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Social Network Analysis

Email network

Represents the email communications between users

Cluster users
Identify communities
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Document-Term Matrices

A collection of documents is represented by an
nDoc-by-nTerm matrix (bag-of-words model).

Cluster or classify documents

Find a subset of terms that (accurately) clusters or
classifies documents
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Recommendation Systems

Collaborative filtering

Given the users’ historical data, predict the ratings of a

specific user to a new movie
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Bioinformatics

Gene expression data

Pick a subset of genes (if it exists) that suffices in order to

identify the “cancer type" of a patient
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Some Notations & Preliminaries

The data matrix X = [x1,x2, · · · ,xn] ∈ Rd×n

Generally, a graph G = 〈V, E〉 can be described as a matrix

The columns and rows are indexed by V
The elements are the strengths on the corresponding

edges in E
Analyzing graphs is usually equivalent to perform analysis

on matrices
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Dimensionality Reduction

Clustering

Co-Clustering

Singular Value Decomposition

x1 x2 xn u1 uk s1

sk

vT1

vTk

Best rank-k approximation in Frobenius norm

Exact computation of SVD takes O(min(dn2,d2n)) time.

The top k left/right singular vectors/values can be

computed faster using Lanczos/Arnoldi methods.
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Latent Semantic Analysis

k-dimensional semantic structure

Similarity on reduced-space: D-D, D-T, T-T

Folding-in queries: q̂ = S−1
k Vkq

X

D
o

c
u

m
e

n
ts

Terms LSA Term
Vectors

Uk

Singular
Values

Sk

LSA Document
Vectors

V
T
k

Fei Wang, Tao Li, Chris Ding Data Mining with Graphs & Matrices



Graphs and Matrices are Everywhere

Unsupervised Learning with Graphs & Matrices

Semi-supervised Learning with Graphs & Matrices

Future Research Directions

Dimensionality Reduction

Clustering

Co-Clustering

Principal Component Analysis

Find a projection vector u ∈ Rd×1, such that the projected

data points Y = uTX own the largest variance, i.e., we

should solve the following optimization problem

maxu uT
1

n

(
n∑

i=1

(xi −m)(xi −m)T
)

u

s.t . ‖u‖2 = 1 (1)

From the standard theorem of Rayleigh-Ritz, we know that

the optimal u is the eigenvector of the data covariance

matrix C corresponding to its largest eigenvalue.
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PCA & SVD

If X is centralized, then the covariance matrix C = 1
nXX

T

Eigenvalue decomposition C = UΣUT = 1
nXX

T

SVD of X: X = USVT
1
n
XXT = 1

n
USV

T
VSU

T = U 1
n
S2UT

Let Σ = 1
nS

2, then PCA=SVD
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Nonlinear Embedding

PCA is a linear method to project the data points

What should we do if the data are nonlinearly distributed?
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Dimensionality Reduction
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Co-Clustering

Manifold & Graph

We usually assume that the high-dimensional data points

reside (nearly) on a low-dimensional nonlinear manifold

Find the low-dimensional embeddings of the data which

preserve the graph structure
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Local Linear Embedding (LLE)

Assume each data point can be linearly reconstructed from

its neighborhood, i.e., for each xi , we minimize

εi =
∑

xj∈Ni

‖xi − wijxj‖2

s.t .
∑

j
wij = 1 (2)

Then we use all {wij} to recover the low-dimensional

embedding of the data points Y by solving

J =
∑n

i=1
‖yi −

∑
yj∈Ni

wijyj‖2

s.t . YTY = I (3)
Y = [y1, · · · , yn] is the low-dimensional embedded data
matrix
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An Example of LLE
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Laplacian Eigenmaps (LE)

The embedded data should be sufficiently smooth with

respect to the intrinsic data manifold.

