
♣ Visualization & Data Mining for High Dimensional
Datasets

⋆ ⋆ ⋆ Tutorial ⋆ ⋆ ⋆

SIAM Conference on Data Mining

Phoenix, Arizona
April 28, 2011

Alfred Inselberg1

School of Mathematical Sciences
Tel Aviv University

Tel Aviv, Israel
aiisreal@math.tau.ac.il ∗ www.math.tau.ac.il/ ˜ aiisreal

♣

1Senior Fellow San Diego SuperComputing Center & National University of Singapore



2
Preview



. PREVIEW 3

Scan0001.tif �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1: Cholera epidemic in London 1854. Dr. Snow placed dots at the addresses of the deceased and
saw the concentration of deaths around the Broad street water pump. From E.W.Gilbert, Geog. J. 124 ]
(1958) – By permission from E.R.Tufte “ The Visual Display of Quantitative Information”, Graphic Press
1983 p. 24
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Figure 2: Data mapped into faces; each parameter correspondsto a facial feature. H. Chernoff, JASA 68
(1973)
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Figure 3: Parallel Coordinates – Point in 5-D ,C = (c1,c2,c3,c4,c5)



6

Figure 4: Detecting Network Intrusion from Internet Traffic Flow Data. Note the many-to-one relations,
how many can you spot?



Information Visualization & Data Mining

A large collection of methodologies tracing the development of the field
can be found in [14].

Introduction

T he first, and still more popular application, of parallel coordinates is in exploratory data analysis (EDA);
discovering data subsets (relations) satisfying given objectives. A dataset withM items has 2M subsets any-
one of which may be the one we really want. With a good data display our fantastic pattern-recognition
ability can cut great swaths searching through this combinatorial explosion and also extract insights from
the visual patterns. These are the core reasons for data visualization. With parallel coordinates (abbr.‖-
coords) the search for relations in multivariate datasets is transformed into a 2-D pattern recognition prob-
lem. Guidelines and strategies for knowledge discovery are illustrated on several real datasets one with
hundreds of variables. A geometric classification algorithm is presented and applied to complex datasets.
It has low computational complexity providing the classification rule explicitly andvisually. The mini-
mal set of variables required to state the rule is found and ordered by their predictive value. Multivariate
relations can be modeled as hypersurfaces and used for decision support. A model of a country’s econ-
omy reveals sensitivies, impact of constraints, trade-offs and sectors unknowingly competing for the same
resources. Foundational background is provided where needed. Collision avoidance algorithms for air
traffic control are discussed separately in the section on multidimensional lines.

Many researchers contributed to the development and applications of parallel coordinates (in alphabet-
ical order). The Andrienkos [1], J. Dykes et al. [7], R. Edsall [8] and A. MacEachren et al. [6] introduced
‖-coords to GIS and geovisualization; Kim Esbensen contributed to data analysis and dualities, H.Carter,
C.Gennings, and K. Dawson on response surfaces in statistics [16], Amit Goel [17] on Aircraft Design,
Chris Jones on optimization [29]; John Helly [20] on early application to data analysis; Hans Hinterberger
[39] contributions in comparative visualization and data density analysis; Matt Ward et al. introduced
hierarchical parallel coordinates [15] and added much to the field [45]; Helwig Hauser’s innovative contri-
butions included parallel sets for categorical data [19]; Antony Unwin et al. made wide-ranging numerous
contributions [44], Li Yang [46] applied‖-coords to the visualization of association rules; H. Choi and
Heejo Lee [4] important contribution and P. Hertzog [21] on detecting network intrusion, G. Conti [5]
produced a ground-breaking book on security data visualization; and there are exciting recent works by
H. Ye and Z.Lin’s [47] with a novel contribution to optimization (simulated annealing), T. Kipouros et al.
[30] with a sophisticated optimization for turbomachinery design [30], S. El Medjani et al. [10] proposed
a novel application using‖-coords as straight-line detectors, R. Rosenbaum and H. Schumann [37] on
progression in visualization, F. Rossi [38] on visual data mining and machine learning, Huamin Qu et al,
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8
[22] on air pollution analyis and clustering, M. Tory et al.. on‖-coords interfaces [40], J. Johanson et al.
[27], G. Ellis and A. Dix [11] on clustering and clutter reduction, H. Siirtola and K.J.Räihä on interaction
with ‖-coords, B. Pham, Y. Cai and R. Brown on traditional Chinese medicine [35] and there are proposals
to enhance‖-coordsd by using curves [32], place them in 3-D [34], [28], or modify them as starplots [12]
and C.B. Hurley and R.W. Olford contributed the definitive study on axes permutations [?]. The list is by
no means exhaustive.

Origins

For the visualization of multivariate problems numerous mappings encoding multidimensional informa-
tion visually into 2-D or 3-D (see [14] and [41], [42], [43]) have been invented to augment our perception,
which is limited by our 3-dimensional habitation. Wonderful successes like Minard’s “Napoleon’s March
to Moscow”, Snow’s “dot map” and others aread hoc(i.e. one-of-a-kind) and exceptional. Succinct mul-
tivariate relations are rarely apparent fromstatic displays;interactivity is essential. In turn, this raises the
issues of effectiveGUI – Graphic User Interface, queries, exploration strategies and information preserv-
ing displays.

The case for Visualization

S earching a dataset with M items for interesting, depending on the objectives, properties is inherently
hard. There are 2M possible subsets anyone of which may satisfy the objectives. Thevisual cues, our eyes
can pick from a good data display, help navigate through this combinatorial explosion. How this is done
is part of the story. Clearly, if the transformation :data→ pictureclobbers information a great deal is lost
right at the start. We postulate that a display of datasets withN variables suitable forexplorationsatisfy
the following requirements:

1. should preserve information– the dataset can be completely reconstructed from the picture,

2. has low representational complexity– the computational cost of constructing the display is low,

3. works for any N – not limited by the dimension,

4. treats every variable uniformly,

5. reveals multivariate relations in the dataset– the most important and controversial single crite-
rion,

6. is based on a rigorous mathematical and algorithmic methodology– to eliminate ambiguity
in the results. Also dataset an be recognized after rotations, translations, scalings and perspective
transformations.

These and additional issues comprising the discovery process are better appreciated via the exploration
of real datasets. The basic queries are introduced with an example of satellite Subsequently, they are
combined with boolean operators to form complex queries applied to financial data. An example with
several hundred variables is discussed briefly before moving to automatic classification. Visualization and
‖-coords play key roles in the geometric algorithm’s conception, internal function and visual presentation
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of the classification rule. The minimal set of the variables needed to state the rule is found and ordered
according to their predictive value.

