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What is Sparsity?
• Many data mining tasks can be represented using a 

vector or a matrix.
• “Sparsity” implies many zeros in a vector or a matrix.
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Sparsity in Data Mining
• Regression
• Classification
• Multi-Task Learning
• Collaborative Filtering
• Network Construction
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Regression

• Select a small number of features
– Lasso  
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Application: Genetics
• Find the locations on the genome that influence a 

trait: e.g. cholesterol level

• Model: y = Ax + z  (x is very sparse)

Number of columns: about 500,000, number of rows: a few thousands
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Application: Neuroscience

• Neuroimages for studying Alzheimer’s Disease 
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Multi-Task/Class Learning

• Key Challenge: How to capture the shared 
information among multiple tasks?
– Shared features (group Lasso)
– Shared low-dimensional subspace (trace norm)

X1 Y1 X2 Y2 Xk Yk…

wkw2w1 … =    W
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Application: Biological Image 

Annotation

• Document expression patterns over 6,000 genes 
with over 70,000 images

• Annotated with body part keywords

http://www.fruitfly.org/cgi-bin/ex/insitu.pl
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Collaborative Filtering

• Customers are asked to rank items
• Not all customers ranked all items
• Predict the missing rankings

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

Customers

Items
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Application: The Netflix Challenge

• About a million users and 25,000 movies
• Known ratings are sparsely distributed
• Predict unknown ratings

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

Users

Movies
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Network Construction

Equivalent matrix representation

Sparsity: Each node is linked to a small 
number  of neighbors  in the network. 
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Application: Brain Network

Brain Connectivity of   different  regions for Alzheimer's Disease
(Sun et al., KDD 2009)
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A Unified Model for Sparse Learning 
• Let x be the model parameter to be estimated. A 

commonly employed model for estimating x is

min  loss(x) + λ penalty(x)            (1)

• (1) is equivalent to the following model:

min  loss(x)
s.t.    penalty(x) ≤z                (2)
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Loss Functions
• Least squares
• Logistic loss
• Hinge loss
• …
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Penalty Functions: Nonconvex
• Zero norm

penalty(x)=the number of nonzero elements
• Advantages

The sparsest solution
• Disadvantages:

Not a valid norm, nonconvex, NP-hard

• Extension to the matrix case: rank
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Penalty Functions: Convex
• L1 norm

penalty(x)=||x||1=∑i|xi|
• Advantages:

Valid norm
Convex
Computationally tractable
Theoretical properties
Many applications
Various Extensions

In this tutorial, we discuss 
sparse representation based 

on L1 and its extensions.
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Why does L1 Induce Sparsity?
Analysis in 1D (comparison with L2)

0.5×(x-v)2 + λ|x| 0.5×(x-v)2 + λx2

Nondifferentiable at 0 Differentiable at 0

If v≥ λ,  x=v- λ
If v≤ -λ, x=v+λ
Else,      x=0

x=v/(1+2 λ)
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Why does L1 Induce Sparsity?
Understanding from the projection

min loss(x)
s.t. ||x||2 ≤1

min 0.5||x-v||2
s.t. ||x||2 ≤1

min loss(x)
s.t. ||x||1 ≤1

min 0.5||x-v||2
s.t. ||x||1 ≤1

Sparse



Center for Evolutionary Functional Genomics

Why does L1 Induce Sparsity?
Understanding from constrained optimization

(Bishop, 2006)

min loss(x)
s.t. ||x||1 ≤1

min loss(x)
s.t. ||x||2 ≤1
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Sparsity via L1

Lasso, 
Dantzig selector

Summation of the 
absolute values

Application: Regression/Classification
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Sparsity via L1/Lq

Group Lasso, 
Group Dantzig Application: Multi-Task Learning
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Sparsity via L1+ L1/Lq

Sparse Group Lasso Application: Multi-Task Learning
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Sparsity via Fused Lasso

Fused Lasso, 
Time Varying Network Application: Regression with  Ordered Features
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Sparsity via Trace Norm