We minimize

minY
∑

i∼j
wij‖yi − yj‖2

s.t . YTY = I (4)

wij represents the similarity between xi and xj

Writing in matrix form
∑

i∼j wij‖yi − yj‖2 = tr(Y(D−W)YT )

W(i, j) = wij is the similarity matrix

D = diag(
∑

j w1j , · · · ,
∑

j w2j)

We call L = D−W the Laplacian matrix
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Graph Similarities

Node similarities: sij = exp
(
−‖xi−xj‖2

2σ2

)
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Locality Preserving Projections (LPP)

Linear version of Laplacian embedding

Let P be the projection matrix, then the goal of LPP is just

to solve the following problem

minP tr(PTXLXTP)

s.t . PTP = I (5)

Locality Preserving Indexing

Laplacianface

...
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Graph Embedding: A General Framework

A general graph embedding framework:

miny
∑

i∼j
pij‖yi − yj‖2

s.t . yTAy = c (6)

i ∼ j denotes that there is an edge connecting xi and xj
c is a constant

Linearization:

minp
∑

i∼j
pij‖pTxi − pTxj‖2

s.t . pTXAXTp = c (7)
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Summarization of Different Methods from a GE

Perspective (Shuicheng Yan et al. CVPR’05)

Algorithm P A

PCA pij = 1/n, ∀i (= j A = I

LDA pij = δl1,lj/nli A = I− eeT

LLE P = W+WT −WTW A = I

LPP pij = exp(−‖xi − xj‖2/(2σ2)) A = D
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K-means

The data points X comes from C clusters. We aim to find

the cluster centers {fi}Ci=1 together with the clusters such

that the following criterion is minimized

min

C∑

i=1

∑

xj∈πi

‖xj − fi‖2 (8)

πi denotes the i-th cluster

We can resort to iterative procedures to solve the problem.
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K-means Procedure

The figures come from

http://www.ccs.neu.edu/home/rjw/csg220/lectures/k-means.pdf.Fei Wang, Tao Li, Chris Ding Data Mining with Graphs & Matrices
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Graph Clustering

Partition the nodes V in graph G into disjoint clusters

Cut: Set of edges with points belonging to different clusters

Association: Set of edges with points belonging to the

same cluster
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Graph Cut Criteria

MinCut: Minimize the association between groups

min cut(A,B)
Normalized graph cut criterions:

RatioAssociation: max
asso(A,A)

|A| + asso(B,B)
|B|

RatioCut: min
cut(A,B)

|A| + cut(B,A)
|B|

NormalizedCut: min
cut(A,B)
vol(A) + cut(B,A)

vol(B)
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Some Definitions on Graphs

Weight Matrix W: Wij is the weight on the edge eij

Degree Matrix D: Dii =
∑

jWij

Partition Matrix P: Pij = 1 if xi belongs to partition j ;

Otherwise Pij = 0

Scaled Partition Matrix P̃: P̃ij = 1/
√
nj if xi belongs to

partition j , nj is the size of the j-th cluster; Otherwise

P̃ij = 0

The goal of graph clustering is to solve P or P̃
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Spectral Clustering

The solutions of the above optimization problems can be

finally obtained by spectral analysis of some matrices

Ratio association: Do eigenvalue decomposition toW

Ratio cut: Do eigenvalue decomposition to L = D−W
Normalized cut: Do eigenvalue decomposition to

L̂ = I− D−1/2WD−1/2
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Spectral Clustering II

Figure from Shi & Malik. PAMI 2000.
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The Eigenvectors of The Normalized Laplacian Matrix
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Nonnegative Matrix Factorization

Analyzing nonnegative matrices (document-word matrix,

image matrix...)

For a nonnegative matrix X, we decompose it into two

nonnegative matrices

min
F!0,G!0

‖X− FGT‖2 (9)

Multiplicative update rule to solve the problem

Fij ←− Fij
(XG)ij

(FGTG)ij
, Gij ←− Gij

(FTX)ij

(FTFGT )ij

Parts-based representation
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NMF Variants

If the data matrix X has mixed signs, then

Singular Value Decomposition: X± ≈ F±G
T
±

Semi-NMF: X± ≈ F±G
T
+

Convex-NMF: X± ≈ X±W+G
T
+

Kernel-NMF: φ(X±) ≈ φ(X±)W+G
T
+
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The Relationships Between NMF and K-means

K-means objective:

Jkm =
∑

c

∑

xi∈πc

‖xi − fc‖2 =
n∑

i=1

c∑

c=1

gic‖xi − fc‖2

=
∥∥∥X− FGT

∥∥∥
2

F

Cluster center matrix: F = [f1, f2, · · · , fC ] ∈ Rn×C

G ∈ Rn×C with Gij = gij , such that gij = 1, if xi ∈ πj ;
Gij = 0,otherwise.

