

Mining Sparse Representations: Theory, Algorithms, and Applications

Jun Liu, Shuiwang Ji, and Jieping Ye Computer Science and Engineering The Biodesign Institute Arizona State University

What is Sparsity?

- Many data mining tasks can be represented using a vector or a matrix.
- "Sparsity" implies many zeros in a vector or a matrix.

Sparsity in Data Mining

- Regression
- Classification
- Multi-Task Learning
- Collaborative Filtering
- Network Construction

Regression

- Select a small number of features
 - Lasso

Application: Genetics

• Find the locations on the genome that influence a trait: e.g. cholesterol level

• Model: y = Ax + z (x is very sparse)

 y_i : measured cholesterol level of patient i

A: genotype matrix; $i {\rm th}~{\rm row} \rightarrow {\rm genotype}~{\rm of}~{\rm patient}~i$

- e.g. A_{ij} number of alleles of type a at location j
- z_i environmental factors (not accounted by genetics) for patient iTypical dimensions:

Number of columns: about 500,000, number of rows: a few thousands

Application: Neuroscience

• Neuroimages for studying Alzheimer's Disease

Multi-Task/Class Learning

- Key Challenge: How to capture the shared information among multiple tasks?
 - Shared features (group Lasso)
 - Shared low-dimensional subspace (trace norm)

Application: Biological Image Annotation

		in situ I	mages and Annotat	ions (LD16125, dg)					
Stage stage1-3	Image (click thumbnail for full size image)			Body Part			Suma	Parties .	procephalic ectoderm primordium ventral ectoderm primordium
	CONTRACT.			1	stages-10	COD	SHID	A	inclusive hindgut primordium mesectoderm primordium trunk mesoderm primordium
stage4-6	1	0		segmentally repeated dorsal ectoderm anlage in statu nascendi ventral ectoderm anlage in statu nascendi mesectoderm anlage in statu nascendi trunk mesoderm anlage in statu nascendi	stage11-12		- ANNING	·OHD	head epidermis primordium P1
			Aller				in	· h	brain primordium clypeo-labral primordium atrium primordium dorsal epidermis primordium ventral epidermis primordium ventral nerve cord primordium
									hindgut proper primordium midline primordium

http://www.fruitfly.org/cgi-bin/ex/insitu.pl

- Document expression patterns over 6,000 genes with over 70,000 images
- Annotated with body part keywords

Collaborative Filtering

Items ? Customers ?

- Customers are asked to rank items
- Not all customers ranked all items
- Predict the missing rankings

Application: The Netflix Challenge

	Movies									
		?	?	?	?	?		?	?	?
	?	?		?		?	?	?	?	?
	?	?	?	?	?	?	?	?		?
Users	?	?	?		?	?	?	?	?	?
		?	?	?	?		?	?	?	
	?		?	?	?	?	?	?		?
	?	?	?	?	?		?	?	?	?
	?	?	?		?	?	?	?		?

About a million users and 25,000 movies

- Known ratings are sparsely distributed
- Predict unknown ratings

Network Construction

Equivalent matrix representation

Sparsity: Each node is linked to a small number of neighbors in the network.

Application: Brain Network

Brain Connectivity of different regions for Alzheimer's Disease (Sun et al., KDD 2009)

A Unified Model for Sparse Learning

• Let x be the model parameter to be estimated. A commonly employed model for estimating x is

min $loss(x) + \lambda$ penalty(x) (1)

• (1) is equivalent to the following model:

 $\begin{array}{ll} \min \ loss(x) \\ \text{s.t.} \ \ penalty(x) \leq z \end{array} \tag{2}$

Loss Functions

- Least squares
- Logistic loss
- Hinge loss
- •

Penalty Functions: Nonconvex

• Zero norm

penalty(x)=the number of nonzero elements

• Advantages

The sparsest solution

• Disadvantages:

Not a valid norm, nonconvex, NP-hard

• Extension to the matrix case: rank

Penalty Functions: Convex

• L_1 norm

```
penalty(x)=||x||_1 = \sum_i |x_i|
```

• Advantages:

Valid norm

Convex

Computationally tractable Theoretical properties Many applications Various Extensions

In this tutorial, we discuss sparse representation based on L_1 and its extensions.

Why does L₁ Induce Sparsity?

Analysis in 1D (comparison with L_2)

Nondifferentiable at 0

Differentiable at 0

Why does L₁ Induce Sparsity?

Understanding from the projection

Why does L₁ Induce Sparsity?

Understanding from constrained optimization

Center for Evolutionary Functional Genomics

Sparsity via L₁

Sparsity via L_1/L_q

Sparsity via $L_1 + L_1/L_q$

Sparsity via Fused Lasso

Sparsity via Trace Norm

$$||X||_* = \sum_{i=1}^k \sigma_i \qquad X = U\Sigma V^{\mathrm{T}}$$
$$\Sigma = \mathrm{diag}(\sigma_1, \sigma_2, \dots, \sigma_k)$$

Application: Multi-Task Learning, Matrix Completion

Sparse Inverse Covariance

Inverse Covariance Matrix

Sparse Inverse Covariance Estimation

Connectivity Study

 $||X||_1, X \succeq 0$

Goal of This Tutorial

- Introduce various sparsity-induced norms

 Map sparse models to different applications
- Efficient implementations
 - Scale sparse learning algorithms to large-size problems

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparse Inverse Covariance Estimation
- Sparsity via Trace Norm
- Implementations and the SLEP package
- Trends in Sparse Learning

Compressive Sensing

(Donoho, 2004; Candes and Tao, 2008; Candes and Wakin, 2008)

Principle:

"sparse signal statistics can be recovered from a small number of *nonadaptive linear measurements*"

Basis Pursuit

(Chen, Donoho, and Saunders, 1999)

 $\begin{array}{ll} \min & <1, t > \\ \text{s.t.} & y = \Phi x, -t \leq x \leq t \end{array}$

Question: When can P_1 obtain the same result as P_0 ?

Sparse Recovery and RIP

 Φ satisfies the *K*-restricted isometry property with constant δ_K if δ_K is the smallest constant satisfying

$$(1 - \delta_K) \|x\|_2^2 \le \|\mathbf{\Phi}x\|_2^2 \le (1 + \delta_K) \|x\|_2^2$$

for every *K*-sparse vector *x*.

Theorem (E. J. Candès (2008))

If $\delta_{2k} < \sqrt{2} - 1$, then for all k-sparse vectors x such that $\Phi x = b$, the solution of (P_1) is equal to the solution of (P_0) .

