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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Ensemble

Data

……

model 1

model 2

model k

Ensemble model

Applications: classification, clustering, 
collaborative filtering, anomaly detection……

Combine multiple 
models into one!
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Stories of Success
• Million-dollar prize

– Improve the baseline movie 
recommendation approach of 
Netflix by 10% in accuracy

– The top submissions all combine 
several teams and algorithms as 
an ensemble

• Data mining competitions
– Classification problems
– Winning teams employ an 

ensemble of classifiers
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Netflix Prize
• Supervised learning task

– Training data is a set of users and ratings (1,2,3,4,5 
stars) those users have given to movies.

– Construct a classifier that given a user and an 
unrated movie, correctly classifies that movie as 
either 1, 2, 3, 4, or 5 stars

– $1 million prize for a 10% improvement over Netflix’s 
current movie recommender (MSE = 0.9514)

• Competition
– At first, single-model methods are developed, and 

performances are improved
– However, improvements slowed down
– Later, individuals and teams merged their results, 

and significant improvements are observed



6

Leaderboard

“Our final solution (RMSE=0.8712) consists of blending 107 individual results. “
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Motivations
• Motivations of ensemble methods

– Ensemble model improves accuracy and 
robustness over single model methods

– Applications: 
• distributed computing 
• privacy-preserving applications 
• large-scale data with reusable models
• multiple sources of data

– Efficiency: a complex problem can be 
decomposed into multiple sub-problems that are 
easier to understand and solve (divide-and-
conquer approach)



8

Relationship with Related Studies (1)
• Multi-task learning

– Learn multiple tasks simultaneously
– Ensemble methods: use multiple models to learn one

task
• Data integration

– Integrate raw data
– Ensemble methods: integrate information at the model

level
• Mixture of models

– Each model captures part of the global knowledge where 
the data have multi-modality

– Ensemble methods: each model usually captures the 
global picture, but the models can complement each 
other 
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Relationship with Related Studies (2)
• Meta learning

– Learn on meta-data (include base model output)
– Ensemble methods: besides learn a joint model 

based on model output, we can also combine the 
output by consensus

• Non-redundant clustering
– Give multiple non-redundant clustering solutions 

to users
– Ensemble methods: give one solution to users 

which represents the consensus among all the 
base models



10

Why Ensemble Works? (1)
• Intuition

– combining diverse, independent opinions in 
human decision-making as a protective 
mechanism (e.g. stock portfolio)

• Uncorrelated error reduction
– Suppose we have 5 completely independent 

classifiers for majority voting
– If accuracy is 70% for each

• 10 (.7^3)(.3^2)+5(.7^4)(.3)+(.7^5) 
• 83.7% majority vote accuracy

– 101 such classifiers
• 99.9% majority vote accuracy

from T. Holloway, Introduction to Ensemble 
Learning, 2007. 
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Why Ensemble Works? (2)

Model 1
Model 2

Model 3
Model 4

Model 5
Model 6

Some unknown distribution

Ensemble gives the global picture!
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Why Ensemble Works? (3)
• Overcome limitations of single hypothesis

– The target function may not be implementable with 
individual classifiers, but may be approximated by model 
averaging

Decision Tree Model Averaging
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Research Focus

• Base models
– Improve diversity!

• Combination scheme
– Consensus (unsupervised)
– Learn to combine (supervised)

• Tasks
– Classification (supervised ensemble)
– Clustering (unsupervised ensemble)
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Summary

Single
Models

Combine by 
learning

Combine by 
consensus

K-means, 
Spectral Clustering, 

…...

Semi-supervised 
Learning, 

Collective Inference

SVM, 
Logistic Regression, 

…...

Multi-view Learning

Boosting, rule 
ensemble, Bayesian 
model averaging,

…...

Unsupervised 
Learning

Supervised 
Learning

Semi-
supervised 
Learning

Clustering Ensemble

Consensus 
Maximization

Bagging, random 
forest, random 
decision tree

…...

