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Tutorial Goals

e Understand the basic concepts in multi-task learning

e Understand different approaches to model task
relatedness

e Get familiar with different types of multi-task
learning techniques

e |[ntroduce the multi-task learning package: MALSAR
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Tutorial Road Map

e Part |: Multi-task Learning (MTL) background and
motivations

e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Disease Progression
— Dealing with Missing Value in Multiple Sources
— Drosophila Image Analysis

e Part IV: MALSAR: Multi-task Learning via Structural
Regularization Package

e Future directions
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Multiple Tasks

o Examination Scores Prediction! (Argyriou et. al’08)

School 1 - Alverno High School

Student Birth Previous ... School Exam
id year score ranking : score
72981 1985 95 83% ?
\ ] \ ]
|| 1 XX}

©Ron Leishman * www.ClipartOf.com/442096

student-dependent  school-dependent

School 138 - Jefferson Intermediate School

Student  Birth  Previous ... School ... Exam
id year score ranking s score
31256 1986 87 2% ?

\ A J
I 1

student-dependent  school-dependent

School 139 - Rosemead High School

Student  Birth Previous ... School Exam
id year score ranking score
12381 1986 83 77% ?

\ J \ J
I I

student-dependent ~ school-dependent

!The Inner London Education Authority (ILEA)

4
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Learning Multiple Tasks

o Learning from the pool of all tasks

Students with same
Features but different
Exam Scores

Student Birth Previous School

id year score ranking
72981 1985 95 83%
31256 1986 87 72% >
12381 1987 83 7% ?
[ 21901 1986 87 72%

I 3 A
—

School A

<:| School B




BIODESIGN
INSTITUTE

Center for Evolutionary Medicine and Informatics

Learning Multiple Tasks

o Learning each task independently

School 1 - Alverno High School

Student Birth Previous School Exam
i i Score
id year score ranking ; |::>
72981 1985 95 83% ... ?

School 138 - Jefferson Intermediate School

Student Birth Previous School Exam
<j id year score ranking — > | Score
31256 1986 87 72% .. ?

School 139 - Rosemead High School

Student Birth Previous School Exam
id year score ranking — > | Score |:>
12381 1986 83 7% e ?
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Learning Multiple Tasks

o Leaning multiple tasks simultaneously

School 1 - Alverno High School

Student Birth Previous School Exam
i i Score
id year score ranking : |::>
72981 1985 95 83% ... ?

School 138 - Jefferson Intermediate School

Student  Birth Previous School Exam
<j id year score ranking o | Score
31256 1986 87 72% w

School 139 - Rosemead High School

Student Birth Previous School Exam
id year score ranking ——> | Score |:>
12381 1986 83 7% ?

Learn tasks simultaneously
Model the tasks relationship |:>
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Multi-Task Learning

Single Task Learning

e Multi-task Learning is
different from single task
learning in the training
(induction) process.

e |[nductions of multiple
tasks are performed
simultaneously to capture
intrinsic relatedness.
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Learning Methods

transfer learning

multi-task learning

multi-label learning

| @i—class le@

o Transfer Learning
—  Define source & target domains
— Learn on the source domain

— Generalize on the target domain

o Multi-task Learning
— | Model the task relatedness

— Learn all tasks simultaneously

— Tasks may have different data/features

o Multi-label Learning
— Model the label relatedness

— Learn all labels simultaneously

— Labels share the same data/features

o Multi-class Learning

— Learn the classes independently

—  All classes are exclusive
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Web Pages Categorization

e (Classify documents into
C a t e g O I i e S e Classi:iner:' I;’areflr:(:fters
Health odels of different

e The classification of each ety relate
() e

latently related
category is a task

e The tasks of predicting
different categories may
be latently related [Chen
et.al. ICML 09]

Home us. World Politics Business Sports Entertainment Health Tech & science Travel Local Weather

Category
Classifiers

Gadhafi vows 'long war’ after US, allies strike — S . Africa World Blog

i e Pentagon: 'No i

Joy in rebel stronghold after Western attack : indications of Americas Behind the Wall
o civilian casualties' :

Japan reports progress at leaking nuclear complex : Europe Wonderful World

Mullen: Chance Gadhafi could cling to power e - Mideast & N. Africa Weather

% 2 The Week in ] y

Egypt: Voters OK constitution changes \ M Pictures  Asia-Pacific PhotoBlog

Woman, grandson found under rubble in Japan > 22 ~ South & Central Asia The Windsor Knot

s&amshbc.com i » Lo il
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Collaborative Ordinal Regression

Movies You've Rated

e The preference prediction of  soevecenes.