Mathematical background is interspersed to provide a deeper understanding and wiser use of‖-coords
and its applications. Specifically,

1. learning thepatternscorrespoding to the basic relations and seek them out for EDA,

2. understanding the design and use of thequerries,

3. motivating further sophisticated applications to Statistics likeResponse Surfaces[16], and

4. understanding that the relational information resides in thecrossings,

5. concentrating the relational information in the data in clear patterns eliminating the polygo-
nal lines altogetheras with the “proximate planes” is feasible. encouraging research on efficient
(parallel) algorithms for accomplishing this on general datasets. Hence eliminating the “clutter” by
reducing the display into patterns corresponding, at least approximately, to the multivariate existing
in the data. .

Before entering the nitty gritties we pose a visualization challenge which we ask the reader to ponder. For
a plane

π : c1x1 +c2x2+c3x3 = c0 , (1)

allow the coefficients to vary each within a small interval. This generates a family of “close” let’s call
themproximate) planes :

Π = {π : c1x1 +c2x2 +c3x3 = c0, ci ∈ [c−i ,c+
i ], i = 0,1,2,3} . (2)

These are the planes generated by small rotations and translations ofπ with respect to the 3 coordinates
axes. Altogether they form a “twisted slab” which even in 3-D withorthogonal axesis difficult to visualize.
Conversely given lots of points in 3-D how can it be discovered, usingany general visual method you like,
that they lie on a twisted slab and how such a creature can be visualized and described precisely; forN = 3
and then forany N?

Exploratory Data Analysis with ‖-coords

Multidimensional Detective

Parallel coordinates transform multivariate relations into 2-D patterns suitable for exploration and anal-
ysis. For this reason they are included in lots of software tools. The queries “’parallel coordinates +
Software” on Google returned about 31,000 “hits” and “Scatterplot matrix + Software” about 15,000. Ir-
respective of the apparent2:1 relative ratio, the comparable numbers for the two astounded me having
heard the appellations: “esoteric”, “unnatural”, “difficult”, “squiggly” and more for‖-coords after their
introduction.

The exploration1 paradigm is that of adetective, starting from the data, searching for clues leading to
conjectures, testing, backtracking untilvoila ... the “culprit” is discovered. The task is especially intricate

1The venerable name “Exploratory Data Analysis”EDA is used interchangeably with the currently more fashionable “Visual
Data Mining”.
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when many variables (i.e. dimensions) are involved calling for the employment of amultidimensional
detective (abbr.MD). As if there were any doubts, our display of choice is‖-coords where the data
appears in the by now familiar squiggly blotches and which, by means ofqueries, theMD skilfully disects
to find precious hidden secrets.

During the ensuing interaction think, dear reader, how similar queries can be done using other ex-
ploration methodologies including the ubiquitous spread-sheets. More important, what visual clues are
available that wouldprompt use of such queries. This is a good place to point out a few basics. In‖-
coords due to thepoint↔ line and other dualities, some butnotall actions are best performed in the dual.
The queries, which are the “cutting tools”, operate on the display i.e.dual. Their design should exploit the
methodology’s strengths and avoid its weaknesses; rather than mimic the action of queries operating on
standard “non-dual” displays. As a surgeon’s many specialized cutting tools, one of our early software
versions had lots of specialized queries. Not only was it hard to classify and remember them but they still
could not handle all situations encountered. After experimentation, I opted for a few(3) intuitive queries
calledatomic which can be combined viabooleanoperations to form complex intricate cuts. Even for
relatively small datasets the‖-coords display can look uninformative and intimidating. Lack of under-
standing the basics of the underlying geometry and poor choice of queries limits the use of‖-coords to
unrealistically small datasets. Summarizing, the requirements for successful exploratory data analysis are:

• an informative displaywithout loss of informationof the data,

• good choice of queries, and

• skillful interaction with the display.

An Easy Case Study – Satellite Data

T he first admonition is

• do not let the picture intimidate you,

as can easily happen by taking an uninformed look at Fig. 6 showing the dataset to be explored. It consists
of over 9,000 measurements with 9 variables, the first two(X,Y) specify the location on the map in Fig.
5(left), a portion of Slovenia, where 7 types of ground emissions are measured by satellite. The ground
location,(X,Y), of one data item is shown in Fig. 5 (right), which corresponds to the map’s region and
remains open during the exploration. The query, shown in Fig.6, used to select the data item is called
Pinch. It is activated by the buttonP on the tool bar. By means of this query, a bunch of polygonal lines
(i.e. data items) can be chosen by being “pinched”in-betweenthe axes. The cursor’s movement changes
the position of theselectedarrow-head which is the larger of the two shown. In due course various parts
of theGUI are illustrated(Parallax2). Aside from the starting the exploration without biases it is essential

• to understand the objectives.

Here the task is the detection and location of various ground features (i.e. built-up areas, vegetation, water
etc) on the map. There is a prominent lake, on the lower-left corner with an unusual shape the upward
pointing “finger”. This brings up the next admonition, that no matter how messy it looks

• carefully scrutinize the data display for clues and patterns.
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Follow up on anything that catches the eyes, gaps, regularities, holes, twists, peaks & valleys, density
contrasts like the one at the lower values ofB3 throughB7. Using theInterval query, activated by theI
button, starting at the minimum we grab the low range ofB4 (between the arrowheads) stopping at the
dense part as shown in Fig. 7. The result, on the left of Fig. 8, is amazing. Voila we found the water, the
lake is clearly visible together with two other regions which in the map turn up to be small streams. Our
scrutiny having been rewarded we recall the adage

• a good thing may be worth repeating.

Examining for density variations nowwithin the selected lower interval of B4 we notice another. The
lowest part is much denser. Experimenting a bit, appreciating the importance of interactivity, we select
the sparse portion, Fig. 9, which defines the water’s edge (right) 8 and in fact more. By dropping the
lower arrow we see the lake filling up starting from the edge i.e. shallow water first. So the lower values
of B4 reveal the water and the lowest “measure” the water’s depth; not bad for few minutes of playing
around. But all this pertains to a single variable when we are supposed to be demonstratingmultivariate
exploration. This is a valid point but we didpick B4 among several variables. Further, this is a nice
“warm-up” for the subsequent more involved examples enabling us to show two of the queries. The astute
observer must have already noticed the regularity, the vertical bands, between theB1,B2 andB3 axes. This
is where theanglequery, activated by theA button, comes into play. As the name implies it selects groups
of lines within a user-specified angle range. A data subset is selected between theB2,B3 axes as shown,
with enlarged inter-axes distance better showing the vertical bands, in Fig. 10 (left) to select a data subset
which corresponding on the map to regions with high vegetation. Clicking theA button and placing the
cursor on the middle of one axis opens an angle, with vertex on the mid-range of the previous(left) axis,

2MDG’s Ltd proprietary software–All Rights Reserved, is used by permission

Figure 5: Seven types of ground emissions were measured on this region of Slovenia.