Review the ensemble 
methods in the tutorial
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Ensemble of Classifiers—Learn to Combine

labeled 
data

unlabeled 
data

……

final 

predictions

learn the combination from labeled data

training test

classifier 1

classifier 2

classifier k

Ensemble model

Algorithms: boosting, stacked generalization, rule ensemble, 
Bayesian model averaging……
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Ensemble of Classifiers—Consensus

labeled 
data

unlabeled 
data

……

final 

predictions

training test

classifier 1

classifier 2

classifier k

combine the 
predictions by 
majority voting

Algorithms: bagging, random forest, random decision tree, model 
averaging of probabilities……
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Clustering Ensemble—Consensus

unlabeled 
data

……

final 

clustering

clustering 
algorithm 1

combine the 
partitionings 
by consensus

clustering 
algorithm k

……

clustering 
algorithm 2

Algorithms: EM-based approach, instance-based, cluster-based 
approaches, correlation clustering, bipartite graph partitioning
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Semi-Supervised Ensemble—Learn to Combine

labeled 
data

unlabeled 
data

……

final 

predictions

learn the combination from both 
labeled and unlabeled data

training test

classifier 1

classifier 2

classifier k

Ensemble model

Algorithms: multi-view learning
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Semi-supervised Ensemble—Consensus

labeled 
data

unlabeled 
data

……

final 

predictions

classifier 1

classifier 2

classifier k

combine all the 
supervised and 
unsupervised 
results by 
consensus

Algorithms: consensus maximization

……

clustering 1

clustering h

……

clustering 2
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Pros and Cons

Combine by 
learning

Combine by 
consensus

Pros Get useful feedbacks from 
labeled data
Can potentially improve 
accuracy

Do not need labeled data
Can improve the generalization 
performance

Cons Need to keep the labeled 
data to train the ensemble
May overfit the labeled data
Cannot work when no 
labels are available

No feedbacks from the labeled 
data
Require the assumption that 
consensus is better
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Supervised Ensemble Methods

• Problem
– Given a data set D={x1,x2,…,xn} and their 

corresponding labels L={l1,l2,…,ln} 
– An ensemble approach computes:

• A set of classifiers {f1,f2,…,fk}, each of which maps 
data to a class label: fj(x)=l

• A combination of classifiers f* which minimizes 
generalization error: f*(x)= w1f1(x)+ w2f2(x)+…+ wkfk(x)
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Bias and Variance
• Ensemble methods

– Combine weak learners to reduce variance

from Elder, John.  From Trees to Forests and Rule Sets - A Unified 
Overview of Ensemble Methods.  2007.
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Generating Base Classifiers
• Sampling training examples

– Train k classifiers on k subsets drawn from the training 
set

• Using different learning models
– Use all the training examples, but apply different learning 

algorithms
• Sampling features

– Train k classifiers on k subsets of features drawn from 
the feature space

• Learning ―randomly‖
– Introduce randomness into learning procedures



25

Bagging* (1)
• Bootstrap

– Sampling with replacement
– Contains around 63.2% original records in each 

sample
• Bootstrap Aggregation

– Train a classifier on each bootstrap sample
– Use majority voting to determine the class label 

of ensemble classifier

*[Breiman96]
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Bagging (2)

Bootstrap samples and classifiers:

Combine predictions by majority voting
from P. Tan et al. Introduction to Data Mining.
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Bagging (3)

• Error Reduction
– Under mean squared error, bagging reduces variance 

and leaves bias unchanged
– Consider idealized bagging estimator: 
– The error is

– Bagging usually decreases MSE
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Boosting* (1)
• Principles

– Boost a set of weak learners to a strong learner
– Make records currently misclassified more important

• Example
– Record 4 is hard to classify 
– Its weight is increased, therefore it is more likely 

to be chosen again in subsequent rounds

from P. Tan et al. Introduction to Data Mining.

*[FrSc97]
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Boosting (2)
• AdaBoost

– Initially, set uniform weights on all the records
– At each round

• Create a bootstrap sample based on the weights
• Train a classifier on the sample and apply it on the original 

training set
• Records that are wrongly classified will have their weights 

increased
• Records that are classified correctly will have their weights 

decreased
• If the error rate is higher than 50%, start over

– Final prediction is weighted average of all the 
classifiers with weight representing the training 
accuracy
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Boosting (3)

• Determine the weight
– For classifier i, its error is

– The classifier’s importance 
is represented as:

– The weight of each record 
is updated as:

– Final combination:
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Classifications (colors) and 
Weights (size) after 1 iteration
Of AdaBoost

3 iterations

20 iterations

from Elder, John.  From Trees to Forests 
and Rule Sets - A Unified Overview of 
Ensemble Methods.  2007.