Extensions to the Noisy Case

$$\begin{array}{ll} \min & \|x\|_1 \\ \text{s.t.} & \Phi x = y \end{array} \end{array}$$

 $||x||_1$

s.t. $\|\Phi x - y\|_2 \le \epsilon$

 \min

$$y = \Phi x + z$$
 noise

$$\begin{array}{ll} \min & \frac{1}{2} \| \Phi x - y \|_{2}^{2} \\ \text{s.t.} & \| x \|_{1} \leq \rho \end{array}$$

Basis pursuit De-Noising (Chen, Donoho, and Saunders, 1999)

$$\frac{1}{2} \|\Phi x - y\|_2^2 + \lambda \|x\|_1$$

Regularized counterpart of Lasso

Lasso (Tibshirani, 1996)

$$\begin{array}{ll} \min & \|x\|_1 \\ \text{s.t.} & \|\Phi^{\mathrm{T}}(\Phi x - y)\|_{\infty} \le \epsilon \end{array} \right)$$

Dantzig selector (Candes and Tao, 2007)

Lasso

Theory of Lasso

(Zhao and Yu, 2006; Wainwright 2009; Meinshausen and Yu, 2009; Bickel, Ritov, and Tsybakov, 2009)

• Support Recovery

 $sup(x)=sup(x^*)?$

- Sign Recovery sign(x)=sign (x*)?
- L₁ Error

 $\|\mathbf{x}-\mathbf{x}^*\|_1$

• L₂ Error

 $||x-x^*||_2$

L₁ Error

(Bickel, Ritov, and Tsybakov, 2009)

Theorem (Bickel, Ritov, and Tsybakov, 2009)

Let z_i be independent $\mathcal{N}(0, \sigma^2)$ random variables. Let all the diagonal elements of the matrix $\Phi^T \Phi/n$ be equal to 1, and $M(x^*) = s$ where $1 \le s \le M$. Let Assumption RE(s, 3) be satisfied. Let

$$\hat{x} = \arg\min\{\frac{1}{n} \|y - \Phi x\|_2^2 + 2\lambda \|x\|_1\},\$$
$$\lambda = A\delta \sqrt{\frac{\log M}{n}}$$

and $A > 2\sqrt{2}$. Then for all $n \ge 1$, with probability at least $1 - M^{1-A^2/8}$, we have

$$\|\hat{x}-x^*\|_1 \leq \frac{16A}{\kappa^2} \delta s \sqrt{\frac{\log M}{n}}.$$

Dantzig Selector

$$\min \quad \|x\|_1 \\ \text{s.t.} \quad \|\Phi^{\mathrm{T}}(\Phi x - y)\|_{\infty} \le \epsilon$$

Theory of Dantzig Selector

(Candes and Tao, 2007; Bickel, Ritov, and Tsybakov, 2009)

Theorem (Bickel, Ritov, and Tsybakov, 2009)

Let z_i be independent $\mathcal{N}(0, \sigma^2)$ random variables. Let all the diagonal elements of the matrix $\Phi^T \Phi/n$ be equal to 1, and $M(x^*) = s$ where $1 \le s \le M$. Let Assumption RE(s, 1) be satisfied. Let

$$\hat{x} = \arg \min_{\|\frac{1}{n}\Phi^{\mathrm{T}}(y - \Phi x)\|_{\infty} \le \lambda} \|x\|_{1},$$
$$\lambda = \mathcal{A}\delta \sqrt{\frac{\log M}{n}}$$

and $A > \sqrt{2}$. Then for all $n \ge 1$, with probability at least $1 - M^{1-A^2/2}$, we have

$$\|\hat{x} - x^*\|_1 \le \frac{8A}{\kappa^2} \delta s \sqrt{\frac{\log M}{n}}$$

Testing Input

Face Recognition

(Wright et al. 2009)

ARIZONA STATE UNIVERSITY

1-norm SVM

(Zhu et al. 2003)

$$\min_{\substack{\beta_0,\beta}} \sum_{i=1}^n \left[1 - y_i \left(\beta_0 + \sum_{j=1}^q \beta_j h_j(x_i) \right) \right]_+ \right]$$

s.t.
$$\|\beta\|_1 = |\beta_1| + \dots + |\beta_q| \le s,$$

Hinge Loss

1-norm constraint

Table 1: Simulation results of 1-norm and 2-norm SVM

		Test Error (SE)					
	Simulation	1-norm	2-norm	No Penalty	$ \mathcal{D} $	# Joints	
1	No noise input	0.073 (0.010)	0.08 (0.02)	0.08 (0.01)	5	94 (13)	
2	2 noise inputs	0.074 (0.014)	0.10 (0.02)	0.12 (0.03)	14	149 (20)	
3	4 noise inputs	0.074 (0.009)	0.13 (0.03)	0.20 (0.05)	27	225 (30)	
4	6 noise inputs	0.082 (0.009)	0.15 (0.03)	0.22 (0.06)	44	374 (52)	
5	8 noise inputs	0.084 (0.011)	0.18 (0.03)	0.22 (0.06)	65	499 (67)	

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparse Inverse Covariance Estimation
- Sparsity via Trace Norm
- Implementations and the SLEP package
- Trends in Sparse Learning

From L_1 to L_1/L_q (q>1)?

Most existing work focus on $q=2, \infty$

Group Lasso (Yuan and Lin, 2006; Meier et al., 2008)

Splice Site Detection

Multi-task Learning via L_1/L_q Regularization

Face Recognition

(Liu, Yuan, Chen, and Ye, 2009)

Writer-specific Character Recognition

(Obozinski, Taskar, and Jordan, 2006)

	strokes : $\operatorname{error}(\%)$				pixels: error $(\%)$			
Task	ℓ_1/ℓ_2	ℓ_1/ℓ_1	$\mathrm{id}.\ell_1$	pool	ℓ_1/ℓ_2	ℓ_1/ℓ_1	$\mathrm{id}.\ell_1$	pool
c/e	2.5	3.0	3.3	3.0	4.0	8.5	9.0	4.5
g/y	8.4	11.3	8.1	17.8	11.4	16.1	17.2	18.6
g/s	3.3	3.8	3.0	10.7	4.4	10.0	10.3	6.9
m/n	4.4	4.4	3.6	4.7	2.5	6.3	6.9	4.1
a/g	1.4	2.8	2.2	2.8	1.3	3.6	4.1	3.6
i/j	8.9	9.5	9.5	11.5	12.0	14.0	14.0	11.3
a/o	2.0	2.9	2.3	3.8	2.8	4.8	5.2	4.2
f/t	4.0	5.0	6.0	8.1	5.0	6.7	6.1	8.2
h/n	0.9	1.6	1.9	3.4	3.2	14.3	18.6	5.0

Sparse Group Lasso

(Peng et al., 2010; Friedman, Hastie, and Tibshirani, 2010; Liu and Ye, 2010)

Simulation Study

(Liu and Ye, 2010)

Simulation Study (Liu and Ye, 2010)

Integrative Genomics Study of Breast Cancer (Peng et al., 2010)

- Response variables: 654 gene expressions.
- Predictor variables:

(1) Expressions of genes connected to the current response in *Exp.Net*. (2) copy number of the 384 CNAIs.

- Penalties are imposed on the coefficients for unlinked CNAIs.
- Identified 43 trans edges correspond to 3 CNAIs from 17q12q21.2
 - This region was highly amplified in 19% (33) of the samples.
 - Amplification of this region influences the expression levels of 31 unlinked genes

→ 17q12-q21.2 may harbor transcriptional factors whose activities closely relate to breast cancer.