Measurements recorded by the LandSat Thematic Mapper are shown in subsequent figures. Thanks to Dr.
Ana Tretjak and Dr. Niko Schlamberger, Statistics Office of Slovenia for providing the data. (Right) The
display is the map’s rectangular region, the dot marks the position where the 7-tuple shown in the next
figure was measured.
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Figure 6: Query on Parallax showing a single data item.

TheX,Y (position, also shown on the right of Fig. 5), and values of the 7-tuple(B1,B2,B3,B4,B5,B6,B7)
at that point.

whose range is controlled by the arrow movements on the right axis. Actually this “rule” (i.e. relation
among some parameters) for finding vegetation can be refined by twicking a couple of more parameters.
This raises the topic of rule finding in general,Classification, which is taken up in Section .

Figure 7: Finding water regions.

The contrast due to density differences around the lower values ofB4 is thevisual cueprompts this query.
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Figure 8: (Left)The lake – result of query shown in Fig. 7.

On the right is just the lake’s edge. It is the result of query shown in Fig. 9.

Theangleandpinchqueries are motivated by theℓ line→ point ℓ̄ duality

ℓ : x2 = mx1+b↔ ℓ̄ = (
d

1−m
,

b
1−m

) (3)

in ‖-coords illustrated in Fig. 11 where the inter-axes distance isd. As seen from itsx-coordinate, the
point ℓ̄ lies between the parallel axes when the line’s slopem< 0, to the right of theX̄2 axis for 0< m< 1
and left ofX̄1 for m> 1. Lines withm= 1 are mapped to thedirectionwith slopeb/d in the on thexy-
plane; withd the inter-axes distance andb the constant (intercept) in the equation ofℓ. This points out that
dualities properly reside in theProjective, thedirectionsbeing theideal points, rather than the Euclidean
plane. For sets of points having a “general” direction with negative slope, i.e. are “negatively correlated”,

Figure 9: Query finding the water’s edge.
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Figure 10: Finding regions with vegetation.

Here theangle queryis used (left) betweenB2,B3 axes. Note the arrow-heads on theB3 axis which
specify the angle-range for the selected lines.

the lines representing them in‖ cross each other roughly in between the axes and they can beselected
with the pinch query. For positively correlated sets of points their corresponding lines cross outside the
axes and can beselected with the angle query. All this exemplifies the need to understand some of the
basic geometry so as to work effectively with the queries and of course designing them properly. The
three atomic queries having been introduced there remains to learn how they can be combined to construct
complex queries.
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Figure 11: Parallel coordinates induce apoint ℓ̄↔ ℓ line duality (left).

(Right) The horizontal position of the point̄ℓ representing the lineℓ is determined only by the line’s slope
m. The vertical lineℓ : x1 = a1 is represented by the point̄ℓ at the valuea1 on theX̄1 axis.

Prior to that, Fig. 10 (left) begs the question: “what if theB2 andB3 axes werenot adjacent”?
Then the pattern and hence their pairwise relation would be missed. Hence the axes-permutation used
for the exploration is important. In particular what is the minimum number of permutations amongN-
axes containing theadjacenciesfor all pairs of axes? It turns out [?]: M permutations are needed for even
N = 2M andM+1 for oddN = 2M+1. It is fun to see why. Label theN vertices of a graph with the index
of the variablesXi, i = 1, . . . ,N as shown in Fig. 12 forN = 6. An edge joining vertexi with j signifies
that the axes indexed byi , j are adjacent. The graph on the left is aHamilton pathfor it contains all the

1 1

4

5

6

4

2

3

2

3

6

5

Figure 12: (Left) First Hamiltonian path on vertices1, . . . , 6.

It corresponds to the (axes) index permutation126354. (Right) The complete graph as the union of the 3
distinct Hamiltonian paths starting successively at the vertices1, 2, 3.
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vertices. Such paths have been studied starting with Euler in the 18th century with modern applications to
the “travelling salesman” problem and elsewhere ([18] pp.66 , [3] pp. 12). The graph corresponds to the
axes index permutation126354. On the right, the union with the additional two Hamiltonian paths, starting
at vertices2 and3, forms the complete graph which contains all possible edges. Hence the 3 permutations
126354 , 231465, 342516contain all possible adjacent pairs; just try it. The remaining permutations are
obtained from the first by successively adding1 mod 6, and this works for generalN [31]. As of this
writing the authoritative reference on axes permutations is by C. Hurley and W. Olford [?]. Before leaving
this interesting subject we pose thetriad permutationproblem. Namely, what is the minimum number of
permuations needed to obtain all possible adjacenttriplesof axes?

Returning to EDA, the icon with theRubik’s CubeonParallax’s toolbar activates apermutation editor
which automatically generates the Hamiltonian permutations (abbr.HP). After scrutinizing the dataset
display the recommended next step is to run through theO(N/2) HP. This is how all nice adjacencies such
as the one in Fig. 10 are discovered. Then using the editor, patch your own custom-made permutation
containing all the parts you like in theHP. With this preprocessing cost, referred to earlier in list item
?? of the introduction, the user sets her own best permutation to work with. Of course, there is nothing
to prevent one from including axes several times in different positions and experimenting with different
permuations in the course of the exploration.

Compound Querries – Financial Data

T o be explored next is the financial dataset shown in Fig. 13, the goal being to discover relations useful
for investments and trading. The datat for the years 1986 (second tick on the 3rd axes) and 1992 are
selected and compared. In 1986 theYen had the greater volatility among the 3 currencies, interests varied
in the mid-range, gold had a price gap whileSP500 was uniformly low. By comparison in 1992, the
Yen was stable while theSterling was very volatile (possibly due to Soros’ speculation), interests and

Figure 13: Financial data.

Quotes byWeek-on Monday,Month,Year first 3 axes fix the date;Sterling ,Dmark,Yen rates per $ 4th,
5th, 6th axes;3MTB, 30YTB interest rates in %, 7th, 8th axes;Gold in $/ounce, 9th,SP500 index values
on 10th axes.
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Figure 14: . Gold prices In 1986.

Gold prices jumped in the 2nd week of August. Note the correlation between the lowYen, high 3MTB
rates and lowGold price range.

gold price were low and theSP500 was uniformly high. TwoInterval queries are combined with theOR
boolean operator (i.e. Union) to obtain this picture. We continue

Figure 15: Negative correlation.

The crossing lines between the 6th and 7th axes in Fig. 13 show strong negative correlation betweenYen
and3MTB rates. One cluster is selected with thePinch query and combined with the high and low ranges
on theYen axis. Data for the years 1986 and 1992 are selected.
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• “ looking for the gold” by checking out patterns that caught our attention.

The data for 1986 is isolated in Fig. 14 and the lower range in the gold price gap is selected. Gold prices
were low until the 2nd week in August when they jumped and stayed higher. The exploration was carried
out in the presence of four financial experts who carefully recorded the relation between lowYen, high
3MTB rates and lowGold prices By the way,low Yen rate of exchange means the Yen has high value
relative to the US $.