S Yo
rate them an dth YWI” h ow p th I t 0 th p g Sortby >  Star Rating W’

see
youmayh nge the rating for and y —
| may remove a mov efomth Itby I k gth CI Rtg Jump to> ! 5 Stars IC!
each user can be modeled o
TITLE MPAA GENRE STAR RATING +
e 12 Angry Men (1957) UR Classics O ¥ TF B Y 5r | O Clear Rating
L] L] L]
using ordinal regression i muman 6 e oaadis s
m An American in Paris (1951) UR Classics kd Ty o7 kA d r Rating
. - " Add | The Andromeda Strain (1971) [} Ec..lp.a O eIy iy | T Clear Rating
y
e Some users have similar Qoo ©  oam  ORAREd ummm
’ " The Battle of Algiers (1965) UR Foreign o o S N a
B B N m La Battaglia di Algen S ¥ U W W W Slear fating
tastes and their predictions | e oo 0 e ciiian e
=D F;g[?::i:‘)n Madonna Street (1958) UR Foreign Q 9¥ 5F 5.¥ . 5¥ | O Clear Rating
L] L] L] L]
may also have similarities an s e camus vew
"Add | Blade Runner (1982) R gcf»& O B iy B ¥y | T Clear Rating
ntasy

e Simultaneously perform
multiple prediction to use
such similarity information
[Yu et. al. NIPS 06]
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MTL for HIV Therapy Screening

e Hundreds of possible combinations of drugs, some of which
use similar biochemical mechanisms

e The sample available for each combination is limited.
e For a patient, the prediction of using one combination is a

task
e Use the similarity information by simultaneously inference

multiple tasks orug Patent Treatment Record
ETV
D7)
o i
— R :
oD

FTC d

12 Bickel et al. ICML 08
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How to capture shared structures?

-

-

Assumption:

All tasks are related Assumption:

There are outlier tasks

@

o

T Assumption:
13 As;:smkfﬂg\?é group structures The relationship is not symmetric
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How to capture shared structures?

Methods

* Mean-regularized MTL
RS g

X " * Joint feature learning

X <Al < Low rank regularized
% MTL

e alternating structural

Assumption:

All tasks are related Opt|m|zat|0n (ASO)
e Shared Parameter
Gaussian Process
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How to capture shared structures?

Methods
e Clustered MTL
* Tree MTL
 Network MTL

\Ké’;ﬁmption:
Tasks have group structures

®

Assumption:
Tasks have tree structures

Assumption: 4

:: |“ E :: :: E ‘\\\ ‘ 4 ‘
Tasks have graph/network structures @ @ @ @ Q @ @ @ Q @

Models
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How to capture shared structures?

Methods
- + Robust MTL

-

Assumption:
There are outlier tasks
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How to capture shared structures?

Methods
* Asymmetric MTL

Q

-

Assumption: )
The relationship is not symmetric
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All tasks are related

e Shared Hidden Node in
Neural Network

\q \ * Shared Parameter
QXK -‘ Gaussian Process
v
X “' * Regularization-based MTL
% * Mean-regularized MTL

* Joint feature learning

Assumption: * Low rank regularized
MTL
* alternating structural
optimization

All tasks are related
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Sharing Hidden Nodes in Neural Network

* Neural network has been well studied for learning multiple
related tasks for improved generalization performance.

e A set of hidden units are shared among multiple tasks for
improved generalization (Caruana ML 97).

Task 1 Task 2 Task 3 Task 4

e o
Sha \

Inputs

=
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Mortality Rank

e Future lab results are used as extra outputs to bias
learning for the main risk prediction task

//——\

M%ratﬁ:(ity Hematocrit V}:hclltfgggfl Potassium -+— FUTURE LABS
RANKPROP [ ‘ [ ‘
B OUTPUT LAYER
OUTPUT

SHARED HIDDEN LAYER

Diabetic —>O\O

O00000O0 - INPUT LAYER
2 5 &2 8 =2 8 5

2 8 § S
" g % 3z '25 INPUTS

< 5 B E

20
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Shared Parameter Gaussian Process

e |n (Lawrence and Platt, ICML 04) an efficient method is proposed to
learn the parameters (of a shared covariance function) for the
Gaussian process.

e adopts the multi-task informative vector machine (IVM) to greedily
select the most informative examples from the separate tasks and
hence alleviate the computation cost.