Indeed, this region has 4 known transcription factors (NEUROD2, IKZF3, THRA and NR1D1) and 2 transcription co-activators (MED1,MED24)

Integrative Genomics Study of Breast Cancer

(Peng et al., 2010)

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparse Inverse Covariance Estimation
- Sparsity via Trace Norm
- Implementations and the SLEP package
- Trends in Sparse Learning

Fused Lasso

(Tibshirani et al., 2005; Tibshirani and Wang, 2008; Friedman et al., 2007)

Illustration of Fused Lasso

(Rinaldo, 2009)

Signal plus noise

Fused Lasso

(Tibshirani et al., 2005)

$$y_i = \sum_j x_{ij}\beta_j + \varepsilon_i$$

$$\sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\mathrm{T}} \beta)^2 + \lambda_N^{(1)} \sum_{j=1}^{p} |\beta_j| + \lambda_N^{(2)} \sum_{j=2}^{p} |\beta_j - \beta_{j-1}|$$

If
$$\lambda_N^{(l)} / \sqrt{N} \to \lambda_0^{(l)} \ge 0$$
 $(l = 1, 2)$ and

$$C = \lim_{N \to \infty} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}_i \mathbf{x}_i^T \right)$$

is non-singular then

$$\sqrt{N(\hat{\beta}_N - \beta)} \xrightarrow[d]{} \arg\min(V),$$

where

$$V(\mathbf{u}) = -2\mathbf{u}^{\mathrm{T}}\mathbf{W} + \mathbf{u}^{\mathrm{T}}C\mathbf{u} + \lambda_{0}^{(1)} \sum_{j=1}^{p} \{u_{j} \operatorname{sgn}(\beta_{j}) \ I(\beta_{j} \neq 0) + |u_{j}| \ I(\beta_{j} = 0)\} + \lambda_{0}^{(2)} \sum_{j=2}^{p} \{(u_{j} - u_{j-1}) \operatorname{sgn}(\beta_{j} - \beta_{j-1}) \ I(\beta_{j} \neq \beta_{j-1}) + |u_{j} - u_{j-1}| \ I(\beta_{j} = \beta_{j-1})\}$$

and **W** has an $\mathcal{N}(\mathbf{0}, \sigma^2 C)$ distribution.

Prostate Cancer

(Tibshirani et al., 2005)

Method	Validation errors/108	Degrees of freedom	Number of sites	<i>s</i> ₁	<i>s</i> ₂
Nearest shrunken centroids Lasso Fusion Fused lasso	30 16 18 16	60 102 103	227 40 2171 218	83 16 113	164 32 103

Leukaemia Classification Using Microarrays (Tibshirani et al., 2005)

Method	10-fold cross- validation error	Test error	Number of genes
(1) Golub et al. (1999) (50 genes)	3/38	4/34	50
(2) Nearest shrunken centroid	1/38	2/34	21
(21 genes)			
(3) Lasso, 37 degrees of freedom	1/38	1/34	37
$(s_1 = 0.65, s_2 = 1.32)$		- /- <i>/</i>	
(4) Fused lasso, 38 degrees of freedom	1/38	2/34	135
$(s_1 = 1.08, s_2 = 0.71)$	1/20	4/2.4	707
(5) Fused lasso, 20 degrees of freedom $(z = 1.25, z = 1.01)$	1/38	4/34	737
(6) Fusion, 1 degree of freedom	1/38	12/34	975

Arracy CGH

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparse Inverse Covariance Estimation
- Sparsity via Trace Norm
- Implementations and the SLEP package
- Trends in Sparse Learning

Sparse Inverse Covariance Estimation

The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables (Meinshausen & Buhlmann, 2006).

Sparse Inverse Covariance Estimation

The SICE Model

Sparse Inverse Covariance Estimation

When S is invertible, directly maximizing the likelihood gives

 $X = S^{-1}$

Example: Senate Voting Records Data (2004-06)

Chafee (R, RI) has only Democrats as his neighbors, an observation that supports media statements made by and about Chafee during those years.

The Monotone Property

(Huang et al., NIPS 2009)

Monotone Property

Let $C_k(\lambda_1)$ and $C_k(\lambda_2)$ be the sets of all the connectivity components of X_k with $\lambda = \lambda_1$ and $\lambda = \lambda_2$ respectively. If $\lambda_1 < \lambda_2$, then $C_k(\lambda_1) \supseteq C_k(\lambda_2)$.

Intuitively, if two nodes are connected (either directly or indirectly) at one level of sparseness, they will be connected at all lower levels of sparseness.

Brain Network for Alzheimer's Disease

Brain Network for Alzheimer's Disease

(Huang et al., 2009)

Brain Network for Alzheimer's Disease

(Huang et al., 2009)

NC

Brain Network for Alzheimer's Disease

(Huang et al., 2009)

AD

MD

Strong Connectivity

NC

Brain Network for Alzheimer's Disease

(Huang et al., 2009)

AD

NC

20

25

30

35

Brain Network for Alzheimer's Disease

(Huang et al., 2009)

AD

Weak Connectivity

Brain Network for Alzheimer's Disease (Huang et al., 2009)

- •Temporal: decreased connectivity in AD, decrease not significant in MCI.
- Frontal: increased connectivity in AD (compensation), increase not
 - significant in MCI.
- Parietal, occipital: no significant difference.
- Parietal-occipital: increased weak/mild con. in AD.
- Frontal-occipital: decreased weak/mild con. in MCI.
- Left-right: decreased strong con. in AD, not MCI.

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparse Inverse Covariance Estimation
- Sparsity via Trace Norm
- Implementations and the SLEP package
- Trends in Sparse Learning

Collaborative Filtering

Items ? Customers ?

- Customers are asked to rank items
- Not all customers ranked all items
- Predict the missing rankings

The Netflix Problem

	Movies									
		?	?	?	?	?		?	?	?
	?	?		?		?	?	?	?	?
	?	?	?	?	?	?	?	?		?
Users	?	?	?		?	?	?	?	?	?
		?	?	?	?		?	?	?	
	?		?	?	?	?	?	?		?
	?	?	?	?	?		?	?	?	?
	?	?	?		?	?	?	?		?