Application: Multi-Task Learning, Matrix Completion
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Sparse Inverse Covariance

Connectivity Study
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Goal of This Tutorial

• Introduce various sparsity-induced norms
– Map sparse models to different applications

• Efficient implementations
– Scale sparse learning algorithms to large-size problems
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparse Inverse Covariance Estimation
• Sparsity via Trace Norm
• Implementations and the SLEP package
• Trends in Sparse Learning
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Compressive Sensing
(Donoho, 2004;  Candes and Tao, 2008; Candes and Wakin, 2008)

Principle:

P0 P1
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Basis Pursuit
(Chen, Donoho, and Saunders, 1999)

Linear Programming

min  <1, t>
s.t.   y=Φx, -t≤x≤t

Question:
When can P1 obtain the same result as P0?
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Sparse Recovery and RIP

for every K-sparse vector x.

satisfies the K-restricted isometry property with 
constant       if  is the smallest constant satisfying
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Extensions to the Noisy Case
noise

Basis pursuit De-Noising 
(Chen, Donoho, and Saunders, 1999)

Lasso (Tibshirani, 1996)

Dantzig selector (Candes and Tao, 2007)Regularized counterpart of Lasso
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Lasso
(Tibshirani, 1996)
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Theory of Lasso
(Zhao and Yu, 2006; Wainwright 2009; 

Meinshausen and Yu, 2009; Bickel, Ritov, and Tsybakov, 2009)

• Support Recovery

• Sign Recovery

• L1 Error

• L2 Error

sup(x)=sup(x*)?

sign(x)=sign (x*)?

||x-x*||1

||x-x*||2
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L1 Error
(Bickel, Ritov, and Tsybakov, 2009)
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Dantzig Selector
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Theory of Dantzig Selector 
(Candes and Tao, 2007; Bickel, Ritov, and Tsybakov, 2009)
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Face Recognition
(Wright et al. 2009)
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1-norm SVM
(Zhu et al. 2003)

Hinge Loss

1-norm constraint
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparse Inverse Covariance Estimation
• Sparsity via Trace Norm
• Implementations and the SLEP package
• Trends in Sparse Learning
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From L1 to L1/Lq (q>1)?

L1

L1/Lq
L1/Lq

Most existing work focus on q=2, ∞
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Group Lasso
(Yuan and Lin, 2006; Meier et al., 2008)
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Splice Site Detection
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Multi-task Learning via L1/Lq Regularization
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Face Recognition
(Liu, Yuan, Chen, and Ye, 2009)
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Writer-specific Character Recognition
(Obozinski, Taskar, and Jordan, 2006)
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Sparse Group Lasso
(Peng et al., 2010; Friedman, Hastie, and Tibshirani, 2010; Liu and Ye, 2010)
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Simulation Study
(Liu and Ye, 2010)
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Simulation Study
(Liu and Ye, 2010)
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Integrative Genomics Study of Breast Cancer
(Peng et al., 2010)
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Integrative Genomics Study of Breast Cancer
(Peng et al., 2010)
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparse Inverse Covariance Estimation
• Sparsity via Trace Norm
• Implementations and the SLEP package
• Trends in Sparse Learning
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Fused Lasso
(Tibshirani et al., 2005; Tibshirani and Wang, 2008; Friedman et al., 2007)

Fused LassoL1
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Illustration of Fused Lasso
(Rinaldo, 2009)

Noise
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Fused Lasso



Center for Evolutionary Functional Genomics

Asymptotic Property
(Tibshirani et al., 2005)
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Prostate Cancer
(Tibshirani et al., 2005)
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Leukaemia Classification Using Microarrays
(Tibshirani et al., 2005)
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Arracy CGH
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparse Inverse Covariance Estimation
• Sparsity via Trace Norm
• Implementations and the SLEP package
• Trends in Sparse Learning
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Sparse Inverse Covariance Estimation
The pattern of zero entries in the inverse covariance matrix of a 

multivariate normal distribution corresponds to conditional 

independence restrictions between variables (Meinshausen & 

Buhlmann, 2006).
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The SICE Model

Maximum Likelihood Estimation

When S is invertible, directly maximizing 
the likelihood gives

X=S-1



Center for Evolutionary Functional Genomics

Example: Senate Voting Records Data (2004-06)

Republican senatorsDemocratic senators

Chafee (R, RI) has only Democrats as his neighbors, an observation 
that supports media statements made by and about Chafee during 
those years.
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The Monotone Property
(Huang et al., NIPS 2009)

Intuitively, if two nodes are connected (either directly or 

indirectly) at one level of sparseness, they will be 

connected at all lower levels of sparseness.