® 0 © o
(%) ()
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Common Latent Representation in
Nonparametric Bayesian Models

e Multi-Task Infinite Latent Support Vector Machines
(Zhu, J. et al NIPS 11)

W
IBP(Qr)— e

@N

(a)
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Regularization-based Multi-task Learning

e All tasks are shared
— regularized MTL, joint feature learning, low rank MTL, ASO

e Tasks form groups
— clustered MTL, Network/Tree MTL

e Learning with outlier tasks: robust MTL

e Asymmetric MTL
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Regularized Multi-Task Learning

e Assume all tasks are related in that the models of all
tasks come from a particular distribution (Evgeniou
& Pontil, KDD 04)

Regularization
penalizes the deviation of
each task from the mean

(v 1
11%111114055 V) +/\ZHH£ ZU |
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Regularized Multi-Task Learning

e Assumption: task parameter vectors of all tasks are
close to each other.

— Advantage: smooth objective, easy to optimize
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Multi-Task Learning with Joint Feature
Learning

e One way to capture the task BRI S
relatedness from multiple Feature 1
related tasks is to constrain Feature 2
all models to share a common ™’
set of features.

e For example, in school data,  Fetures
the scores from different Feature?
schools may be determined
by a similar set of features.

Feature 9
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Multi-Task Learning with Joint Feature
Learning

e Using group sparsity: £1/£,-norm regularization

v X W .
BEE B
BT

REE O

““. : x L Lees 1y

. B : H
\ ' EEE =
\ . L EEE &
T 0’\:;put ’ Input T M:del ] Noise
nxk nxp pxk nxk
. 1%
min= |[XW — Y|4 ""lz Wi
in | 17 . lw:l

1

27 l
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Joint Feature Selection in Disease
Progression

e The progression of disease is assumed to involve the same
set of features at different time points [Zhou et.al. KDD 11].

X

Feature Space: d Task (Time Point): t

W

Task (Time Point): t

Relrwved Feature

c
o b o] 'Ln
€ © © T .| Removed Feature c
© (] (] ] 9 3
b = = = n Y~/ =
- -
|5 g [ v Il ~~— £
@ > > > 5 S
4(-6 o (=] o 1__6 A
-
& §15 3 2| Removed Feature €
(0]
€ | (3 2
(T
o
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Joint Feature Selection in Disease
Progression

MRI data Template PET data CSF data Clinical scores

68,13 MMSE;
1,42 ADAS-Cog;
Class labels

e |n predicting
different cognitive
scores, there may be

shared features from Extract MRI Extract PET :
] features features :
different data -
|

sources. :
. . i

e Multi-modal multi- o
: Compute Compute Compute |, !

ta S k |ea rni ng [Zh 3 ng’ § kernel ‘ kerriel ¢kernel :
: i

D. et.al. Neurolmage | Kernel combination o
12] E l ‘ ______________ ]E_.._._

SVM (Regression/Classification)

» Multi-Modal Support Vector Machine .
29 ________________________________________
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Multi-Task Learning with Joint Feature
Learning — L,L,

* More general £, /¥ ,-norm regularization:

*

Y X w 7 -
BT O [
BT
BT

“‘m‘ . x i el +
e I
|  mBEE B
| ~ 1 BEE B
o O‘utput ’ Input o Iviodel ’ Noise
nxk nxp pxk nxk
p
1 2
min 3 IXW = YIIE+2 ) Iwil,

1

30 l
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INSTITUTE

Multi-Task Learning with Joint Feature
Learning — L,L,
e The selection of g may depend on the distribution of
the model:

SORSUT

0.001
0.004
0.007
0.01

0.04

W ~N(Mean, Variance)

0.07

Mean

0.1
0.4

0.7
1
4
7
10
40
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Trace-Norm Regularized MTL

o Capture Task Relatedness via a Shared Low-Rank Structure

task 1 |:> |:> trained |:> [ generalization]
data model
task 2 |:> |:> trained |:> [ generalization]
data model
[ J
[ J

task n |:> |:> trained |:> [generalization]
data model

[ A shared low-rank structure ]
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Low-Rank Structure for MTL

training data weight vector  target basis vector  basis vector

;—;;\

Task 1 [ |

u

Task 2 AR

NN

Task 3 Vo] X | = 2 | = "N + V2
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Low-Rank Structure for MTL

a1 ap
X p1 B ]
Y1 VY2

Iy 0>

Basis vectors Coefficients
T11 T1m
X :
T pl T pm
L ] _ N
Y Y m > p

m tasks p basis vectors
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Low-Rank Structure for MTL

e Rank minimization formulation
~ mmi/n Loss(W) + A X Rank(W)
— Rank minimization is NP-Hard

e Convex relaxation: trace norm minimization

~ min Loss(W) + A x ||W]I.

