Some Assembly Required

Noshir Contractor

Jane S. & William J. White Professor of Behavioral Sciences Northwestern University, USA Twitter: @noshir

Supported by following National Science Foundation grants:

IIS-0838564, IIS-0841583, BCS- 0940851, OCI-0904356, CNS-1010904 Army Research Institute W91WAW-08-C-0106/P00004; Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053 & NIH/NCRR & NIH/NCRR grant to Northwestern University

Clinical and Translational Sciences Institute (NUCATS)

NORTHWESTERN

UNIVERSITY

Building the Team That Built Watson

Opler Muhammad/The New York Times

F RECOMMEND

M TWITTER

E-MAIL

A PRINT

SHARE

REPRINTS

escendan

sying even

David Ferrucci led the team behind Watson, the victorious "Jeopardy" computer. "For the scientist in me," he says, "it was an irresistible challenge.".

By DAVID A. FERRUCCI Published: January 7, 2012

THE assignment was one of the biggest challenges in the field of artificial intelligence: build a computer smart enough to beat grand champions at the game of <u>"Jeopardy."</u>

Related

Smarter Than You Think: What Is I.B.M.'s Watson? (June 20, 2010)

Computer Wins on 'Jeopardy!': Trivial, It's Not (February 17, 2011) When I stepped up to lead the team at <u>I.B.M.</u> that would create this computer, called <u>Watson</u>, I knew the task would be formidable. The computer would have to answer an unpredictable variety of complex questions with confidence, precision and speed. And we would

put it to the test in a publicly televised "human versus machine" competition against the best players of all time.

It was not easy finding people to join the Watson team in the mid-1990s. Most scientists I approached favored their own individual projects and career tracks. And who could blame them? This was an effort that, at best, would mingle the contributions of many. At its worst it would fail miserably, undermining the credibility of all involved.

science of networks in communities

David Ferucci, New York Times 1/7/2012

Ascendance of Teams

Studies of 19.9 million research articles over 5 decades as recorded in the Web of Science database, and an additional 2.1 million patent records from 1975-2005 found three important facts.

1. For virtually all fields, research is increasingly done in teams

2. Teams typically produce more highly cited research than individuals do (accounting for self-citations), and this team advantage is increasing over time.

3. .Teams now produce the exceptionally high impact research, even where that distinction was once the domain of solo authors.

Ascendance of Virtual Teams

The trend toward virtual communities was <u>**not</u> driven by a growth in**</u> teamwork by scientists working with other co-located scientists. Using the Web of Science database to analyze the collaboration arrangements of over 4,000,000 papers over a 30 year period, they found that:

- 1. Team science is increasingly composed of co-authors located at different universities.
- 2. These "virtual communities of scholars" produce higher impact work than comparable co-located teams or solo scientists.
- 3. This change is true for all fields and team sizes, as well as for research done at elite universities

science of networks in communities

Key Takeaways

- Web Science is well poised to make a leap in understanding and enabling team assembly by facilitating recent advances in:
 - Theories: Theories about the social motivations for creating, maintaining, dissolving and re-creating networks
 - Data: Developments in Semantic Web/Web 2.0 provide the technological capability to capture, store, merge, and query relational metadata needed to more effectively understand and enable networks.
 - Methods: An ensemble of qualitative and quantitative methods (exponential random graph modeling (p*) techniques to understand and enable theoretically grounded network recommendations.
 - Computational infrastructure: Cloud computing and petascale applications are critical to face the computational challenges in analyzing the data

Multi-theoretical Multilevel (MTML) Motivations for Team Assembly

- Theories of self-interest
- Theories of social and resource exchange
- Theories of mutual interest and collective action
- Theories of contagion
 Theories of balance
 Theories of homophily
 Theories of proximity

Sources:

Contractor, N. S., Wasserman, S. & Faust, K. (2006). Testing multi-theoretical multilevel hypotheses about organizational networks: An analytic framework and empirical example. *Academy of Management Review*.

Monge, P. R. & Contractor, N. S. (2003). *Theories of Communication Networks*. New York: Oxford University Press.