)( 1kC )( 2kC

kX 1  2 

21   )()( 21  kk CC 

Monotone Property

Let            and            be the sets of all the connectivity components 
of         with            and            respectively. 
If            , then                         .
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Brain Network for Alzheimer’s Disease
(Huang et al., 2009)

Small λLarge λ λ3 λ2 λ1

AD
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Small λLarge λ

Brain Network for Alzheimer’s Disease
(Huang et al., 2009)

MD



Center for Evolutionary Functional Genomics

NC

Brain Network for Alzheimer’s Disease
(Huang et al., 2009)



Center for Evolutionary Functional Genomics

Brain Network for Alzheimer’s Disease
(Huang et al., 2009)

NCMDAD

Strong Connectivity 
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Brain Network for Alzheimer’s Disease
(Huang et al., 2009)

NCMDAD

Mild Connectivity 
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Brain Network for Alzheimer’s Disease
(Huang et al., 2009)

NCMDAD

Weak Connectivity 
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Brain Network for Alzheimer’s Disease
(Huang et al., 2009)

•Temporal: decreased connectivity in AD, decrease not 
significant in MCI.
• Frontal: increased connectivity in AD (compensation), increase 
not   
significant in MCI.

• Parietal, occipital: no significant difference.
• Parietal-occipital: increased weak/mild con. in AD.
• Frontal-occipital: decreased weak/mild con. in MCI.
• Left-right: decreased strong con. in AD, not MCI.
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparse Inverse Covariance Estimation
• Sparsity via Trace Norm
• Implementations and the SLEP package
• Trends in Sparse Learning
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Collaborative Filtering

• Customers are asked to rank items
• Not all customers ranked all items
• Predict the missing rankings

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

Customers

Items
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The Netflix Problem

• About a million users and 25,000 movies
• Known ratings are sparsely distributed
• Predict unknown ratings

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

Users

Movies

Preferences of users are determined by a small number of factors  low rank
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Matrix Rank

• The number of independent rows or columns
• The singular value decomposition (SVD):

= × ×

}rank
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The matrix Completion Problem
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The Alternating Approach

• Optimize over U and V iteratively
• Solution is locally optimal
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Fundamental Questions

• Can we recover a matrix M of size n1 by n2 from m 
sampled entries, m << n1 n2?

• In general, it is impossible.

• Surprises (Candes & Recht’08):
– Can recover matrices of interest from incomplete 

sampled entries
– Can be done by convex programming 
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Multi-Task/Class Learning

• The multiple tasks/classes are usually related
• The matrix W is of low rank

X1 Y1 X2 Y2 Xk Yk…

wkw2w1 … =    W
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Matrix Classification

x1

[Tomioka & Aihara (2007), ICML]

x2

xn

…
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Other Low-Rank Problems

• Image compression
• System identification in control theory
• Structure-from-motion problem in computer vision
• Other settings:

– low-degree statistical model for a random process
– a low-order realization of a linear system
– A low-order controller for a plant
– a low-dimensional embedding of data in Euclidean 

space
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Two Formulations for Rank 

Minimization

min   f(W) + λ*rank(W)
min              rank(W)

subject to    f(W)=b

Rank minimization is NP-hard
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Trace Norm (Nuclear Norm)