32

Boosting (4)

• Explanation
– Among the classifiers of the form: 

– We seek to minimize the exponential loss function:

– Not robust in noisy settings
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Random Forests* (1)
• Algorithm

– Choose T—number of trees to grow
– Choose m<<M (M is the number of total features) —

number of features used to calculate the best split at 
each node

– For each tree
• Choose a training set by choosing N times (N is the number of 

training examples) with replacement from the training set
• For each node, randomly choose m features and calculate the 

best split
• Fully grown and not pruned

– Use majority voting among all the trees

*[Breiman01]
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Random Forests (2)
• Discussions

– Bagging+random features
– Improve accuracy

• Incorporate more diversity and reduce variances

– Improve efficiency
• Searching among subsets of features is much faster 

than searching among the complete set
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Random Decision Tree* (1)
• Principle

– Single-model learning algorithms
• Fix structure of the model, minimize some form of errors, or maximize 

data likelihood (eg., Logistic regression, Naive Bayes, etc.)
• Use some ―free-form‖ functions to match the data given some 

―preference criteria‖ such as information gain, gini index and MDL. (eg., 
Decision Tree, Rule-based Classifiers, etc.)

– Such methods will make mistakes if
• Data is insufficient
• Structure of the model or the preference criteria is inappropriate for the 

problem

– Ensemble
• Make no assumption about the true model, neither parametric form nor 

free form
• Do not prefer one base model over the other, just average them

*[FGM+05]
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Random Decision Tree (2)
• Algorithm

– At each node,  an un-used feature is chosen randomly
• A discrete feature is un-used if it has never been chosen 

previously on a given decision path starting from the root to the 
current node.

• A continuous feature can be chosen multiple times on the same 
decision path, but each time a different threshold value is 
chosen

– We stop when one of the following happens:
• A node becomes too small (<= 3 examples).
• Or the total height of the tree exceeds some limits, such as the 

total number of features.
– Prediction

• Simple averaging over multiple trees
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B1: {0,1}

B2: {0,1}

B3: continuous

B2: {0,1}

B3: continuous

B2: {0,1}

B3: continuous

B3: continous

B1 == 0

B2 == 0?

Y

B3 < 0.3?

N

Y N

……… B3 < 0.6?

Random threshold 0.3

Random threshold 0.6

B1 chosen randomly

B2 chosen randomly

B3 chosen randomly

Random Decision Tree (3)
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Random Decision Tree (4)
• Potential Advantages

– Training can be very efficient. Particularly true 
for very large datasets.
• No cross-validation based estimation of parameters 

for some parametric methods.
– Natural multi-class probability.
– Natural multi-label classification and probability 

estimation.
– Imposes very little about the structures of the 

model.
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Optimal Decision Boundary

from Tony Liu’s thesis (supervised by Kai Ming Ting)
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RDT looks
like the optimal

boundary
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Clustering Ensemble

• Problem
– Given an unlabeled data set D={x1,x2,…,xn} 
– An ensemble approach computes:

• A set of clustering solutions {C1,C2,…,Ck}, each of 
which maps data to a cluster: fj(x)=m

• A unified clustering solutions f* which combines base 
clustering solutions by their consensus
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Motivations
• Goal

– Combine ―weak‖ clusterings to a better one

from A. Topchy et. al. Clustering 
Ensembles: Models of Consensus and 
Weak Partitions.  PAMI, 2005
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Methods (1)
• How to get base models?

– Bootstrap samples
– Different subsets of features
– Different clustering algorithms
– Random number of clusters
– Random initialization for K-means
– Incorporating random noises into cluster labels
– Varying the order of data in on-line methods 

such as BIRCH
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Methods (2)
• How to combine the models?