"Structural signatures" of MTML Motivations for Team Assembly

Theories of Self interest

Theories of Exchange

Theories of Balance

Theories of Collective Action

Theories of Homophily

Theories of Cognition

Statistical "MRI" for Structural Signatures

- p*/ERGM: Exponential Random Graph Models
- Statistical "Macro-scope" to detect structural motifs in observed networks
- Move from exploratory to confirmatory network analysis to understand multi-theoretical multilevel motivations for why we create social and information networks

p*/Exponential Random Graph Models

- Analysis of network data with Interdependencies endogenous correlation among the relations
- ERGMs are a class of stochastic models:

$$P(\mathbf{X} = \mathbf{x}) = \kappa^{-1} \exp\left(\sum_{A \subseteq N_D} \lambda_A z_A(\mathbf{x})\right),$$

where:

- (i) the summation is over structural signatures of types A;
- (ii) λ_A is the parameter corresponding to structural signatures of type A;
- (iii) $z_A(\mathbf{x})$ is the *network statistic* corresponding to structural signature A
- (iv) κ is a normalizing quantity to ensure that (1) is a proper probability distribution

Frank & Strauss, 1986; Pattison & Wasserman, 1999; Robins, Pattison, & Wasserman, 1999; Wasserman & Pattison, 1996; Hunter, 2007; Robins, Snijders, Wang, Handcock, & Pattison, 2007

Challenges of <u>empirically</u> testing, extending, and exploring theories about emergence of networks ... until now

The Hubble telescope: \$2.5 billion

Source: David Lazer

CERN particle accelerator: \$1 billion/year

Source: David Lazer

The Web: priceless*

* Apologies to MasterCard

Source: David Lazer

Exemplars

- I. Team assembly for interdisciplinary NSF proposals
- II. Virtual World Exploratorium (two exemplars)
- III. Recommender system for enabling team assembly in clinical and translational science

Team Assembly for Interdisciplinary NSF proposals

with

Alina Lungeanu *Ph.D. Candidate*

Yun Huang Postdoctoral Fellow

science of networks in communities

Overview

- Motivation:
 - To better understand the assembly and outcomes of interdisciplinary scientific teams (NSF funding) to improve team success
- Research Questions:
 - How do interdisciplinary scientific teams assemble?
 - What are the factors that influence the performance of the interdisciplinary scientific teams?

Data Set

- 1,103 grant proposals submitted to NSF (both awarded and un-awarded)
- 2 interdisciplinary programs
- 3-year period
- 2,186 PIs and Co-PIs

Hypotheses

science of networks in communities

	Effects	Full model (N=2,186)
Control	Edge (DV: co-proposal)	-6.751*
Control	Isolates	5.447*
Control	Joining large teams	4.623*
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*
Control	Gender <i>Reference: male</i>	0.021
Control	Tenure	0.002*
Control	H-index	-0.014*
H1	Co-authorship	2.431*
H2	Citation relation	1.132 *

*: p<0.05

Model for Understanding⁻

Effects

Researchers are not likely to randomly form a project collaboration relationship with each other. The numbers of single author proposals and big research teams are larger than random chances.

		(N=2,18
Control	Edge (DV: co-proposal)	-6.751*
Control	Isolates	5.447*
Control	Joining large teams	4.623*
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*
Control	Gender <i>Reference: male</i>	0.021
Control	Tenure	0.002*
Control	H-index	-0.014*
H1	Co-authorship	2.431*
H2	Citation relation	1.132 *

*: p<0.05

Full mo

	Effects	Full model (N=2,186)	Possarchars from ton tior
Control	Edge (DV: co-proposal)	-6.751*	Researchers from top-tier institutions are less likely to
Control	Isolates	5.447*	collaborate.
Control	Joining large teams	4.623*	
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*	
Control	Gender <i>Reference: male</i>	0.021	
Control	Tenure	0.002*	
Control	H-index	-0.014*	
H1	Co-authorship	2.431*	
H2	Citation relation	1.132 *	
>	*: ><0	05	SONIC

*: p<0.05

	Effects	Full model (N=2,186)	
Control	Edge (DV: co-proposal)	-6.751*	
Control	Isolates	5.447*	
Control	Joining large teams	4.623*	
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*	Researchers with high tenure are more likely to collaborate
Control	Gender <i>Reference: male</i>	0.021	
Control	Tenure	0.002*	
Control	H-index	-0.014*	
H1	Co-authorship	2.431*	
H2	Citation relation	1.132 *	
	*: p<0	.05	SONIC