There are two bunches of crossing lines between 6th and 7th axes in Fig. 13 which together comprise
more than 80 % of the dataset. This and recalling the previous discussion on theline← point mapping in
Fig. 11 points out the strong negative correlation betweenYen and3MTB rates. The smaller cluster in Fig.
15 is selected. Moving from the top range of any of the two axes, with theI query, and lowering the range
causes the other variable’s range to rise and is a nice way to show negative correlation interactively. For
the contrarians among us, we check also for positive correlation Fig. 16. We find that it exists whenGold
prices are low to mid-range as happened for a period in the 90’s. This is a free investment tip for bucking
the main trend shown in Fig. 15. It is also a nice opportunity for showing theinversionfeature activated
by the icon with 2 cyclical arrows. A variable is selected and the min/max values on that axes are inverted.
Diverging lines (as for + correlation) now intersect Fig. 17 making it easier visually to spot the crossing
and hence the correlation. Actually, the recommendation is to work with theA query experimenting with
various angle ranges using the inversion to check out or confirm special clusters. When stuck don’t just
stand there but

• vary one of the variables watching for interesting variations in the other variables.

Doing this on theYen axis, Fig. 18, we strike another gold connection. The (rough) intersection of a
bunch of lines joiningYen to theDmark corresponds, by the duality, to their rate of exchange. When the
rate of exchange changes so does the intersectionand the price of Gold! That is movements in currency
exchange rates and the price range ofGold go together. Are there any indications that are associated

Figure 16: Positive correlation.

A positively correlated where theYen and3MTB rates movetogether whenGold prices are low to mid-
range.
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Figure 17: Inverting the3MTB axis.

Now the lines between theYen-3MTB and3MTB-30MTB axes in Fig. 16 cross.

with the high range ofGold? The top price range is selected, Fig. 19, and prompted by the result of
the previous query we check out the exchange rate betweenSterling andDmark (orYen) and the resul
is stunning: a perfect straight line. The slopeis the rate of exchange which is constant whenGold tops
out. The relation betweenSterling andDmark is checked for different price ranges ofGold, Fig. 20, and
the only regularity found is the one straight-line above. Aside from the trading guideline it establishes, it
suggests “behind-the-scenes manipulation of theGold market” ... we could have said that but we won’t.
We perish this thought and proceed with the boolean complement, Fig. 21 of anI (or any other) query.
Not finding anything we select a narrow but dense range on theYen, Fig. 22 and notice an interesting
relation betweenDmark, interest rates andGold.

Figure 18: Variations in currency exchange rates.

Variations in the rate of exchange of the currencies correlate with movements in the price ofGold.
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Figure 19: HighGold.

Note the perfect straight line in theSterling vs. Dmark plot. The slope is therate of exchangebetween
them and which remains constant whenGold prices peak.

Figure 20: Two price ranges ofGold.

The associatedSterling vs.Dmark plots show no regularity.
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Figure 21: The complement of anI query.

There is an exploratory step akin to “multidimensional contouring” which we fondly callZebra acti-
vated by the last icon button on the right with the appropriate skin-color. A variable axis is selected, the
SP500 axis in Fig. 23, and divided into a number (user specified) intervals (here it is 4) and colored differ-
ently. This shows the connections (influence) of the intervals with the remaining variables which here is
richly structured especially for the highest range. So what does it take for theSP500 to rise? This is a good
question and helps introduce Parallax’s classifier. The result, shown in Fig. 24 confirms the investment
community’s experience that low3MTB andGold predict highSP500. A comparison with the results

Figure 22:Yen stable.

For theYen trading in a narrow range, highDmark goes with low3MTB rates, lowDmark goes with high
3MTB rates, while mid3MTB rates go with highGold.
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Figure 23: Thezebraquery.

It partitions and colors the segments of values differently. A variable, here theSP500 axis, is divided it
into equal (here 4) intervals. This quickly reveals interelationships. Note especially those for the highest
SP500 range and see next figure.

Figure 24: The rule for highSP500.

Both3MTB (the “short-bond” as it is called) andGold are low and in this order of importance.

obtained on this dataset with other visualization tools would be instructive though unfortunately not avail-
able. Still let us consider such an analysis done by the scatterplot matrix. There are 10 variables (axes)
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Figure 25: Manufacturing process measurements – 400 variables.

which requires 45 pairwise scatterplots each, even with a large monitor screen being no larger than about
2.5×2.5cm2 square. Varying 1, 2 or more variables in tandem and observing the effectssimultaneously
overall the variables in the 45 squares may be possible but quite challenging. By contrast, the effects of
varyingDmark,conditionallyfor stableYen, are easily seen on the two interest rates,Gold as well as the
remaining variables inoneFig. 22. This example illustrates the difficulties due to highRepresentational
Complexity(see Section item # 2) which isO(N2) for the scatterplot matrix butO(N) for ‖-coords and
made even clearer with the next dataset.

Hundreds of variables

A n important question frequently asked is “how many variables can be handled with‖-coords?” The
largest dataset that I have effectively worked with had about 800 variables and 10,000 data entries. With
various techniques developed over the years and the automatic classifier discussed in the next section much
larger datasets can be handled. Still the relevant admonition is

• be sceptical about the quality of datasets with large number of variables.

When hundreds or more variables are involved, it is unlikely that there are many people around who have a
good feel for what is happening as confirmed by my experience. A case in point is the dataset shown in Fig.
25 consisting of instrumentation measurements for a complex process. The immediate observation is that
lots of instruments recorded 0 for the duration something which was unnnoticed. Another curiosity was
the repetitive patterns on the right. It turns that several variables were measured in more than one location
using different names. When the dataset was cleaned-up of the superfluous information it was reduced
to about 90 variables as shown in Fig. 26 and eventually to about 30 which contained the information
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of real interest. By my tracking the phenomenon of repetitive measurements is widespread with at least
10 % of the variables, occurring in large datasets, being duplicates or near duplicates, possibly due to
instrument non-uniformities, as suggested in the 2 variable scatterplot2 in Fig. 26. Here the repetitive
observations were easily detected due to the fortuitous variable permutation in the display. Since repetitive
measurements occur frequently it may be worth adding to the software an automated feature to detect and
exhibit the suspect variables. This brief exposure is just an indication that large (in dimension – i.e. in
number of variables) datasets can still be gainfully explored in‖-coords.

There follows a different example of EDA on a process control dataset s [23] where compound queries
turned out to be very useful and where we learn to add, to the list of exploration guidelines, arguably the
most important one:

• test the assumptions and especially the “I am really sure of”s.

