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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview
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— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection



Ensemble

?@I 1 semble model

o @o%@ o

Combine multiple
mo e'% models into one!

Applications: classification, clustering,
collaborative filtering, anomaly detection......



Stories of Success

« Million-dollar prize

— Improve the baseline movie
recommendation approach of
Netflix by 10% in accuracy

— The top submissions all combine
several teams and algorithms as
an ensemble

« Data mining competitions
— Classification problems

— Winning teams employ an
ensemble of classifiers




Netflix Prize

* Supervised learning task

— Training data is a set of users and ratings (1,2,3,4,5
stars) those users have given to movies.

— Construct a classifier that given a user and an
unrated movie, correctly classifies that movie as
either 1, 2, 3, 4, or 5 stars

— $1 million prize for a 10% improvement over Netflix’s
current movie recommender (MSE = 0.9514)

« Competition
— At first, single-model methods are developed, and
performances are improved
— However, improvements slowed down

— Later, individuals and teams merged their results,
and significant improvements are observed



Leaderboard

Rank Team Name Best Test Score % Improvement Best Submit Time

Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos

1 5 0.8567 5 10.06 | 2009-07-26 18:18:28
2 Q. TheEnsemble : 0.8567 : 10.06 - 2009-07-26 18:38:22
3 . Grand Prize [eam ; 0.8582 ; 9.90 © 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United ! 0.8538 5 9.84 - 2009-07-10 01:12:31
§ ! Vandelay Industries ! 5 0.8591 5 9.81 - 2009-07-10 00:32:20
6 : PragmaticTheory i 0.8594 i 977 . 2009-06-24 12:06:56
7  BellKorin BigChaos i 0.8601 i 9.70 © 2009-05-13 08:14:09
8  Dace ; 0.8612 ; 959 - 2009-07-24 17:18:43
: I : 0.8622 : 948 - 2009-07-12 13:11:51

Feeds2

Progress Prize 2008 - RMSE = 0.8627 - Winning Team: BellKor in BigChaos

13 . xiangliang : 0.8642 : 9.27 - 2009-07-15 14:53:22
14 Gravity i 0.8643 i 9.26 . 2009-04-22 18:31:32
15  Ces ; 0.8651 ; 9.18 - 2009-06-21 19:24:53
16 Invisible Ideas ; 0.8653 ; 915 - 2009-07-15 15:53:04
17 Justaquyin a garage 5 0.8662 5 9.06 - 2009-05-24 10:02:54
18 . JDennis Su i 0.8666 i 9.02 . 2009-03-07 17:16:17
19 ©  Craig Carmichael ; 0.8666 ; 9.02 © 2009-07-25 16:00:54
20 acmehill ; 0.8668 ; 9.00 - 2009-03-21 16:20:50

Progress Prize 2007 - RMSE = 0.8723 - Winning Team: KorBell

Cinematch score - RMSE = 0.9525




Motivations

 Motivations of ensemble methods

— Ensemble model improves accuracy and
robustness over single model methods

— Applications:
« distributed computing
 privacy-preserving applications
* large-scale data with reusable models
* multiple sources of data

— Efficiency: a complex problem can be
decomposed into multiple sub-problems that are
easier to understand and solve (divide-and-
conquer approach)



Relationship with Related Studies (1)
* Multi-task learning
— Learn multiple tasks simultaneously

— Ensemble methods: use multiple models to learn one
task

« Data integration

— Integrate raw data

— Ensemble methods: integrate information at the model
level

 Mixture of models

— Each model captures part of the global knowledge where
the data have multi-modality

— Ensemble methods: each model usually captures the
global picture, but the models can complement each
other



Relationship with Related Studies (2)
* Meta learning

— Learn on meta-data (include base model output)

— Ensemble methods: besides learn a joint model
based on model output, we can also combine the
output by consensus

* Non-redundant clustering

— Give multiple non-redundant clustering solutions
to users

— Ensemble methods: give one solution to users
which represents the consensus among all the
base models



Why Ensemble Works? (1)

* |ntuition

— combining diverse, independent opinions in
human decision-making as a protective
mechanism (e.g. stock portfolio)

 Uncorrelated error reduction

— Suppose we have 5 completely independent
classifiers for majority voting
— If accuracy is 70% for each
o 10 (.773)(.312)+5(.774)(.3)+(.7"5)
« 83.7% majority vote accuracy
— 101 such classifiers
* 99.9% majority vote accuracy

from T. Holloway, Introduction to Ensemble
Learning, 2007.

10



Why Ensemble Works? (2)

S \W}.\
'T‘\‘L&ome unknown distribution
Y

b\

Ensemble gives the global picturel y



Why Ensemble Works? (3)

« Overcome limitations of single hypothesis

— The target function may not be implementable with
individual classifiers, but may be approximated by model
averaging

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 )
1.02RRG.  2.29420

Decision Tree Model Averaging

0 0.5 1 1.5 2z 2.5 3 L5 4 4f
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Research Focus

« Base models
— Improve diversity!
« Combination scheme
— Consensus (unsupervised)
— Learn to combine (supervised)

 Tasks

— Classification (supervised ensemble)
— Clustering (unsupervised ensemble)

13



Summary

A
Boosting, rule Bagging, random
Supervised . .SVM, . i ensemble, Bay(?sian fores.t,.random
. Logistic Regressian, i model averaging, decision tree
Learning 5 E
mi- i- i E
Se : Semi sup?rwse : o . E Consensus
supervised Learning, i Multi-view Learning : Maximizati
Learning Collective Inferenfe aximization
. K-means : :
n rvised ’ : :
Unsupe V Spectral Clustering, i Clustering Ensemble
Learning g E
Single Combine by Combine by
Models learning consensus

Review the ensemble
methods in the tutorial
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Ensemble of Classifiers—Learn to Combine

training test

N

classifier 1
semble model

labeled c}% ! unlabeled
data classifier 2 data

v

final

predictions

learn the combination from labeled data

|
Algorithms: boosting, stacked generalization, rule ensemble,

Bayesian model averaging......