– Direct approach
• Find the correspondence between the labels in the 

partitions and fuse the clusters with the same labels
– Indirect approach (Meta clustering)

• Treat each output as a categorical variable and cluster 
in the new feature space

• Avoid relabeling problems
• Algorithms differ in how they represent base model 

output and how consensus is defined
• Focus on hard clustering methods in this tutorial
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An Example

from A. Gionis et. al. Clustering Aggregation.  TKDD, 2007

base clustering models

objects

The goal: get the consensus clusteringthey may not represent 
the same cluster!
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Cluster-based Similarity Partitioning 
Algorithm (CSPA)

• Clustering objects
– Similarity between two objects is defined as the 

percentage of common clusters they fall into
– Conduct clustering on the new similarity matrix

K
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k jkik

ji
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Similarity between vi and vj is:
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Cluster-based Similarity Partitioning 
Algorithm (CSPA)

v2

v4

v3

v1

v5

v6
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HyperGraph-Partitioning Algorithm (HGPA)

• Hypergraph representation and clustering
– Each node denotes an object
– A hyperedge is a generalization of an edge in that it 

can connect any number of nodes
– For objects that are put into the same cluster by a 

clustering algorithm, draw a hyperedge connecting 
them

– Partition the hypergraph by minimizing the number 
of cut hyperedges

– Each component forms a meta cluster
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HyperGraph-Partitioning Algorithm (HGPA)

v2

v4

v3

v1

v5

v6

Hypergraph representation– a 
circle denotes a hyperedge
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Meta-Clustering Algorithm (MCLA) 

• Clustering clusters
– Regard each cluster from a base model as a 

record
– Similarity is defined as the percentage of shared 

common objects
• eg. Jaccard measure 

– Conduct meta-clustering on these clusters
– Assign an object to its most associated meta-

cluster 
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Meta-Clustering Algorithm (MCLA) 

g2 g5

g3
g1

g7

g9

g4 g6

g8

g10

M1
M2

M3

M1 M2 M3

3 0          0
1 2 0

2 1          0
0          3 0
0          0          3

0          0          3
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Comparisons* 
• Time complexity

– CSPA (clustering objects): O(n2kr)
– HGPA (hypergraph partitioning): O(nkr)
– MCLA (clustering clusters): O(nk2r2)
– n-number of objects, k-number of clusters, r-

number of clustering solutions

• Clustering quality
– MCLA tends to be best in low noise/diversity 

settings
– HGPA/CSPA tend to be better in high 

noise/diversity settings

All three algorithms are from *[StGh03]
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A Mixture Model of Consensus*

• Probability-based
– Assume output comes from a mixture of models
– Use EM algorithm to learn the model

• Generative model
– The clustering solutions for each object are 

represented as nominal features--vi

– vi is described by a mixture of k components, each 
component follows a multinomial distribution

– Each component is characterized by distribution 
parameters j

*[PTJ05]
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EM Method 
• Maximize log likelihood

• Hidden variables
– zi denotes which consensus cluster the object 

belongs to
• EM procedure

– E-step: compute expectation of zi

– M-step: update model parameters to maximize 
likelihood  
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Bipartite Graph Partitioning*
• Hybrid Bipartite Graph Formulation 

– Summarize base model output in a bipartite 
graph

– Lossless summarization—base model output 
can be reconstructed from the bipartite graph

– Use spectral clustering algorithm to partition the 
bipartite graph

– Time complexity O(nkr)—due to the special 
structure of the bipartite graph

– Each component represents a consensus cluster
*[FeBr04]
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Bipartite Graph Partitioning

v2 v4v3v1 v5 v6

c2 c5c3c1

c7 c8

c4 c6

c9 c10

objects

clusters

clusters
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Evaluation criterion:
Normalized Mutual 
Information (NMI)

Baseline methods:
IBGF: clustering objects

CBGF: clustering clusters
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Summary of Unsupervised Ensemble
• Difference from supervised ensemble

– No theories behind the success of clustering 
ensemble approaches

– Moderate diversity is favored in the base models 
of clustering ensemble

– There exist label correspondence problems
• Characteristics

– Experimental results demonstrate that cluster 
ensembles are better than single models!