Production of VLSI (chips)

T he dataset, displayed in Fig. 27, consists of production data of several batches of a specific VLSI (com-
puter chip) with measurements of 16 parameters involved in the process. The parameters are denoted
by X1, X2, . . . , X16. Theyield, as the % (percent) of useful chips produced in the batch, is denoted by
X1, andX2 is a measure of thequality (given in terms of speed performance) of the batch. Ten different
categories ofdefectsare monitored and the variables’ scales ofX3 throughX12 are inverted so that 0
(zero) amount appears at the top and increasing amounts appear proportionately lower. The remaining
X13 throughX16 denote some physical parameters.

Figure 26: The above dataset after “clean-up” with about 90 variables left.
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Figure 27: Dataset – VLSI production with 16 parameters

Figure 28: The batches high in Yield,X1, and Quality,X2.
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Figure 29: The batches with zero in 9 out of ten defect types.

Since the goal here is to raise the yield,X1, while maintaining high quality,X2, we have a case of
multi-objective optimization due to the presence of more than one objective. The production specialists
believed that it was the presence of defects which prevented high yields and qualities. So their purpose in
life was to keep on pushing – at considerable cost and effort – for zero defects.

With this in mind the result of our first query is shown in Fig. 28 where the batches having the highest
X1 andX2 have been isolated. This in an attempt to obtain clues; and two real good ones came forth.
Notice the resulting range ofX15 where there is a significant separation into two clusters. As it turns
out, this gap yielded important insight into the physics of the problem. The other clue is almost hidden.
A careful comparison – and here interactivity of the software is essential – between Fig. 27 and Fig. 28
shows that some batches which were high inX3 (i.e. due to the inverted scale low in that defect) were
not included in the selected subset. That casts some doubt into the belief that zero defects are the panacea
and motivates the next query where we search for batches having zero defects in at least 9 (excludingX3
where we saw that there are problems) out of the 10 categories. The result is shown in Fig. 29 and is a
shocker. There are 9 such batches and all of them have poor yields and for the most part also low quality!
That this was not questioned and discovered earlier is surprising. We scrutinize the original picture Fig. 27
for visual cues relevant to our objectives and our findings so far. And ... there is one staring us in the face!
Among the 10 defectsX3 throughX12 whateverX6 is, it’s graph is very different than the others. It shows
that the process is much more sensitive to variations inX6 than the others. For this reason, we chose to
treatX6 differently and remove its zero defect constraint. This query (not shown) showed that the very
best batch (i.e. highest yield with very high quality) does not have zeros (or the lowest values) forX3 and
X6; a most heretical finding. It was confirmed by the next query which isolated the cluster of batches with
the top yields (note the gap inX1 between them and the remaining batches). These are shown in Fig. 30
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and they confirm that small amounts (the ranges can be clearly delimited) ofX3 andX6 type defects are
essential for high yields and quality.
Returning to the subset of data which best satisfied the objectives, Fig. 28 in order to explore the gap in the
range ofX15, we found that the cluster with the high range ofX15 gives the lowest (of the high) yieldsX1,
and worse it does not give consistently high qualityX2, whereas the cluster corresponding to the lower
range has the higher qualities and the full range of the high yield. It is evident that the small ranges of
X3, X6 close to (but not equal to) zero, together with the short (lower) range ofX15 provide necessary
conditions for obtaining high yields and quality. This is also indicated in Fig. 30. By a stroke of good
luck these 3 can also be checked early in the process avoiding the need of “throwing good money after
bad”(i.e. by continuing the production of a batch whose values ofX3, X6 andX15 are not in the small
“good” ranges we have found).

These findings were significant and differed from those found with other methods for statistical process
control[2]. This approach has been successfully used in a wide variety of applications from the manufac-
ture of printed circuit boards, PVC and manganese production, financial data, determining skill profiles”
(i.e. as in drivers, pilots), etc.

Classification

T hough it is fun to undertake this kind of exploration, the level of skill and patience required tends to
discourage some users. It is not surprising then that the most persistent requests and admonitions have
been for tools which, at least partially, automate the knowledge discovery process [25]. Classification is a

Figure 30: The batches with the highest Yields.

They do not have the lowest defects of typeX3 andX6.
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Figure 31: Only the lower range ofX15 is associated with the highest Yields and Quality.

basic task in data analysis and pattern recognition and an algorithm accomplishing it is called aClassifier
[36], [13], [33]. The input is a datasetP and a designated subsetS. The output is a characterization, a set
of conditions or rules, to distinguish elements ofS from all other members ofP the “global” dataset. The
output may also be that there is insufficient information to provide the desired distinction.

With parallel coordinates a datasetP with N variables is transformed into a set of points in N-
dimensional space. In this setting, the designated subsetScan be described by means of a hypersurface
which encloses just the points ofS. In practical situations the strict enclosure requirement is dropped and
some points ofSmay be omitted (“false negatives”), and some points ofP−S are allowed (“false posi-
tives”) in the hypersurface. The description of such a hypersurface is equivalent to the rule for identifying,
within some acceptable error, the elements ofS. Casting the problem in a geometrical setting leads us to
visualizehow such may work. This entails:

1. use of an efficient “wrapping” (a convex-hull approximation) algorithm to enclose the points ofS in
a hypersurfaceS1 containingSand in general also some points ofP−S; soS⊂ S1.

2. the points in(P−S)∩S1 are isolated and the wrapping algorithm is applied to enclose them, usually
also enclosing some points ofS1, producing a new hypersurfaceS2 with S⊃ (S1−S2),

3. the points inSnot included inS1−S2 are next marked for input to the wrapping algorithm, a new
hypersurfaceS3 is produced containing these points as well as some other points inP− (S1−S2)
resulting inS⊂ (S1−S2)∪S3,

4. the process is repeated alternatively producing upper and lower containment bounds forS; termina-
tion occurs when an error criterion (which can be user specified) is satisfied or when convergence is



. CLASSIFICATION 29
not achieved. After termination is obtained two error measures are available to estimate the rule’s
precision :

• Train & Test. A portion of the dataset (usually 2/3) selected at random is used to derive the
classification rule, which is then tested on the remaining 1/3 of the data.

• Cross-Correlation.

It can and does happen that the process does not converge whenP does not contain sufficient informa-
tion to characterizeS. It may also happen thatSis so “porous” (i.e. sponge-like) that an inordinate number
of iterations are required. On convergence, say at step 2n, the description ofS is provided as :

S≈ (S1−S2)∪ (S3−S4)∪ ...∪ (S2n−1−S2n) (4)

this being the terminating expression resulting from the algorithm which we callNested Cavities(abbr.
NC).