About a million users and 25,000 movies

- Known ratings are sparsely distributed
- Predict unknown ratings

Preferences of users are determined by a small number of factors \rightarrow low rank

Matrix Rank

- The number of independent rows or columns
- The singular value decomposition (SVD):

The matrix Completion Problem

The Alternating Approach

- Optimize over *U* and *V* iteratively
- Solution is locally optimal

Fundamental Questions

- Can we recover a matrix M of size n1 by n2 from m sampled entries, m << n1 n2?
- In general, it is impossible.
- Surprises (Candes & Recht'08):
 - Can recover matrices of interest from incomplete sampled entries
 - Can be done by convex programming

$$\min \|\boldsymbol{X}\|_* \quad \text{s. t.} \quad X_{ij} = M_{ij}, \ (i,j) \in \Omega$$

Multi-Task/Class Learning

- The multiple tasks/classes are usually related
- The matrix *W* is of low rank

$$\sum_{i=1}^{T}\sum_{j=1}^{n_i}l(y_i^j, w_i^T x_i^j) + \lambda * rank(W)$$

Matrix Classification

[Tomioka & Aihara (2007), ICML]

Other Low-Rank Problems

- Image compression
- System identification in control theory
- Structure-from-motion problem in computer vision
- Other settings:
 - low-degree statistical model for a random process
 - a low-order realization of a linear system
 - A low-order controller for a plant
 - a low-dimensional embedding of data in Euclidean space

Two Formulations for Rank Minimization

min $f(W) + \lambda^* rank(W)$

min rank(*W*) subject to *f*(*W*)=*b*

Rank minimization is NP-hard

Trace Norm (Nuclear Norm)

Trace norm of a matrix is the sum of its singular values:

$$W = U \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{pmatrix} V^T$$
$$||W||_* = \sum_{i=1}^k \sigma_i$$

- trace norm \Leftrightarrow 1-norm of the vector of singular values
- Trace norm is the convex envelope of the rank function over the unit ball of spectral norm ⇒ a convex relaxation
- In some sense, this is the tightest convex relaxation of the NP-hard rank minimization problem

Two Formulations for Nuclear Norm

min $f(W) + \lambda^* ||W||_*$

 $\begin{array}{ll} \min & ||W||_{*} \\ \text{subject to} & f(W) = b \end{array}$

Nuclear norm minimization is convex

- Consistent estimation can be obtained
- Can be solved by
 - Semi-definite programming
 - Gradient-based methods

Sparsity with Vectors and Matrices

Parsimony concept	Cardinality	Rank		
Hilbert space norm	Euclidean	Frobenius		
Sparsity inducing norm	ℓ_1	Trace norm		
Convex optimization	Linear programming	Semi-definite programming		

Rank Minimization and CS

Rank minimization min rank(W) s.t. f(W) = b

Convex relaxation min $||W||_*$ s.t. f(W) = b

W is diagonal, linear constraint

Rank minimization min $||w||_0$ s.t. Aw = b Convex relaxation min ||w||1 s.t. Aw = b

Theory of Matrix Completion

$$\min \|\boldsymbol{X}\|_* \quad \text{s. t.} \quad X_{ij} = M_{ij}, \ (i,j) \in \Omega$$

• $M \in \mathbb{R}^{n_1 imes n_2}$ of rank r (obeying $\mu_0 r \lesssim n^{1/5}$)

 $\mu_0 := \max(\operatorname{coh}(\operatorname{col. space}), \operatorname{coh}(\operatorname{row. space}))$

random set of entries of size *m*

The minimizer is unique and equal to old M w.p. at least $1-n^{-3}$ if

$$m \gtrsim \mu_0 n^{6/5} r \log n, \qquad n = \max(n_1, n_2)$$

Candès and Recht (2008)

Semi-definite programming (SDP)

- SDP is convex, but computationally expensive
- Many recent efficient solvers:
 - Singular value thresholding (Cai et al, 2008)
 - Fixed point method (Ma et al, 2009)
 - Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009)

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparsity via Trace Norm
- Sparse Inverse Covariance Estimation
- Implementations and the SLEP package
- Trends in Sparse Learning

Optimization Algorithm

min $f(x) = loss(x) + \lambda \times penalty(x)$

loss(x) is convex and smooth,
penalty(x) is convex but nonsmooth

- Smooth Reformulation general solver
- Coordinate descent
- Subgradient descent
- Gradient descent
- Accelerated gradient descent
- Online algorithms
- Stochastic algorithms

. . .

Smooth Reformulations: L₁

$$\begin{split} \min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \|x\|_{1} \\ \\ \min_{x,t} \quad \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda \sum_{i=1}^{p} t_{i} \\ \\ \text{s.t.} \quad -t_{i} \leq x_{i} \leq t_{i}, \forall i \end{split}$$

Linearly constrained quadratic programming

Smooth Reformulation: L₁/L₂

Second order cone programming

Smooth Reformulation: Fused Lasso

$$\begin{split} \min_{x} \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda_{1} \|x\|_{1} + \lambda_{2} \sum_{i=1}^{p-1} |x_{i} - x_{i-1}| \\ \min_{x,t,s} \frac{1}{2} \|Ax - y\|_{2}^{2} + \lambda_{1} \sum_{i=1}^{p} t_{i} + \lambda_{2} \sum_{i=1}^{p-1} s_{i} \\ \text{s.t.} \quad -t_{i} \leq x_{i} \leq t_{i}, -s_{i} \leq x_{i} - x_{i-1} \leq s_{i}, \forall i \end{split}$$

Linearly constrained quadratic programming

Summary of Reformulations

 $\min_{x,t} \quad \frac{1}{2} \|Ax - y\|_2^2 + \lambda \sum_{i=1}^p t_i$ s.t. $-t_i \le x_i \le t_i, \forall i$

$$\min_{x,t} \quad \frac{1}{2} ||Ax - y||_2^2 + \lambda \sum_{i=1}^g t_i$$

s.t. $||x_{G_i}||_2 \le t_i, \forall i$

$$\min_{x,t,s} \quad \frac{1}{2} \|Ax - y\|_2^2 + \lambda_1 \sum_{i=1}^p t_i + \lambda_2 \sum_{i=1}^{p-1} s_i$$

s.t. $-t_i \le x_i \le t_i, -s_i \le x_i - x_{i-1} \le s_i, \forall i$

Advantages:

- Easy to incorporate existing solvers
- Fast and high precision for small size problems

Disadvantages:

- Does not scale well for large size problems, due to 1) many additional variables and constraints are introduced; 2) the computation of Hessian is demanding
- Does not utilize well the "structure" of the nonsmooth penalty
- Not applicable to all the penalties discussed in this tutorial, say, L_1/L_3 .

Coordinate Descent

(Tseng, 2002)

$$\min_{x=(x_1,\dots,x_n)} f(x)$$

Given $x \in \Re^n$, choose $i \in \{1, ..., n\}$. Update

$$x^{\text{new}} = \underset{u|u_j=x_j \ \forall j\neq i}{\arg\min} f(u).$$

Repeat until "convergence".

Gauss-Seidel: Choose *i* cyclically, 1, 2,..., *n*, 1, 2,...

Gauss-Southwell: Choose *i* with $\left|\frac{\partial f}{\partial x_i}(x)\right|$ maximum.

Coordinate Descent: Example (Tseng, 2002)

 $\min_{x=(x_1,x_2)} (x_1+x_2)^2 + \frac{1}{4} (x_1-x_2)^2$

Coordinate Descent: Convergent?

Example:

Coordinate Descent: Convergent?

(Tseng, 2002)

Given $x \in \Re^n$, choose $i \in \{1,, n\}$. Update						
	$x^{\text{new}} = \operatorname*{argmin}_{u u_j=x_j \forall j\neq i} f(u).$					
Repeat until "convergence	е".					