– There is no single, universally successful, cluster 
ensemble method 
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Multiple Source Classification

Image Categorization Like? Dislike? Research Area

images, descriptions, 
notes, comments, 
albums, tags…….

movie genres, cast, 
director, plots…….

users viewing history, 
movie ratings…

publication and co-
authorship network, 
published papers, 
…….
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Model Combination helps!

Some areas share similar keywordsSIGMOD

SDM

ICDM

KDD

EDBT

VLDB

ICML

AAAI

Tom

Jim

Lucy

Mike

Jack

Tracy

Cindy

Bob

Mary

Alice

People may publish in relevant 
but different areas

There may be cross-
discipline co-operations

supervised

unsupervised

Supervised or 
unsupervised
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Multi-view Learning (1)
• Problem

– The same set of objects can be described in multiple 
different views

– Features are naturally separated into K sets:

– Both labeled and unlabeled data are available
– Learning on multiple views:

• Search for labeling on the unlabeled set and target functions 
on X: {f1,f2,…,fk} so that the target functions agree on labeling 
of unlabeled data

),...,,( 21 KXXXX 
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Multi-view Learning (2)
• Conditions

– Compatible --- all examples are labeled identically by 
the target concepts in each view

– Uncorrelated --- given the label of any example, its 
descriptions in each view are independent.

• Problems
– Require raw data to learn the models
– Supervised and unsupervised information sources are 

symmetric
• Algorithms

– Co-training
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Co-Training*
• Input

– Features can be split into two sets:
– The two views are redundant but not completely 

correlated
– Few labeled examples and relatively large amounts 

of unlabeled examples are available from the two 
views

• Intuitions
– Two individual classifiers are learnt from the labeled 

examples of the two views
– The two classifiers’ predictions on unlabeled 

examples are used to enlarge the size of training set
– The algorithm searches for ―compatible‖ target 

functions 

21 XXX 

*[BlMi98]
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Labeled Data
View 1

Classifier
1

Classifier
2

Labeled Data
View 2

Unlabeled Data
View 1

Unlabeled Data
View 1
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Applications: Faculty Webpages 
Classification

from S. K. Divvala. Co-Training & Its Applications in Vision.
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection



76

Consensus Maximization* 
• Goal

– Combine output of multiple supervised and unsupervised 
models on a set of objects 

– The predicted labels should agree with the base models 
as much as possible

• Motivations
– Unsupervised models provide useful constraints for 

classification tasks
– Model diversity improves prediction accuracy and 

robustness
– Model combination at output level is needed due to 

privacy-preserving or incompatible formats

*[GLF+09]
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Problem
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A Toy Example

x7

x4

x5 x6

x1 x2

x3

x7

x4

x5 x6

x1 x2

x3

x7

x4

x5 x6

x1 x2

x3

x7

x4

x5 x6

x1 x2

x3

1

2

3

1

2

3
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Groups-Objects

x7

x4

x5 x6

x1 x2

x3

x7

x4

x5 x6

x1 x2

x3

x7

x4

x5 x6

x1 x2

x3

x7

x4

x5 x6

x1 x2

x3

1

2

3

1

2

3

g1

g2
g3

g4

g5

g6

g7

g8

g9

g10

g11

g12
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Bipartite Graph
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Objective
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Methodology
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Constrained Embedding
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Ranking on Consensus Structure
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Incorporating Labeled Information
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Experiments-Data Sets
• 20 Newsgroup

– newsgroup messages categorization
– only text information available

• Cora
– research paper area categorization
– paper abstracts and citation information available

• DBLP
– researchers area prediction
– publication and co-authorship network, and 

publication content
– conferences’ areas are known
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Experiments-Baseline Methods (1)
• Single models

– 20 Newsgroup: 
• logistic regression, SVM, K-means, min-cut

– Cora
• abstracts, citations (with or without a labeled set)

– DBLP
• publication titles, links (with or without labels from conferences)

• Proposed method
– BGCM
– BGCM-L: semi-supervised version combining four models
– 2-L: two models
– 3-L: three models
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Experiments-Baseline Methods (2)

• Ensemble approaches
– clustering ensemble on all of the four models-

MCLA, HBGF

Single
Models

Ensemble at
Raw Data

Ensemble 
at Output 

Level

K-means, 
Spectral Clustering, 

…...

