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Ensemble

?@I 1 semble model
< Data model 2 &

Combine multiple
mo e'> models into one!

Applications: classification, clustering,
collaborative filtering, anomaly detection......




Stories of Success

* Million-dollar prize

— Improve the baseline movie
recommendation approach of
Netflix by 10% in accuracy

— The top submissions all combine
several teams and algorithms as
an ensemble

e Data mining competitions
— Classification problems

— Winning teams employ an
ensemble of classifiers




Netflix Prize

o Supervised learning task

— Training data Is a set of users and ratings (1,2,3,4,5
stars) those users have given to movies.

— Construct a classifier that given a user and an
unrated movie, correctly classifies that movie as
either 1, 2, 3, 4, or 5 stars

— $1 million prize for a 10% improvement over Netflix’'s
current movie recommender

o Competition
— At first, single-model methods are developed, and
performances are improved
— However, improvements slowed down

— Later, individuals and teams merged their results,
and significant improvements are observed



|_eaderboard

Rank Team Name Best Test Score % Improvement Best Submit Time

Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos

1 5 0.8567 5 10.06 | 2009-07-26 18:18:28
2 Q. TheEnsemble : 0.8567 : 10.06 - 2009-07-26 18:38:22
3 . Grand Prize [eam ; 0.8582 ; 9.90 © 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United ! 0.8538 5 9.84 - 2009-07-10 01:12:31
§ ! Vandelay Industries ! 5 0.8591 5 9.81 - 2009-07-10 00:32:20
6 : PragmaticTheory i 0.8594 i 977 . 2009-06-24 12:06:56
7  BellKorin BigChaos i 0.8601 i 9.70 © 2009-05-13 08:14:09
8  Dace ; 0.8612 ; 959 - 2009-07-24 17:18:43
: I : 0.8622 : 948 - 2009-07-12 13:11:51

Feeds2

13 . xiangliang : 0.8642 : 9.27 - 2009-07-15 14:53:22
14 Gravity i 0.8643 i 9.26 | 2009-04-22 18:31:32

15 Ces 0.8651 813 2009-06-21 19:24:53

Froyressy Friies SUUs - RIS — W.0F 20 - WINnmnimmy 1 sSdim: rueroein

Cinematch score - RMSE = 0.9525



Motivations

 Motivations of ensemble methods

— Ensemble model improves accuracy and
robustness over single model methods

— Applications:
e distributed computing
 privacy-preserving applications
 large-scale data with reusable models
* multiple sources of data

— Efficiency: a complex problem can be
decomposed into multiple sub-problems that are
easier to understand and solve (divide-and-
conquer approach)



Relationship with Related Studies (1)

* Multi-task learning
— Learn multiple tasks simultaneously
— Ensemble methods: use multiple models to learn
one task
« Data integration

— Integrate raw data

— Ensemble methods: integrate information at the
model level



Relationship with Related Studies (2)
 Meta learning
— Learn on meta-data (include base model output)

— Ensemble methods: besides learn a joint model
based on model output, we can also combine the
output by consensus

 Non-redundant clustering

— Give multiple non-redundant clustering solutions
to users

— Ensemble methods: give one solution to users
which represents the consensus among all the
base models



Why Ensemble Works? (1)
e Intuition
— combining diverse, independent opinions Iin
human decision-making as a protective
mechanism (e.g. stock portfolio)

e Uncorrelated error reduction

— Suppose we have 5 completely independent
classifiers for majority voting

— If accuracy is 70% for each
e 10 (.773)(.372)+5(.774)(.3)+(.7"5)
e 83.7% majority vote accuracy

— 101 such classifiers
* 99.9% majority vote accuracy

from T. Holloway, Introduction to Ensemble
Learning, 2007.
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Why Ensemble Works? (2)
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Ensemble gives the global picture!
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Why Ensemble Works? (3)

 Overcome limitations of single hypothesis

— The target function may not be implementable with
Individual classifiers, but may be approximated by model
averaging

0 0.5 1 1.5 2 o5 3 35 4 45 0 0.5 1 1.5 2 2,5 3 3.5 4 4.5 5
1.07FRRG.  2.29420

Decision Tree Model Averaging
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Research Focus

 Base models
— Improve diversity!
o Combination scheme
— Consensus (unsupervised)
— Learn to combine (supervised)

e Tasks

— Classification (supervised or semi-supervised
ensemble )

— Clustering (unsupervised ensemble)

13



summary

A
. Boosting, rule Bagging, random
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Review the ensemble
methods in the tutorial



Ensemble of Classifiers—Learn to Combine

training test

}ﬁélfler 1 semble model
labeled %
data classifier 2

<~ =

cla ifiei k

learn the combination from labeled data

unlabeled
data

v

final

predictions

Algorithms: boosting, stacked generalization, rule ensemble,

Bayesian model averaging...... 15



Ensemble of Classifiers—Consensus

training : test
|
SR
|
|
classifier 1 |
combine the

unlabeled

data predictions by

labeled
data classifier 2 majority voting

cla ifiei k

v

final

predictions

Algorithms: bagging, random forest, random decision tree, model

averaging of probabillities...... 16



Clustering Ensemble—Consensus

clustering
algorithm 1

clustering
algorithm 2

clustering
algorithm k

Algorithms: direct approach, object-based, cluster-based, object-

7
Joe

unlabeled
data

cluster-based approaches, generative models

combine the
partitionings
by consensus

v

final

clustering

17



Semi-Supervised Ensemble—Learn to Combine

training test

}ﬁélﬁer 1 semble model
labeled % unlabeled
data classifier 2 data

v

classifier, k final
O; @ predictions

learn the combination from both
labeled and unlabeled data

Algorithms: multi-view learning 18



Semi-supervised Ensemble—Consensus

A

classifier 1

labeled }%
data classifier 2 /

...... unlabeled combine all the
classifier k data supervised and
unsupervised

}% \ results by
consensus
clustering 1 (}% X
final
clustering 2 ;%
predictions

clustering h (}% Algorithms: consensus maximization 19



Pros and Cons

Combine by Combine by
learning consensus

Pros |Get useful feedbacks from | Do not need labeled data
labeled data Can improve the generalization
Can potentially improve performance
accuracy

Cons | Need to keep the labeled No feedbacks from the labeled

data to train the ensemble
May overfit the labeled data

Cannot work when no
labels are available

data

Require the assumption that
consensus is better

20



Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
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— Multi-view learning
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— Transfer learning, stream classification, anomaly
detection
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Supervised Ensemble Methods

* Problem
— Given a data set D={xy,X,,...,X,} and their
corresponding labels L={l,,I,...,l }
— An ensemble approach computes:

* A set of classifiers {f,.f,,....f,}, each of which maps
data to a class label: f;(x)=|

e A combination of classifiers f* which minimizes
generalization error: f*(x)= w,f; (X)+ w,f,(X)+...+ w,f (X)

22



Bias and VVariance

e Ensemble methods
— Combine learners to reduce variance

High Bias Low Bias

Low Variance High Variance
. .‘ ________________ >
=
=
Ll
c
=
]
= Test Sample
o
A f

Training Sample
|

Low 4.-"';',{* High
Model Complexity (e.g., tree size)

from Elder, John. From Trees to Forests and Rule Sets - A Unified
Overview of Ensemble Methods. 2007.