NORTHWESTERN

UNIVERSITY

advancing the science of networks in communities

	Effects	Full model (N=2,186)	
Control	Edge (DV: co-proposal)	-6.751*	
Control	Isolates	5.447*	
Control	Joining large teams	4.623*	
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*	Researchers with a high
Control	Gender <i>Reference: male</i>	0.021	H-index are less likely to collaborate.
Control	Tenure	0.002*	
Control	H-index	-0.014*	
H1	Co-authorship	2.431*	
H2	Citation relation	1.132 *	
ECTEDNI	*: p<0	.05	SONIC

NORTHWESTERN

UNIVERSITY

×

	Effects	Full model (N=2,186)	
Control	Edge (DV: co-proposal)	-6.751*	
Control	Isolates	5.447*	
Control	Joining large teams	4.623*	Researchers are more likely
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*	to collaborate with those with whom they have co-
Control	Gender <i>Reference: male</i>	0.021	authored or with those they cite.
Control	Tenure	0.002*	
Control	H-index	-0.014*	
H1	Co-authorship	2.431*	
H2	Citation relation	1.132 *	
VERSI	*: p<0	.05	SONIC

NORTHWESTERN

UNIVERSITY

	Effects	Full model (N=2,186)	Funded model (N=445)	Un-funded model (N=1,834)
Control	Edge (DV: co-proposal)	-6.751*	-5.341*	-6.571*
Control	Isolates	5.447*	10.138*	4.477*
Control	Joining large teams	4.623*	8.908*	3.779*
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*	-0.098*	-0.104*
Control	Gender <i>Reference: male</i>	0.021	0.119*	-0.009
Control	Tenure	0.002*	0.001	0.002*
Control	H-index	-0.014*	-0.005*	-0.009*
H1	Co-authorship	2.431*	1.386*	0.914*
H2	Citation relation	1.132 *	-0.147 *	-0.008

*: p<0.05

science of networks in communities

	Effects	Full model (N=2,186)	Funded model (N=445)	Un-funded model (N=1,834)
Control	Edge (DV: co-proposal)	-6.751*	-5.341*	-6.571*
Control	Isolates	5.447*	nales are more li	koly to
Control	Joining large teams		laborate on awai	•
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098*	-0.098*	J.104*
Control	Gender <i>Reference: male</i>	0.021	0.119*	-0.009
Control	Tenure	0.002*	0.001	0.002*
Control	H-index	-0.014*	-0.005*	-0.009*
H1	Co-authorship	2.431*	1.386*	0.914*
H2	Citation relation	1.132 *	-0.147 *	-0.008
	*: p<0	.05		SONIC

advancing the science of networks in communities

	Effects	Full model (N=2 <i>,</i> 186)	Funded model (N=445)	Un-funded model (N=1,834)
Control	Edge (DV: co-proposal)	-6.751*	-5.341*	-6.571*
Control	Isolates	5.447* T	he odds of collabo	rating with a
Control	Joining large teams	T.U	revious co-author o	
Control	Institution Tier <i>Reference: low-tier university</i>		roposal is 4 times r ollaborating with so	
Control	Gender <i>Reference: male</i>	0.021	.19*	-0.009
Control	Tenure	0.002*	0.001	0.002*
Control	H-index	-0.014*	-0.005*	-0.009*
H1	Co-authorship	2.431*	1.386*	0.914*
H2	Citation relation	1.132 *	-0.147 *	-0.008
	*: p<0	.05		SONIC

NORTHWESTERN

UNIVERSITY

science of networks in communities

	Effects	Full model (N=2,186)	Funded model (N=445)	Un-funded model (N=1,834)
Control	Edge (DV: co-proposal)	-6.751*	odds of collabor	ating with a
Control	Isolates		odds of collabor vious co-author c	
Control	Joining large teams		oosal is 4 times n	
Control	Institution Tier <i>Reference: low-tier university</i>	-0.098 [*] The	aborating with so odds of collabor	ating with a
Control	Gender <i>Reference: male</i>		vious co-author c rded proposal is	
Control	Tenure	0.002*	0.001	2*
Control	H-index	-0.014*	-0.005*	-0.0 9*
H1	Co-authorship	2.431*	1.386*	0.914*
H2	Citation relation	1.132 *	-0.147 *	-0.008
	*: p<0	.05		SONIC