- If f(x) is smooth, then the algorithm is guaranteed to converge.
- If f(x) is nonsmooth, the algorithm can get stuck.
- If the nonsmooth part is separable, convergence is guaranteed.

min $f(x) = loss(x) + \lambda \times penalty(x)$

 $penalty(x) = ||x||_1$

Coordinate Descent

• Can *x^{new}* be computed efficiently?

min $f(x) = loss(x) + \lambda \times penalty(x)$

penalty(x)= $||x||_1$

 $loss(x)=0.5 \times ||Ax-y||_{2}^{2}$

CD in Sparse Representation

- Lasso (Fu, 1998; Friedman et al., 2007)
- L1/L_q regularized least squares & logistic regression (Yuan and Lin, 2006,Liu et al., 2009; Argyriou et al., 2008; Meier et al., 2008)
- Sparse group Lasso for *q*=2 (Peng et al., 2010; Friedman et al., 2010)
- Fused Lasso Signal Approximator (Friedman et al., 2007; Hofling, 2010)
- Sparse inverse covariance estimation (Banerjee et al., 2008; Friedman et al., 2007)

Summary of CD

Advantages:

- Easy for implementation, especially for the least squares loss
- Can be fast, especially the solution is very sparse

Disadvantages:

- No convergence rate
- Can be hard to derive x^{new} for general loss
- Can get stuck when the penalty is non-separable

Subgradient Descent

(Nemirovski, 1994; Nesterov, 2004)

Subgradient: one element in the subdifferential set

 $f'(x) \in \partial f(x)$

Subgradient Descent: Subgradient

(Nemirovski, 1994; Nesterov, 2004) $h'(x) \in \partial h(x)$ $g(x)=0.5 \times (x-v)^2 + \lambda x^2$ $h(x)=0.5 \times (x-v)^2 + \lambda |x|$ $SGN(x) = \begin{cases} \{1\} & x > 0\\ \{1\} & x > 0\\ [-1, 1] & x = 0 \end{cases}$ $\partial h(x) = x - v + \lambda SGN(x)$ g(x) is differentiable for all x h(x) is non-differentiable at x=0

Subgradient Descent: Convergent?

(Nemirovski, 1994; Nesterov, 2004)

Repeat
$$y_{i+1} = x_i - \gamma_i \frac{f'(x)}{\|f'(x)\|}$$
$$x_{i+1} = \pi_G(y_{i+1}) \equiv \arg\min_{x \in G} \frac{1}{2} \|x - y_{i+1}\|_2^2$$
Until "convergence"

If f(x) is Lipschitz continuous with constant L(f), the set *G* is closed convex, and the step size is set as follows

$$\gamma_i = DN^{-1/2}, \ i = 1, ..., N,$$

then, we have

$$\varepsilon_N \le O(1) \frac{L(f)D}{\sqrt{N}}$$

SD in Sparse Representation

- L₁ constrained optimization (Duchi et al., 2008)
- L_1/L_{∞} constrained optimization (Quattoni et al., 2009)

$$\pi_G(\mathbf{v}) \equiv \arg\min_{\mathbf{x}\in G} \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_2^2$$

Advantages:

- Easy implementation
- Guaranteed global convergence

Disadvantages

- It converges slowly
- It does not take the structure of the non-smooth term into consideration

Gradient Descent

BIODESIGN

If $\gamma_i \leq \frac{1}{L}$, we can establish the convergence rate of O(1/N).

Gradient Descent:

The essence of the gradient step

Gradient Descent:

Extension to the composite model (Nesterov, 2007; Beck and Teboulle, 2009)

min $f(x) = loss(x) + \lambda \times penalty(x)$

Gradient Descent:

Extension to the composite model (Nesterov, 2007; Beck and Teboulle, 2009)

Model

$$\mathcal{M}(x_i, \gamma_i) = [\log(x_i) + \langle \log'(x_i), x - x_i \rangle] + \frac{1}{2\gamma_i} ||x - x_i||_2^2 + \lambda \times \operatorname{penalty}(x)$$

Accelerated Gradient Descent:

unconstrained version (Nesterov, 2007; Beck and Teboulle, 2009)

The lower complexity bound shows that, the first-order methods can not achieve a better convergence rate than $O(1/N^2)$.

Can we develop a method that can achieves the optimal convergence rate?

Accelerated Gradient Descent:

constrained version (Nesterov, 2007; Beck and Teboulle, 2009)

Can the projection be computed efficiently?

Accelerated Gradient Descent:

composite model (Nesterov, 2007; Beck and Teboulle, 2009)

Can the proximal operator be computed efficiently?

Accelerated Gradient Descent in Sparse Representations

- Lasso (Nesterov, 2007; Beck and Teboulle, 2009)
- L_1/L_q (Liu, Ji, and Ye, 2009; Liu and Ye, 2010)
- Sparse group Lasso (Liu and Ye, 2010)
- Trace Norm (Ji and Ye, 2009; Pong et al., 2009; Toh and Yun, 2009; Lu et al., 2009)
- Fused Lasso (Liu, Yuan, and Ye, 2010)

Advantages:

- Easy for implementation
- Optimal convergence rate
- Scalable to large sample size problem

Accelerated Gradient Descent in Sparse Representations

Advantages:

- Easy for implementation
- Optimal convergence rate
- Scalable to large sample size problem

Key computational cost

- Gradient and functional value
- The projection (for constrained smooth optimization)
- The proximal operator (for composite function)

Euclidean projection onto the L₁ ball (Duchi et al., 2008; Liu and Ye, 2009)

Efficient Computation of the Proximal Operators (Liu and Ye, 2010; Liu and Ye, 2010; Liu, Yuan and Ye, 2010)

min
$$f(x) = loss(x) + \lambda \times penalty(x)$$

$$\pi_{\text{penalty}}(v) = \frac{1}{2} ||x - v||_2^2 + \rho \times \text{penalty}(x)$$

•
$$L_1/L_q$$

- Sparse group Lasso
- Fused Lasso

Proximal Operator Associated with L_1/L_q

L

Optimization problem:

$$\min_{\mathbf{W}\in\mathbb{R}^p} f(\mathbf{W}) \equiv l(\mathbf{W}) + \lambda \sum_{i=1}^n \|\mathbf{w}_i\|_q$$

Associated proximal operator:

$$\pi_{1q}(\mathbf{V}, \lambda) = \arg \min_{\mathbf{X} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{X} - \mathbf{V}\|_2^2 + \lambda \sum_{i=1}^k \|\mathbf{x}_i\|_q$$

It can be decoupled into the following *q*-norm regularized Euclidean projection problem:

$$\pi_q(\mathbf{v}) = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \left(g(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_2^2 + \lambda \|\mathbf{x}\|_q\right)$$

Proximal Operator Associated with L_1/L_q

$$\pi_q(\mathbf{v}) = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \left(g(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_2^2 + \lambda \|\mathbf{x}\|_q\right)$$

Method:

Convert it to two simple zero finding algorithms

Characteristics:

- 1. Suitable to any $q \ge 1$
- The proximal plays a key building block in quite a few methods such as the accelerated gradient descent, coordinate gradient descent(Tseng, 2008), forward-looking subgradient (Duchi and Singer, 2009), and so on.