K-means and NMF: the same objective, only different
constraint

NMF: F ≥ 0, G ≥ 0
K-means: Gij ∈ {0, 1}, G1 = 1
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The Relationships Between K-means and PCA

εk =
∑nk

i=1 ‖x
(k)
i −mk‖2 = ‖Xk −mke

T‖2

εk = trace
(
Xk(Ink − eeT/nk )X

T
k

)

Finally,

ε =
∑C

k=1 εk =
∑c

k=1

(
trace(XTi Xi) −

(
eT√
nk

)
XTk Xk

(
eT√
nk

))

Let P̃ = diag(
en1√
n1

, · · · ,
enC√
nC

)

Then ε = trace(XTX) − trace(P̃TXTXP̃) subject to P̃T P̃ = I

Therefore we need to maximize trace(P̃TXTXP̃) and get P̃.

According to the Ky Fan therorem, P̃ is composed of the

eigenvectors of XTX corresponding to its largest C

eigevalues

If X is centralized, then it is equivalent to PCA
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The Relationships Between K-means and Spectral

Clustering

From last slide we can see that the relaxed solution of

kmeans is equivalent to analyze the eigenstructure of

A = XTX

If we define the similarity matrix W = A, then kmeans is

equivalent to ratio association

Define the weighted kmeans criterion

ε̃ =
∑C

k=1

∑
xi∈πk

wi‖xi −mk‖2

Using similar derivation procedure, we can derive that

optimizing the above criterion is equivalent to solve

maxP̃trace(P̃TD1/2WD1/2P̃) (10)
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The Relationships Between NMF and Spectral

Clustering

Let the normalized similarity matrix be W̃ = D−1/2WD−1/2

Then we have the following theorem

Theorem

Normalized Cut using similarity W̃ is equivalent to the following

symmetric nonnegative matrix factorization

min
P̃!0

J = ‖W̃− P̃P̃T‖2 (11)
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The Problem

Usually the data we face with are relational, i.e., there are

multiple type of data interrelated with each other

How to cluster those relational data simultaneously?
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A Spectral Approach

Define the similarity matrix on the bi-partite graph

A =

[
0 R

RT 0

]

Also the concatenated cluster membership vector

x = [xTI ,xTII ]
T

Then the co-clustering problem becomes a graph-cut

problem on the bi-partite graph, i.e., we should solve the

following generalized eigenvalue decomposition problem

Lx = λDx (12)

where D = diag(
∑

j A1j , · · · ,
∑

j Anj ), L = D− A
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Nonnegative Matrix Tri-Factorization

Factorize the user-movie rating matrix X into three
matrices F,S,G, such that

F represents the cluster memberships on the user side
G represents the cluster memberships on the movie side

By relaxing the integer constrains on F,G, we need to

solve the following optimization problem

min
F≥0,S≥0,G≥0

‖X− FSGT‖2, s.t . FTF = I, GGT = I (13)

We can derive some multiplicative update rules to solve for

the optimal F,S,G
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Other Types of Co-Clustering Methods

Information-Theoretic Co-clustering (Dhillon et al. KDD’03)

Bayesian Co-Clustering (Shan & Banerjee. ICDM’08)

Tensor Method (Banerjee et al. SDM’07)

Collective Factorization on Related Matrices (Long et al.

ICML’06)

Multiple Latent Semantic Analysis (Wang et al. SIGIR’06)
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Why Semi-supervised Learning

Traditional learning problems

Supervised learning: learning with labeled data set

Unsupervised learning: learning with unlabeled data set

Problems

Supervised learning: requires much human effort,

expensive and time consuming

Unsupervised learning: unreliable

Semi-supervised learning

Learning with partially labeled data

Learning with side-information
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Semi-supervised Assumption

Smoothness Assumption: If two points x1,x2 in a

high-density region are close, then so should be the

corresponding outputs y1, y2

Cluster Assumption: If points are in the same cluster, they

are likely to be of the same class

Manifold Assumption: The (high-dimensional) data lie

(roughly) on a low-dimensional manifold
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Label Propagation

Connect the data points that are close to each other

(Nearest Neighbor Graph)

Propagate the class labels over the connected graph
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Propagation Rules

Initial label vector: y ∈ Rn×1

yi = ti if xi is labeled as ti ; yi = 0 if xi is unlabeled

f
(1)
i = yi if xi is labeled; f

(1)
i = α

∑
xj∈Ni

Pijyj otherwise

P ∈ Rn×n is the propagation matrix
Matrix form: f(1) = y+ αPy

f(2) = f(1) + αPf(1) = (I+ αP+ α2P2)y

Finally f(∞) =
∑∞

i=0 αiPiy = (I− αP)−1y
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An Example
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The Calculation of P

Asymmetrically Normalized Similarity Matrix:

P = D−1W

Symmetrically Normalized Similarity Matrix:

P = D−1/2WD−1/2

How to determine the optimal σ when computing Wij?