Semi-supervised 
Learning, 

Collective Inference

SVM, 
Logistic Regression, 

…...

Multi-view Learning

Bagging, 
Boosting, 
Bayesian 

model 
averaging,

…...

Unsupervised 
Learning

Supervised 
Learning

Semi-
supervised 
Learning

Clustering Ensemble

Consensus 
Maximization

Majority 
Voting

Mixture of 
Experts, 
Stacked 

Generalization
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Accuracy (1)



90

Accuracy (2)
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Stream Classification*
• Process

– Construct a classification model based on past 
records

– Use the model to predict labels for new data
– Help decision making

Fraud?

Fraud

Classification 
model

Labeling

*[GFH07]
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Framework

……… ?
………

Classification 
Model Predict
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Existing Stream Mining Methods
• Shared distribution assumption

– Training and test data are from the same 
distribution P(x,y) x-feature vector, y-class label

– Validity of existing work relies on the shared 
distribution assumption

• Difference from traditional learning
– Both distributions evolve 

……… training ………

……… test ………

… …
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Evolving Distributions (1)
• An example of stream 

data
– KDDCUP’99 Intrusion 

Detection Data
– P(y) evolves

• Shift or delay inevitable
– The future data could be different from current data
– Matching the current distribution to fit the future one 

is a wrong way
– The shared distribution assumption is inappropriate
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Evolving Distributions (2)
• Changes in P(y)

– P(y)     P(x,y)=P(y|x)P(x) 
– The change in P(y) is attributed to changes in 

P(y|x) and P(x)

Time 
Stamp 1

Time 
Stamp 11

Time 
Stamp 21





97

Ensemble Method
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Why it works?
• Ensemble

– Reduce variance caused by single models
– Is more robust than single models when the 

distribution is evolving
• Simple averaging

– Simple averaging: uniform weights wi=1/k
– Weighted ensemble: non-uniform weights

• wi is inversely proportional to the training errors
– wi should reflect P(M), the probability of model M after observing 

the data
– P(M) is changing and we could never estimate the true P(M) and 

when and how it changes
– Uniform weights could minimize the expected distance between 

P(M) and weight vector





k

i

i

i

E yxfwyxf
1

),(),(
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An illustration
• Single models (M1, M2, M3) have huge variance.
• Simple averaging ensemble (AP) is more stable and 

accurate.
• Weighted ensemble (WE) is not as good as AP since 

training errors and test errors may have different 
distributions.

M1 M2 M3 WEAP

Time 
Stamp

A

Time 
Stamp

B

Training Error Test Error

Average 
Probability

Weighted 
Ensemble

Single 
Models
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Experiments
• Set up

– Data streams with chunks T1, T2, …, TN
– Use Ti as the training set to classify Ti+1

• Measures
– Mean Squared Error, Accuracy
– Number of Wins, Number of Loses
– Normalized Accuracy, MSE

• Methods
– Single models: Decision tree (DT), SVM, Logistic Regression 

(LR)
– Weighted ensemble: weights reflect the accuracy on training set 

(WE)
– Simple ensemble: voting (SV) or probability averaging (AP)

)),((max/),(),( TAhTAhTAh A
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Experimental Results (2)

Comparison on Intrusion Data Set

0

5

10

15

20

25

30

35

40

45

50

#Wins #Loses

DT

SVM

LR

WE

SV

AP
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Experimental Results (3)

Classification Accuracy Comparison
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Experimental Results (4)

Mean Squared Error Comparison
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Standard Supervised Learning

New York Times

training 
(labeled)

test 
(unlabeled)

Classifier 85.5%

New York Times
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In Reality……

New York Times

training 
(labeled)

test 
(unlabeled)

Classifier 64.1%

New York Times

Labeled data not 
available!Reuters
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Domain Difference  Performance Drop
train test

NYT NYT

New York Times New York Times

Classifier 85.5%

Reuters NYT

Reuters New York Times

Classifier 64.1%

ideal setting

realistic setting

From Jing Jiang’s slides
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Other Examples
• Spam filtering