Generating Base Classifiers

Sampling training examples

— Train k classifiers on k subsets drawn from the training
set

Using different learning models

— Use all the training examples, but apply different learning
algorithms

Sampling features

— Train k classifiers on k subsets of features drawn from
the feature space

Learning “randomly”
— Introduce randomness into learning procedures

24



Bagging™ (1)
e Bootstrap

— Sampling with replacement

— Contains around 63.2% original records in each
sample

e Bootstrap Aggregation
— Train a classifier on each bootstrap sample

— Use majority voting to determine the class label
of ensemble classifier

*[Breiman96] -



Bagging (2)

x [ 01]02]03]|04]05]|06]|07]08]0.9
y 1 1 1 4 [ 1 [ 1 ] - 1 1

Bootstrap samples and classifiers:

_x 1 01]02]029303]04])04]057])06]097]09
v i 1§ 1§ 1§ 1§15 -19§-14-141yT

_x J 01102303041 05405H409]) 1 F 1 | 1 |
oy 4y 1 411 1§ 1314314 1§ 1§11 1

_x § 014024034y 04)04]05]0/])07)08]09

v 1 1§ + 9 1 414145 191§ 14§15 1

_x §01]0293051]05)0530/7]07})081]09] 1
vy 4 11 1311131313151 4] 1] 1

Combine predictions by majority voting -
from P. Tan et al. Introduction to Data Mining.



Bagging (3)

e Error Reduction

— Under mean squared error, bagging reduces variance
and leaves bias unchanged

— Consider idealized bagging estimator: f(x)= E(fz(x))
— The error is

ELY — f, () =E[Y - f(x)+ f(x)— f, ()]
= E[Y — f () + E[f (x) - f,()]* 2 E[Y - f (X)]

— Bagging usually decreases MSE

from Elder, John. From Trees to Forests and Rule Sets - A Unified 27
Overview of Ensemble Methods. 2007.



Boosting™ (1)
* Principles
— Boost a set of weak learners to a strong learner
— Make records currently misclassified more important

 Example
— Record 4 is hard to classify

— Its weight Is increased, therefore it is more likely
to be chosen again in subsequent rounds

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) @ @ 8 10 5 @ 6 3 @
*
[FrSc97] ’g

from P. Tan et al. Introduction to Data Mining.



Boosting (2)

e AdaBoost

— Initially, set uniform weights on all the records

— At each round

» Create a bootstrap sample based on the weights
* Train a classifier on the sample and apply it on the original

training set

 Records that are wrongly classified will have their weights
increased

* Records that are classified correctly will have their weights
decreased

* If the error rate is higher than 50%, start over

— Final prediction is weighted average of all the
classifiers with weight representing the training
accuracy

29



Boosting (3)

Determine the weight N
J 3 WS(C, () # y,)

— For classifier i, its error Is £ =
LW,
— The classifier's importance 1 (1— 1-¢,
IS represented as: =—1In
E; )

) explcary (%)
70

— The weight of each record WiV =
IS updated as:

C'(x) = argmax} o6(C(x)=Y)
30

— Final combination:



o]
[ -
(1°]

—
[7,]
S

o
o)
(@)

—_—
(7]
[ =

R
wd
(1]
lm

Y=
(7]
(7]

o

A

" Weights (size) after 1 iteration

- /Of AdaBoost

[ 4 .o.o s ‘oo oo . [ ]
By e,
Ly STRC AN N

e ° ooooofoob ﬁ.o oooo»o. .‘?

® .".‘ o' ¥ ...
.~. d o"o..o‘.‘ 00%‘ [

20 iterations

.ooc-.o-..
B

ol S0 00
X
L e
° .o ..'.- o e
. LA
e l\ ................
'o L. . ....w .
(¥ e ....
a .. i

0.0
x1

-0.5

-1.0

3 iterations

-05 0.0 0.5 1.0

-1.0

from Elder, John. From Trees to

x1

Forests and Rule Sets - A Unified

Overview of Ensemble Methods. 2007.


Presenter
Presentation Notes
Note after 1 iteration the step classes of a single decision tree.


Boosting (4)

e Explanation
— Among the classifiers of the form:

f()=3 ,axCi(x)

— We seek to minimize the exponential loss function:

E Ij\l:lexp(_ yj f (Xj))

— Not robust in noisy settings

32



Random Forests* (1)

Algorithm
— Choose T—number of trees to grow

— Choose m<M (M is the number of total features) —
number of features used to calculate the best split at
each node (typically 20%)

— For each tree

« Choose a training set by choosing N times (N is the number of
training examples) with replacement from the training set

 For each node, randomly choose m features and calculate the
best split

 Fully grown and not pruned

— Use majority voting among all the trees

*[BreimanO1] 33



Random Forests (2)

 Discussions
— Bagging+random features

— Improve accuracy
e |ncorporate more diversity and reduce variances

— Improve efficiency

e Searching among subsets of features is much faster
than searching among the complete set

34



Random Decision Tree* (1)
 Single-model learning algorithms

—  Fix structure of the model, minimize some form of errors, or
maximize data likelihood (eg., Logistic regression, Naive Bayes,
etc.)

— Use some “free-form” functions to match the data given some
“preference criteria” such as information gain, gini index and MDL.
(eg., Decision Tree, Rule-based Classifiers, etc.)

e Such methods will make mistakes if

—  Data is insufficient

—  Structure of the model or the preference criteria is inappropriate for
the problem

« Learning as Encoding

—  Make no assumption about the true model, neither parametric form
nor free form 35

*IFWM+HS3hot prefer one base model over the other, just average them



Random Decision Tree (2)

Algorithm

— At each node, an un-used feature is chosen randomly

« A discrete feature is un-used If it has never been chosen
previously on a given decision path starting from the root to the
current node.

A continuous feature can be chosen multiple times on the same
decision path, but each time a different threshold value is
chosen

— We stop when one of the following happens:
« A node becomes too small (<= 3 examples).
« Or the total height of the tree exceeds some limits, such as the
total number of features.
— Prediction
 Simple averaging over multiple trees
36



Random Decision Tree (3)

B3: continuous

37



Random Decision Tree (4)

 Potential Advantages

— Training can be very efficient. Particularly true
for very large datasets.

 No cross-validation based estimation of parameters
for some parametric methods.

— Natural multi-class probability.

— Imposes very little about the structures of the
model.

38



Optimal Decision Boundary

Figure 3.5: Gaussian mixture training samples and optimal boundary.
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positive class
negative class

training samples optimal boundary

from Tony Liu’s thesis (supervised by Kai Ming Ting) 39



(a) unpruned C4.5

.

(c) Random Forests  (d) Complete-random tree ensemble

RDT looks
like the optimal
boundary

40
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Clustering Ensemble

* Problem
— Given an unlabeled data set D={X;,X,,...,X.}

— An ensemble approach computes:

A set of clustering solutions {C,,C,,...,C,}, each of which maps
data to a cluster: f(x)=m

A unified clustering solutions f* which combines base clustering
solutions by their consensus

e Challenges

— The correspondence between the clusters in different
clustering solutions is unknown

— Unsupervised

— Combinatorial optimization problem-NP-complete
42



e Goal
— Combine
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An Example

base clustering models

. B

Ci Co C3|C

V1 1 1 1 1

Vo 1 2 2 | 2

objects q " 9 | | |
Ve 2 2 2 | 2

Us 3 3 3 3

ve /374 3|3

/ T}

they may not represent The goal: get the consensus clustering
the same cluster!

[GMTO7]



Methods (1)

 How to get base models?
— Bootstrap samples
— Different subsets of features
— Different clustering algorithms
— Random number of clusters
— Random Iinitialization for K-means
— Incorporating random noises into cluster labels

— Varying the order of data in on-line methods
such as BIRCH

45



Methods (2)

e How to combine the models?