Linear Neighborhood Similarity

minWij
‖xi −

∑

xj∈Ni

Wijxj‖2

s.t .
∑

j

Wij = 1, Wij ≥ 0

Fei Wang, Tao Li, Chris Ding Data Mining with Graphs & Matrices



Graphs and Matrices are Everywhere

Unsupervised Learning with Graphs & Matrices

Semi-supervised Learning with Graphs & Matrices

Future Research Directions

Semi-supervised Learning with Partially Labeled Data

Semi-supervised Learning Using Side-Information

The Calculation of P

Asymmetrically Normalized Similarity Matrix:

P = D−1W

Symmetrically Normalized Similarity Matrix:

P = D−1/2WD−1/2

How to determine the optimal σ when computing Wij?

Linear Neighborhood Similarity

minWij
‖xi −

∑

xj∈Ni

Wijxj‖2

s.t .
∑

j

Wij = 1, Wij ≥ 0

Fei Wang, Tao Li, Chris Ding Data Mining with Graphs & Matrices

Graphs and Matrices are Everywhere

Unsupervised Learning with Graphs & Matrices

Semi-supervised Learning with Graphs & Matrices

Future Research Directions

Semi-supervised Learning with Partially Labeled Data

Semi-supervised Learning Using Side-Information

The Calculation of P

Asymmetrically Normalized Similarity Matrix:

P = D−1W

Symmetrically Normalized Similarity Matrix:

P = D−1/2WD−1/2

How to determine the optimal σ when computing Wij?

Linear Neighborhood Similarity

minWij
‖xi −

∑

xj∈Ni

Wijxj‖2

s.t .
∑

j

Wij = 1, Wij ≥ 0

Fei Wang, Tao Li, Chris Ding Data Mining with Graphs & Matrices



Graphs and Matrices are Everywhere

Unsupervised Learning with Graphs & Matrices

Semi-supervised Learning with Graphs & Matrices

Future Research Directions

Semi-supervised Learning with Partially Labeled Data

Semi-supervised Learning Using Side-Information

A Regularization Framework

Label consistency: the predicted labels should be

sufficiently close to the initial labels on the labeled data

points

Label smoothness: the predicted labels should be

sufficiently smooth with respect to the data manifold

(graph)

min
f

l∑

i=1

(fi − ti)
2 +

n∑

i=l+1

f 2
i + µ

∑

i∼j
wij(fi − fj)

2

The first term reflects label consistency
The second term guarantees the predicted label values

should fall in a reasonable range for numerical stability
The third term reflects label smoothness

f = (I+ µL)−1y
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Experimental Results on 20Newsgroup Data
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Classification Results on 20 Newsgroup Data
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What is Side-Information

Types of side-information

Must-link: a pair of points should belong to the same class
Cannot-link: a pair of points should not appear in the same

class

Side-information is a type of prior knowledge weaker than
partial labeling

Knowing the partial labeling, we can transform it into

side-information
But not vice versa
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Pairwise Constrained K-means Clustering

K-means objective: Jkm =
∑

c

∑
xi∈πc ‖xi − fc‖

2

Matrix form: Jkm =
∥∥∥X− FGT

∥∥∥
2

F

Cluster center matrix: F = [f1, f2, · · · , fC ] ∈ Rn×C

G ∈ Rn×C with Gij = 1, if xi ∈ πj ; Gij = 0,otherwise.