— Trace-norm minimization is the convex envelope of the
rank minimization (Fazel et al., 2001).
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Low-Rank Structure for MTL

o Evaluation on the School datal:

* Predict exam scores for 15362 students from 139 schools
* Describe each student by 27 attributes
 Compare Ridge Regression, Lasso, and Trace Norm (for inducing a low-rank structure)

1.05 T T T T T T
—©— Ridge Regression
¥ o Lasso Performance measure:
1k —=— Trace Norm i

mean squared error

N-MSE =
0.95 variance (target)
W 0.9
7]
= The Low-Rank Structure
0-85 (induced via Trace Norm)
08 leads to the smallest N-MSE.
0.75
0.7 -
1 2 3 4 5 6 7 8

Index of Training Ratio

Ihttp://ttic.uchicago.edu/~argyriou/code/

36
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Low-Rank Structure for MTL

o Evaluation on the Face datal:

* Trace Norm (low-rank structure)

Rough shape
of the faces
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A shared Low-Rank Structure for MTL
o Learning from the i-th task (Ando et. al.’05, Chen et. al.’09)

training data weight vector  target
)

the i-th task Lo |

u

shared among tasks <j |:| + |:> specific for each task

\

Y
weight vector u; =0v; + w; eTo = I,

38
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A shared Low-Rank Structure for MTL

o Learning from multiple tasks
_up; Uz Um

: 1, V2, :_Ym] + [WliWZ' '"in]

Y A
[ I \
% + + XX % + %
[~ ] ] 111 __\
g 7 ] | & H-H _—/
\ Y ] \ Y ] \ Y )
39 transformation matrix a shared low rank structure a task-specific structure
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Empirical Loss

o Learning from the i-th task

X; Uj =9Vi + W; Vi

— = ]

u

o Empirical loss on the i-th task, for example,

LiXi(0v; + wy),y1) = IX;(0v; + wy) —y; |I?

40
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IASO Formulation

o IASO formulation

m
minimize Z{Li(Xi(GVi +wy), v + allov; + w;l|? + B |lw;]|?}
0,{vi,wi} i=1

subjectto 010 =1

e control both model complexity and task relatedness
e subsume ASO (Ando et al’05) and SVM as special cases
* naturally lead to a convex relaxation (Chen et al., 10)

e iASO and cASO are equivalent under certain conditions
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Multi-Task Learning with Clustered
Structure

* Most MTL techniques assume
all tasks are related

* Not true in many applications

e Clustered multi-task learning

assumes
% the tasks have group A ekt have group structures
structures
** the models of tasks from the e.g. tasks in the yellow group are
same group are closer to each ~ Predictions of heart related
diseases and in the blue group are
other than those from a brain related diseases.

different group
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Task Clustering in Neural Network
e Bakker and Heskes JMLR 2003

[ P(A|m,.Z) } [ P.(A|m,,2) }
//’R\S“"‘*-. 227
q, S s ; B o ; 4,
,\f":\*’:)\“" T
| & _ ~ o~ -
- ~ i
yl Yn
A,
u .
h;, bias
. " )
45 Inputs X bias
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Clustered Multi-Task Learning

e Use regularization to capture clustered structures.

m N Clustered Models |

% Training Data X { 1 : . :
* — i
****************** « = e el
7777777777777777777 e i Cluster 1 Cluster 2 Cluster k-1 Clusterk
) e Custer2 ‘

-----
e s

% Training Data
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Clustered Multi-Task Learning

e (Capture structures by minimizing sum-
of-square error (SSE) in K-means

(4
clustering:
K
. _ n2
min > " [|lw, — ]|
| ——

]=1UEI]' W 7\ J

. th CIu‘srter 1 CIuster 2 Cluster k-1 Cluster k
l;index set of j*" cluster | - T

= auin - e, Q@ 1
Equivalent 7 . % o

m tasks

- P14

O O OO it 1
min tI‘(WT W) —tr (FT WT WF) ---------- O usterk

F task number m < cluster number k

F : m Xk orthogonal cluster indicator matrix
F;; =1/ /n;ifi € I; and 0 otherwise
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Clustered Multi-Task Learning

e Directly minimizing SSE is hard —— 5O
because of the non-linear
constraint on F:
min tr(Ww) —wow(F'wtwr) COUOUUDUL UL
CIu‘srter 1 CIus?ng Cluster k-1 Cluster k
F : m Xk orthogonal cluster indicator matrix "“Clustered Models e dusterz
F ;= 1/\/71- if i € I; and 0 otherwise O
o 0 (i O