Correspondence
ICI " Generative

=t implict Approaches

Consensus _

- Representation
Function
Optimization -

Method Object-based Cluster-based Objt?g;ggster

46



Hard Correspondence (1)
e Re-labeling+voting

— Find the correspondence between the labels in the
partitions and fuse the clusters with the same labels
by voting [DuFr03,DWHO01]

Re-labeling Voting

C,1GC, | Cy C,|C,|Cy C*

vi | 1| 3| 2 vi 1] 11 1
Vo, | 1| 3| 2 v, | 1111 1
v, | 212 ™ v 221" 2
v, | 2 | 1| 3 Vo | 2| 2| 2 2
ve | 3| 2 | 1 ve | 3| 3| 3 3
Vg | 31 2 |1 Vg | 3| 3| 3 3 4




Hard Correspondence (2)

e Detalls

— Hungarian method to match clusters in two
different clustering solutions

— Match to a reference clustering or match in a
pairwise manner

e Problems

— In most cases, clusters do not have one-to-one
correspondence

48



Soft Correspondence™ (1)

Notations
Membership matrix M, M,, ... ,M,
Membership matrix of consensus clustering M
Correspondence matrix S;, S, ... ,S;,

~ M,S,=M

C, |G, Gy

vi| 1] 3|2 r M ﬁ >2
00 1

v, |1 3] 2 00 1 i )
vy | 2112 1ool |0,
v, | 2 | 1| 3 (1) (1) 8 10 0
Ve | 3| 2 | 1 0 1 0
Vg | 3 | 2 | 1

*[LZYO05]

o O o o+ B

o o - +—» O O

R b O O O O

49



Soft Correspondence (2)

e Consensus function
— Minimize disagreement  min ) ;II M—M;S; |
— Constraint 1: column-sparseness
— Constraint 2: each row sums up to 1
— Variables: M, S, S,, ... ,S;

e Optimization
— EM-based approach

— Iterate until convergence

« Update S using gradient descent

« Update M as Mzé ‘M S,

J

50



e How to combine the models?

Correspondence
ICI " Generative

=t implict Approaches

Consensus _

- Representation
Function
Optimization -

Method Object-based Cluster-based Objt?g;ggster
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Object-based Methods (1)
o Clustering objects

— Define a similarity or distance measure:

« Similarity between two objects can be defined as the
percentage of clusterings that assign the two objects into
same clusters

» Distance between two objects can be defined as the
percentage of clusterings that assign the two objects into
different clusters

— Conduct clustering on the new similarity (distance)

matrix
— Result clustering represents the consensus

— Can view this approach as clustering in the new
feature space where clustering results are the
categorical features

52



Object-based Methods (2)

Ci Co C3|C
V1 1 1 1 1
V2 1 2 2 2
V3 2 1 1 1
V4 2 2 2 2
U5 3 3 3 3
Ve 3 4 3 3

53



1 1
2 2
3 3
4 4
5 5
6 6 1
Y4 V4 5
1234567 1234567 3
from A1) from A g
1 1 l. 6
2 2 /
2 f{ 1234567
5 5.. combined
6 6
7 7 Co-association
1234567 1234567 matrix T
from K(S) from 7L(4) 54
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Consensus Function

e Minimizing disagreement
— Information-theoretic [StGhO03]
1
maxEEjlel\/ll(T,Tj) NMI(T,T,) =

— Median partition [LDJO7]
— 1 <« = 2
T==N"T min HT —TH
k j=1 ]

— Correlation clustering [GMTO07]

max } (Uv)
C(u)=C(v)

1(T,T;)

T + 1-T
W Egzu(’ﬂlgicw)( UV)

JHMH(T)

55



Optimization Method

Approximation

— Agglomerative clustering (bottom-up) [FrJa02,GMTO07]
» Single link, average link, complete link

— Divisive clustering (top-down) [GMTO07]
* Furthest

— LocalSearch [GMTO07]

» Place an object into a different cluster if objective function
improved

* |terate the above until no improvements can be made
— BestClustering [GMTO07]

» Select the clustering that maximize (minimize) the objective
function

— Graph partitioning [StGhO03]
— Nonnegative matrix factorization [LDJO7,LiDi08]

56



Average linkage

Complete linkage

57

Single linkage
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Overall Distance on Votes data set
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e How to combine the models?

Correspondence
ICI " Generative

=t implict Approaches

Consensus _

- Representation
Function
Optimization -

Method Object-based Cluster-based Objt?g;ggster
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Cluster-based Methods

o Clustering clusters

— Regard each cluster from a base model as a
record

— Similarity is defined as the percentage of shared
common objects
e eg. Jaccard measure

— Conduct clustering on these clusters

— Assign an object to its most associated consensus
cluster
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Meta-Clustering Algorithm (MCLA)*

:

C

Co (s

C1
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e How to combine the models?
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HyperGraph-Partitioning Algorithm (HGPA)*

* Hypergraph representation and clustering
— Each node denotes an object

— A hyperedge is a generalization of an edge in that it
can connect any number of nodes

— For objects that are put into the same cluster by a
clustering algorithm, draw a hyperedge connecting
them

— Partition the hypergraph by minimizing the number
of cut hyperedges

— Each component forms a consensus cluster

*[StGhO3] 6



HyperGraph-Partitioning Algorithm (HGPA)

Ci Co C3|C
U1 1 1 1 1
V2 1 2 2 | 2
v 2 1 1 1
va 2 2 2 | 2
Us 3 3 3 3
(35 3 4 3 3

Hypergraph representation— a
circle denotes a hyperedge
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Bipartite Graph Partitioning™
e Hybrid Bipartite Graph Formulation
— Summarize base model output in a bipartite
graph
— Lossless summarization—base model output can
be reconstructed from the bipartite graph

— Use spectral clustering algorithm to partition the
bipartite graph

— Time complexity O(nkr)—due to the special
structure of the bipartite graph

— Each component represents a consensus cluster
*[FeBrO4] 67



Bipartite Graph Partitioning

clusters

Ci1 Co Cs | C
v 1 1 1 |1 D @ @ @D O G
12 2|2 ‘ P
(0D) }/"A//r/
S @ @/‘@( D @
v 2 2 212 ‘
Vs 3 3 3 3 objects //q/
ve 3 4 3 |3 O & O

clusters

68



Integer Programming™

 Three-dimensional representation
— Object |, cluster i, clustering algorithm |

A“j = If object | is assigned to cluster i by algorithm |

X =1 If object | is assigned to cluster I' by the consensus
l output

S = Fc_)r algorithr_n.j, cluster i has the largest overlapping
J with cluster I’ in the consensus output

* Objective function
— Median partition A X

p min Z Siji- _ ZI:lnA"J li

i |=1X|i'

*[SMP+07] 69
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A Mixture Model of Consensus*

* Probability-based
— Assume output comes from a mixture of models
— Use EM algorithm to learn the model

e Generative model

— The clustering solutions for each object are
represented as nominal features--v;

— v; Is described by a mixture of k components, each
component follows a multinomial distribution

— Each component is characterized by distribution
parameters 6,

*[PTJO5]
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EM Method

 Maximize log likelihood

) inzllog(§ Ezlajp(vi |91))

 Hidden variables

— z; denotes which consensus cluster the object
belongs to

« EM procedure
— E-step: compute expectation of z,

— M-step: update model parameters to maximize
likelihood
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Table 1: Clustering ensemble and consensus solution

e T, I n, Elzy|l Elz,| Consensus
N 2 B X B 0.999 0.001 1
Y, 2 A X o 0.997 0.003 1
Vs, 2 A Y 3 0.943 0.057 1
N 2 B X 3 0.999 0.001 1
Vs 1 A X 3 0.999 0.001 1
Ve 2 A Y 3 0.943 0.057 1
\E 2 B Y 0 0.124 0.876 2
Vg 1 B Y o 0.019 0.981 2
N 1 B Y B 0.260 0.740 2
V1o 1 A Y o 0.115 0.885 2
Vi 2 B Y o, 0.124 0.876 2
Vo 1 B Y o 0.019 0.981 2
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Bayesian Clustering Ensemble*

B 7N
"

E —t— B |——b/“\
_ NG N .

o 0 4 X N

N
N
N
N

M

Consensus cluster—topic
1. Choose 8; ~ Dirichlet(a). Cluster in base clustering—word

2. For the j'" base clustering: Object—document

(a) Choose a component z;; = h ~ discrete(8;);

(b) Choose the base clustering result z;; ~
discrete(3;).