15



Ensemble of Classifiers—Consensus

|
training : test
|
|
oj;% :
|
}aés(ifier 1 '
combine the

unlabeled

data predictions by

majority voting

labeled
data classifier 2

cla ifiei Kk

v

final

predictions

Algorithms: bagging, random forest, random decision tree, model

averaging of probabilities...... 16



Clustering Ensemble—Consensus

clustering C;%
algorithm 1

clustering }%\* unlabeled combine the

algorithm 2 data partitionings
by consensus

clustering . N |
algorithm k na

clustering

Algorithms: EM-based approach, instance-based, cluster-based

approaches, correlation clustering, bipartite graph partitioning 17



Semi-Supervised Ensemble—Learn to Combine

training test

A

classifier 1
semble model

labeled c}% unlabeled
data classifier 2 data

final

predictions

learn the combination from both
labeled and unlabeled data

Algorithms: multi-view learning 18



Semi-supervised Ensemble—Consensus

- /

labeled
data classifier 2
...... combine all the
unlabeled ced and
classifier k data supervised an
unsupervised
c;% \ results by
consensus
clustering 1 }% X
clustering 2 (}% final

predictions

clustering h C}% Algorithms: consensus maximization 19



Pros and Cons

Combine by Combine by
learning consensus

Pros |Getuseful feedbacks from | Do not need labeled data
labeled data Can improve the generalization
Can potentially improve performance
accuracy

Cons |Need to keep the labeled No feedbacks from the labeled

data to train the ensemble
May overfit the labeled data

Cannot work when no
labels are available

data

Require the assumption that
consensus is better

20



Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection

21



Supervised Ensemble Methods

* Problem
— Given a data set D={x,,x,,...,x,} and their
corresponding labels L={/,,[,,...,] }
— An ensemble approach computes:

* A set of classifiers {f,,f,,...,f,}, each of which maps
data to a class label: f(x)=/

A combination of classifiers * which minimizes
generalization error: £(x)= w,f,(x)+ wof(x)+...+ w,f(X)

22



Bias and Variance

* Ensemble methods
— Combine weak learners to reduce variance

High Bias Low Bias

Low Variance High Variance
. .‘ ________________ >
=
=
Ll
c
=
)
= Test Sample
o
A f

Training Sample
|

Low 4.-"';',{* High
Model Complexity (e.g., tree size)

from Elder, John. From Trees to Forests and Rule Sets - A Unified
Overview of Ensemble Methods. 2007.



Generating Base Classifiers

Sampling training examples

— Train Kk classifiers on k subsets drawn from the training
set

Using different learning models

— Use all the training examples, but apply different learning
algorithms

Sampling features

— Train k classifiers on k subsets of features drawn from
the feature space

Learning —andomly”
— Introduce randomness into learning procedures

24



Bagging® (1)
* Bootstrap

— Sampling with replacement

— Contains around 63.2% original records in each
sample

* Bootstrap Aggregation
— Train a classifier on each bootstrap sample

— Use majority voting to determine the class label
of ensemble classifier

*[Breiman906] oe



Bagging (2)
Original Data:

x | 01]02]03[04]05]|06]07]08]09] 1
y 1 1 1 |1 1] 1] -1 1 1 1

Bootstrap samples and classifiers:

_x ] 01]02]4021]031}049)04]305]06]09]09]
v 1 1§ 141§ 1414135145171 1751

x 101021034040 051054099) 1 | 1 § 1
v J 1 5 1 314114143141 ] 1] 1] 1

_x § 01]029)03]041]04)3051]07])071]08]09
v § 1 1 1 3 1§13 -1 3141351431 7§ 1

_x §01]029051]05])0530/7]07})081]09] 1
vy 4 11 1311131313151 4] 1] 1

Combine predictions by majority voting -
from P. Tan et al. Introduction to Data Mining.



Bagging (3)

 Error Reduction

— Under mean squared error, bagging reduces variance
and leaves bias unchanged

— Consider idealized bagging estimator: f(x)= E(fz(x))
— The erroris

E[Y - f,00 =E[Y - f )+ f (%)= f,(x)]
—E[Y - f ()P +E[f(x)= f, ) = E[Y - f (O]

— Bagging usually decreases MSE

from Elder, John. From Trees to Forests and Rule Sets - A Unified 27
Overview of Ensemble Methods. 2007.



Boosting* (1)
* Principles
— Boost a set of weak learners to a strong learner
— Make records currently misclassified more important

 Example
— Record 4 is hard to classify

— Its weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Original Data
Boosting (Round 1)
Boosting (Round 2)

1 2

7 3

5 4
Boosting (Round 3) @ @

*[FrSc97]

from P. Tan et al. Introduction to Data Mining.
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Boosting (2)

« AdaBoost

— Initially, set uniform weights on all the records
— At each round

Create a bootstrap sample based on the weights

Train a classifier on the sample and apply it on the original
training set

Records that are wrongly classified will have their weights
increased

Records that are classified correctly will have their weights
decreased

If the error rate is higher than 50%, start over

— Final prediction is weighted average of all the
classifiers with weight representing the training
accuracy

29



Boosting (3)

Determine the weight N
B ijle5(ci(xj) #Y;)

— For classifier i, its error is &, _
> W,
j=1
— The classifier’'s importance | |- g
: . _ i
is represented as: o; = ln[ j
2 &,