The user can select a subset of the available variables and restrict the rule generation to these variables.
In certain applications, as in process control, not all variables can be controlled and hence it is useful to
have a rule involving only the accessible (i.e. controllable) variables. An important additional benefit, is
that the minimal set of variables needed to state the rule is found and ordered according to their predictive
value. These variables may be considered as the bestfeaturesto identify the selected subset. The algorithm
is display independent there is no inherent limitation as to the size and number of variables in the dataset.
Summarizing forNC,

• an approximate convex-hull boundary for each cavity is obtained,

• utilizing properties of the representation of multidimensional objects in‖-coords, a very low poly-
nomial worst case complexity ofO(N2|P|2) in the number of variablesN and dataset size|P| is
obtained; it is worth contrasting this with the often unknown, or unstated, or very high (even expo-
nential) complexity of other classifiers,

• an intriguing prospect, due to the low complexity, is that the rule can be derived in near real-time
making the classifier adaptive to changing conditions,

• the minimal subset of variables needed for classification is found,

• the rule is given explicitly in terms of conditions on these variables, i.e. included and excluded
intervals, and provides “a picture” showing the complex distributions with regions where there are
data and “holes” with no data providing important insights to the domain experts.

A neural-pulse datasethas interesting and unusual features. There are two classes of neurons whose
outputs to stimuli are to be distinguished. They consist of 32 different pulses measured in a monkey’s brain
(poor thing!). There are 600 samples with 32 variables (the pulses)3. Various classification methods were
unable to obtain a rule. WithNC convergence is obtained requiring only 9 of the 32 parameters for the
classification rule for class # 1. The resulting ordering shows a striking separation. In Fig. 32 the first pair
of variablesx1,x2 in the original order is plotted on the left. On the right the best pairx11,x14, as chosen

3I am grateful to Prof. R. Coiffman and his group at the CS & Math. Depts at Yale University for giving me this dataset.
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Figure 32: The neural-pulses dataset with 32 parameters and two categories.

Dataset is shown in the background. On the left plot are the first two parameters in the original order. The
classifier found the 9 parameters needed to state the rule with 4 % error and ordered them according to
their predictive value. The best two parameters are plotted on the right showing the separation achieved.

by the classifier’s ordering speaks for itself. By the way, the discovery of this manually would require
constructing a scatterplot matrix with 496 pairs, then carefully inspecting and comparing the individual
plots. The implementation provides all the next best sections, some of which are shown in Fig. 33, to
aid the visualization of the rule. The dataset consists of two “pretzel-like” clusters wrapping closely in
8-D one enclosing the other; showing that the classifier can actually “carve” highly complex regions with
the cavity shown. One can understand why separation of clusters by hyperplanes or nearest-neighbor
techniques can fail badly for such datasets. The rule has 4 % error some of which are shown in Fig. 33.

The rules are explicit, “visualizable”, optimally ordering the minimal set of variables needed to state
the rule without loss of information. There are variations which apply in some situations where theNC
classifier fails, such as the presence of several large “holes” (see [25]). Further, keeping in mind that the
classification rule is the result of several iterations suggests heuristics for dealing with the pesky problem
of over-fitting. The iterations can be stopped just where the corrections in eq. (4) become very small, i.e.
theSi consist of a small number of points. The number of iterations is user defined and the resulting rule
yields an error in the test stage more stable under variations in the number of points of the test set. In
addition, the user can exclude variables from being used in the description of the rule; those ordered last
are the ones providing the smaller corrections and hence more liable to over-correct.
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Figure 33: Neural dataset classification.

Further cross-sections of the hypersurface corresponding to the classification rule.

Figure 34: Model of a country’s economy.

Choosing highAgricultural and highFishing outputforces low Min ing output.
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Figure 35: Competition for labor between theFishing & Min ing sectors

F inally we illustrate the methodology’s ability to model multivariate relations in terms of hypersur-
faces – just as we model a relation between two variables by a planar region. Then by using the interior
point algorithm, as shown in Fig. 41 of the next section, with the model we can do trade-off analyses,
discover sensitivities, understand the impact of constraints, and in some cases do optimization. For this
purpose we shall use a dataset consisting of the outputs of various economic sectors and other expen-
ditures of a particular (and real) country. It consists of the monetary values over several years for the
Agricultural, Fishing, andMin ing sector outputs,Manufacturing andConstruction industries, together
with Government, Miscellaneous spending and resulting GNP; eight variables altogether. We will not
take up the full ramifications of constructing a model from data. Rather, we want to illustrate how‖-
coords may be used as a modeling tool. Using the Least Squares technique we “fit” a function to this
dataset and are not concerned at this stage whether the choice is “good” or not. The function obtained
bounds a region inR8 and is represented by the upper and lower curves shown in Fig. 34.

The picture is in effect a simple visual model of the country’s economy, incorporating its capabilities,
limitations and interelationships among the sectors. A point interior to the region, satisfies all the con-
straints simultaneously, and therefore represents (i.e. the 8-tuple of values) a feasible economic policy for
that country. Using the interior point algorithm we can construct such points. It can be done interactively
by sequentially choosing values of the variables and we see the result of one such choice in Fig. 34. Once
a value of the first variable is chosen (in this case theAgr icultural output) within its range, the dimen-
sionality of the region is reduced by one. In fact, the upper and lower curves between the 2nd and 3rd
axes correspond to the resulting 7-dimensional hypersurface and show the available range of the second
variableFishing reduced by the constraint. This can be seen (but not shown here) for the rest of the vari-
ables. That is, due to the relationship between the 8 variables, a constraint on one of them impacts all the
remaining ones and restricts their range. The display allows us to experiment and actually see the impact
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of such decisions downstream. By interactively varying the chosen value for the first variable we found,
that it not possible to have a policy that favorsAgr iculture without also favoringFishing and vice versa.

Proceeding, a very high value from the available range ofFishing is chosen and it corresponds to very
low values of theMin ing sector. By contrast in Fig. 34 we see that a low value inFishing yields high
values for theMin ing sector. This inverse correlation was examined and it was found that the country in
question has a large number of migrating semi-skilled workers. When the fishing industry is doing well
most of them are attracted to it leaving few available to work in the mines and vice versa. The comparison
between the two figures shows the competition for the same resource betweenMin ing andFishing. It
is especially instructive to discover this interactively. The construction of the interior point proceeds in
the same way. In the next section in the discussion on surfaces this construction is shown for higher
dimensional hypersurfaces.

Parallel Coordinates – The Bare Essentials

The following short review of‖-coords together Fig. 11 and the discussion on duality provide the essen-
tial background on‖-coords to make this chapter self-contained. The detailed development of Parallel
Coordinates is contained in [24].