*\WSBO09] 27



Other Research Problems

e Consensus Clustering Theory

— Consensus clustering converges to true clustering as
the number of base clustering models increases
[TLJ+04]

— Error incurred by approximation has a lower bound
[GMTO7,GoFi08]

e Base model selection

— Ensemble selection [FeLiO8]
— Moderate diversity [HKT06,KuWh03]

e Combining soft clustering

— Extend ensemble methods developed for hard
clustering [PuGh08]

/8



14+
0.8l
0.6}
Ensemble 1
Pc
Accuracy :
0-4j Number of Base Models k
0.21
0" 02 04 'h' 06 08 1
[TL J+0 4] Base Model Accuracy 79



Summary of Unsupervised Ensemble

 Difference from supervised ensemble

— The success of clustering ensemble approaches
IS shown empirically

— There exist label correspondence problems

e Characteristics

— Experimental results demonstrate that cluster
ensembles are better than single models!

— There Is no single, universally successful, cluster
ensemble method
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble

— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Transfer learning, stream classification, anomaly
detection
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Multiple Source Classification

flickr

Home The Tour Sign Up Explore

Is there anybody out there?

¢ millionaire

Image Categorization Like? Dislike? Research Area

. . movie genres, cast, PR )
images, descriptions, direct J lot publlcatlc_)n and co
notes, comments, irector, plots....... authorship network,
albums, tags....... users viewing history, published papers,

movie ratings... e

82



Multi-view Learning

e Problem

— The same set of objects can be described in multiple
different views

— Features are naturally separated into K sets:
X = (Xl, X%, X K)

— Both labeled and unlabeled data are available

— Learning on multiple views:

« Search for labeling on the unlabeled set and target functions
on X: {f,.f,,....f,.} so that the target functions agree on labeling
of unlabeled data
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earning from Two Views

e |nput
— Features can be split into two sets: X = X, x X,

— The two views are redundant but not completely
correlated

— Few labeled examples and relatively large amounts of
unlabeled examples are available from the two views

e Conditions

— Compatible --- all examples are labeled identically by
the target concepts in each view

— Uncorrelated --- given the label of any example, its
descriptions in each view are independent
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How It Works?

e Conditions

— Compatible --- Reduce the search space to where the
two classifiers agree on unlabeled data

— Uncorrelated --- If two classifiers always make the
same predictions on the unlabeled data, we cannot
benefit much from multi-view learning

 Algorithms
— Searching for compatible hypotheses
— Canonical correlation analysis
— Co-regularization
 Theory
— [DLMO01,BBY04,Leskes05]

85



Searching for Compatible Hypotheses

e |ntuitions

— Two individual classifiers are learnt from the labeled
examples of the two views

— The two classifiers’ predictions on unlabeled
examples are used to enlarge the size of training set

— The algorithm searches for “compatible” target
functions

« Algorithms
— Co-training [BIMi98]
— Co-EM [NiGhO00]
— Variants of Co-training [GoZh00]
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Labeled Data
View 1

Classifier
1

Unlabeled Data
View 1

Labeled Data
View 2

Classifier
2

Unlabeled Data
View 2
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Co-Training*

(yiven:

o a set L of labeled training examples

e aset U of unlabeled examples Train two classifiers from two views

Create a pool U’ o: Select the top unlabeled examples yith the most confident

Loop for k iteratiol predictions from the other classifier

Use L to train a classifier h; thad considep$ only the x; portion of x
Use L to train a classifier ho that considers only the x2 portion of x
Allow hq to label p positive and n negative examples from U/’
Allow hs to label p positive and n negative examples from U/’

Add these self-labeled examples to L

Randomly choose 2p + 2n exampl%/}mm U to replenish U’

Add these self-labeled examples to the training set

*[BIMi98]
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Applications: Faculty Webpages
Classification
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Percent Error on Test Data
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Figure 2: Error versus number of iterations for one run of co-training experiment.
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Co-EM~*
e Algorithm
— Labeled data set L, Unlabeled data set U, Let U, be
empty, Let U,=U
— Iterate the following
 Train a classifier h, from the feature set X, of L and U,
 Probabilistically label all the unlabeled data in U, using h,

 Train a classifier h, from the feature set X, of L and U,

» Let U,=U, probabilistically label all the unlabeled data in U,
using h,

— Combine h; and h,
e Co-EM vs. Co-Training
— Labeling unlabeled data: soft vs. hard

— Selecting unlabeled data into training set: all vs. the
top confident ones

*INiGhO0O]
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Canonical Correlation Analysis

e |Intuitions

— Reduce the feature space to low-dimensional space
containing discriminative information

— With compatible assumption, the discriminative
Information Is contained in the directions that
correlate between the two views

— The goal Is to maximize the correlation between the
data in the two projected spaces

Projected
Space
v \ .
View 1—___ |y 2 /Vlew2

Correlated 92



Algorithms

o Co-training in the reduced spaces [ZZY07]

— Project the data into the low-dimensional spaces by
maximizing correlations between two views

— Compute probability of unlabeled data belonging to
positive or negative classes using the distance
between unlabeled data and labeled data in the new
feature spaces

— Select the top-confident ones to enhance the training
set and iterate

 SVM+Canonical Correlation Analysis [FHM+05]
— First reduce dimensions, then train SVM classifiers
— Combine the two steps together
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Experimental Results

96 1

l SVM1

0 SVM2

B KCCA+SVM
O SVM 2K

Motorbike Bicycle People Car

Accuracy Comparison on Image Data Set

[FHM+05] 94



Co-Regularization Framework

e |ntuitions
— Train two classifiers from the two views simultaneously

— Add a regularization term to enforce that the two
classifiers agree on the predictions of unlabeled data

Risk of cIassiﬁer 2 on view 2 of labeled data

min R(fl; Ll)_ R(fz; Lz)* R(fp fz;Ul’Uz)
_—r
Risk of classifier 1 on view 1 of labeled data I
Disagreement between two classifiers on unlabeled data

 Algorithms
— Co-boosting [C0oSi99]
— Co-regularized least squares and SVM [SNBO05]
— Bhattacharyya distance regularization [GGB+08]
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Co-Regularizer
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Comparison of Loss Functions

 Loss functions
— Exponential: E exp(= ¥, f,(x))+exp(= ¥, f,(x))

xeU

— Least Square: E (f,.(x) = f,(x))*

xeU

— Bhattacharyya distance: E, (B(py: P,))

B(p,, ;) :_IOQE \/pl(y) P, (Y)
 When two classifiers don’t agree ’
— Loss grows exponentially, quadratically, linearly

 When two classifiers agree
— Little penalty ™= Penalize the margin
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[SNBO5]

View 1. RLS (2 labeled examples)

View 2: RLS (2 labeled examples
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble
Semi-supervised ensemble

— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Transfer learning, stream classification, anomaly
detection

99



Consensus Maximization*
e Goal

— Combine output of multiple supervised and unsupervised
models on a set of objects

— The predicted labels should agree with the base models
as much as possible

e Motivations

— Unsupervised models provide useful constraints for
classification tasks

— Model diversity improves prediction accuracy and
robustness

— Model combination at output level is needed due to
privacy-preserving or incompatible formats

*[G LF+09] 100



Model Combination helps!  supenisedor

unsupervised

1009
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I'y Unsupervised Models

= @) Q )
L
S ® 2
o
Q=
c
=
@ g
i
= @ =
C Q\ef\ /€
@ = Z \/ &
@/ \09 of

102



A Toy Example




Groups-Objects




Bipartite Graph

[100] [010] [001]
."

o ©

Objects

Obj@CT I U, :[uil ----- uic]

gr'oupj qj :[qjl ----- qjc]

conditional prob vector

adjacency

{1 U, <>,

a; _
0 otherwise

groundtruth probability

Yi=9 e e
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Objective

minimize disagreement

[100] [010] [001]
O O

minQ,u (Zzaij |y, —(; ”2 +0(2||qj —Y; ”2)
=1

i=l j=1

Similar conditional probability if the
object is connected to the group

Do not deviate much from the
groundtruth probability

Groups Objects 106



Methodology

[100] [010] [001]
O (

Iterate until convergence

Update probability of a group
n n
) a,u; +oy, Y au,
_ =1 q, = a=
n J n
23 +a 2.3
i=1 =1
Update probability of an object

\Y
Z &;;q;
V
2 &
i=1

iqj

u.