(i)
. W’ expl—a;y.C. (X,
— The weight of each record ~ wi"*) = © ( %Y, 1 J))
: ] Z(l)
IS updated as:

* K
— Final combination: C (X) =argmax, Zi:l aié’(Ci (X) = y)
30
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Boosting (4)

Explanation
— Among the classifiers of the form:

F(x)= Z,Kzl ;G (X)

— We seek to minimize the exponential loss function:

ZL EXp (_ Yt (X ))

— Not robust in noisy settings

32



Random Forests® (1)
* Algorithm

— Choose T—number of trees to grow

— Choose m<<M (M is the number of total features) —

number of features used to calculate the best split at
each node

— For each tree

« Choose a training set by choosing N times (N is the number of
training examples) with replacement from the training set

« For each node, randomly choose m features and calculate the
best split

*  Fully grown and not pruned

— Use majority voting among all the trees

*[Breiman01] 33



Random Forests (2)

* Discussions
— Bagging+random features

— |Improve accuracy
* Incorporate more diversity and reduce variances

— Improve efficiency

« Searching among subsets of features is much faster
than searching among the complete set

34



Data set Adaboost Selection Forest-RI single input One tree
Glass 22.0 20.6 21.2 36.9
Breast cancer 3.2 2.9 2.7 6.3
Diabetes 26.6 24.2 24.3 33.1
Sonar [5.6 15.9 18.0 31.7
Vowel 4.1 3.4 3.3 30.4
lonosphere 6.4 7.1 7.5 12.7
Vehicle 23.2 25.8 264 33.1
German credit 23.5 24.4 26.2 33.3
Image 1.6 2.1 2.7 6.4
Ecoli [4.8 12.8 13.0 24.5
Votes 4.8 4.1 4.6 74
Liver 30.7 25.1 24.7 40.6
Letters 3.4 3.5 4.7 9.8
Sat-images 8.8 8.6 10.5 17.2
Zip-code 6.2 6.3 7.8 20.6
Waveform 7.8 17.2 17.3 34.0
Twonorm 4.9 3.9 3.9 24.7
Threenorm [8.8 17.5 17.5 38.4
Ringnorm 6.9 4.9 4.9 25.7

35



Random Decision Tree* (1)

Principle
—  Single-model learning algorithms

. Fix structure of the model, minimize some form of errors, or maximize
data likelihood (eg., Logistic regression, Naive Bayes, etc.)

+ Use some —fredorm” functions to match the data given some
—prierence criteria” such as information gain, gini index and MDL. (eg.,
Decision Tree, Rule-based Classifiers, etc.)

—  Such methods will make mistakes if

« Data is insufficient

«  Structure of the model or the preference criteria is inappropriate for the
problem

— Ensemble

«  Make no assumption about the true model, neither parametric form nor
free form

« Do not prefer one base model over the other, just average them

*[FGM+05] 36



Random Decision Tree (2)
* Algorithm

— At each node, an un-used feature is chosen randomly

« A discrete feature is un-used if it has never been chosen
previously on a given decision path starting from the root to the
current node.

« A continuous feature can be chosen multiple times on the same
decision path, but each time a different threshold value is
chosen

— We stop when one of the following happens:
A node becomes too small (<= 3 examples).

« Or the total height of the tree exceeds some limits, such as the
total number of features.

— Prediction
« Simple averaging over multiple trees
37



Random Decision Tree (3)

_Y N
\
Y N
/

......... > ,
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Random Decision Tree (4)

 Potential Advantages

— Training can be very efficient. Particularly true
for very large datasets.

No cross-validation based estimation of parameters
for some parametric methods.

— Natural multi-class probabillity.

— Natural multi-label classification and probability
estimation.

— Imposes very little about the structures of the
model.

39



Optimal Decision Boundary

Figure 3.5: Gaussian mixture training samples and optimal boundary.

..o.' . :3...
° ® >
) .o.. ‘.‘.: .
[} 0.'. . [}
. N W, . &
® L]

e  positive ciass
negative class

training samples optimal boundary

from Tony Liu’s thesis (supervised by Kai Ming Ting) 40



(a) unpruned C4.5

(c) Random Forests  (d) Complete-random tree ensemble

RDT looks
like the optimal
boundary

41



Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection

42



Clustering Ensemble

* Problem
— Given an unlabeled data set D={x,,x,,...,X,}

— An ensemble approach computes:

* A set of clustering solutions {C,,C,,...,C,}, each of
which maps data to a cluster: f(x)=m

A unified clustering solutions * which combines base
clustering solutions by their consensus

43



 Goal
— Combine

Motivations

—weld’ clusterings to a better one
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from A. Topchy et. al. Clustering
Ensembles: Models of Consensus and
Weak Partitions. PAMI, 2005
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Methods (1)

* How to get base models?
— Bootstrap samples
— Different subsets of features
— Different clustering algorithms
— Random number of clusters
— Random initialization for K-means
— Incorporating random noises into cluster labels

— Varying the order of data in on-line methods
such as BIRCH

45



Methods (2)

« How to combine the models?