NORTHWESTERN

UNIVERSITY

advancing the science of networks in communities

	Effects	Full model (N=2,186)	Funded model (N=445)	Un-funded model (N=1,834)
Control	Edge (DV: co-proposal)	-6.751*	-5.341*	-6.571*
Control	Isolates	5.447*	10.138*	4.477*
Control	Joining large teams	4.623*	8.908*	3.779*
Control	Institution Tier ↓	-0.000*		0.101¥
Control Control	someone that you cite are 3 time more than collaborating with someone else.		meone that you d proposal is 0.1	
Control	H-index	-0.014*	-0.005*	-0.009*
H1	Co-authorship	2.431*	1.386*	0.914*
H2	Citation relation	1.132 *	-0.147 *	-0.008
THWESTERN NIVERSITY	*: p<0	.05		SONIC adva science of networks in con

	Effects	Full model	Funded model	Un-funded model	
			fore, researchers	s are more	
Control	Edge (DV: co-proposal)	-6.75 likely	to collaborate or	n awarded	
Control	Isolates		sals if they have		
Control	Joining large teams	1 6 7	orated before (c they come from	· · · · · · · · · · · · · · · · · · ·	
Control	Institution Tier <i>Reference: low-tier university</i>		rch areas (not cit		
Control	Gender <i>Reference: male</i>	0.021	.119*	-0.009	
Control	Tenure	0.002*	0.001	0.002*	
Control	H-index	-0.014*	-0.005*	-0.009*	
H1	Co-authorship	2.431*	1.386*	0.914*	
H2	Citation relation	1.132 *	-0.147 *	-0.008	
	*: p<0	.05		SONIC	

NORTHWESTERN

UNIVERSITY

advancing the science of networks in communities

Exemplar II.1 & II.2 Motivations for creating teams in massively multiplayer online games

Virtual World Exploratorium

science of networks in communities

VWE Principal Investigators

Noshir Contractor Northwestern University Social networks

Jaideep Srivastava University of Minnesota Data Mining

Dmitri Williams

University of Southern California

Online games

Scott Poole University of Illinois Group Communication

http://vwobservatory.org/

Why Study These Things?

- MMOGs are of interest in their own right
 - Over 1.185 billion registered virtual world accounts and approximately \$22.5 billion/year in revenue in 2011
 - Psychological, social, and economic impacts
- What does social behavior in virtual worlds tell us about the "real" world and vice versa?
 - MMOGs may be a mirror of the real world
 - Networks, economics, group processes, conversation, conflict, learning, expertise, leadership, crime, innovation, epidemics, etc.
 - Online games already capture the signatures of these behaviors in huge databases, just waiting to be analyzed

Exemplar II.1 Motivations for creating teams

with

Yun Huang Post doctoral Fellow

Mengxiao Zhu Ph.D. Candidate

Brian Keegan Ph.D. Candidate

Jeff Treem *Ph.D. Candidate*

Four Types of Relations in EQ2

Partnership: Two players play together in combat activities;

- Instant messaging: Two players exchange messages through Sony universal chat system
- *Player trade*: Players meet "face-to-face" in EQ2 and one gives items to another;

Mail: One player sends a message and/or items to others by in-game mail

	Synchronous	Asynchronous
Interpersonal interaction	Partnership, Instant messaging	
Transactional interaction	Player trade	Mail

Data Description

3140 players from Aug 25 to Aug 31 2006, in Antonia Bayle 2998 US, 142 CA ; 2447 male, 693 female

- Demographic information
 - Gender, age, and account age (years played Sony games)
 - Zip code, state, and country

Results

Selectivity and transitivity (friend of a friend) exists in all online relations.

Homophily of age and game experience is supported in all four relations.

Distance matters but short distances are more important. Individuals living within 50 Km are 22.6 times more likely to be partners than those who live between 50 and 800 Km.

Time zones impacts gaming and trading but not IM and mail. Individuals in the same time zone are 1.25 times more likely to be game partners than the individuals with one hour difference (but no time zone effect for

Gender homophily is not supported for all relations and female players are more likely to interact with the male players.

Exemplar II.2

How does virtual team assembly influence outcomes?

with...

Mengxiao Zhu *Ph.D. Candidate*

Combat Groups in EverQuest II

- Difficult combat tasks require collaboration of multiple players and assembly of combat groups
- From 2006-08-27 to 2006-09-11 on Antonia **Bayle Server**
 - 8,423 players
 - 46,393 groups
 - 9,436,741 combat related records

http://everguest2.station.sony.com/screenshots.vm

science of networks in communities

What makes a group successful?