The objective of PCKM

J(π) =
∑

c

∑

xi∈πc

‖xi − fc‖2 +
∑

xi ,xj∈M

s.t. li "=lj

θij +
∑

xi ,xj∈C

s.t. li=lj

θ̃ij ,

{θij ! 0}: penalties for violating the must-link constraints

{θ̃ij ! 0}: penalties for violating the cannot-link constraints
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Penalized Matrix Factorization

Changing the penalties of violations in the constraints in M
into the awards as

J(π) =
∑

c

∑

xi∈πc

‖xi − fc‖2 −
∑

xi ,xj∈M

s.t. li=lj

θij +
∑

xi ,xj∈C

s.t. li=lj

θ̃ij

=
∑

c

∑

xi

Gic‖xi − fc‖2 +
∑

c

∑

i,j

GicGjcΘij

Θij =






θ̃ij , (xi , xj) ∈ C
−θij , (xi , xj) ∈ M
0, otherwise

Penalized matrix factorization objective

minF,G J(π) =
∥∥∥X− FGT

∥∥∥
2

F
+ tr(GT

ΘG)

s.t . G ! 0 (14)

Θ ∈ Rn×n with its (i, j)-th entry Θij = Θij
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Updating Rules for PMF

Table: Penalized Matrix Factorization for Constrained Clustering

Inputs: Data matrix X, Constraints matrix Θ.

Outputs: F, G.

1. Initialize G;

2. Repeat the following steps until convergence:

(a). Fixing G, updating F by F = XG(GTG)−1;

(b). Fixing F, updating G by

Gij ←− Gij

√√√√
(XT F)+

ij
+[G(FTF)−]

ij
+

(
Θ

−
G

)

ij

(XT F)−
ij

+[G(FTF)+]
ij
+

(
Θ

+
G

)

ij

.
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Side-Information on Bi-partite Graph
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PMF on Bi-partite Graph

min
G1!0,G2!0

J = ‖R12 −G1SG
T
2 ‖2 + tr(GT

1 Θ1G1) + tr(GT
2 Θ2G2)

Table: PMF on Bi-partite Graph
Inputs: Relation matrix R12, Constraints matrices Θ1, Θ2.
Outputs: G1, S, G2.
1. Initialize G1, G2;
2. Repeat the following steps until convergence:

(a). Fixing G1,G2, updating S using

S←− (GT
1
G1)

−1GT
1
R12G2(G

T
2
G2)

−1;
(b). Fixing S,G2, updating G1 using

G1ij ← G1 ij

√
(R12G2S

T )+
ij

+[G1(STGT
2
G2S)−]ij+(Θ−

1
G1)ij

(R12G2S
T )−

ij
+[G1(STGT

2
G2S)+]ij+(Θ+

1 G1)ij
;

(c). Fixing G1,S, updating G2 using

G2ij ← G2 ij

√
(RT

12
G1S)+

ij
+[G2(SGT

1
G1S

T )−]ij+(Θ−

2
G2)ij

(RT
12
G1S)−

ij
+[G2(SGT

1
G1S

T )+]ij+(Θ+
2 G2)ij

.
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Table: The F measure of three algorithms on the BBS data set

Data Sets Algorithm d = 3 d = 4 d = 5 d = 6

1 MLSA 0.7019 0.7079 0.7549 0.7541

1 SRC 0.7281 0.6878 0.6183 0.6183

1 Tri-SPMF 0.7948 0.8011 0.8021 0.7993
2 MLSA 0.7651 0.7429 0.7581 0.7309

2 SRC 0.7627 0.7226 0.7280 0.6965

2 Tri-SPMF 0.8007 0.7984 0.7938 0.7896
3 MLSA 0.6689 0.6511 0.6987 0.7301

3 SRC 0.7556 0.7666 0.7472 0.7125

3 Tri-SPMF 0.8095 0.8034 0.7993 0.7874
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Tensor & Hypergraph Based Methods

In knowledge & information management, we usually face
with multi-relational data

Graph based methods can capture the pairwise

relationships

Matrix is also only composed of two dimensions

Hypergraph is more efficient in describing the multiple-wise

relationships

Tensor is also a structure that can capture multiple-wise

relationships
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Efficient & Large Scale Methods

Matrix & Graph based methods usually involve high
computational cost

eigenvalue decomposition
solving large scale linear equation systems

constrained optimization

How to make the algorithm more efficient?

Exploring the sparsity

How to improve scalability?

Smart sampling
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Probabilistic Interpretations

Potential problems of describing the data with matrices

Too large

Too complicated
Missing entries

Noisy entries
· · · · · ·

Probabilistic interpretations & graphical models

Discover latent structures

Relationships with matrix based methods?
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Knowledge Transfer Across Different Domains

The multi-relational data contain data points from different
domains

We may easily get some prior knowledge on some domains

How to transfer the knowledge from one domain to
another?

What knowledge to transfer?
How?

Is it really helps?
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