— Direct approach

* Find the correspondence between the labels in the
partitions and fuse the clusters with the same labels

— Indirect approach (Meta clustering)

» Treat each output as a categorical variable and cluster
in the new feature space

 Avoid relabeling problems

 Algorithms differ in how they represent base model
output and how consensus is defined

* Focus on hard clustering methods in this tutorial

46



An Example

base clustering models

&Z
Ci Co Cs | C
V1 1 1 1 1
| w12 2|2
objects q Vs 9 | | |
V4 2 2 2 2
Vs 3 3 3 3
V6 / 3 / 4 3 3

e T

they may not represent The goal: get the consensus clustering
the same cluster!

from A. Gionis et. al. Clustering Aggregation. TKDD, 2007



Cluster-based Similarity Partitioning
Algorithm (CSPA)

» Clustering objects

— Similarity between two objects is defined as the
percentage of common clusters they fall into

— Conduct clustering on the new similarity matrix
Similarity between v; and v; is:

> S(C (V) =C(v)))

S(Viavj): K

48



Cluster-based Similarity Partitioning
Algorithm (CSPA)

Ci C2 Cs|C

V1 1 1 1 1

V2 1 2 2 2

q V3 2 1 1 1
V4 2 2 2 2

Vs 3 3 3 3

V6 3 4 3 3

49



HyperGraph-Partitioning Algorithm (HGPA)

* Hypergraph representation and clustering
— Each node denotes an object

— A hyperedge is a generalization of an edge in that it
can connect any number of nodes

— For objects that are put into the same cluster by a
clustering algorithm, draw a hyperedge connecting
them

— Partition the hypergraph by minimizing the number
of cut hyperedges

— Each component forms a meta cluster

50



HyperGraph-Partitioning Algorithm (HGPA)

Ci C2 Cs|C

U1 1 1 1 1

V2 1 2 2 | 2

q v3 2 1 1 |1
va 2 2 2 | 2

Us 3 3 3 3

V6 3 4 3 3

Hypergraph representation—a
circle denotes a hyperedge

51



Meta-Clustering Algorithm (MCLA)

* Clustering clusters

— Regard each cluster from a base model as a
record

— Similarity is defined as the percentage of shared
common objects
« eg. Jaccard measure

— Conduct meta-clustering on these clusters

— Assign an object to its most associated meta-
cluster

52



LA)
' (MC
lustering Algorithm
Meta-Clu

U1
U2
U3
U4
U5
U6
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Comparisons*®

* Time complexity
— CSPA (clustering objects): O(n?kr)
— HGPA (hypergraph partitioning): O(nkr)
— MCLA (clustering clusters): O(nk?r?)
— n-number of objects, k-number of clusters, r-
number of clustering solutions

* Clustering quality

— MCLA tends to be best in low noise/diversity
settings

— HGPA/CSPA tend to be better in high
noise/diversity settings

All three algorithms are from *[StGh03]
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A Mixture Model of Consensus*

* Probability-based

— Assume output comes from a mixture of models
— Use EM algorithm to learn the model

 Generative model

— The clustering solutions for each object are
represented as nominal features--v;,

— v; is described by a mixture of k components, each
component follows a multinomial distribution

— Each component is characterized by distribution
parameters 0,

*[PTJOS] 57



EM Method

« Maximize log likelihood

> log(ZE_l"‘j PV |91))

 Hidden variables

— z;denotes which consensus cluster the object
belongs to

 EM procedure
— E-step: compute expectation of z

— M-step: update model parameters to maximize
likelihood

58
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Table 1: Clustering ensemble and consensus solution

T, T, T, n, El|z;| E[z,] Consensus
N 2 B X B 0.999 0.001 1
Y, 2 A X o 0.997 0.003 1
Y3 2 A Y 3 0.943 0.057 1
] 2 B X 3 0.999 0.001 1
Vs 1 A X 3 0.999 0.001 1
Ve 2 A Y 3 0.943 0.057 1
A, 2 B Y o 0.124 0.876 2
Vg 1 B Y o, 0.019 0.981 2
Yo 1 B Y B 0.260 0.740 2
V1o 1 A Y o 0.115 0.885 2
Vi 2 B Y o, 0.124 0.876 2
Yo 1 B Y o, 0.019 0.981 2




Bipartite Graph Partitioning*
» Hybrid Bipartite Graph Formulation

— Summarize base model output in a bipartite
graph

— Lossless summarization—base model output
can be reconstructed from the bipartite graph

— Use spectral clustering algorithm to partition the
bipartite graph

— Time complexity O(nkr)—due to the special
structure of the bipartite graph

— Each component represents a consensus cluster
*[FeBro4] 5



Bipartite Graph Partitioning

Ci C2 Cs|C
V1 1 1 1 1
V2 1 2 2 2
V3 2 1 1 1
V4 2 2 2 2
Vs 3 3 3 3
V6 3 4 3 3

objects

clusters

clusters
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Evaluation criterion:

Normalized Mutual
Information (NMI)

Baseline methods:
IBGF: clustering objects

CBGF: clustering clusters

RANDOM SUBSAMPL.

RANDOM PROI.

20 40 6o 20 40 GO
EOS
IBGF 0.263 0.262 0.262 | 0.260 0.263 0.269
CBGF | 0.262 0.264 0.263 | 0.246 0.247  0.247
HEBGF | 0.340 0.319 0,303 | 0.357 0.343 0.325
(0.263) (0.246)
CLASS
IBCF 0.400 0,405 0.388 | 0.376  0.37: 0.368
CBCF | 0.393 0398 0.395 | 0.379 0378  0.377
HECF | 0.405 0.398 0.399 | 0.401  0.386  0.390
(0.378) (0.334)
HRCT
IBGF | 0.310 0.312 0.313 | 0.283 0.299 0.301
CBGF | 0.279 0.277 0.280 | 0.256 0.267 0.274
HBCGF | 0.303 0.318 0.321 | 0.274 0.292 0.301
(0.292) (0.196)
ISOLET6G
IBCF 0.504 0.799 0.812 | 0.761 0.802 0.811
CBCF | 0.832  0.837 0.833 | 0.750 0.790 0.802
HEBCF | 0.844 0,823 0.823 | 0.765 0.801 0.813
(0.790) (0.447)
MODIS
IBGF | 0.478 0.478 0.478 | 0.485 0.493 0.491
CBGF | 0.476 0.478 0.478 | 0.482 0.490 0.491
HBGF | 0.478 0.478 0.478 | 0.485 0487 0.494
(0.473) (0.389)
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Summary of Unsupervised Ensemble

 Difference from supervised ensemble

— No theories behind the success of clustering
ensemble approaches

— Moderate diversity is favored in the base models
of clustering ensemble

— There exist label correspondence problems

 Characteristics

— Experimental results demonstrate that cluster
ensembles are better than single models!