- Group Diversity
 - Four character classes in the game: Fighter, Mage, Scout and Priest, each having a different role in a group
 - Measure Group Diversity: Blau's Index

- Group member's cosmopolitan level
 - Group members being involved in multiple different groups

Effects of Group Attributes on Performance Measures

Regression Analysis Results on Combat Groups of Four Players

		ХР	NPC's	Level Gain	Deaths
	Constant	-20939.926**	-3.376 (.361)	.717**	4.011**
	Frequency	-1553.494 (.105)	4.127**	010 (.816)	.601**
	Life Span	736.797**	1.174**	.015**	.063**
Div	ersity helps	the groups to	o achieve	more. ^{3**}	050**
				2**	647**
	Diversity	20819.998**	14.342**	.726**	-1.873 (.095)
	Member	30.254	025	010**	032**
	Cosmo.	(612) Members	heing cos	mopolitan de	
** indicates significant			e	s to avoid los	-
results at .01 level	R ²	.000	0.021	0.571	0.244
	F	595.213 (p=.000)	1368.793 (p=.000)	176.071 (.000)	96.274 (.000)
					SONIC
NORTHWESTERN UNIVERSITY	4				adv science of networks in co

Exemplar III

From Understanding to Enabling Team Assembly ... or

"Match-making" in Science

science of networks in communities

Members in the Project

Stanley Wasserman Indiana University

Hugh Devlin Northwestern University

Maryam Fazel-Zarandi University of Toronto

Meikuan Huang California State University at Stanislaus

Yun Huang Northwestern University

NORTHWESTERN

UNIVERSITY

Alina Lungeanu Northwestern University

Chuang Zhang Beijing University of Posts and Telecommunication

Zhe Zhang Northwestern University

Link Predictions for Recommendation Systems

- Social network context
 - Product recommendation: collaborative filtering
 - Expert recommenders
- Other contexts
 - Biology
 - Protein-protein interactions
 - Gene-protein interactions
 - Ecology: predictor-prey relations
 - Information retrieval
 - Record linkage problem
 - Author matching

Expertise Finding as a Two Phase Process

- Two steps in finding expertise (McDonald and Ackerman, 1998):
 - Expertise **identification**: Problem of knowing what information or special skills other individuals have
 - Expertise **selection**: Problem of appropriately choosing among people with the required expertise

Link Prediction Approaches

- 1. Node-wise similarity approaches
 - Define or learn a measure of similarity between two nodes to determine link existence
 - Example: Feature vector based, Statistical Relational Learning (SRL), Collaborative filtering, Content-based filtering
- 2. Network topology based approaches
 - Exploit topological pattern, ranging from local patterns around the nodes to the global patterns covering the entire social network
 - Example: Katz, PageRank.

Liben-Nowell and Kleinberg, 2007; Xiang, 2008

Link Prediction Approaches (cont.)

- 3. Probabilistic model based approaches
 - Abstract the underlying structure from the observed data network to a compact probabilistic model. Regenerate the unobserved part of the network using the learned model.
 - Example: Probabilistic Relational Models (PRM) framework, Directed Acyclic Probabilistic Entity Relationship (DAPER) framework
- Exponential Random Graph models (p*/ERGM) can be considered as a probabilistic approach based on Markov random graphs.

Predict Link Probability in p*

• Likelihood of a random network with link (*i*,*j*) given an observed network x: $Pr(X_{ij} = 1 | X = x)$

where X_{ij} is an element of a random network X: X_{ij} =1 if (i, j) \in L; X_{ij} =0 otherwise

• Calculate the probability using the statistics of network configurations

$$\Pr(X_{ij} = 1 | \mathbf{X}_{ij}^{c}) = \frac{p(\mathbf{X} = \mathbf{x}_{ij}^{+})}{p(\mathbf{X} = \mathbf{x}_{ij}^{+}) + p(\mathbf{X} = \mathbf{x}_{ij}^{-})} = \frac{\exp\left\{\boldsymbol{\theta}' \mathbf{g}(\mathbf{x}_{ij}^{+})\right\}}{\exp\left\{\boldsymbol{\theta}' \mathbf{g}(\mathbf{x}_{ij}^{+})\right\} + \exp\left\{\boldsymbol{\theta}' \mathbf{g}(\mathbf{x}_{ij}^{-})\right\}}$$

where X_{ij}^c is the rest of the observed network other than the link x_{ij} , x_{ij}^+ and x_{ij}^- are the network realized by fixing x_{ij}^- and x_{ij}^- o, respectively