– Public email collection  personal inboxes

• Intrusion detection
– Existing types of intrusions  unknown types of intrusions

• Sentiment analysis
– Expert review articles blog review articles

• The aim
– To design learning methods that are aware of the training and 

test domain difference

• Transfer learning
– Adapt the classifiers learnt from the source domain to the new 

domain
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All Sources of Labeled Information

training 
(labeled)

test 
(completely 
unlabeled)

Classifier

New York Times

Reuters

Newsgroup

…… ?
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A Synthetic Example

Training
(have conflicting concepts)

Test
Partially 
overlapping
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Goal

Source
Domain Target

Domain

Source
Domain

Source
Domain

• To unify knowledge that are consistent with the test 
domain from multiple source domains (models)
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Modified Bayesian Model Averaging

M1

M2

Mk

……

Test set
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Global versus Local Weights 

2.40    5.23
-2.69  0.55
-3.97  -3.62
2.08   -3.73
5.08   2.15
1.43   4.48
……

x y

1
0
0
0
0
1
…

M1

0.6
0.4
0.2
0.1
0.6
1
…

M2

0.9
0.6
0.4
0.1
0.3
0.2
…

wg

0.3
0.3
0.3
0.3
0.3
0.3
…

wl

0.2
0.6
0.7
0.5
0.3
1
…

wg

0.7
0.7
0.7
0.7
0.7
0.7
…

wl

0.8
0.4
0.3
0.5
0.7
0
…

• Locally weighting scheme
– Weight of each model is computed per example
– Weights are determined according to models’ 

performance on the test set, not training set

Training 
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Synthetic Example Revisited

Training
(have conflicting concepts)

Test
Partially 
overlapping

M1 M2
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Optimal Local Weights

C1

C2

Test example x

0.9      0.1

0.4      0.6

0.8      0.2

Higher Weight

• Optimal weights
– Solution to a regression problem
– Impossible to get since f is unknown!

0.9       0.4

0.1       0.6

w1

w2
= 

0.8

0.2 



k

i

i xw
1

1)(

H w f
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Clustering-Manifold Assumption

Test examples that are closer in 
feature space are more likely 
to share the same class label.
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Graph-based Heuristics
• Graph-based weights approximation

– Map the structures of models onto test domain

Clustering 
Structure

M1
M2

weight 
on x
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Graph-based Heuristics

• Local weights calculation
– Weight of a model is proportional to the similarity 

between its neighborhood graph and the 
clustering structure around x.

Higher Weight
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Experiments Setup*
• Data Sets

– Synthetic data sets
– Spam filtering: public email collection  personal inboxes (u01, 

u02, u03) (ECML/PKDD 2006)
– Text classification: same top-level classification problems with 

different sub-fields in the training and test sets (Newsgroup, 
Reuters)

– Intrusion detection data: different types of intrusions in training 
and test sets.

• Baseline Methods
– One source domain: single models (WNN, LR, SVM)
– Multiple source domains: SVM on each of the domains
– Merge all source domains into one: ALL
– Simple averaging ensemble: SMA
– Locally weighted ensemble: LWE

*[GFJ+08]
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Experiments on Synthetic Data
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Experiments on Real Data

0.5

0.6

0.7

0.8

0.9

1

Spam Newsgroup Reuters

WNN
LR
SVM
SMA
LWE

0.5

0.6

0.7

0.8

0.9

1

DOS Probing R2L

Set 1
Set 2
ALL
SMA
LWE
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Outline
• An overview of ensemble methods

– Motivations
– Tutorial overview

• Supervised ensemble
• Unsupervised ensemble
• Semi-supervised ensemble

– Multi-view learning
– Consensus maximization among supervised and 

unsupervised models

• Applications
– Stream classification, transfer learning, anomaly 

detection
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Combination of Anomaly Detectors

• Simple rules (or atomic rules) are relatively easy 
to craft.

• Problem: 
– there can be way too many simple rules
– each rule can have high false alarm or FP 

rate
• Challenge: can we find their non-trivial 

combination that significantly improve accuracy?
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Atomic Anomaly Detectors

Record 1

Record 2

Record 3

Record 4

Record 5

Record 6

Record 7

……

A1 A2
…… Ak-1 Ak

Anomaly?