1

1

Achieving a Zero Solution

For the q-norm regularized Euclidean projection

$$\pi_q(\mathbf{v}) = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \left(g(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|_2^2 + \lambda \|\mathbf{x}\|_q\right)$$

We have

$$\pi_q(\mathbf{v}) = \mathbf{0} \text{ if and only if } \lambda \ge \|\mathbf{v}\|_{\bar{q}}. \quad \frac{1}{q} + \frac{1}{q} = 1$$

We restrict our following discussion to v > 0

$$g'(\mathbf{x}^*) = 0 \implies \mathbf{x}^* + \lambda \|\mathbf{x}^*\|_q^{1-q} \mathbf{x}^{*(q-1)} = \mathbf{v}$$

where $\mathbf{y} \equiv \mathbf{x}^{(q-1)}$ is defined component-wisely as: $y_i = \operatorname{sgn}(x_i) |x_i|^{q-1}$

Fixed Point Iteration?

One way to compute $\pi_q(\mathbf{v})$ is to apply the following fixed point iteration

$$\mathbf{x}^* = \mathbf{v} - \lambda \|\mathbf{x}^*\|_q^{1-q} \mathbf{x}^{*(q-1)}$$

Let us consider the two-dimensional case.

$$\mathbf{v} = [1; 2], q = 3 \text{ and } \lambda = 1$$

We start from $[0; 0]$

Fixed point iteration is not guaranteed to converge.

Fixed Point Iteration?

Solving Two Zero Finding Problems

The methodology is also based on the following relationship

$$\mathbf{x}^* + \lambda \|\mathbf{x}^*\|_q^{1-q} \mathbf{x}^{*(q-1)} = \mathbf{v}$$

Construct three auxiliary functions.

Solve the above equation by two simple one-dimensional zero finding problems (associated with the constructed auxiliary functions).

Efficiency

(compared with spectral projected gradient)

Efficiency

(compared with spectral projected gradient)

Effect of q in L_1/L_q

Multivariate linear regression

Proximal Operator Associated with L_1+L_1/L_q (Liu and Ye, 2010)

Optimization problem:

$$\min_{X} \operatorname{loss}(X) + \lambda_1 \|X\|_1 + \lambda_q \|X\|_{\ell_1/\ell_q}$$

Associated proximal operator:

$$\pi_{\lambda_q}^{\lambda_1}(V) = \arg\min_X \frac{1}{2} ||X - V||_F^2 + \lambda_1 ||X||_1 + \lambda_q ||X||_{\ell_1/\ell_q}$$

$$\pi_{\lambda_q}^{\lambda_1}(v) = \arg\min_{x} \frac{1}{2} ||x - v||_F^2 + \lambda_1 ||x||_1 + \lambda_q ||x||_{\ell_q}$$

Proximal Operator Associated with L_1+L_1/L_2 (Liu and Ye, 2010)

$$\pi_{\lambda_q}^{\lambda_1}(v) = \arg\min_{x} \frac{1}{2} \|x - v\|_F^2 + \lambda_1 \|x\|_1 + \lambda_q \|x\|_{\ell_q}$$

$$\pi_{\lambda_2}^{\lambda_1}(v) = \left\{egin{array}{ccc} \mathbf{0} & if \ \|\mathbf{u}\|_2 \leq \lambda_2 \ rac{\|\mathbf{u}\|_2 - \lambda_2}{\|\mathbf{u}\|_2} \mathbf{u} & if \ \|\mathbf{u}\|_2 > \lambda_2. \end{array}
ight.$$

Proximal Operator Associated with L₁+L₁/L_{inf} (Liu and Ye, 2010)</sub>

$$\pi_{\lambda_q}^{\lambda_1}(v) = \arg\min_{x} \frac{1}{2} \|x - v\|_F^2 + \lambda_1 \|x\|_1 + \lambda_q \|x\|_{\ell_q}$$

$$\pi_{\lambda_{\infty}}^{\lambda_{1}}(v) = \begin{cases} \mathbf{0} & \|\mathbf{u}\|_{1} \leq \lambda_{\infty} \\ \operatorname{sgn}(\mathbf{u}) \odot \min(|\mathbf{u}|, t^{*}) & \|\mathbf{u}\|_{1} > \lambda_{\infty}. \end{cases}$$

t* is the root of $h(t) = \sum_{i=1}^{n} \max(|u_{i}| - t, 0) - \lambda_{\infty}$

Effective Interval for Sparse Group Lasso (Liu and Ye, 2010)

$$\min_{X} \operatorname{loss}(X) + \lambda_1 \|X\|_1 + \lambda_q \|X\|_{\ell_1/\ell_q}$$

Efficiency

(comparison with remMap via coordiante descent)

Efficiency

(comparison with remMap via coordiante descent)

Proximal Operator Associated with Fused Lasso

Optimization problem: $\min_{x} loss(x) + \lambda_1 \sum_{i=1}^{n} |x_i| + \lambda_2 \sum_{i=1}^{n-1} |x_i - x_{i+1}|$

Fused Lasso Signal Approximator

Fused Lasso Signal Approximator (Liu, Yuan, and Ye, 2010)

$$\pi_{\lambda_2}^{\lambda_1}(\mathbf{v}) = \arg\min_{\mathbf{x}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|^2 + \lambda_1 \sum_{i=1}^n |x_i| + \lambda_2 \sum_{i=1}^{n-1} |x_i - x_{i+1}|$$

THEOREM 1. For any $\lambda_1, \lambda_2 \ge 0$, we have $\pi_{\lambda_2}^{\lambda_1}(\mathbf{v}) = \operatorname{sgn}(\pi_{\lambda_2}^0(\mathbf{v})) \odot \max(|\pi_{\lambda_2}^0(\mathbf{v})| - \lambda_1, 0).$

Let
$$R_{ij} = \begin{cases} -1 & j = i, i = 1, 2, ..., n-1 \\ 1 & j = i+1, i = 1, 2, ..., n-1 \\ 0 & \text{otherwise}, \end{cases}$$

We have $\pi_{\lambda_2}(\mathbf{v}) = \arg\min f_{\lambda_2}(\mathbf{v}) \equiv \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|^2 + \lambda_2 \|R\mathbf{x}\|_1$

Fused Lasso Signal Approximator (Liu, Yuan, and Ye, 2010)

$$\pi_{\lambda_2}(\mathbf{v}) = \arg\min f_{\lambda_2}(\mathbf{v}) \equiv \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|^2 + \lambda_2 \|R\mathbf{x}\|_1$$

Method:

• Subgradient Finding Algorithm (SFA)---looking for an appropriate and unique subgradient of $||Rx||_1$ at the minimizer (motivated by the proof of Theorem 1).