— There is no single, universally successful, cluster
ensemble method
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection
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Multiple Source Classification

flickr

Home The Tour Sign Up Explore

Is there anybody out there?

F

Actually i'm not a big fan of beach.
Itwas

as a sunday afternoon and the summer was going down. | remember i was really
excited c: there wasn't anybody over there. Only me and a friend of mine in that
desolats h,
Wi a lot and the wind was gentle on our body.

eVe sl
Well, after that day my opinion about beaches is changed.

Image Categorization

images, descriptions,
notes, comments,
albums, tags.......

g millionaire

Like? Dislike?

movie genres, cast,
director, plots.......

users viewing history,
movie ratings...

Research Area

publication and co-
authorship network,
published papers,
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Model Combination helps!  suevisedor

unsupervised
supervised i

361 EE [Tawei Han, Xifeng Yan, Phiip § Yo Scalable OLAP and mining of nformation netwworks EDBT 2009 1159
1360 EE [Yizhou Sun, iawei Han, Peiiong Zhao, Zhitun Yin, Hong Cheng, Tianyi Wy RenkClus. ntegrating ohstering with ranking for heterogensous nformation nefvwork analysis. EDBT 2009: 565-576
339 EE

E Bhavani M. Tt Latifir Khen, Murat K antarcioplu, Sonia Chib, Jiawes Han, Sang Son: Real-Time Knowledge Discovery and Dy tion for Intelligence Analysis. HICSS 2009: 1-
12
Some areas share similar keywords

2008
355 [Deng Cai, Xiaofci He, Jiawei Han: Sparse Projections over Graph. AAAT 2008610615
1354 EE | Chen Chen, Cindy Xide Lin, Kifeng Yan, Hawei Han On effectve presentation of graph patterns a sructurel representative approach. CIKM 2008: 299-308
1353 EE [Deng Cai, Qisozh Mei, Fawei Hen, Chenggiang Zhai Modelig hidden topics on document marafold. CIEM 2008: 911920
1352 EE Tiewei Han: Data rining for imagefvideo processing a promising rescerch frontier. CIVR 2008: 1-2

SN
’ Bob

People may publish in relevant
but different areas

Relation"

There may be cross-
discipline co-operations

wr

Jack

unsupervised
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Multi-view Learning (1)

e Problem

— The same set of objects can be described in multiple
different views

— Features are naturally separated into K sets:
X :(Xl, X2,..., X K)

— Both labeled and unlabeled data are available

— Learning on multiple views:

« Search for labeling on the unlabeled set and target functions
on X: {f,,f,,....,f,} so that the target functions agree on labeling
of unlabeled data
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Multi-view Learning (2)

 Conditions

— Compatible --- all examples are labeled identically by
the target concepts in each view

— Uncorrelated --- given the label of any example, its
descriptions in each view are independent.

* Problems
— Require raw data to learn the models

— Supervised and unsupervised information sources are
symmetric

« Algorithms

— Co-training
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Co-Training*
* |nput
— Features can be split into two sets: X = X, x X,

— The two views are redundant but not completely
correlated

— Few labeled examples and relatively large amounts
of unlabeled examples are available from the two
views

e Intuitions

— Two individual classifiers are learnt from the labeled
examples of the two views

— The two classifiers’ predictions on unlabeled
examples are used to enlarge the size of training set

— The algorithm searches for —commatible” target
functions

*[BIMi98] 70



Labeled Data
View 1

Classifier
1

Unlabeled Data
View 1

Labeled Data
View 2

Classifier
2

Unlabeled Data
View 1
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(y1ven:

e a set L of labeled training examples

e a set U/ of unlabeled examples

Create a pool U’ of examples by choosing « examples at random from /

Loop for k iterations:

Use L to train a classifier 2; that considers only the x; portion of x
Use L to train a classifier ho that considers only the x2 portion of x
Allow hq to label p positive and n negative examples from U/’
Allow hs to label p positive and n negative examples from U/’

Add these self-labeled examples to L
Randomly choose 2p + 2n examples from U/ to replenish U/
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Applications: Faculty Webpages
Classification
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Percent Error on Test Data
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Hyperhnk-Based
Page-Based —+-
Default -----
025 —
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+oy / T
015 | Y . :
. -k + +
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.
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W
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D | | | | | | |
0 5 10 15 20 25 30 35 40

Co-Traimng Iterations

Figure 2: Error versus number of iterations for one run of co-training experiment.
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection
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Consensus Maximization*
« Goal

— Combine output of multiple supervised and unsupervised
models on a set of objects

— The predicted labels should agree with the base models
as much as possible

 Motivations

— Unsupervised models provide useful constraints for
classification tasks

— Model diversity improves prediction accuracy and
robustness

— Model combination at output level is needed due to
privacy-preserving or incompatible formats

*[GLF+09] 76



Problem

DM

&

I'y Unsupervised Models

Iy Supervised Models
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A Toy Example







Bipartite Graph

[100] [010] [001]
@ o

object i U =[Uj,..;Uic]

groupj qj :[qjla'":qjc]

conditional prob vector

adjacency

1 U ©q,
0 otherwise

initial probability

-

[10..0] g. el

J

Vi=9 e e

Groups Objects 80



[100]
O

[010]

Objective

[00 1]
O

minimize disagreement

Objects

min g, (Zzaij |U; —q; I +0!Z||ﬁ,- -V, I*)
=1

i=l j=I

Similar conditional probability if the
object is connected to the group

Do not deviate much from the initial
probability
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Methodology

[100] [010] [00 1]

O ® O Iterate until convergence

Update probability of a group

n
D ayl +dy, M
_ it

—

q, = i=1

n n
izz;‘aij + ;aij

Update probability of an object

Groups Objects 82



R
el T
R
o]

o1 _”‘_‘_4,:4,.

