority class examples

Risk of losing potentially important majority class examples, that help establish the discriminating power

What about focusing on the borderline and noisy examples?

Introducing Tomek Links and Condensed Nearest Neighbor Rule
Tomek links

- To remove both noise and borderline examples
- Tomek link
 - Let E_i, E_j be examples belonging to different classes.
 - Let $d(E_i, E_j)$ is the distance between them.
 - A (E_i, E_j) pair is called a Tomek link if there is no example E_k, such that $d(E_i, E_k) < d(E_i, E_j)$ or $d(E_j, E_k) < d(E_i, E_j)$.

Undersample by Tomek Links

Nitesh Chawla, SIAM 2009 Tutorial
Condensed Nearest Neighbor Rule (CNN rule)

- Find a consistent subset of examples.
 - A subset $E' \subseteq E$ is consistent with E if using a 1-nearest neighbor, E' correctly classifies the examples in E
- The goal is to eliminate examples from the majority class that are much further away from the border
Oversampling

- Replicate the minority class examples to increase their relevance

But no new information is being added. Hurts the generalization capacity.

Instead of replicating, let us invent some new instances

- SMOTE: Synthetic Minority Over-sampling Technique
SMOTE

\(\forall x \in \text{Minority} \)

for \(i = 1 \) to \(|x| \)

Compute \(k \)-NN of \(x_i \)

for \(j = 1 \) to \(|x_i| \)

\[x_{nj} = \begin{cases} (x_i - x_{kj}) \cdot \text{rand}(1) & \text{if } j \in \text{continuous} \\ x_{nj} = \arg \max_{x' \in x_j} \sum_{k:x_{j}k=x'} 1 & \text{else} \end{cases} \]

endfor

endfor

\(k\)-NN(\(x_j, x_j' \))

if \(j \in \text{continuous} \)

\(\delta_c = (x_j - x_j')^2 \)

if \(j \in \text{no min al} \)

\(\delta_n = \sum_{c=1}^{C} \left| \frac{N_j, x_c - N_j, x_c'}{N_j, x} \right| \) (VDM)

\(\Delta = \delta_c + \delta_n \)

For each minority example \(k \) compute nearest minority class examples \(\{i, j, l, n, m\} \)
SMOTE

- Randomly choose an example out of 5 closest points

Synthetically generate event k_j, such that k_j lies between k and j
After applying SMOTE 3 times (SMOTE parameter = 300%) data set may look like as the picture above

SMOTE

- Generate “new” minority class instances conditioned on the distribution of known instances
SMOTE
- Generate “new” minority class instances conditioned on the provided instances

Beware of those lurking majority class examples
- Borderline-SMOTE
Two fundamental issues:
- What is the right sampling method for a given dataset?
- How to choose the amount to sample?

Use a wrapper to empirically discover the relevant amounts of sampling
Testing for each pair of under-sampling and SMOTE percentages is too time consuming.

So a heuristic is used where searching for under-sampling percentage is done first then followed by search for SMOTE percentage.

- Hypothesis: The under-sampling will first remove the "excess" majority class examples, without much hampering the accuracy on majority classes. Later SMOTE will add synthetic minority class examples which will increase the generalization performance of the classifier over the minority classes.

Algorithm divided into two parts:
- Wrapper Under-sample Algorithm
- Wrapper SMOTE Algorithm

Our Algorithm can handle multiple minority and majority class problems.

Uses Five-fold cross-validation over training data as the evaluation function.
Greedy search process guided by performance over five-fold cross validation of training data

Baseline results are results with no under-sampling performed

Generally the under-sampling of the majority classes increases the average F-value over minority classes, but in some cases can be reduced due to high reduction in precision versus small increase in recall

Criteria to stop under-sampling for majority class
 - The Average F-value over minority classes reduces
 - The Average F-value over majority classes reduces more than 5%

The under-sampling percentages for majority classes are fixed to those found so far by Wrapper Under-sample Algorithm

Corresponding Best Results are Baselined

Criteria to stop SMOTE for minority class
 - The Average F-value over-minority classes reduces
 - The two look aheads for the minority class are exhausted

Rationale for SMOTE look ahead: More SMOTE will add more information and will give better accuracies over minority classes as opposed to under-sampling which reduces information thereby reducing the coverage of the build classifier
Exploiting Locality in Sampling
Class ratio can be important to determining best sampling levels to use.
Other properties may exert greater influence:
- Overlap
- Density
Consider the following examples:

All have same class ratio: (50:1000)
<table>
<thead>
<tr>
<th>(density, separation)</th>
<th>AUROC</th>
<th>Undersample</th>
<th>Smote</th>
</tr>
</thead>
<tbody>
<tr>
<td>(High, High)</td>
<td>0.926</td>
<td>0.988</td>
<td>40</td>
</tr>
<tr>
<td>(High, Medium)</td>
<td>0.909</td>
<td>0.942</td>
<td>60</td>
</tr>
<tr>
<td>(High, Low)</td>
<td>0.898</td>
<td>0.904</td>
<td>60</td>
</tr>
<tr>
<td>(Medium, High)</td>
<td>0.915</td>
<td>0.961</td>
<td>50</td>
</tr>
<tr>
<td>(Medium, Medium)</td>
<td>0.878</td>
<td>0.927</td>
<td>40</td>
</tr>
<tr>
<td>(Medium, Low)</td>
<td>0.814</td>
<td>0.831</td>
<td>70</td>
</tr>
<tr>
<td>(Low, High)</td>
<td>0.892</td>
<td>0.940</td>
<td>0</td>
</tr>
<tr>
<td>(Low, Medium)</td>
<td>0.825</td>
<td>0.847</td>
<td>70</td>
</tr>
<tr>
<td>(Low, Low)</td>
<td>0.705</td>
<td>0.736</td>
<td>20</td>
</tr>
</tbody>
</table>

(U,S) = (50,350)
AUROC = 0.906

(U,S) = (80,250)
AUROC = 0.812

(U,S) = (?,???)
AUROC = ????
Step 1: Split the Data

- Could use most supervised and unsupervised methods
- We form 2-level Hellinger distance tree (upcoming)
- Allows localization of diverging class distributions

Localized Sampling Framework

Step 2: Sample

- Sample (SMOTE and undersample) each localization
- Optimize global performance iterating each sample based on minority class size (use wrapper approach)
Step 3: Train/predict globally

+ C4.5 → Final Classifier

Localized Sampling Framework

[Cieslak, Chawla ICDM 2008]

Example - Pima

Att 8

Att 2
Example - Pima

- 40% US
- 250% SMOTE

A
B
C
D

Att 8

Att 2

- 40% US
- 50% SMOTE

- 90% US
- 100% SMOTE

- 50% US
- 500% SMOTE

Nitesh Chawla, SIAM 2009 Tutorial
Experimental Results

Alternative localized sampling method using clustering

<table>
<thead>
<tr>
<th></th>
<th>C4.5</th>
<th>SVM</th>
<th>C4.5+</th>
<th>SVM+</th>
<th>C4.5+</th>
<th>C4.5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Rank</td>
<td>4.850</td>
<td>4.900</td>
<td>3.650</td>
<td>3.530</td>
<td>2.750</td>
<td>1.330</td>
</tr>
</tbody>
</table>

AUROC rank averaged across 20 datasets

Overview

- Introduction
- Sampling Methods
- Moving Decision Threshold
- Classifiers’ Objective Functions
- Evaluation Measures
• Use localized sampling
 ◦ Start Globally, Optimize Locally, and Predict Globally
• Wrapper can be integrated to guide the sampling
• Generally AUC is recommended as the objective function

Recommendations

Changing Decision Thresholds

• Decisions of (scoring) classifiers are typically set at 0.5
 ◦ P(x > 0.5) is class 1 and P(x <= 0.5) is class 0
• The decision threshold can be moved to compensate for the rate of imbalance
 ◦ Equivalent to different optimization points on the ROC curve
• A wrapper can again be used to optimize threshold
Quality of probability estimates also becomes important

- Estimate the quality of estimates using appropriate measures such as negative cross entropy or brier score
- Can also combine sampling methods with threshold moving

Decision Thresholds

Overview

- Introduction
- Sampling Methods
- Moving Decision Threshold
- Classifiers’ Objective Functions
- Evaluation Measures
Beyond Sampling: Adapting Classifiers

- Consider
 - Decision Trees
 - SVMs

Decision Trees

- A popular choice when combined with sampling or moving threshold to counter the problem of class imbalance
- The leaf frequencies converted to probability estimates (Laplace or m-estimate smoothing applied, typically)
 - Suggested use is as a PET – Probability Estimation Trees (unpruned, no-collapse, and Laplace)
Converting decision tree leaf predictions into probability estimates

\[
P_{\text{freq}} = \frac{TP}{TP + FP}
\]

\[
P_{\text{laplace}} = \frac{(TP + 1)}{(TP + FP + C)}
\]

\[
P_{\text{mest}} = \frac{(TP + bm)}{(TP + FP + m)}
\]

- Dietterich, Kearns and Mansoor (DKM)
- Hellinger distance
- Area under the ROC curve (AUC)
- Minimum squared error of probability estimates (MSEEsplit)