- -~

Spectral Relaxation Ay i

---------- ~'Cluster k

.......

task number m < cluster number k

min tr(W'W) — tr(F"W'WF)
F:FTF=,,

Zha et. al. 2001 NIPS
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Clustered Multi-Task Learning

e Clustered multi-task learning (CMLT) formulation
[Zhou et. al. NIPS 2011]

min Loss(W) + a[tr(WTW) — tr(F*WTWEF)] + B tr(W™W)
W,F:FTF=I,

capture cluster structures Improves
________ Cluster 2 generalization
SO performance
Clustf[_l___.\ :: O .......
o O O
O O~y =i O.
O O."‘ ,"/ O\' -~ Cluster k-1
--------- \‘O -":Clusterk

-------
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Convex Clustered Multi-Task Learning

WFI'IFl'%rI}'—I Loss(W) + a[tr(W W) — tr(F*TWTWF)] + g tr(WTW)
Equiivalent

_an(l +mMtr(Wnl + FFH~1w?T) |

Chen et al KDD 2009

convex av*X’:’a_t:I@[! Jacob et al NIPS 2009

Zhou et al NIPS 2010
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Convex Clustered Multi-Task Learning
e Synthetic Study [Zhou NIPS 2011]

ez o
b
)
L
SR

noise introduced

Ground Truth Single Task Learning by relaxations

oy BEiR

Wrank can also
veltcapture
er structure

Mean Regularized MTL Trace Norm Regularized Convex Relaxed CMTL
MTL
51




BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

Multi-Task Learning with Tree Structures

e |n some scenarios, the
tasks may be equipped

with tree structures: A Faske have tree structures
— The tasks belong to the

same node are similar
to each other

— The similarity between
two nodes is structured

and relates to the @@@@Q@@QQQ

depth of the ‘common’” Models
tree node Task a is more similar with b,

comparing to c
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Multi-Task Learning with Tree Structures
e Tree-Guided Group Lasso (Kim and Xing 2010 ICML)

Input Features

Structu re

132 Bs

.

Output (Tasks)

mﬁin Loss(B) + /12 Z Wv”ﬁév“z

j VeV

 Gus={By o Bs}

GuutBy B}

Gv3- {33}
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Multi-Task Learning with Graph Structures

e |n real applications, tasks
involved in MTL may have
graph structures B

— The two tasks are related if they
are connected in a graph, i.e. the
connected tasks are similar

— The similarity of two related

Assumption:

taSkS can be representEd by the Tasks have graph/network structures
weight of the connecting edge.




BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

Multi-Task Learning with Graph Structures

e Graph-guided Fused Lasso (Chen et. al. UAI11)
iS¢ ACGTTTTACTGTACAATTTAC

TR -

Output phenotype O O O

e % ACGTTTTACTGTACAATTTAC

J)& } Graph-Guided
Fused Lasso
Output phenotype %

min Loss(W) + AW ||, @ Graph-guided Fusion Penalty

aw) =y Z (") zlem - Sign(rmz)lel
55 e=(ml)€E =
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Quantitative fTrait Network

e Linked Edge: the
corresponding two 7 J]
traits are highly
correlated. S‘*““

e Thicknesses: strength

Ny, CAllergySpring>

QPostbroFVC>
ﬁf_ — . .| Subnetwork fol
remd quality of life
wip S

Neutrophis>

of correlation.

e |dentifying SNPs that
are associated with a
subnetwork of clinical | = 7 e e
traits (Kim and Xing | £ AT \

Quantitative Traits (Raw Data)

!
|
2 009 ) : AvgCigar  ShortBreath LoglgE ... ChestTight
[ ]
;
1
1
|

CPredughVCD> VD '_‘\\,
A NI g Lo
Hpsel _7 S~ .
Subnetworks fo \ =\ A
lung physiology 1A . (Pred v o
CFEV1DIff )——PostFEF >
\

CMaxFVCP>

ymphocylesDi>

AllergyBreathy e
——— lymphooytes — QenichoacD

\
|
|
|
|
|
|
|
|
|
|
L - |
CAllergySummer> I
|
|
|
|
|
|
|
|
|
|
|
|
prap——— |
CEotinophisDED> |

Sbuject 1 5 3 0.91 et 2

1
1
|
I
|
Subject 2 3 5 2.18 A 4 :
Subject 3 10 1 1.95 e 1 :

1
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Graph-Weighted Fused Lasso

e Lasso: each phenotype represented as a circle is
independently mapped to SNPs for association

e Graph-constrained fused Lasso: consider a QTN to search for
an association between a SNP and a subnetwork of traits.