Groups Objects 107



Constrained Embedding

groups &

objects

i=l j=1

constraints for groups from
classification models

Nou ZZ Qj, —

j=1 z=1

q;, =1ifg;'s

|

au

ij iz
n
2i=1 aij

label is z

Qg(zz,a., lu; —a; I +062||0IJ y; ")
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Ranking on Consensus Structure

[100] [010] [001]
O

J,= D/z (Dv_lAT Dn_lA)Ch + Dl—/l Y1

/

query

personalized
damping factors

Groups Objects 109



Incorporating Labeled Information

[10 0]

[010] [001]

\

[
S0

Objects

Objective

vV

ming, O D a; llu;—a; IF+a lla; - y; I
=1

i=l j=1

)N

Updaten probability of a group

n

;auui Ty, ) a,u,

_i=1
qj_ n

n
Z’aij to Y a,

i=1

Update probability of an object
Vv

Zaijqj Z_laijqj+ﬂri
. = J=1 Ui = 1= v
\Y
2.8 Zaij +
i=L = 110




Experiments-Data Sets

20 Newsgroup
— newsgroup messages categorization
— only text information available

e Cora
— research paper area categorization
— paper abstracts and citation information available

e DBLP

— researchers area prediction

— publication and co-authorship network, and
publication content

— conferences’ areas are known

111



Experiments-Baseline Methods

e Single models
— 20 Newsgroup:
* logistic regression, SVM, K-means, min-cut

— Cora
 abstracts, citations (with or without a labeled set)

— DBLP

 publication titles, links (with or without labels from
conferences)

* Proposed method
— BGCM

— BGCM-L: semi-supervised version combining four

models
112
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0.8

0.7

OM1
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BEBGCM-L
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Coral
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DBLP
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble

Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Transfer learning, stream classification, anomaly

detection
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Standard Supervised Learning

training
(labeled)

=)

/4

New York Times

Classifier

(un

=)

test
abeled)

85.5%

-’

New York Times
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In Reality......

training test
(labeled) (unlabeled)

j> Classifier j> 64.1%
y

New York Times New York Times

AAata Nnnt

Reuters
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Domain Difference = Performance Drop

train test
. ideal setting | ‘
NYT | j> Classifier j> NYT | 85.500
_/7] —VW
New York Times New York Time

realistic setting ‘

:> Classifier j> NYT | 64.19%
I

I 4

Reuters New York Times

117
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Other Examples

Spam filtering
— Public email collection - personal inboxes

Intrusion detection
— EXisting types of intrusions - unknown types of intrusions

Sentiment analysis
— Expert review articles—> blog review articles

The aim

— To design learning methods that are aware of the training and
test domain difference

Transfer learning

— Adapt the classifiers learnt from the source domain to the new
domain
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All Sources of Labeled Information

training test
(labeled) (completely
unlabeled)

Reuters

...... ) | Classifier j>

il New York Times

/4
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Consensus Regularization Approach* (1)

e Basic idea

— Train k classifiers from k source domains simultaneously

— Incorporate the constraint that the k classifiers reach
consensus on the unlabeled data from the target domain

Likelihood

Constraint

b K| 1
v, | + | + | + IO
T
Vo |+ |+ |+
v, | - | + | -
Ve |+ |+ ; : °@
P8 P R i



Consensus Regularization Approach (2)

e Optimization framework
— Binary classification
— Base model: logistic regression (on each source domain)

S log 1 Ao

o ———W
= T 1+ exp(-yw'x) 2

— Constraint: favoring skewed conditional probability for each
object (on target domain)

Y (P(y=1]x)-P(y=-1|x)’

— Maximize: Data Likelihood + constraint violation penalty
— Method: Conjugate gradient
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Multiple Model Local Structure
Mapping*

e Locally weighted ensemble framework

— transfer useful knowledge from multiple
source domains

— adapt the knowledge to the target domain

« Graph-based heuristics to compute
weights

— make the framework practical and effective

*[GFJ+08] 122



A Synthetic Example

Training Set 1 Training Set 2 Test Set

~ |

Training . ~  Test

(have conilicting concepts) partially
overlapping
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Goal

Domain

« To unify knowledge that are consistent with the test
domain from multiple source domains (models)

124



Global versus Local Weights (1)

Global weighting Local weighting

M, M,

v, P(MD) v,

::> Test set ::> Test set
P(M. [x) ’ \
P(y]X) = EP(M ID)P(yIx,M,) (M)

M, M, P(Y|X):2P(Mi | X)P(y | %, M;)

i=1
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Global versus Local Weights (2)

A

X y M, W, W, M, W, W,
2.40 5.23 1 0.6 0.3 0.2 0.9 0.7 0.8
-2.69 0.55 0 0.4 0.3 0.6 0.6 0.7 0.4
-3.97 -3.62 0 0.2 0.3 0.7 0.4 0.7 0.3
2.08 -3.73 0 0.1 0.3 0.5 0.1 0.7 0.5
5.08 2.15 0 0.6 0.3 0.3 0.3 0.7 0.7
1.43 4.48 1 1 0.3 1 0.2 0.7 0

 Locally weighting scheme\‘ Training

— Weight of each model is computed per example

— Weights are determined according to models’
performance on the test set, not training set
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Synthetic Example Revisited

Training Set 1

Training Set 2

~

Training . —

(have conilicting concepts) partially

overlapping
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Optimal Local Weights
? Higher Weight

C, 09 0.1
Test example x 0.8 0.2

C, 04 0.6

H W f
09 04 wl 0.8 -

= I :1

{ 0.1 06 j {WZ} {0-2} sz )

: : w'=H"H) "' H"f + l>\1)

* Optimal weights 5 M-

— Solution to a regression problem
— Impossible to get since f is unknown!
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Clustering-Manifold Assumption

Test examples that are closer In
feature space are more likely
to share the same class label.
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Graph-based Heuristics

« Graph-based weights approximation
— Map the structures of models onto test domain

weight
on X

Clustering M, M,
Structure
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Graph-based Heuristics

Clustering
Model 1 Model 2 Structure
Higher Weight Training Tesat Set
Information Information

« Local weights calculation

— Weight of a model is proportional to the similarity
between its neighborhood graph and the
clusterina structure around Xx.