Constrained Embedding

manU ZZ qu Z,; ijYiz
j=1 z=1 Z:1au

q;, =1if gj'Slabe| .

|

. ’L’(zz"""”“—qju +aZ||qJ v, I°)

i=1 j=1

groups &

objects

constraints for groups from
classification models
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Ranking on Consensus Structure

100] [010] [001]
‘ ‘ Q d, =D,(D, A D, IA)q.l +D,Y,

/[

query

personalized
damping factors

Groups Objects 84



Incorporating Labeled Information

[130] [010] [001] Objective
\ N ) . n v L s,
S NX :,B ming, Q> a; |G —0; 1> +a D ld; =¥ II")
O 5NN i=1 j=1 | j=1
o + B )G - T |
. i=1

Updat% probability of a group

I Zaijui +ay; Zaijﬁi
— _i=l ~ i=I
d;

N n qj ~ T n
iZ:;‘aij+05 > a,

i=1
Update probability of an object
\"

—

Z:aijq’j Zaijqj+,3fi
lj. = =1 Ui — =
I V \"
Zaij Zaij + B
i=l = 85

Groups Objects




Experiments-Data Sets

« 20 Newsgroup
— newsgroup messages categorization
— only text information available

 Cora
— research paper area categorization
— paper abstracts and citation information available

 DBLP

— researchers area prediction

— publication and co-authorship network, and
publication content

— conferences’ areas are known
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Experiments-Baseline Methods (1)

« Single models
— 20 Newsgroup:
* logistic regression, SVM, K-means, min-cut
— Cora
 abstracts, citations (with or without a labeled set)

— DBLP
* publication titles, links (with or without labels from conferences)
* Proposed method
— BGCM
— BGCM-L: semi-supervised version combining four models
— 2-L: two models
— 3-L: three models
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Experiments-Baseline Methods (2)

A
Bagging, i
Boosting, Mixture of
Supervised . .SVM, . Bayesian Experts, Majority
. Logistic Regression, model Stacked .
Learning . L. Voting
averaging, Generalization
Semi- i- i
! Semi supt_:rv1sed o - Consensus
supervised Learning, Multi-view Learning ...
Learning Collective Inference Maximization
. K-means
Unsupervised ’
P . Spectral Clustering, Clustering Ensemble
Learning
- >
. Ensemble
Single Ensemble at at Outout
Models Raw Data P
\J Level

 Ensemble approaches
— clustering ensemble on all of the four models-

MCLA, HBGF
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Accuracy (1)

Tethode 20 Newsgroups
Methods l 5 3 1 z z

My 0.7967 | 0.8855 | 0.8557 0.8826 0.8765 0.8880
Mo 0.7721 | 0.8611 0.8134 [ 0.8676 0.8358 0.8563
M3 0.8056 | 0.8796 | 0.8658 0.8983 0.8716 0.9020
My 0.7770 | 0.8571 0.8149 0.8467 0.8543 0.8578
MCLA 0.7592 | 0.8173 | 0.8253 0.8686 0.8295 0.8546
HBGF 0.8199 | 0.9244 | 0.8811 0.9152 0.8991 0.9125
BGCM 0.8128 | 0.9101 0.8608 0.9125 0.8864 0.9088
2-L 0.7981 [ 0.9040 | 0.8511 0.8728 0.8830 0.8977
3-L 0.8188 | 0.9206 | 0.8820 0.9158 0.8989 0.9121
BGCM-L 0.8316 | 0.9197 | 0.8859 0.9240 | 09016 | 0.9177
STD 0.0040 | 0.0038 | 0.0037 0.0040 0.0027 0.0030
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Accuracy (2)

Cora DBLP

Methods l 5 3 ] i
My 0.7745 0.8858 0.8671 0.8841 0.9337
Mo 0.7797 0.8594 0.8508 0.8879 0.8766
Mo 0.7779 0.8833 0.8646 0.8813 0.9382
My 0.7476 0.8594 0.7810 0.9016 0.7949
MCLA 0.8703 0.8388 0.8892 0.8716 0.8953
HBGF 0.7834 0.9111 0.8481 0.8943 0.9357
BGCM 0.8687 0.9155 0.8965 0.9090 0.9417
2-L 0.8066 0.8798 0.8932 0.8951 0.9054
3-L 0.8557 0.9086 0.9202 0.9141 0.9332
BGCM-L 0.8891 0.9181 0.9246 0.9206 0.9480
STD 0.0096 0.0027 0.0052 0.0044 0.0020
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection
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Stream Classification®

* Process

— Construct a classification model based on past
records

— Use the model to predict labels for new data
— Help decision making

@ L(\)Ia/ssification J
model

) _

Qﬁ %

Labeling

*[GFHO7] 92



ramework

\ 61 ~2500

Hire < C, 23 Do not mannfacture
. the product
Consultant o
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Existing Stream Mining Methods

« Shared distribution assumption

— Training and test data are from the same
distribution P(x,y) x-feature vector, y-class label

— Validity of existing work relies on the shared
distribution assumption

 Difference from traditional learning
— Both distributions evolve
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Evolving Dlstrlbutlons (1)

16)(10

* An example of stream -
data
— KDDCUP'99 Intrusion ~ _ || ]
Detection Data gl | e

=== Batch Update
-+ Real Time Update

— P(y) evolves 04

« Shift or delay inevitable
— The future data could be different from current data

— Matching the current distribution to fit the future one
IS a wrong way

— The shared distribution assumption is inappropriate
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Evolving Distributions (2)
 Changes in P(y)

— P(y) « P(x,y)=P(y[x)P(x)
— The change in P(y) is attributed to changes in
P(y|x) and P(x)
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A
N A

Training set

Ensemble Method

C,

7

fl(x,y)

C,

e

N~

Test set

f(X,y)oc P(Y =y][X)

e PR = D )

y|x=argmax, f “(X,Y)
F (% y)
Cy

Simple Voting(SV)

fi(x,y):{o

1 model i predicts y

otherwise

Averaging Probability(AP)

f'(X, y) = probability of predicting y for model i
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Why it works?