Some of the skew insensitive metrics proposed
Decision tree [(im)purity metrics]
Partition feature space to maximize purity at leaves. Recurse

Entropy (Information Gain) as an impurity

\[
E = \sum_{i \in (W \setminus Q)} \frac{\text{split}}{N^r} \log_2 \frac{N^L_i}{N^r} + \sum_{i \in (W \setminus Q)} \frac{\text{split}}{N^r} \log_2 \frac{N^R_i}{N^r}
\]
Consider a skew insensitive criterion

- **Hellinger Distance**
 - distance between probability measures independent of the dominating parameters

Properties of Hellinger Distance

\[
d_H(P, Q) = \sqrt{\int_{\Omega} (\sqrt{P} - \sqrt{Q})^2 d\lambda}
\]

\[
d_H(P, Q) = \sqrt{\sum_{\phi \in \Phi} (\sqrt{P(\phi)} - \sqrt{Q(\phi)})^2}
\]

- Measures countable space \(\Phi \)
- Ranges from 0 to \(\sqrt{2} \)
- Symmetric: \(d_H(P, Q) = d_H(Q, P) \)
- Lower bounds KL divergence
Formulating for decision tree

Consider a countable space

Consider a two-class problem (W and Q) are the two classes

“Distance” in the normalized frequencies space

\[
H = \sum_{j=1}^{p} \left(\sqrt{\frac{N_{Q}^j}{N_{Q}}} - \sqrt{\frac{N_{W}^j}{N_{W}}} \right)^2
\]

Inf. Gain vs. Hellinger distance

\((Q,W)\) classes of interest

\(N_{i} = \text{number of samples in class } i\)

\(N_{i}^{S} = \text{number of samples in } L/R\)

\(N_{i}^{S} = \text{number of samples in class } i \text{ is } L/R\) split

\[
E = \sum_{i \in (W,Q)} \frac{N_{i}^{L}}{N_{L}} \log_{2} \frac{N_{i}^{L}}{N_{L}} + \sum_{i \in (W,Q)} \frac{N_{i}^{R}}{N_{R}} \log_{2} \frac{N_{i}^{R}}{N_{R}}
\]

\[
H = \sqrt{\left(\frac{N_{Q}^L}{N_{Q}} - \frac{N_{W}^L}{N_{W}} \right)^2} + \sqrt{\left(\frac{N_{Q}^R}{N_{Q}} - \frac{N_{W}^R}{N_{W}} \right)^2}
\]
Comparing Value Surfaces

Class ratio +:- = 1:1
Comparing Value Surfaces

Class ratio +:- = 1:100

Hellinger Distance

Information Gain

Hellinger vs. DKM as decision tree splitting criteria

\[d_{DKM} = 2\sqrt{P(+)P(\neg)} - 2P(L)\sqrt{P(L \mid +)P(L \mid \neg)} - 2P(R)\sqrt{P(R \mid +)P(R \mid \neg)} \]

DKM has improved concavity compared to information gain, especially for either very small (relative) class proportions [10].

\[d_H = \sqrt{(\sqrt{P(L \mid +)} - \sqrt{P(L \mid \neg)})^2 + (\sqrt{P(R \mid +)} - \sqrt{P(R \mid \neg)})^2} \]

\[d_H = \sqrt{2 - 2\sqrt{P(L \mid +)P(L \mid \neg)} - 2\sqrt{P(R \mid +)P(R \mid \neg)}} \]
Algorithm HDDT

Input: Training Set T, Cutoff size C

- if $|T| < C$ then
 - return
- end if

 for each feature f of T do
 - $H_f = \text{Calc}_\text{Hellinger}(T,f)$
 end for

 $b = \max(H)$ (best feature)

 for each branch v of b do
 - HDDT(T_{xbv},C)
 end for

Function Calc_Hellinger

Input: Training set T, Feature f

For each value v of f do

$$\text{Hellinger} = \left(\frac{T_{y=v}y=+}{{T_{y=+}}} - \frac{T_{y=v}y=-}{{T_{y=-}}} \right)^2$$

end for

end function

Support Vector Machines

- SVMs are also sensitive to high class imbalance
- Penalty can be specified as a trade-off between the two classes
 - Limitations arise from the Karush Kuhn Tucker conditions

Solutions:
- Integrating sampling strategies
- Kernel alignment algorithms
- Hellinger distance is strongly skew insensitive
- More robust for class imbalance as compared to Gini and Information gain
- Recommended decision tree splitting criterion