Z = L?f'rf Z‘t-‘g c 1’{]" ]_ {f‘l — }
\Var| + | V7|

Warx X 8(Grr, GriX) =
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Experiments Setup
o Data Sets
— Synthetic data sets
— Spam filtering: public email collection - personal inboxes (u01,
u02, u03) (ECML/PKDD 2006)

— Text classification: same top-level classification problems with
different sub-fields in the training and test sets (Newsgroup,
Reuters)

— Intrusion detection data: different types of intrusions in training
and test sets.
e Baseline Methods
— One source domain: single models (WNN, LR, SVM)
— Multiple source domains: SVM on each of the domains
— Merge all source domains into one: ALL
— Simple averaging ensemble: SMA
— Locally weighted ensemble: LWE
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Experiments on Real Data

Spam

Newsgroup

Reuters

LR

B SMA

B LWE

DOS

Probing

R2L

| Set 1
O Set 2
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble

Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Transfer learning, stream classification, anomaly

detection
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Stream Classification™*

e Process

— Construct a classification model based on past
records

— Use the model to predict labels for new data

— Help decision making
Classification
I model
— SN

0\

Labeling

*[GFHO7] 136




Framework

Hire T, 23 Do not manufacture
. the product
Consultant 4
N,
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Existing Stream Mining Methods

e Shared distribution assumption

— Training and test data are from the same
distribution P(x,y) x-feature vector, y-class label

— Validity of existing work relies on the shared
distribution assumption

 Difference from traditional learning
— Both distributions evolve
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Evolving Dlstrlbutlons (1)

* An example of stream 7
data 2 [
— KDDCUP'99 Intrusion /| [|f+F°
Detection Data ‘e | G =y

— = - Batch Update
-+ Real Time Update

— P(y) evolves ot

o Shift or delay inevitable
— The future data could be different from current data

— Matching the current distribution to fit the future one
IS a wrong way

— The shared distribution assumption is inappropriate
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Evolving Distributions (2)
« Changes in P(y)

— P(y) = P(X,y)=P(y|x)P(x)
— The change in P(y) is attributed to changes in
P(y|x) and P(x)

140



Ensemble Method

1 (x,y)

C,
M

A
\/ C2
Training set
) |
Cy
Simple Voting(SV)
_ 1 modeli predicts
fl(x’y):{o predicts y
otherwise

N A

F(xy)e P(Y =Yy[X)

—afE(x,y)%Zfi(x,y)

/ Test set

y|x=argmax, f=(x,y)

Averaging Probability(AP)

f'(x, y) = probability of predicting y for model i
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Why it works?

Ensemble
— Reduce variance caused by single models

Is more robust than single models when the
distribution is evolving

Simple averaging

K
E . i
Simple averaging: uniform weights w=1/k | (% ¥)= ;Wif (X,y)
Weighted ensemble: non-uniform weights
* W, is inversely proportional to the training errors

w; should reflect P(M), the probability of model M after observing
the data

P(M) is changing and we could never estimate the true P(M) and
when and how it changes

Uniform weights could minimize the expected distance between
P(M) and weight vector
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e Single models (M1, M2, M3) have huge variance.
e Simple averaging ensemble (AP) is more stable and

accurate.

 Weighted ensemble (WE) is not

' ' 7 Single
= Mode!
training errors and test errors ma

o) o)
Weighted
Ensemble

distributions.

Average
Probabilit
amp

An illustration

AP

s AP since
fferent

A

=

L 1

/

Time
Stamp
B

cdld

[ 1 Training Error

I 1 Test Error
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Experiments
e Setup

— Data streams with chunks T, T,, ..., T

— Use T, as the training set to classify T,
 Measures

— Mean Squared Error, Accuracy

— Number of Wins, Number of Loses

— Normalized Accuracy, MSE

h(A, T)=h(AT)/max,(h(AT))
e Methods

— Single models: Decision tree (DT), SVM, Logistic Regression
(LR)

— Weighted ensemble: weights reflect the accuracy on training set
(WE)

— Simple ensemble: voting (SV) or probability averaging (AP)
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Experimental Results (1)

B DT
O SVM
BLR
O WE
B SV
M AP

#Wins #lLoses

Comparison on Intrusion Data Set
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Experimental Results (2)

30 35 40 45

25
Chunk ID

s o o
IS PoZI[eLLION

041/

0.2

0.1

Mean Squared Error Comparison
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Outline

An overview of ensemble methods
— Motivations
— Tutorial overview

Supervised ensemble
Unsupervised ensemble

Semi-supervised ensemble
— Multi-view learning

— Consensus maximization among supervised and
unsupervised models

Applications

— Transfer learning, stream classification, anomaly

detection
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Combination of Anomaly Detectors

o Simple rules (or atomic rules) are relatively easy
to craft.

 Problem:
— there can be way too many simple rules
— each rule can have high false alarm or FP rate

 Challenge: can we find their non-trivial
combination that significantly improve accuracy?
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Atomic Anomaly Detectors

Record 1

Record 2

Record 3

Record 4

Record 5

Record 6

Record 7

Anomal Y?
A, A, e A, A,
Y N N N
N Y oo Y N
Y N N N
Y Y oo N Y
N N e v v
N N N N
N N N N
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Combining Detectors

* IS non-trivial
—We aim at finding a consolidated solution

without any knowledge of the true anomalies
(unsupervised)

— We don’t know which atomic rules are better
and which are worse

— There could be bad base detectors so that
majority voting cannot work
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How to Combine Atomic Detectors?

e Basic Assumption:
— Base detectors are better than random guessing and systematic flip.
* Principles
— Consensus represents the best we can get from the atomic rules
« Solution most consistent with atomic detectors

— Atomic rules should be weighted according to their detection
performance

— We should rank the records according to their probability of being an
anomaly

e Algorithm

— Reach consensus among multiple atomic anomaly detectors in an
unsupervised way
e or semi-supervised if we have limited supervision (known botnet site)
* and incremental in a streaming environment

— Automatically derive weights of atomic rules and records
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Conclusions

 Ensemble
— Combining independent, diversified models improves accuracy

— No matter in supervised, unsupervised, or semi-supervised
scenarios, ensemble methods have demonstrated their
strengths

— Base models are combined by learning from labeled data or by
their consensus
 Beyond accuracy improvements
— Information explosion motivates multiple source learning
— Various learning packages available

— Combine the complementary predictive powers of multiple
models

— Distributed computing, privacy-preserving applications
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Thanks!

* Any questions?

Slides and more references available at
http://ews.uiuc.edu/~jinggao3/sdml10ensemble.htm
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Tutorial on Ensemble of Classifiers

Survey of Boosting from an Optimization
Perspective. Manfred K. Warmuth and S.V.N.
Vishwanathan. ICML'09, Montreal, Canada,
June 20009.

Theory and Applications of Boosting. Robert
Schapire. NIPS'07, Vancouver, Canada,
December 2007.

From Trees to Forests and Rule Sets--A Unified
Overview of Ensemble Methods. Giovanni Seni
and John Elder. KDD'07, San Jose, CA, August
2007.

155



References

[AULO8] M. Amini, N. Usunier, and F. Laviolette. A transductive bound for the voted classifier
with an application to semi-supervised learning. In Advances in Neural Information Processing
Systems 21, 2008.

[BBYO04] M. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory
and practice. In Advances in Neural Information Processing Systems 17, 2004.

[BBMO7] A. Banerjee, S. Basu, and S. Merugu. Multi-way clustering on relation graphs. In Proc.
2007 SIAM Int. Conf. Data Mining (SDM'07), 2007.

[BaKo04] E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36:105-139, 2004.

[BEMO5] R. Bekkerman, R. El-Yaniv, and A. McCallum. Multi-way distributional clustering via
pairwise interactions. In Proc. 2005 Int. Conf. Machine Learning (ICML'05), pages 41-48, 2005.

[BDHO5] P. N. Bennett, S. T. Dumais, and E. Horvitz. The combination of text classifiers using
reliability indicators. Information Retrieval, 8(1):67-100, 2005.

[BiSc04] S. Bickel and T. Scheffer. Multi-view clustering. In Proc. 2004 Int. Conf. Data Mining
(ICDM'04), pages 19-26, 2004.

[BIMi98] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.
Proceedings of the Workshop on Computational Learning Theory, pages 92-100, 1998.
[BGS+08] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to
Data Mining. Springer, 2008.

[BBSO05] UIf Brefeld, Christoph Blischer, and Tobias Scheffer. Multi-view discriminative
sequential learning. In Proc. European Conf. Machine Learning (ECML'05), pages 60-71, 2005.
[Breiman96] L. Breiman. Bagging predictors. Machine Learning, 26:123-140, 1996.
[Breiman01] L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

[Caruana97] R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997. 156



References

[CoSi99] M. Collins and Y. Singer. Unsupervised models for named entity classification. In
Proc. 1999 Conf. Empirical Methods in Natural Language Processing (EMNLP'99), 1999.