e Graph-weighted fused Lasso: consider a QTN with edge

weights.
—————— "\ S ———
. Genotypes ; Genotypes ;
K a..f.cH...a 8....71..8 K.
.| .l cll....t. B...c..R.B.
il ..¢..4 .&.
| |

Traits

\,

' Traits
Vi S »
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Robust Multi-Task Learning
o Most Existing MTL Approaches o Robust MTL Approaches

equally weighted

relevant tasks

irrelevant tasks
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Incoherent Low-Rank and Sparse Structures

o Learning from the i-th task

training data weight vector target

Select discriminative
features for each task

Capture task relatedness

\ J \ J
| |

Low rank structure Entry-wise sparse structure

59
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Incoherent Low-Rank and Sparse Structures

Low-rank structure Entry-wise sparse structure

~ b1 P Pmo 4 4 dm

— — - —

i i

1P1]. Qll;
(Sum of singular values) (Sum of the absolute values of all entries)
AllQll4

IPIl. <7
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ISLR Formulation

o Empirical loss on the i-th task, e.g.,

LiXi(pi + 9i),yi) = IXi(pi + i) —yi |I?

o Incoherent Sparse Low-Rank (ISLR) formulation

m
zLi(Xi(pi +q1),yi) + AllQll;
i=1

minimize
P,
subjectto ||P||. <7

* Convex formulation

* Decomposed sparse and low-rank structures
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Low-Rank and Group Sparsity in MTL

o Learning from the i-th task

training data weight vector target

: X 8
SEEENENENNNN
Capture task relatedness Identify irrelevant tasks via
:L non-zero vectors
| J \ J
| |
Low rank structure Group sparse structure
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Low-Rank and Group Sparsity in MTL

Low-rank structure Group sparse structure
_ ll _ll l’l‘_‘ | ii Sm__
S N — T T pg
/ \
i ST
/ \
/ \
// I \\
L1 G (TP
/ \
/ \

lll \/
M 1

(Sum of singular values in L)

[
”51”2 ”Si”2 ”Smllz
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Robust MTL Formulation

o Empirical loss on the i-th task, e.g.,
LiX;(; +5),y) = X +sp) —y; 112

o Robust MTL Formulation

m
minimize ) £(X;(l + 50,0 + allLll, + BIISIl
' i=1

e Capture task relatedness via a low-rank structure

* |dentify irrelevant tasks via a group-sparse structure
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Performance Bound

o Assumption on the existence of k;(s) and k,(q)
* Training data
e Geometric structure of the coefficient matrices

o Performance Bound

N N 2
mXT(L +8) - Al < E)Uii,nsfi}% X+ s) - Al + CD(E)( 2oy T Kgﬁ(c))

with the probability of at least 1 — me —3(t-alog(1+3))
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Robust Multi-Task Feature Learning

e Simultaneously captures a common set of features

among relevant tasks and identifies outlier tasks:
ol N N
Ha HE D
+ O [T
= | Tl
| |
P Q W
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Robust Multi-Task Feature Learning

e Formulation:

. 1 T 2 T
X wi —vill” + APl o )\H ‘
L%;:l}_;&?;mm _ y + M |[Pll12 + A2 ||Q 1o
st. W =P+ Q,
e Algorithm:
— Accelerated Gradient Method
— Proximal Operator problems:
)
pP* =;-J\Jr\;,>;minl P— (Rk—ivRZ(R’“,Sk)> gt 1Pl ,
P 2 Mk r Nk )
k ! | ko ok DY T
Q" =argmin - [|Q — | S" — —Vsl(R",S") + — ||Q H
o 2 Nk Fo Tk 1,2
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Robust Multi-Task Feature Learning

e Theoretical Guarantees
— With probability of at least 1 —exp (—3 (t —dmlog (1 + 7=)))

m 9 ™m 1
Z rer H)i qu Al Qz) i Z E

1= 1=

2
X;r(p: + q?;) — f:

A ey

— With probability of 1 —exp (—3 (t —dmlog (1 + 5=))) (t > 0)

IANVT | 2da /e’
)

et 0yt <

T
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Optimization Algorithms

Objective
min f(x) = loss(x) + 1 X Q(x)

Loss Function loss(x)
— Least Squares Loss
— Logistic Loss

Convex and Smooth Penalty Q(x)

— Regularized MTL

Convex but Non-Smooth Penalty Q(x)
- ¥51 —Norm

— Dirty MTL

— Trace Norm

Non-Convex Penalty Q(x)

— Convex Relaxation
— CMTL
— ASO
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Optimization Algorithms

Objective
min f(x) = loss(x) + 1 X Q(x)

e Gradient Descent (GD)

e Accelerated Gradient Method (AGM)
— Solving Proximal Operator
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Gradient Descent

e Gradient descent is an algorithm to solve smooth
optimization problems min f(x):
X
— Repeat x;,.1 = x; — ¥;f ' (x;) until convergence criterion is
met.