Benchmarking p*/ERGM recommendations

Northwestern University Clinical and Translational Science (NUCATS)

Enabling assembly of scientific teams to reduce the delays in translational science from "bench to bedside and back"

Evaluation

- Three benchmark data mining approaches
 - 1. Node-wise Similarity-based Approach
 - 2. The Katz Method (Katz 1953)
 - 3. Relational Bayesian Networks (Jaeger 1997)
- Accuracy comparison based on Average Rank of the Correct Recommendation (ARC) (Burke 2005)

Outcome Comparison

Methods	Average Rank of the Correct Recommendation (std. dev.)			
	Nodal features	Network structures	Dyadic covariates	All variables
p* model	4587 (3231)	803 (1370)	3751 (2855)	603 (1148)
Node-wise	5155 (3243)	1671 (2483)		
similarity				
Katz		1652 (2469)	1834 (1551)	1551 (1311) ¹
RBN			3381 (3217)	

Similar to the findings in Liben-Nowell and Kleinburg, 2007, the Katz method has the best performance among the benchmark models. Network structures provide the essential information for the predictions and feature similarity only has a small marginal contribution.

Outcome Comparison

Methods	Average Rank of the Correct Recommendation (std. dev.)			
	Nodal features	Network structures	Dyadic covariates	All variables
p* model	4587 (3231)	803 (1370)	3751 (2855)	603 (1148)
Node-wise	5155 (3243)	1671 (2483)		
similarity				
Katz		1652 (2469)	1834 (1551)	1551 (1311) ¹
RBN			3381 (3217)	

p* models have better performance both in terms of the average rank and consistency of predictions compared to the benchmark models using similar variables. The final p* model utilizes all variables and achieves the best performance.

Upper Bound Comparison

• Ideal way to combine multiple methods

Test cases	Method A	Method B	Method C	Combine(A,B,C)
Validate x _{ij}	$Rank_A(\mathrm{x}_{\mathrm{ij}})$	Rank _B (x _{ii})	Rank _c (x _{ii})	$Min(Rank_A(x_{ij}), Rank_B(x_{ij}), Rank_C(x_{ij}))$
Validate x _{ik}	$Rank_{A}(\mathrm{x}_{\mathrm{ik}})$	$Rank_{B}(\mathbf{x}_{ik})$	$Rank_{C}(\mathbf{x}_{\mathrm{ik}})$	$Min(Rank_A(x_{ik}), Rank_B(x_{ik}), Rank_C(x_{ik}))$

- p* vs. three methods using all variables
 - Combine(Node-wise similarity with nodal features, Katz with network structures, BRN) \rightarrow ARC 411 (p* ARC 603)
- Can the p* model bring more prediction power?
 - Combine(p*, Node-wise similarity with nodal features, Katz with network structures, BRN) \rightarrow ARC 284

Demo

<u>NUCATS Semantic C-IKNOW</u>

science of networks in communities

Key Takeaways

- Web Science is well poised to make a leap in understanding and enabling team assembly by facilitating recent advances in:
 - Theories: Theories about the social motivations for creating, maintaining, dissolving and re-creating networks
 - Data: Developments in Semantic Web/Web 2.0 provide the technological capability to capture, store, merge, and query relational metadata needed to more effectively understand and enable networks.
 - Methods: An ensemble of qualitative and quantitative methods (exponential random graph modeling (p*) techniques to understand and enable theoretically grounded network recommendations.
 - Computational infrastructure: Cloud computing and petascale applications are critical to face the computational challenges in analyzing the data

Get involved with ...

- NetSci 2012 @ Northwestern:
 - Workshops: June 18, Monday June 19, Tuesday
 - Conference: June 19, Tuesday June 22, Friday
- ACM WebSci 2012 @ Northwestern:
 - Workshops: June 21, Thursday
 - Conference: June 22, Friday June 24, Sunday

Acknowledgements

National Cancer Institute U.S. National Institutes of Health | www.cancer.gov