[CKWO08] K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of
Machine Learning Research, 9:1757-1774, 2008.

[DYX+07] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In Proc. 2007
Int. Conf. Machine Learning (ICML'07), pages 193-200, 2007.

[DLMO1] S. Dasgupta, M. Littman, and D. McAllester. PAC Generalization Bounds for Co-
training. In Advances in Neural Information Processing Systems 14, 2001.

[DaFa06] I. Davidson and W. Fan. When efficient model averaging out-performs boosting and
bagging. In Proc. 2006 European Conf. Principles and Practice of Knowledge Discovery in
Databases (PKDD'06), pages 478-486, 2006.

[DMMO3] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc.
2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD'03), pages 89-98,
2003.

[Dietterich00] T. Dietterich. Ensemble methods in machine learning. In Proc. 2000 Int.
Workshop Multiple Classifier Systems, pages 1-15, 2000.

[DWHO1] E. Dimitriadou, A. Weingessel, and K. Homik. Voting-merging: an ensemble method
for clustering. In Proc. 2001 Int. Conf. Artificial Neural Networks (ICANN'01), pages 217-224,
2001.

[DoAI09] C. Domeniconi and M. Al-Razgan. Weighted cluster ensembles: Methods and
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 2(4):1-40, 2009.
[Domingos00] P. Domingos. Bayesian averaging of classifiers and the overfitting problem. In
Proc. 2000 Int. Conf. Machine Learning (ICML'00), pages 223-230, 2000.

[DHSO01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons,
second edition, 2001. 157



References

[DzZe02] S. Dzeroski and B. Zenko. Is combining classifiers better than selecting the best one.
In Proc. 2002 Int. Conf. Machine Learning (ICML'02), pages 123-130, 2002.

[DuFr03] S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering
procedure. Bioinformatics, 19(9): 1090-1099, 2003.

[FaDa07] W. Fan and I. Davidson. On sample selection bias and its efficient correction via
model averaging and unlabeled examples. In Proc. 2007 SIAM Int. Conf. Data Mining
(SDM'07), 2007.

[FGM+05] W. Fan, E. Greengrass, J. McCloskey, P. S. Yu, and K. Drummey. Effective

estimation of posterior probabilities: Explaining the accuracy of randomized decision tree
approaches. In Proc. 2005 Int. Conf. Data Mining (ICDM'05), pages 154-161, 2005.

[FHM+05] J. Farquhar, D. Hardoon, H. Meng, J. Shawe-taylor, and S. Szedmak. Two view
learning: SVM-2K, theory and practice. In Advances in Neural Information Processing Systems
18, 2005.

[FeBr04] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph
partitioning. In Proc. 2004 Int. Conf. Machine Learning (ICML'04), pages 281-288, 2004.

[FeLiO8] X. Z. Fern and W. Lin. Cluster ensemble selection. In Proc. 2008 SIAM Int. Conf. Data
Mining (SDM'08), 2008.

[FiISkO3] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In Proc.
2003 Int. Conf. Tools with Artificial Intelligence, pages 418-426, 2003.

[FrJa02] A. Fred and A. Jain. Data Clustering using evidence accumulation. In Proc. 2002 Int.
Conf. Pattern Recognition (ICPR'02), 2002.

[FrSc97] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139,
1997.

158



References

[FrPo08] J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. Annals of
Applied Statistics, 3(2):916-954, 2008.

[GGB+08] K. Ganchev, J. Graca, J. Blitzer, and B. Taskar. Multi-view learning over structured
and non-identical outputs. In Proc. 2008 Conf. Uncertainty in Artificial Intelligence (UAI'08),
pages 204-211, 2008.

[GFHO7] J. Gao, W. Fan, and J. Han. On appropriate assumptions to mine data streams:
Analysis and practice. In Proc. 2007 Int. Conf. Data Mining (ICDM'07), pages 143-152, 2007.

[GFJ+08] J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local
structure mapping. In Proc. 2008 ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD'08), pages 283-291, 2008.

[GFS+09] J. Gao, W. Fan, Y. Sun, and J. Han. Heterogeneous source consensus learning via
decision propagation and negotiation. In Proc. 2009 ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining (KDD'09), pages 339-347, 2009.

[GLF+09] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. Graph-based consensus maximization
among multiple supervised and unsupervised models. In Advances in Neural Information
Processing Systems 22, 20009.

[GSI+09] R. Ghaemi, M. Sulaiman, H. Ibrahim, and N. Mutspha. A survey: clustering
ensembles techniques. World Academy of Science, Engineering and Technology 50, 2009.

[GeTa07] L. Getoor and B. Taskar. Introduction to statistical relational learning. MIT Press,
2007.

[GMTO7] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM Transactions
on Knowledge Discovery from Data (TKDD), 1(1), 2007.

[GVBO04] C. Giraud-Carrier, R. Vilalta, and P. Brazdil. Introduction to the special issue on meta-
learning. Machine Learning, 54(3):187-193, 2004.

159



References

[GOFi08] A. Goder and V. Filkov. Consensus clustering algorithms: comparison and refinement.
In Proc. 2008 Workshop on Algorithm Engineering and Experiments (ALENEX'08), pages 109-
117, 2008.

[GoZh00] S. Goldman and Y. Zhou. Enhancing supervised learning with unlabeled data. In
Proc. 2000 Int. Conf. Machine Learning (ICML'00), pages 327-334, 2000.

[HKTO6] S. T. Hadjitodorov, L. I. Kuncheva, and L. P. Todorova. Moderate diversity for better
cluster ensembles. Information Fusion, 7(3):264-275, 2006.

[HaKa06] J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann,
second edition, 2006.

[HTFO9] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, second edition, 2009.

[HMR+99] J. Hoeting, D. Madigan, A. Raftery, and C. Volinsky. Bayesian model averaging: a
tutorial. Statistical Science, 14:382-417, 1999.

[JIN+91] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79-87, 1991.

[KoMa] J. Kolter and M. Maloof. Using additive expert ensembles to cope with concept drift. In
Proc. 2005 Int. Conf. Machine Learning (ICML'05), pages 449-456, 2005.

[KuwWhO3] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.

[Leskes05] B. Leskes. The Value of Agreement, a New Boosting Algorithm. In 2005 Proc. Conf.
Learning Theory (COLT'05), pages 95-110, 2005.

[LiDIO8] T. Li and C. Ding. Weighted consensus clustering. In Proc. 2008 SIAM Int. Conf. Data
Mining (SDM'08), 2008.

160



References

[LDJO7] T. Li, C. Ding, and M. Jordan. Solving consensus and semi-supervised clustering
problems using nonnegative matrix factorization. In Proc. 2007 Int. Conf. Data Mining
(ICDM'07), pages 577-582, 2007.

[LIOgO5] T. Li and M. Ogihara. Semisupervised learning from different information sources.
Knowledge and Information Systems, 7(3):289-309, 2005.

[LiYa06] C. X. Ling and Q. Yang. Discovering classification from data of multiple sources. Data
Mining and Knowledge Discovery, 12(2-3):181-201, 2006.

[LZYO5] B. Long, Z. Zhang, and P. S. Yu. Combining multiple clusterings by soft
correspondence. In Proc. 2005 Int. Conf. Data Mining (ICDM'05), pages 282-289, 2005.

[LZX+08] P. Luo, F. Zhuang, H. Xiong, Y. Xiong, and Q. He. Transfer learning from multiple
source domains via consensus regularization. In Proc. 2008 Int. Conf. Information and
Knowledge Management (CIKM'08), pages 103-112, 2008.