Ensemble
— Reduce variance caused by single models

— |Is more robust than single models when the
distribution is evolving

Simple averaging
— Simple averaging: uniform weights w.=1/k P00 y) = ZWf (X, Y)

— Weighted ensemble: non-uniform weights
* W, is inversely proportional to the training errors
— w; should reflect P(M), the probability of model M after observing
the data

— P(M) is changing and we could never estimate the true P(M) and
when and how it changes

— Uniform weights could minimize the expected distance between
P(M) and weight vector
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An illustration
« Single models (M1, M2, M3) have huge variance.

« Simple averaging ensemble (AP) is more stable and
accurate.

« Weighted ensemble (WE) is not

' ' 7 Single
. Model
training errors and test errors ma

distributions.

=y
Average Ensemble
Probablllt

amp

B I- 1 |
Time

Stamp
"B

I Training Error Il Test Error

s AP since
fferent

A

/
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Experiments

« Setup
— Data streams with chunks T, T,, ..., Ty
— Use T; as the training set to classify T, ,
* Measures

— Mean Squared Error, Accuracy
— Number of Wins, Number of Loses
— Normalized Accuracy, MSE

h(A,T)=h(AT)/max ,(h(AT))
 Methods

— Single models: Decision tree (DT), SVM, Logistic Regression
(LR)

— Weighted ensemble: weights reflect the accuracy on training set
(WE)

— Simple ensemble: voting (SV) or probability averaging (AP)
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Experimental Results (2)

B DT
O SWM
B LR
O WE
B SV
M AP

#Wins #Loses

Comparison on Intrusion Data Set
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Normalized Precision

0.99]-°

Experimental Results (3)

| | 1

|
10 15 20 25 30
Chunk ID

Classification Accuracy Comparison
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Experimental Results (4)

30 35 40 45 50

25
Chunk ID

Mean Squared Error Comparison
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection
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Standard Supervised Learning

training
(labeled)

=)

4

New York Times

Classifier

test

(unlabeled)

=)

85.5%

)

New York Times
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In Reality

training
(labeled)

=)

Aata nnt
Reuters

New York Times

Classifier

test
(unlabeled)
|
) 64.1%

s

New York Times
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Domain Difference = Performance Drop

train test
- ideal setting | ‘
NYT | | jl> Classifier jl> NYT | 85.5%
7 7
New York Times New York Time

realistic setting ‘

jl> Classifier jl> NYT 64.10/0
7

—

Reuters New York Times

107
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Other Examples
Spam filtering

— Public email collection = personal inboxes
Intrusion detection
— Existing types of intrusions = unknown types of intrusions

Sentiment analysis
— Expert review articles—> blog review articles

The aim

— To design learning methods that are aware of the training and
test domain difference

Transfer learning

— Adapt the classifiers learnt from the source domain to the new
domain
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All Sources of Labeled Information

training test
(labeled) (completely

unlabeled)
Reuters
...... ) Cla&ier >
- 7
/4
7 New York Times

Newsgroup
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A Synthetic Example

£ 3]
" g g,
R
A
LYV L aa
‘L‘* Ay
A ‘idiax“t‘ A
R1 a2kt aly R2
A R3
Training Set 1 Training Set 2 Test Set
Training . ~  Test

(have conflicting concepts) Partially
overlapping
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« To unify knowledge that are consistent with the test
domain from multiple source domains (models)
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Modified Bayesian Model Averaging

Bayesian Model Averaging Modified for Transfer Learning

M, M,

M, M, -
> ﬂ
............ e
P(y|x)=> P(M;| D)P(y|x,M,) P(M; %)
M, . M, P(Y[X)=2 P(M; [X)P(y|xM))
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Global versus Local Weights

X

240 5.23
-2.69 0.55
-3.97 -3.62
2.08 -3.73
5.08 2.15
1.43 4.48

OO0 OO0 -~

M,

0.6
0.4
0.2
0.1
0.6
1

T
W, W,
0.3 0.2
0.3 0.6
0.3 0.7
0.3 0.5
0.3 0.3
0.3 1

» Locally weighting scheme

— Weight of each model is computed per example

0.9
0.6
0.4
0.1
0.3
0.2

— Weights are determined according to models’
performance on the test set, not training set

N
Wy W,
0.7 0.8
0.7 04
0.7 0.3
0.7 0.5
0.7 0.7
0.7 0

/

Training
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Synthetic Example Revisited

R1 a2kt aly R2
A R3
Training Set 1 Training Set 2 Test Set
Training . ~  Test

(have conflicting concepts) Partially
overlapping
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Optimal Local Weights

0.1

? Higher Weight

Test example x

0.8

0.2

C, 0.4

0.6

H 0.9 0.4
0.1 0.6

|

* Optimal weights
— Solution to a regression problem

— Impossible to get since f is unknown!

w!
W2

wW f

0.8 -

w =H"H) "H'f + %)\I).
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Clustering-Manifold Assumption

Test examples that are closer in
feature space are more likely

to share the same class label. @.
O g
q L] B
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Graph-based Heuristics

« Graph-based weights approximation
— Map the structures of models onto test domain

weight
on X

Clustering M, M,
Structure
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Graph-based Heuristics

Clustering
Model 1 Model 2

Structure
Higher Weight Training Tesat Set
Information I .
nformation

» Local weights calculation

— Weight of a model is proportional to the similarity
between its neighborhood graph and the
clusterina structure around x.