Lines

A n N-dimensional lineℓ can be described by theN−1 linear equations:

ℓ :































ℓ1,2 : x2 = m2x1 + b2

ℓ2,3 : x3 = m3x2 + b3

· · ·
ℓi−1,i : xi = mixi−1 + bi

· · ·
ℓN−1,N : xN = mNxN−1 + bN ,

(5)

each with a pair of adjacently indexed variables. In thexi−1xi-plane the relation labeledℓi−1,i,N = 2, . . . ,N
is a line, and by theline↔ pointduality, eq. (3), it can be represented by the point

ℓ̄i−1,i = (
1

(1−mi)
+(i−2) ,

bi

(1−mi)
) (6)

Here the inter-axes distance is 1 so thati−2 is distance between they (or X̄1) andX̄i−1 axes. Actually any
N−1 independent equations like

ℓi, j : xi = mi, jx j +bi, j , (7)

can equivalently specify the lineℓ, for eq. (7) is the projection ofℓ on thexix j 2-D plane andN− 1
such independent projections completely describeℓ. There is a beautiful and very important relationship
illustrated in (left) Fig. 36. For a lineℓ in 3-D the three points̄ℓ12, ℓ̄13, ℓ̄23 are collinear, this line is denoted
by L̄, and any two points representℓ. It is easy to see that a polygonal line on all theN−1 points, given
by eq. (6) or their equivalent, represents a point on the lineℓ. Conversely, two points determine a line
ℓ. Starting with the two polygonal lines representing the points, theN−1 intersections of their̄Xi−1, X̄i

portions are thēℓi−1,i points for the lineℓ. A line interval in 10-D and several of its points is seen on the
(right) Fig. 36. By the way, the indexing of the points̄ℓ is essential.
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ℓ̄i,k

ℓ̄ j,kℓ̄i, j

X̄i X̄j X̄k

x

(k−1,pk,2)

(k−1,pk,1)

( j−1,p j,1)

( j−1,p j,2)

(i−1,pi,2)

(i−1,pi,1)

Figure 36: Properties of multidimensional lines.

(Left)The 3 pointsℓ̄i, j , ℓ̄ j ,k, ℓ̄i,k are collinear fori 6= j 6= k. (Right) A line interval in 10-D.

Planes & Hyperplanes

W hile a line can be determined from its projections, a plane even in 3-D can not. A new approach is
called for [9]. Rather than discerning a p-dimensional object from its points, it is described in terms of
its (p-1)-dimensional subsets constructed from the points. Let’s see how this works. In Fig. 37 (left)
polygonal lines representing a set of coplanar points in 3-D are seen. From this picture even the most
persistent pattern-seeker cannot detect any clues hinting at a relation among the three variables much less
a linear one. The plane has dimensionp= 1 so we look atlines(having dimensionp−1= 1) on the plane
constructed so that each pair of polygonal lines the linesL̄ of the 3 point collinearity shown in Fig. 36
(left) are obtained. The result, shown on the right, is stunning. All theL̄ lines intersect at a point which
turns out to be characteristic of coplanarity but not enough to specify the plane. Translating the first axis
X̄1 to the positionX̄1′, one unit to the right of thēX3 axis and repeating the construction, based on the axes

Figure 37: Coplanarity¿

(Left)The polygonal lines on the first 3 axes represent a set of coplanar points in 3-D.(Right) Coplanarity!
Forming lines on the plane, with the 3 point collinearity, the resulting lines intersect at point.
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y

x

X̄2 X̄3 X̄1′ X̄2′ X̄3′

π̄1′2′3π̄231′ π̄1′2′3′

3c1 3c2 3c3

X̄1

H̄
π̄123c0

c1+c2+c3

Figure 38: Plane representation.

(Left)The two points where the lines intersect uniquely determine a planeπ in 3-D.(Right) From four
points, similarly constructed by consecutive axes translation, the coefficients ofπ : c1x1+c2x2+c3x3 = c0

can be read from the picture!

triple X̄2, X̄3, X̄1′, yields a second point shown in Fig. 38(left). For a plane described by:

π : c1x1 +c2x2+c3x3 = c0 , (8)

the two points, in the order they are constructed, are respectively

π̄123 =

(

c2 +2c3

S
,

c0

S

)

, π̄1′23 =

(

3c1 +c2+2c3

S
,
c0

S

)

, (9)

for S= c1 + c2 + c3. Three subscripts correspond to the 3 variables appearing in the plane’s equation
and the axes triple used for their construction, and distinguish them from the points with two subscripts
representing lines. The 2nd and 3rd axes can also be consecutively translated, as indicated in Fig. 37(left),
repeating the construction to generate two more points denoted byπ̄1′2′3, π̄1′2′3′ . These points can also be
found otherwise in an easier way. The gist of all this is shown in Fig. 38(right). The distance between
successive points is 3ci . The equation of the planeπ can actually be read from the picture!

In general, a hyperlane in N-dimensions is represented uniquely byN−1 points each withN indices.
There is an algorithm which constructs these pointsrecursively, raising the dimensionality by one at each
step, as is done here starting from points (0-dimensional) constructing lines (1-dimensional). By the way,
all the nice higher dimensional projective dualities likepoint↔ hyperplane, rotation↔ translationetc
hold. Further, a multidimensional object, represented in‖-coords, can still be recognized after it has been
acted on by projective transformation (i.e. translation, rotation, scaling and perspective). The recursive
construction and its properties are at the heart of the‖-coords visualization.
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Figure 39: A family of close planes.

(Left) Pair of point clusters representing close planes.(Right) The hexagonal regions (interior) are the re-
gions containing the points̄π123 (left) andπ̄1′23 for the family of planes withc0 = 1 andc1∈ [1/3,1.5],c2∈
[1/3,2.5],c3∈ [1/3,1]. Forc0 varying, herec0 ∈ [.85,1.15], the regions (exterior) are octagonal with two
vertical edges.

Challenge: Visualizing Families of Proximate Planes

Returning to 3-D, it turns out that for points as in Fig. 37 which are “nearly” coplanar (i.e. have small
errors) the construction produces a pattern very similar to that in Fig. 38(left). A little experiment is in
order. Let us return to the family ofproximate(i.e. close) planes generated by

Π = {π : c1x1 +c2x2 +c3x3 = c0, ci ∈ [c−i ,c+
i ], i = 0,1,2,3} , (10)

randomly chosing values of theci within the allowed intervals to determine several planesπ ∈Π, keeping
at first c0 = 1, and plotting the two points̄π123, π̄1′23 as shown in Fig. 39 (left). Not only is closeness
apparent but more significantly the distribution of the points is not chaotic. The outline of two hexagonal
patterns can be discerned. The family of “close” planes is visualizable but also the variations in several
directions. It is possible to see, estimate and compare errors or proximity [26].

It can be proved that in 3-D the set of pairs of points representing the family of proximate planes form
two convex hexagons whenc0 = 1 with an example is shown in Fig. 39 (right), and are contained in
octagons each with two vertical edges for varyingc0. In general, a family of proximate hypeplanes in N-D
is represented byN−1 convex 2N-agons whenc0 = 1 or 2(N+1)-agons forc0 varying. These polygonal
regions can be constructed withO(N) computational complexity. Choosing a point in one of the polygonal
regions, an algorithm matches the possible remainingN−2 points, one each from the remaining convex
polygons, which represent and identify hyperplanes in the family byN−1 points.