[MTPO4] B. Minaei-Bidgoli, A. Topchy, and W. Punch: A comparison of resampling methods for
clustering ensembles. In Proc. 2004 Int. Conf. Artificial Intelligence (ICAI'04), pages 939-945,
2004.

[NiGhOOQ] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In
Proc. 2000 Int. Conf. Information and Knowledge Management (CIKM'00), pages 86-93, 2000.

[OkVa08] O. Okun and G. Valentini. Supervised and Unsupervised Ensemble Methods and
their Applications. Springer, 2008.

[Polikar06] R. Polikar. Ensemble based systems in decision making. IEEE Circuits and
Systems Magazine, 6(3):21-45, 2006.

[PrSc08] C. Preisach and L. Schmidt-Thieme. Ensembles of relational classifiers. Knowledge
and Information Systems, 14(3):249-272, 2008.

161



References

[PTJO5] W. Punch, A. Topchy, and A. K. Jain. Clustering ensembles: Models of consensus and
weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12):1866-
1881, 2005.

[PuGh08] K. Punera and J. Ghosh. Consensus based ensembles of soft clusterings. Applied
Artificial Intelligence, 22(7-8): 780-810, 2008.

[RoKa07] D. M. Roy and L. P. Kaelbling. Efficient bayesian task-level transfer learning. In Proc.
2007 Int. Joint Conf. Artificial Intelligence (IJCAI'07), pages 2599-2604, 2007.

[SNBO5] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularization approach to semi-
supervised learning with multiple views. In Proc. 2005 ICML workshop on Learning with
Multiple Views, 2005.

[SMP+07] V. Singh, L. Mukherjee, J. Peng, and J. Xu. Ensemble clustering using semidefinite
programming. In Advances in Neural Information Processing Systems 20, 2007.

[StGhO3] A. Strehl and J. Ghosh. Cluster ensembles --a knowledge reuse framework for
combining multiple partitions. Journal of Machine Learning Research, 3:583-617, 2003.

[TLJ+04] A. Topchy, M. Law, A. Jain, and A. Fred. Analysis of consensus patrtition in cluster
ensemble. In Proc. 2004 Int. Conf. Data Mining (ICDM'04), pages 225-232, 2004.

[TuGh96] K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined neural
classifiers. Pattern Recognition, 29, 1996.

[ViDrO2] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77-95, 2002.

[WFY+03] H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using
ensemble classifiers. In Proc. 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining (KDD'03), pages 226-235, 2003.

[WSBO09] H. Wang, H. Shan, and A. Banerjee. Bayesian cluster ensembles. In Proc. 2009
SIAM Int. Conf. Data Mining (SDM'09), 20009. 162



References

[Wolpert92] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.

[WWL09] F. Wang, X. Wang, and T. Li.Generalized Cluster aggregation. In Proc. 2009 Int.
Joint Conf. Artificial Intelligence (IJCAI'09), pages 1279-1284, 2009.

[ZGYO05] J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks using latent
independent component. In Advances in Neural Information Processing Systems 18, 2005.

[ZFY+06] K. Zhang, W. Fan, X. Yuan, |. Davidson, and X. Li. Forecasting skewed biased
stochastic ozone days: Analyses and solutions. In Proc. 2006 Int. Conf. Data Mining (ICDM'06),
pages 753-764, 2006.

[ZZ2Y0Q7] Z. Zhou, D. Zhan, and Q. Yang. Semi-Supervised Learning with Very Few Labeled
Training Examples. In Proc. 2007 Conf. Artificial Intelligence (AAAI'07), pages 675-680, 2007.

163



	On the Power of Ensemble: Supervised and�Unsupervised Methods Reconciled*�
	Outline
	Ensemble
	Stories of Success
	Netflix Prize
	Leaderboard
	Motivations
	Relationship with Related Studies (1)‏
	Relationship with Related Studies (2)‏
	Why Ensemble Works? (1)‏
	Why Ensemble Works? (2)‏
	Why Ensemble Works? (3)‏
	Research Focus
	Summary
	Ensemble of Classifiers—Learn to Combine
	Ensemble of Classifiers—Consensus
	Clustering Ensemble—Consensus
	Semi-Supervised Ensemble—Learn to Combine
	Semi-supervised Ensemble—Consensus
	Pros and Cons
	Outline
	Supervised Ensemble Methods
	Bias and Variance
	Generating Base Classifiers
	Bagging* (1)‏
	Bagging (2)‏
	Bagging (3)‏
	Boosting* (1)‏
	Boosting (2)‏
	Boosting (3)‏
	Slide Number 31
	Boosting (4)‏
	Random Forests* (1)‏
	Random Forests (2)‏
	Random Decision Tree* (1)‏
	Random Decision Tree (2)‏
	Random Decision Tree (3)‏
	Random Decision Tree (4)‏
	Optimal Decision Boundary
	Slide Number 40
	Outline
	Clustering Ensemble
	Motivations
	An Example
	Methods (1)‏
	Methods (2)‏
	Hard Correspondence (1)‏
	Hard Correspondence (2)‏
	Soft Correspondence* (1)‏
	Soft Correspondence (2)‏
	Slide Number 51
	Object-based Methods (1)‏
	Object-based Methods (2)‏
	Slide Number 54
	Consensus Function
	Optimization Method
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Cluster-based Methods
	Meta-Clustering Algorithm (MCLA)* 
	Slide Number 63
	HyperGraph-Partitioning Algorithm (HGPA)*
	HyperGraph-Partitioning Algorithm (HGPA)‏
	Slide Number 66
	Bipartite Graph Partitioning*
	Bipartite Graph Partitioning
	Integer Programming*
	Slide Number 70
	Slide Number 71
	A Mixture Model of Consensus*
	EM Method 
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Bayesian Clustering Ensemble*
	Other Research Problems
	Slide Number 79
	Summary of Unsupervised Ensemble
	Outline
	Multiple Source Classification
	Multi-view Learning
	Learning from Two Views
	How It Works?
	Searching for Compatible Hypotheses
	Slide Number 87
	Co-Training*
	Applications: Faculty Webpages Classification
	Slide Number 90
	Co-EM*
	Canonical Correlation Analysis
	Algorithms
	Experimental Results
	Co-Regularization Framework
	Slide Number 96
	Comparison of Loss Functions
	Slide Number 98
	Outline
	Consensus Maximization* 
	Model Combination helps!
	Problem
	A Toy Example
	Groups-Objects
	Bipartite Graph
	Objective
	Methodology
	Constrained Embedding
	Ranking on Consensus Structure
	Incorporating Labeled Information
	Experiments-Data Sets
	Experiments-Baseline Methods
	Accuracy
	Outline
	Standard Supervised Learning
	In Reality……
	Domain Difference  Performance Drop
	Other Examples
	All Sources of Labeled Information
	Consensus Regularization Approach* (1)‏
	Consensus Regularization Approach (2)‏
	Multiple Model Local Structure Mapping*
	A Synthetic Example
	Goal
	Global versus Local Weights (1)‏
	Global versus Local Weights (2) 
	Synthetic Example Revisited
	Optimal Local Weights
	Clustering-Manifold Assumption
	Graph-based Heuristics
	Graph-based Heuristics
	Experiments Setup
	Experiments on Synthetic Data
	Experiments on Real Data
	Outline
	Stream Classification*
	Framework�
	Existing Stream Mining Methods
	Evolving Distributions (1)‏
	Evolving Distributions (2)‏
	Ensemble Method
	Why it works?
	An illustration
	Experiments
	Experimental Results (1)‏
	Experimental Results (2)‏
	Outline
	Combination of Anomaly Detectors
	Atomic Anomaly Detectors
	Why We Need Combine Detectors?
	Combining Detectors
	How to Combine Atomic Detectors?
	Conclusions
	Thanks!
	Tutorial on Ensemble of Classifiers
	References
	References
	References
	References
	References
	References
	References
	References