21-‘16 VM Zu EVr L{vy = va}

wprx X S(Gpr, Grix) = Varl + [V ]
A o
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Experiments Setup®
« Data Sets

— Synthetic data sets
— Spam filtering: public email collection - personal inboxes (u01,
u02, u03) (ECML/PKDD 2006)

— Text classification: same top-level classification problems with
different sub-fields in the training and test sets (Newsgroup,
Reuters)

— Intrusion detection data: different types of intrusions in training
and test sets.

» Baseline Methods
— One source domain: single models (WNN, LR, SVM)
— Multiple source domains: SVM on each of the domains
— Merge all source domains into one: ALL
— Simple averaging ensemble: SMA
— Locally weighted ensemble: LWE

*[GFJ+08] 119



Training Set 1

Experiments on Synthetic Data

E\:E o g A ‘:1‘5‘“
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A

Training Set 2
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Hm a B 0 el Mo s had
SL - Bl TR || s P
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A TSVM A SMA R3 A LWE
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'Experiments on Real Data

O LR

Il SMA
Il LWE

Spam Newsgroup Reuters

[ Set 1
0 Set 2

DOS Probing R2L
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Stream classification, transfer learning, anomaly
detection
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Combination of Anomaly Detectors

« Simple rules (or atomic rules) are relatively easy
to craft.

* Problem:
— there can be way too many simple rules

— each rule can have high false alarm or FP
rate

« Challenge: can we find their non-trivial
combination that significantly improve accuracy?
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Atomic Anomaly Detectors

Record 1

Record 2

Record 3

Record 4

Record b

Record 6

Record 7

Anomaly?
A, A, A, A,
vy N e N N
N VR Yy N
vy N e N N
vy VR N Yy
N N e Y Y
N N e N N
N N e N N
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Combining Detectors

* IS non-trivial
— We aim at finding a consolidated solution

without any knowledge of the true anomalies
(unsupervised)

— We don’t know which atomic rules are better
and which are worse

— There could be bad base detectors so that
majority voting cannot work
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How to Combine Atomic Detectors?

« Basic Assumption:
— Base detectors are better than random guessing and systemic flip.
* Principles
— Consensus represents the best we can get from the atomic rules
« Solution most consistent with atomic detectors

— Atomic rules should be weighted according to their detection
performance

— We should rank the records according to their probability of being an
anomaly

« Algorithm
— Reach consensus among multiple atomic anomaly detectors in an
unsupervised way

« or semi-supervised if we have limited supervision (known botnet site)
« and incremental in a streaming environment

— Automatically derive weights of atomic rules and records
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Framework
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Methodology
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Propagation Process

Detectors
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Semi-supervised
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Incremental
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When a new record arrives
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Experiments Setup

* Baseline methods
— base detectors
— majority voting
— consensus maximization
— semi-supervised (2% labeled)
— stream (30% batch, 70% incremental)

« Evaluation measure
— area under ROC curve (0-1, 1 is the best)

— ROC curve: tradeoff between detection rate
and false alarm rate
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Case study-IDN data

 Data

— A sequence of events: dos flood, syn flood,
port scanning, etc.

— 3 random subsets, each with size 1000

 Detector

— Count of events at each time stamp with
different thresholds

— Entropy of events at each time stamp with
different thresholds

—0.1-0.5, 0.3-0.7, 0.5-0.9
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AUC on IDN data

11 0.5269 | 0.6671 | 0.5904 | 0.7089 | 0.7255 0.7204 0.7270

21 0.2832 | 0.8059 | 0.5731 | 0.685%4 | 0.7711 0.8048 0.7552

31 0.3745 | 0.8266 | 0.6654 | 0.8871 | 0.9076 0.9089 0.9090
* Summary

— Large variance in detector performance

— Consensus method improves over the base
detector and majority voting

— Semi-supervised method achieves the best
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Case study-KDD cup’99 data

 Data

— A series of TCP connection records, collected by
MIT Lincoln labs

— We use the 34 continuous derived features,
including duration, number of bytes, error rate, etc.

— 3 random subsets, each with size 1832

 Detector

— Randomly select a subset of features, and apply
unsupervised distance-based anomaly detection
algorithm

— Get 20 detectors
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AUC on KDD cup data

1 10.5804 | 0.6068 | 0.5981 | 0.7765 | 0.7812| 0.8005 0.7730
2 10.5930 | 0.6137 | 0.6021 | 0.7865 | 0.7938 | 0.8173 0.7836
3 10.5851|0.6150 | 0.6022 | 0.7739 | 0.7796 | 0.7985 0.7727
* Summary

— Small variance in detector performance

— Consensus method improves over the base
detector and majority voting

— Semi-supervised method achieves the best
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Conclusions

 Ensemble
— Combining independent, diversified models improves accuracy

— No matter in supervised, unsupervised, or semi-supervised
scenarios, ensemble methods have demonstrated their
strengths

— Base models are combined by learning from labeled data or by
their consensus
* Beyond accuracy improvements
— Information explosion motivates multiple source learning
— Various learning packages available

— Combine the complementary predictive powers of multiple
models

— Distributed computing, privacy-preserving applications
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Thanks!

* Any questions?

Slides and more references available at
http://ews.uiuc.edu/~jinggao3/sdm10ensemble.htm
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