We pose the thesis that visualization is not about seeing lots of things but rather discoveringrelations
among them. While the display of randomly sampledpointsfrom a family of proximate hyperplanes is
utterly chaotic (the mess in Fig. 37 (right) from points in justoneplane), theirproximate coplanarity
relation corresponds to a clear and compact pattern. With‖-coords we can focus andconcentratethe
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relational information rather than wallowing in the details, ergo the remark “without loss of information”
when referring to‖-coords. This is the methodology’s real strength and where he future lies. Here then is
a visualization challenge: how else can proximate coplanarity be detected and seen?

Nonlinear Multivariate Relations – Hypersurfaces

A relation among 2 real variables is represented geometrically by a unique region in 2-D. Analogously,
a relation between N variables corresponds to a hypersurface in N-D, hence the need to say something
about the representation of hypersurfaces in‖-coords. A smooth surface in 3-D (and also N-D) can be
described as the envelope of all its tangent planes. This is the basis for the representation shown in Fig.
40 (left). Every point of the surface is mapped into the two points representing itstangent plane at the
point. This generates 2 planar regions and forN-D there areN−1 such regions. These regions arelinked,
just as the polygons above, to provide the properN−1 points representing each tangent hyperplane and
from which the hypersurface can be reconstructed. Classes of surfaces can be immediately distinguished
from their‖-coords display (see the chapter on surfaces for extensive treatment). For developable surfaces
the regions consists of boundary curves only with no interior points, regions for ruled surfaces have grids
consisting of straight lines, quadric surfaces have regions with conic boundaries these are some examples.

There is a simpler but inexact surface representation which is quite useful when used judiciously. The
polygonal lines representing points on the boundary are plotted and their envelope “represents” the sur-
face; the “ ” are a reminder that this is not auniquerepresentation. In Fig. 41 (left) are the upper and
lower envelopes for a sphere in 5-D consisting of 4 overlapping hyperbolae which must be distinguished
from those in Fig. 40 (right), which is exact and, interestingly enough are also hyperbolae, the curves
determined by points representing the sphere’stangent planes. Retaining the exact surface description
(i.e. its equation) internally, interior points can be constructed and displayed as shown for the 5-D sphere
in Fig. 41 (left). On the right the same construction is shown but for a more complex 20-dimensional
convex hypersurface (“model”). The intermediate curves (upper and lower) also provide valuable infor-
mation and previews of coming attractions. They indicate a neighborhood of the point (represented by the
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Figure 40: Surface representation.

(Left)A smooth surfaceσ is represented by two planar regions̄σ123, σ̄231′ consisting of pairs of points
representing its tangent planes. (Right) One of the two hyperbolic regions representing a sphere in 3-D.
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Figure 41: Interior point construction.

(Left)A sphere in 5-D showing the construction of an interior point (polygonal line). (Right) The general
interior point (polygonal line) construction algorithm shown for a convex hypersurface in 20-D.
polygonal line) and provide a feel for the local curvature. Note the narrow strips aroundX13,X14,X15
(as compared to the surrounding ones), indicating that at this state these are the critical variables where
the point is bumping the boundary. A theorem guarantees that a polygonal line which is in-between all the
intermediate curves/envelopes represents an interior point of the hypersurface and all interior points can
be found in this way. If the polygonal line is tangent at anyone of the intermediate curves then it represents
a boundary point, while if it crosses anyone of the intermediate curves it represents an exterior point. The
later enables us to see, in an application, the first variable for which the construction failed and what is
needed to make corrections. By varying the choice of value over the available range of the variable interac-
tively, sensitive regions (where small changes produce large changes downstream) and other properties of
the model can be easily discovered. Once the construction of a point is completed it is possible to vary the
values of each variable and see how this effects the remaining variables. So one can do trade-off analysis
in this way and provide a powerful tool for, Decision Support, Process Control and other applications. As
new data becomes available the model can be updated with decisions being made based on the most recent
information. This algorithm is used in the earlier example on a model for a country’s economy shown in
Figs. 34, 35.

Future

S earching forpatternsin a‖-coords display is what skillful exploration is about. If there are multivariate
relations in the dataset the patternsare therethough they may be covered by the overlapping polygonal
lines and that is not all. Our vision is not multidimensional. We do not perceive a room which is 3-
dimensional from its points which are 0-dimensional, but from the 2-dimensional planes which enclose
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Figure 42: Square, cube and hypercube in 5-D on the left represented by their vertices and on the right
by the tangent planes. Note the hyperbola-like (with 2 assymptotes) regions showing that the object is
convex.

Figure 43: Developable surfaces are represented by curves. Note the two dualitiescusp↔ inflection point
andbitangent plane↔ crossing point. Three such curves represent the corresponding hypersurface in 4-D
and so on.
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Figure 44: Representation of a sphere centered at the origin (left) and after a translation along thex1
axis (right) causing the two hyperbolas to rotate in opposite directions. Note therotation↔ translation
duality. In N-D a sphere is represented by(N− 1) such hyperbolic regions — pattern repeats as for
hypercube above.

Figure 45: Möbius strip and its representation for two orientations. The two cusps on the left show that it
corresponds to an “inflection-point in 3-D” – see the duality in Fig 43. The curves tending to infinity in
the same direction upwards and downwards show that it is closed.

and define it. The recursive construction algorithm does exactly that for the visualization ofp-dimensional
objects from theirp−1-dimensional subsets; one dimension less. We advocate including this algorithm
within our armory of interactive analysis tools. Whateverp-dimensional relations exist are revealed by
the pattern from the representation of the tangent hypeplanes of the corresponding hypersurface. The
polygonal lines are completely discarded for therelation is concentrated in the pattern: Linear relations
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Figure 46: Representation of a surface with 2 “dimples” (depressions with cusp) which are mapped into
“swirls” and areall visible. By contrast, in the perspective (left) one dimple is hidden. On the right is a
convex surface represented by hyperbola-like (having two assymptotes) regions.

into points, proximate coplanarity into convex polygons, quadrics into conics and so on. Note further,
again with reference to Figs. 36 and 37, that relational information resides at thecrossings. What can be
achieved for the representation of complex relations by patterns is exemplified by the pictures in Fig. 42
through Fig. 46. These are state of the art results showing what is achievable and how easily it general-
izes to N-D. Can one imagine a higher dimensional convex surface or various kinds of non-convexities
much less thenon-orientablethe Möbius strip. It is possible to do such a process on a dataset though
at present it is computationally slow. The challenge is to speed up the algorithm for real-time response
and thus break the gridlock of multidimensional visualization. There will still be work and fun for the
multidimensional detectives visually separating and classifying theno longer hiddenregions identifying
complex multivariate relations which evaded us until now.
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