Y N N N……

N Y Y N……

Y N N N……

Y Y N Y……

N N Y Y……

N N N N……

N N N N……
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Why We Need Combine Detectors?

Count 
0.1-0.5

Entropy 
0.1-0.5

Count 
0.3-0.7

Entropy 
0.3-0.7

Count 
0.5-0.9

Entropy 
0.5-0.9

Label

Too many alarms!

Combined view is better than individual views!!
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Combining Detectors

• is non-trivial
– We aim at finding a consolidated solution 

without any knowledge of the true anomalies 
(unsupervised)

– We don’t know which atomic rules are better 
and which are worse

– There could be bad base detectors so that 
majority voting cannot work
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How to Combine Atomic Detectors?
• Basic Assumption:

– Base detectors are better than random guessing and systemic flip.
• Principles

– Consensus represents the best we can get from the atomic rules
• Solution most consistent with atomic detectors

– Atomic rules should be weighted according to their detection 
performance

– We should rank the records according to their probability of being an 
anomaly

• Algorithm
– Reach consensus among multiple atomic anomaly detectors in an 

unsupervised way 
• or semi-supervised if we have limited supervision (known botnet site)
• and incremental in a streaming environment

– Automatically derive weights of atomic rules and records
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Framework
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Methodology
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Propagation Process

…… ……

Detectors Records
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
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Semi-supervised
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Incremental
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Experiments Setup

• Baseline methods
– base detectors
– majority voting
– consensus maximization
– semi-supervised (2% labeled)
– stream (30% batch, 70% incremental)

• Evaluation measure
– area under ROC curve (0-1, 1 is the best)
– ROC curve: tradeoff between detection rate 

and false alarm rate
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Case study-IDN data

• Data
– A sequence of events: dos flood, syn flood, 

port scanning, etc.
– 3 random subsets, each with size 1000

• Detector
– Count of events at each time stamp with 

different thresholds
– Entropy of events at each time stamp with 

different thresholds
– 0.1-0.5, 0.3-0.7, 0.5-0.9
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AUC on IDN data
worst best average Majority 

voting
Conse
nsus

Semi-
supervised

Increm
ental

1 0.5269 0.6671 0.5904 0.7089 0.7255 0.7204 0.7270

2 0.2832 0.8059 0.5731 0.6854 0.7711 0.8048 0.7552

3 0.3745 0.8266 0.6654 0.8871 0.9076 0.9089 0.9090

• Summary
– Large variance in detector performance
– Consensus method improves over the base 

detector and majority voting
– Semi-supervised method achieves the best
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Case study-KDD cup’99 data
• Data

– A series of TCP connection records, collected by 
MIT Lincoln labs

– We use the 34 continuous derived features, 
including duration, number of bytes, error rate, etc. 

– 3 random subsets, each with size 1832
• Detector

– Randomly select a subset of features, and apply 
unsupervised distance-based anomaly detection 
algorithm

– Get 20 detectors
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AUC on KDD cup data

worst best average Majority 
voting

Conse
nsus

Semi-
supervised

increm
ental

1 0.5804 0.6068 0.5981 0.7765 0.7812 0.8005 0.7730 

2 0.5930 0.6137 0.6021 0.7865 0.7938 0.8173 0.7836 

3 0.5851 0.6150 0.6022 0.7739 0.7796 0.7985 0.7727 

• Summary
– Small variance in detector performance
– Consensus method improves over the base 

detector and majority voting
– Semi-supervised method achieves the best
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Conclusions
• Ensemble

– Combining independent, diversified models improves accuracy
– No matter in supervised, unsupervised, or semi-supervised 

scenarios, ensemble methods have demonstrated their 
strengths

– Base models are combined by learning from labeled data or by 
their consensus

• Beyond accuracy improvements
– Information explosion motivates multiple source learning
– Various learning packages available
– Combine the complementary predictive powers of multiple 

models
– Distributed computing, privacy-preserving applications
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Thanks!

• Any questions?

Slides and more references available at 
http://ews.uiuc.edu/~jinggao3/sdm10ensemble.htm