$$\begin{split} \min_{\mathbf{x}\in\mathbb{R}^n} \max_{\|\mathbf{z}\|_{\infty}\leq\lambda_2} \phi(\mathbf{x},\mathbf{z}) &\equiv \frac{1}{2} \|\mathbf{x}-\mathbf{v}\|^2 + \langle R\mathbf{x},\mathbf{z} \rangle. \\ \mathbf{x} &= \mathbf{v} - R^{\mathrm{T}}\mathbf{z}. \\ \min_{\|\mathbf{z}\|_{\infty}\leq\lambda_2} \psi(\mathbf{z}) &\equiv -\phi(\mathbf{v} - R^{\mathrm{T}}\mathbf{z},\mathbf{z}) = \frac{1}{2} \|R^{\mathrm{T}}\mathbf{z}\|^2 - \langle R^{\mathrm{T}}\mathbf{z},\mathbf{v} \rangle. \end{split}$$

Efficiency

(Comparison with the CVX solver)

Efficiency

(Comparison with the CVX solver)

Summary of Implementations

- The accelerated gradient descent, which is an optimal first-order method, is favorable for large-scale optimization.
- To apply the accelerated gradient descent, the key is to develop efficient algorithms for solving either the projection or the associated proximal operator.

http://www.public.asu.edu/~jye02/Software/SLEP

Outline

- Sparsity via L₁
- Sparsity via L_1/L_q
- Sparsity via Fused Lasso
- Sparsity via Trace Norm
- Sparse Inverse Covariance Estimation
- Implementations and the SLEP package
- Trends in Sparse Learning

New Sparsity Induced Penalties?

min $f(x) = loss(x) + \lambda \times penalty(x)$

Overlapping Groups?

min $f(x) = loss(x) + \lambda \times penalty(x)$

Group Lasso

- How to learn groups?
- How about the overlapping groups?

Efficient Algorithms for Huge-Scale Problems

Algorithms for $p>10^8$, $n>10^5$?

It costs over 1 Terabyte to store the data.

References

(Compressive Sensing and Lasso)

- Bajwa, W., Haupt, J., Sayeed, A., & Nowak, R. (2006). Compressive wireless sensing. *International Conference on Information Processing in Sensor Networks*.
- Berg, E., Schmidt, M., Friedlander, M. P., & Murphy, K. (2008). Group sparsity via linear-time projectionTech. Rep. TR-2008-09). Department of Computer Science, University of British Columbia, Vancouver.
- Bickel, P., Ritov, Y., & Tsybakov, A. (2007). Simultaneous analysis of lasso and dantzig selector. *Annals of Statistics*.
- Candes, E., & Romberg, J. (2006). Quantitative robust uncertainty principles and optimally sparse decompositions. *Foundations of Computational Mathematics*, *6*, 227–254.
- Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. *IEEE Transactions on Information Theory*, 52, 489–509.

References

(Compressive Sensing and Lasso)

Candès, E., & Tao, T. (2004). Rejoinder: the dantzig selector: statistical estimation when p is much larger than n. *Annals of Statistics*, *35*, 2392–2404.

Candès, E., & Tao, T. (2005). Decoding by linear programming. *IEEE Transactions on Information Theory*, 51, 4203–4215.

Candès, E., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies? *IEEE Transactions on Information Theory*, 52, 5406–5425.

Candès, E., & Tao, T. (2007). The dantzig selector: statistical estimation when *p* is much larger than *n*. *Annals of Statistics*, 35, 2392–2404.

Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. *IEEE Signal Processing Magazine*, 25, 21–30.

(Compressive Sensing and Lasso)

- Chen, S., Donoho, D. L., & Saunders, M. A. (2001). Atomic decomposition by basis pursuit. *SIAM Review*, 43, 129–159.
- Daubechies, I., Defrise, M., & De Mol, C. (2005). An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied Mathematics*, 4, 1168–1200.
- Daubechies, I., Fornasier, M., & Loris, I. (2008). Accelerated projected gradient method for linear inverse problems with sparsity constraints. *Journal of Fourier Analysis and Applications*, 14, 764–792.
- Donoho, D. (2006). Compressed sensing. *IEEE Transactions on Information Theory*, 52, 1289–1306.

References

(Compressive Sensing and Lasso)

Duchi, J., Shalev-Shwartz, S., Singer, Y., & Tushar, C. (2008). Efficient projection onto the ℓ_1 -ball for learning in high dimensions. *International Conference on Machine Learning*.

- Duchi, J., & Singer, Y. (2009). Boosting with structural sparsity. International Conference on Machine Learning.
- Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. *Annals of Statistics*, 32, 407–499.
- Figueiredo, M., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. *IEEE Journal of Selected Topics in Signal Processing*, 1, 586–597.
- Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. *Annals of Applied Statistics*, 1, 302–332.

(Compressive Sensing and Lasso)

Hale, E., Yin, W., & Zhang, Y. (2007). A fixed-point continuation method for l₁-regularized minimization with applications to compressed sensing (Technical Report). CAAM TR07-07.

- Kim, S.-J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior point method for large-scale 11-regularized least squares. *IEEE Journal of Selected Topics in Signal Processing*, 1, 606–617.
- Koh, K., Kim, S., & Boyd, S. (2007). An interior-point method for large-scale 11-regularized logistic regression. *Journal of Machine Learning Research*, 8, 1519–1555.
- Liu, J., Chen, J., & Ye, J. (2009). Large-scale sparse logistic regression. ACM SIGKDD International Conference On Knowledge Discovery and Data Mining.

(Compressive Sensing and Lasso)

- Liu, J., & Ye, J. (2009). Efficient euclidean projections in linear time. *International Conference on Machine Learning*.
- Roth, V., & Fischer, B. (2008). The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. *International conference on Machine learning* (pp. 848–855).
- Schmidt, M., Fung, G., & Rosales, R. (2007). Fast optimization methods for 11 regularization: A comparative study and two new approaches. *European Conference on Machine Learning* (pp. 286–297).
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B*, 58, 267–288.

(Compressive Sensing and Lasso)

- Yin, W., Osher, S., Goldfarb, D., & Darbon, J. (2008). Bregman iterative algorithms for ℓ_1 -minimization with applications to compressed sensing. *SIAM Journal on Imaging Sciences*, 1, 143–168.
- Zhao, P., Rocha, G., & Yu., B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. *Annals of Statistics*, 37, 3468–3497.
- Zhao, P., & Yu, B. (2004). *Boosted lasso* (Technical Report). Statistics Department, UC Berkeley.
- Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. *Journal of Machine Learning Research*, *7*, 2541–2563.
- Zhu, J., Rosset, S., Hastie, T., & Tibshirani, R. (2003). 1-norm support vector machines. *Neural Information Processing Systems* (pp. 49–56).

- Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multitask feature learning. *Machine Learning*, 73, 243–272.
- Bach, F. (2008). Consistency of the group lasso and multiple kernel learning. *Journal of Machine Learning Research*, 9, 1179– 1225.
- Beck, A., & Teboulle, M. (2009). A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2, 183–202.
- Duchi, J., & Singer, Y. (2009). Boosting with structural sparsity. International Conference on Machine Learning.
- Friedman, J., Hastie, T., & Tibshirani, R. (2010). A note on the group lasso and a sparse group lasso (Technical Report). Department of Statistics, Stanford University.
- Höfling, H. (2009). A path algorithm for the fused lasso signal approximator. *arXiv*.

- Liu, H., Palatucci, M., & Zhang, J. (2009a). Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. *International Conference on Machine Learning*.
- Liu, H., & Zhang, J. (2009a). Estimation consistency of the group lasso and its applications. *International Conference on Artificial Intelligence and Statistics*.
- Liu, H., & Zhang, J. (2009b). On the ℓ_1 - ℓ_q regularized regression (Technical Report). Department of Statistics, Carnegie Mellon University.
- Liu, J., Ji, S., & Ye, J. (2009b). Multi-task feature learning via efficient $\ell_{2,1}$ -norm minimization. *The 25th Conference on Uncertainty in Artificial Intelligence*.

- Liu, J., & Ye, J. (2010b). Efficient ℓ_1/ℓ_q -norm regularization. *preprint*.
- Liu, J., & Ye, J. (2010c). Efficient sparse group lasso with between- and within-group sparsity. *preprint*.
- Meier, L., Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. *Journal of the Royal Statistical Society: Series B*, 70, 53–71.
- Negahban, S., Ravikumar, P., Wainwright, M., & Yu, B. (2009). A unified framework for high-dimensional analysis of *m*estimators with decomposable regularizers. In Advances in neural information processing systems, 1348–1356.

- Negahban, S., & Wainwright, M. (2008). Joint support recovery under high-dimensional scaling: Benefits and perils of $\ell_{1,\infty}$ regularization. In *Advances in neural information processing systems*, 1161–1168.
- Nemirovski, A. (1994). *Efficient methods in convex programming*. Lecture Notes.
- Nesterov, Y. (2004). Introductory lectures on convex optimization: A basic course. Kluwer Academic Publishers.
- Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. *CORE Discussion Paper*.
- Obozinski, G., Taskar, B., & Jordan, M. I. (2007). *Joint covariate selection for grouped classification* (Technical Report). Statistics Department, UC Berkeley.
- Obozinski, G., Wainwright, M., & Jordan, M. (2008). Highdimensional support union recovery in multivariate regression. In Advances in neural information processing systems, 1217– 1224.

- Peng, J., Zhu, J., A., B., Han, W., Noh, D.-Y., Pollack, J. R., & Wang, P. (2010). Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. *Annals of Applied Statistics*, to appear.
- Quattoni, A., Carreras, X., Collins, M., & Darrell, T. (2009). An efficient projection for $\ell_{1,\infty}$, infinity regularization. *International Conference on Machine Learning*.
- Tseng, P. (2001). Convergence of block coordinate descent method for nondifferentiable minimization. *Journal of Optimization Theory and Applications*, *109*, 474–494.
- Tseng, P., & Yun, S. (2009). A coordinate gradient descent method for nonsmooth separable minimization. *Mathematical Programming*, 117, 387–423.

- Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. *Journal Of The Royal Statistical Society Series B*, 68, 49–67.
- Zhao, P., Rocha, G., & Yu., B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. *Annals of Statistics*, 37, 3468–3497.
- Zhao, P., & Yu, B. (2006). *Boosted lasso* (Technical Report). Statistics Department, UC Berkeley.

References (Fused Lasso)

- Ahmed, A., & Xing, E. P. (2009). Recovering time-varying networks of dependencies in social and biological studies. *Proceedings of the National Academy of Sciences*, 106, 11878– 11883.
- Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. *Annals of Applied Statistics*, 1, 302–332.
- Liu, J., Yuan, L., & Ye, J. (2010). An efficient algorithm for a class of fused lasso problems. *preprint*.
- Rinaldo, A. (2009). Properties and refinements of the fused lasso. Annals of Statistics, 37, 2922–2952.

References (Fused Lasso)

- Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. *Journal Of The Royal Statistical Society Series B*, 67, 91–108.
- Tibshirani, R., & Wang, P. (2008). Spatial smoothing and hot spot detection for cgh data using the fused lasso. *Biostatistics*, 9, 18–29.

References (Trace Norm)

- Cai, J., Candès, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, to appear.
- Candès, E. J., & Tao, T. (2009). The power of convex relaxation: Near-optimal matrix completion. *IEEE Trans. Inform. Theory*, to appear.
- Goldfarb, D., & Ma, S. (2009). Convergence of fixed point continuation algorithms for matrix rank minimization. *arXiv:0906.3499v2*.
- Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. *International Conference on Machine Learning*.

References (Trace Norm)

- Jin, R., Wang, S., & Zhou, Y. (2009). Regularized distance metric learning:theory and algorithm. In *Neural information processing systems*.
- Liu, Z., & Vandenberghe, L. (2009). Interior-point method for nuclear norm approximation with application to system identification. SIAM Journal on Matrix Analysis and Applications, 31, 1235–1256.
- Lu, Z., Monteiro, R. D. C., & Yuan, M. (2009). Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression. arXiv:0904.0691v1.
- Ma, S., Goldfarb, D., & Chen, L. (2009). Fixed point and bregman iterative methods for matrix rank minimization. *Mathematical Programming Series A*, to appear.

References (Trace Norm)

- Meka, R., Jain, P., & Dhillon, I. S. (2009). Guaranteed rank minimization via singular value projection. *arXiv:0909.5457v3*.
- Pong, T., Tseng, P., Ji, S., & Ye, J. (2009). Trace norm regularization: Reformulations, algorithms, and multi-task learning. *submitted to SIAM Journal on Optimization*.
- Toh, K.-C., & Yun, S. (2009). An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Preprint, Department of Mathematics, National University of Singapore, March 2009.
- Ying, Y., Huang, K., & Campbell, C. (2009). Sparse metric learning via smooth optimization. In *Neural information processing* systems.

(Sparse Inverse Covariance)

- Banerjee, O., Ghaoui, L., & D'Aspremont, A. (2007). Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. *Journal of Machine Learning Research*.
- Friedman, J., Hastie, T., & Tibshirani, R. (2007). Sparse inverse covariance estimation with the graphical lasso. *report*.
- Honorio, J., Ortiz, L., Samaras, D., Paragios, N., & Goldstein,R. Sparse and locally constant gaussian graphical models. In *Advances in neural information processing systems 22*.
- Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., Fleisher, A., Reiman, E., & Ye, J. Learning brain connectivity of alzheimer's disease from neuroimaging data. In Advances in neural information processing systems 22.

(Sparse Inverse Covariance)

Sun, L., Patel, R., Liu, J., Chen, K., Wu, T., Li, J., Reiman, E., & Ye, J. (2009). Mining brain region connectivity for alzheimers disease study via sparse inverse covariance estimation. In Acm sigkdd international conference on knowledge discovery and data mining.