• trace norm ⇔ 1-norm of the vector of singular values
• Trace norm is the convex envelope of the rank function over the unit 

ball of spectral norm ⇒ a convex relaxation
• In some sense, this is the tightest convex relaxation of the NP-hard 

rank minimization problem
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Two Formulations for Nuclear Norm

min   f(W) + λ* ||W|| min              ||W||

subject to    f(W)=b

Nuclear norm minimization is convex

*
*

• Consistent estimation can be obtained

• Can be solved by

• Semi-definite programming

• Gradient-based methods
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Sparsity with Vectors and Matrices

[Recht et al. (2010) SIAM Review]

Parsimony concept Cardinality Rank
Hilbert space norm Euclidean Frobenius

Sparsity inducing norm Trace norm
Convex optimization Linear programming Semi-definite programming
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Rank Minimization and CS

Rank minimization
min   rank(W)
s.t.    f(W) = b

Convex relaxation
min   ||W||

s.t.     f(W) = b
*

W is diagonal, linear constraint

Rank minimization
min   ||w||0

s.t.    Aw = b

Convex relaxation
min   ||w||1

s.t.    Aw = b
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Theory of Matrix Completion

Candès and Recht (2008)
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Semi-definite programming (SDP)

))()((
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• SDP is convex, but computationally expensive

• Many recent efficient solvers: 
• Singular value thresholding (Cai et al, 2008 )

• Fixed point method (Ma et al, 2009)

• Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009)
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparsity via Trace Norm
• Sparse Inverse Covariance Estimation
• Implementations and the SLEP package
• Trends in Sparse Learning
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Optimization Algorithm

• Smooth Reformulation – general solver
• Coordinate descent
• Subgradient descent
• Gradient descent
• Accelerated gradient descent
• Online algorithms
• Stochastic algorithms
• …

min  f(x)= loss(x) + λ×penalty(x)
min   loss(x)
s.t.    penalty(x) ≤z

loss(x) is convex and smooth, 
penalty(x) is convex but nonsmooth
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Smooth Reformulations: L1

Linearly constrained quadratic programming
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Smooth Reformulation: L1/L2

Second order cone programming
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Smooth Reformulation: Fused Lasso

Linearly constrained quadratic programming
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Summary of Reformulations

Advantages:
• Easy to incorporate existing solvers
• Fast and high precision for small size problems

Disadvantages:
• Does not scale well for large size problems, due to 1) many additional 

variables and constraints are introduced; 2) the computation of Hessian is 
demanding

• Does not utilize well the “structure” of the nonsmooth penalty
• Not applicable to all the penalties discussed in this tutorial, say, L1/L3.
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Coordinate Descent
(Tseng, 2002)
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Coordinate Descent: Example
(Tseng, 2002)
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Coordinate Descent: Convergent?
(Tseng, 2002)

• If f(x) is smooth, then the algorithm is guaranteed to converge.
• If f(x) is nonsmooth, the algorithm can get stuck.
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Coordinate Descent: Convergent?
(Tseng, 2002)

• If f(x) is smooth, then the algorithm is guaranteed to converge.
• If f(x) is nonsmooth, the algorithm can get stuck.
• If the nonsmooth part is separable, convergence is guaranteed.

min  f(x)= loss(x) + λ×penalty(x) penalty(x)=||x||1
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Coordinate Descent

• Can xnew be computed efficiently?

min  f(x)= loss(x) + λ×penalty(x) penalty(x)=||x||1

loss(x)=0.5×||Ax-y||22
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CD in Sparse Representation
• Lasso (Fu, 1998; Friedman et al., 2007)

• L1/Lq regularized least squares & logistic regression 
(Yuan and Lin, 2006,Liu et al., 2009; Argyriou et al., 2008; Meier et al., 
2008)

• Sparse group Lasso for q=2 (Peng et al., 2010; Friedman et al., 
2010)

• Fused Lasso Signal Approximator (Friedman et al., 2007; 
Hofling, 2010)

• Sparse inverse covariance estimation (Banerjee et al., 2008; 
Friedman et al., 2007)
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Summary of CD
Advantages:
• Easy for implementation, especially for the least 

squares loss
• Can be fast, especially the solution is very sparse

Disadvantages:
• No convergence rate
• Can be hard to derive xnew for general loss
• Can get stuck when the penalty is non-separable
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Subgradient Descent
(Nemirovski, 1994; Nesterov, 2004)