Recommendations
 Kernel Boundary Alignment

- Adaptively modify K (kernel) based on training set distribution
- Addresses
 - Improving class separation
 - Safeguarding overfitting
 - Improving imbalanced ratio
Overview

- Introduction
- Sampling Methods
- Moving Decision Threshold
- Classifiers’ Objective Functions
- Evaluation Measures

Back to the Performance Fruit Bowl

- What evaluation measure to use?
- Is there one validation strategy that we can embrace?
Truth Table

<table>
<thead>
<tr>
<th>Prediction Value</th>
<th>Truth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True Positive (TP)</td>
</tr>
<tr>
<td>Negative</td>
<td>False Negative (FN)</td>
</tr>
</tbody>
</table>

f-measure

\[
\text{Precision} = \frac{tp}{tp + fp} \\
\text{Recall} = \frac{tp}{tp + fn} \\
F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}.
\]
• Top 20 Precision
• Top 20 Recall
• Mean averaged precision
• Precision Recall Curves (sweeping across thresholds)

Source of this Figure: Rich Caruana

More on Precision and Recall

Balanced Accuracy = \frac{\text{Accuracy}_+ + \text{Accuracy}_-}{2}

G-mean = \sqrt{\text{Accuracy}_+ \times \text{Accuracy}_-}

Balanced Accuracy and G-mean
ROC Curves

Blue "wins" here

Red "wins" here

Nitesh Chawla, SIAM 2009 Tutorial
\[
A = \frac{I_1 - n_1(n_1 + 1)/2}{n_0 n_1}
\]

- \(I_1\) : sum of ranks of all class 1 examples
- \(n_0\) : number of class 0 examples
- \(n_1\) : number of class 1 examples

AUC

AUC: Area Under the ROC Curve

- AUC(Blue) = 0.7626
- AUC(Red) = 0.7569
Cost Curves

Expected cost per example

Ratio of each class’s misclassification cost times class prior rate

Relating AUC to Cost Curves

This ROC…
Relating AUC to Cost Curves

...converts to this Cost Curve

Cost and Benefits

<table>
<thead>
<tr>
<th></th>
<th>Actual Negative</th>
<th>Actual Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predict Negative</td>
<td>TN</td>
<td>FN</td>
</tr>
<tr>
<td>Predict Positive</td>
<td>FP</td>
<td>TP</td>
</tr>
</tbody>
</table>

\[
B_N = (1 - P_k) b_{00} + P_k b_{01}
\]

\[
B_P = (1 - P_k) b_{10} + P_k b_{11}
\]
Benefit of Non-Default

\[b_{00}(k,x)(1-P_k) > (1-P_k)b_{10} + P_kb_{11} - P_kb_{01}(x) \]

\[b_{00}(k,x) > \frac{(1-P_k)b_{10} + P_kb_{11} - P_kb_{01}(x)}{(1-P_k)} \]

\[\therefore \text{NPV} \equiv (1-P_k)b_{00} - (1-P_k)b_{01} + P_kb_{11} - P_kb_{10} \]

\[\equiv (1-P_k)b(TN) - (1-P_k).C(FP) + P_kb(TP) - P_k.C(FN) \]

Quality of Posterior Probability Estimate

\[NCE = -\frac{1}{n} \left(\sum_{i,y=1} \log(p(y = 1 | x_i)) + \sum_{i,y=0} \log(1 - p(y = 1 | x_i)) \right) \]
Brier Score

- Average Quadratic Loss on each test instance

\[QL = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i)^2 \]

- Indicative of best estimates at true probabilities
- accounts for probability assignments to all classes
What are we really evaluating then?

- Rank-order?
- Quality of probability estimates?
- Precision, Recall (and f-measure) at a threshold?
- Balanced accuracy or g-mean (again at a threshold)
- An operating point on ROC curve?
- Costs?

Different measures have different sensitivities

Call to the community: Let us standardize.
Step one, choosing the validation strategy

Step two, comparing and contrasting evaluation measures
Step three, computing statistical significance

Step four, some recommendations and call to the community
Discussion

- Need for larger datasets
 - A benchmark repository
- Need for many positives and march towards parts-per-million
- Need for standardization in evaluation
- Need for full parameter disclosure in papers

Datasets and Software

- Available via
 - http://www.nd.edu/~dial
 - Email me: nchawla@nd.edu
Acknowledgements

- Kevin Bowyer, David Cieslak, George Forman, Larry Hall, Nathalie Japkowicz, Philip Kegelmeyer, Alek Kolcz

Let neither measurement without theory
Nor theory without measurement dominate
Your mind but rather contemplate
A two-way interaction between the two
Which will your thought processes stimulate
To attain syntheses beyond a rational expectation!

Contributed by A. Zellner.