— f(x) is continuously differentiable with Lipchitz
continuous gradient L then if y; < 1/L we can obtain the
convergence rate of O(1/N)

e Most optimization problems in MTL are non-convex.

e Can we apply gradient descent to non-smooth
problems?
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Gradient Descent

Repeat
Smooth Objective X1 = x; — Vif " (x;)
min f (x) until convergence
||
¥ Equivalent

Repeat

X1 = argmin M(x;,¥;)
until convergence

Model
1
M (x;,vi) =|[f O + (O, x — x3)] + 2 llx — x; 13
l
1st order Regularization

Taylor expansion

72
e



BIODESIGN . o n 0
Center for Evolutionary Medicine and Informatics

INSTITUTE

Gradient Descent

Objective
min f(x) = loss(x) + 4 X Q(x)

Composite Model

l

1
M(Cx;,vi) =|1f () + (F(x), x — x)] + o llx — ;115 +HA X Q(x)

1st order Regularization Non Smooth
Penalty

Taylor expansion

Repeat
Xi41 = argmin M(x;,v;)

until convergence

e Using the gradient descent with composite model to
solve non-smooth optimization problems.

e Convergence Rate O(1/N)

73
e
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Gradient Descent

Repeat
Xiy1 = argmin M(x;,v;)

until convergence Composite Model

1
M(x;,vi) = [f () +(f (i) x — x)] + Z llx — x;l15 + 24 x Q(x)

¥ Equivalent

Proximal Operator (Moreau, 1965)

xi41 = argmin flx — vl + p X Q(x)
X

v = x; — y;loss' (x;)
p = Vil
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Accelerated Gradient Method (AGM)

e A faster extension of gradient descent (Nesterov,
1983; Nemirovski, 1994; Nesterov 2004)

| Gradient Descent ; Accelerated Gradient Descent

Repeat
s =%+ a; (¢ — x4-41)
— !/
xiv1 =% — Vif ()
until convergence

Repeat
Xiv1 = x; — Vif ()
until convergence

Convergence: O(1/N) Convergence: 0(1/N?)
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Accelerated Gradient Method (AGM)

Composite Model

1
M, vi) = [F () + (F (x), x — x)] + 5—llx — x;115 + 2 X Q(x)

2Y;
| Gradient Descent . Accelerated Gradient Descent
Repeat | | Repeat
Xi+1 = argmin M (x;, y;) S; = x; + (g — xi-1)
until convergence Xi41 = argmin M(s;, ;)
| | until convergence

al operator

N L
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Optimization with Non-Convex Objectives

e |n multi-task learning, optimization objectives
involved may be non-convex (e.g. clustered multi-
task learning).

e Directly applying convex optimization techniques
may obtain suboptimal solutions.

e Convex Relaxation
— General non-convex problem: find convex envelope

e Rank minimization - Trace-norm minimization

— Difference of convex (DC) problem: Convex-Concave
Procedure (CCCP)[Yuille and Rangarajan NIPS 2001]

e £, /¥, 5-regularization - Reweighted group Lasso
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Difference of Convex (DC) Programming

e The objective can be written in the form:
- min f(x) — g(x)
- f(x) and g(x) are convex functions.

e We linearize g(x) using the 1%t order Taylor
expansion at x':

- f(x)—g(x) =fx) —gx") —(Vgx'),x —x')
e |n every iteration of CCCP, we minimize the upper
bound:

- X1 = argmin, f(x) — (Vg (xg), x)
e The objective function is guaranteed to decrease

78
e
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Case Study: Disease Progression

e Alzheimer’s Disease (AD) is
— the most common type of dementia;
— severe neurodegenerative disorder;
— definitive diagnosed only through brain biopsy or autopsy;

— clinically diagnosed by clinical/cognitive measures including
MMSE and ADAS-Cog.
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Modeling Disease Progression

e The prediction of cognitive scores at each time point can

be modeled as a regression task.
X Y

Feature Space: d Task (Time Point): t

W

Task {Time Point]: t

* Patient ID: 125

Patient Sample: n
Feature Size: d
Patient Sample: n

2

Ly o, R
%\%rﬁ%ﬂ:@ﬁ'

o, o, T, e
I, e I, e e, e "3'{,{ %

& G % % navirnHXW—Y”% + 61 ||W||f?

ey qﬂ’ﬁ% ", ", 0,
W, R
e Motivation of using multi-task learning: the ability to
explore inherent relationships among related tasks and

enforce such knowledge using proper regularizations.