Repeat

Until “convergence”

G

Subgradient: one element in the subdifferential set
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Subgradient Descent: Subgradient
(Nemirovski, 1994; Nesterov, 2004)

h(x)=0.5×(x-v)2 + λ|x| g(x)=0.5×(x-v)2 + λx2

g(x) is differentiable for all x 
h(x) is non-differentiable at x=0
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Subgradient Descent: Convergent?
(Nemirovski, 1994; Nesterov, 2004)

Repeat

Until “convergence”

If f(x) is Lipschitz continuous with constant 
L(f), the set G is closed convex, and the step 
size is set as follows

then, we have
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• L1 constrained optimization (Duchi et al., 2008)

• L1/L∞ constrained optimization (Quattoni et al., 2009)

Advantages: 
• Easy implementation
• Guaranteed global convergence

Disadvantages
• It converges slowly
• It does not take the structure of the non-smooth term into consideration

SD in Sparse Representation
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Gradient Descent

Repeat

Until “convergence”

Repeat

Until “convergence”

f(x) is smooth



Center for Evolutionary Functional Genomics

Gradient Descent: 
The essence of the gradient step

Repeat

Until “convergence”

Repeat

Until “convergence”

1st order Taylor expansion Regularization
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Gradient Descent: 
Extension to the composite model (Nesterov, 2007; Beck and Teboulle, 2009)

min  f(x)= loss(x) + λ×penalty(x)

1st order Taylor expansion Regularization Nonsmooth part

Repeat

Until “convergence”

Convergence rate

Much better than 
Subgradient descent
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Gradient Descent: 
Extension to the composite model (Nesterov, 2007; Beck and Teboulle, 2009)

Repeat

Until “convergence”



Center for Evolutionary Functional Genomics

Accelerated Gradient Descent: 
unconstrained version (Nesterov, 2007; Beck and Teboulle, 2009)

The lower complexity bound shows that, the first-order methods can not 
achieve a better convergence rate than O(1/N2).
Can we develop a method that can achieves the optimal convergence rate?

Repeat

Until “convergence”

GD

O(1/N)

Repeat

Until “convergence”

AGD

O(1/N2)
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Accelerated Gradient Descent: 
constrained version (Nesterov, 2007; Beck and Teboulle, 2009)

Repeat

Until “convergence”

GD

O(1/N)

Repeat

Until “convergence”

AGD

O(1/N2)

Can the projection be computed efficiently?
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Accelerated Gradient Descent: 
composite model (Nesterov, 2007; Beck and Teboulle, 2009)

Repeat

Until “convergence”

GD

O(1/N)

min  f(x)= loss(x) + λ×penalty(x)
Repeat

Until “convergence”

AGD

O(1/N2)

Can the proximal operator be computed efficiently?
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Accelerated Gradient Descent 
in Sparse Representations

• Lasso (Nesterov, 2007; Beck and Teboulle, 2009)

• L1/Lq (Liu, Ji, and Ye, 2009; Liu and Ye, 2010)

• Sparse group Lasso (Liu and Ye, 2010)

• Trace Norm (Ji and Ye, 2009; Pong et al., 2009; Toh and Yun, 2009; Lu 
et al., 2009)

• Fused Lasso (Liu, Yuan, and Ye, 2010)

Advantages:
• Easy for implementation
• Optimal convergence rate
• Scalable to large sample size problem
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Accelerated Gradient Descent 
in Sparse Representations

Key computational cost
• Gradient and functional value
• The projection (for constrained smooth optimization)
• The proximal operator (for composite function)

Advantages:
• Easy for implementation
• Optimal convergence rate
• Scalable to large sample size problem
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Euclidean projection onto the L1 ball
(Duchi et al., 2008; Liu and Ye, 2009)
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Efficient Computation of the Proximal Operators
(Liu and Ye, 2010; Liu and Ye, 2010; Liu, Yuan and Ye, 2010)

min  f(x)= loss(x) + λ×penalty(x)

• L1/Lq

• Sparse group Lasso

• Fused Lasso
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Proximal Operator Associated with L1/Lq

It can be decoupled into the following q-norm regularized 
Euclidean projection problem:

Optimization problem:

Associated proximal operator:
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Proximal Operator Associated with L1/Lq

Convert it to two simple zero finding algorithms
Method:

1. Suitable to any
2. The proximal plays a key building block in quite a few 

methods such as the accelerated gradient descent, coordinate 
gradient descent(Tseng, 2008), forward-looking subgradient
(Duchi and Singer, 2009), and so on.

Characteristics:
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Achieving a Zero Solution
For the q-norm regularized Euclidean projection

We have 
1 1 1
q q
 

We restrict our following discussion to
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Fixed Point Iteration?
One way to compute            is to apply the following 
fixed point iteration

Let us consider the two-dimensional case.

Fixed point iteration is not guaranteed to converge.

We start from
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Fixed Point Iteration?

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

iteration

x1
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Solving Two Zero Finding Problems 
The methodology is also based on the following relationship

Construct three auxiliary functions.

Solve the above equation by two simple one-dimensional zero 
finding problems (associated with the constructed auxiliary 
functions).
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Efficiency
(compared with spectral projected gradient)
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Efficiency
(compared with spectral projected gradient)
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Effect of q in L1/Lq

RAND RANDN

Multivariate linear regression
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Proximal Operator Associated with L1+L1/Lq
(Liu and Ye, 2010)

Optimization problem:

Associated proximal operator:
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Proximal Operator Associated with L1+L1/L2
(Liu and Ye, 2010)
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Proximal Operator Associated with L1+L1/Linf
(Liu and Ye, 2010)

t* is the root of
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Effective Interval for Sparse Group Lasso
(Liu and Ye, 2010)
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Efficiency 
(comparison with remMap via coordiante descent)
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Efficiency 
(comparison with remMap via coordiante descent)
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Proximal Operator Associated with Fused Lasso

Optimization problem:

Associated proximal operator:
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Fused Lasso Signal Approximator
(Liu, Yuan, and Ye, 2010)

Let

We have
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Fused Lasso Signal Approximator
(Liu, Yuan, and Ye, 2010)

Method:
• Subgradient Finding Algorithm (SFA)---looking for 
an appropriate and unique subgradient of           at the 
minimizer (motivated by the proof of Theorem 1).
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Efficiency
(Comparison with the CVX solver)
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Efficiency
(Comparison with the CVX solver)
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Summary of Implementations
• The accelerated gradient descent, which is an optimal 

first-order method, is favorable for large-scale 
optimization.

• To apply the accelerated gradient descent, the key is 
to develop efficient algorithms for solving either the 
projection or the associated proximal operator.

http://www.public.asu.edu/~jye02/Software/SLEP
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Outline
• Sparsity via L1

• Sparsity via L1/Lq

• Sparsity via Fused Lasso
• Sparsity via Trace Norm
• Sparse Inverse Covariance Estimation
• Implementations and the SLEP package
• Trends in Sparse Learning
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New Sparsity Induced Penalties?
min  f(x)= loss(x) + λ×penalty(x)

Sparse

Fused Lasso
Sparse inverse covariance 
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Overlapping Groups?
min  f(x)= loss(x) + λ×penalty(x)

Sparse

Sparse group Lasso
Group Lasso

• How to learn groups?
• How about the overlapping groups?
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Efficient Algorithms for Huge-Scale Problems

Algorithms for p>108, n>105?

It costs  over 1 Terabyte to store the data.
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References
(Compressive Sensing and Lasso)
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References
(Compressive Sensing and Lasso)
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References
(Group Lasso and Sparse Group Lasso)
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References
(Fused Lasso)
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References
(Fused Lasso)
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References
(Trace Norm)
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(Trace Norm)
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References
(Trace Norm)
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References
(Sparse Inverse Covariance)
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References
(Sparse Inverse Covariance)