I
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Temporal Smoothness

e Prior knowledge: the change of cognitive scores
should be small for a patient. The scores should not
fluctuate:

! !
\/\ \
%\@% x?,%%@ ef% é %LJ%J;F %%% in{?%@ %, é 35“’?5%}*
| | ST 2
min XV = Y[+ 00 (W + 623 o = 0]

=1
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Temporal Group Lasso

e Assumption: there is only a small subset of features related to
disease progression, shared among tasks.

e Achieve this using group sparsity:

Feature Space: d Task {Time Point]: t
Task [Time Paoint): t
= Removed Feajure
¥ b |k = -
E E__E E g Removed Feajure ;
£ R -~ X v =2
= g | 8 & | b
& E——E E E Removefl Feature E
e | = [ =
&
Fa =
%@%9@%?%%%
&, % & G, v
5 L P PR
5(2%%4% wﬂ/{? ,\%}{{%‘%ﬁ; %f, -5‘4% 1-7% 'a*% d‘{%
T, A 4, Cq Fe £ TR T T
P P
L Vg % e T, Tt
q.a s 4;}, S
,;:__@ ] el,,& p‘%
T
. 2 4 5 2
min L(W) + 61 |W||% + 02 HRW H + 65 ||W]l, 4
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Fused Sparse Group Lasso

e Goal: find temporal patterns of the
biomarkers in the disease
progression. \\4

Task [Time Point): t

e Simultaneous feature selection via

Removed Feafure
Fused LaSSO: 2| Remnoved Feafure
— a common set of biomarkers for multiple ”‘
tlme pOIntS E Remowed Feature
— specific sets of biomarkers for different
time points %%,;,%:Eﬂf ?
e |ncorporate the temporal smoothness cr

via Group Lasso.



BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

Fused Sparse Group Lasso

e The convex formulation:

; i
min L(W) + Ay [|W]), +Xs HRW Il1 + s W],
e Non-convex formulations:

— Reduce shrinkage bias

— Closer to the optimal /,-norm

— Fewer tuning parameters

d
min LW) + A > VWil + 4[| B4

W
i—1

min L(W) + A S \/IBWT |1 + Bllwill:
=1

W
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Performance

e MTL outperforms STL

e Fused sparse group Lasso formulations achieve better
performance than Temporal group Lasso

Ridge TGL cFSGL nFSGL1 nkFSGL2
Target: MMSE

nMSE 0.548 £ 0.057 0.449+0.045 0.400+0.053 0.4124+0.054 0.408 + 0.056
R 0.689 =0.030  0.755 +0.029 0.790 4 0.032 0.7884+0.031 0.792 +0.031

MO06 MSE | 2.269 £0.207 2.038 £0.262  2.069 £+ 0.209 2.149 £ 0.194 2.181 £ 0.201
M12 MSE | 3.266 £0.556  2.923 £ 0.643 2.803 £0.662 2.8351+0.662 2.793 £ 0.659
M24 MSE | 3.494 £0.599  3.363 £0.733 3.016 £ 0.624 3.031 £0.604  2.979 £+ 0.546
M36 MSE | 4.003 £0.853  3.768 £+ 0.962 3.302 +£0.781 3.2634+0.78 3.211 +0.786
M48 MSE | 4.328 =21.310  3.631 £ 1.226 2.787 £0.871 2.780 £ 0.855 2.766 + 0.826

Target: ADAS-Cog

nMSE 0.5324+0.095 0.464 + 0.067 0.404 4+ 0.055 0.386 = 0.060 0.381 +0.057
R 0.705+£0.043 0.747 £ 0.033 0.791 £20.026 0.809+0.023 0.809 £0.023
MO06 MSE | 5.213 £0.522  4.820 &+ 0.489 4.543 £ 0.374 4.458 +0.354 4.428 £ 0.351
M12 MSE | 6.079£0.775 5.813 £ 0.697 5.363 £ 0.595 5.183 £ 0.597 5.136 £0.617
M24 MSE | 7.409+1.154 6.835 + 1.052 6.456 +0.974 6.1744+0.943 6.153 +0.911
M36 MSE | 7.143+1.351 6.938 &+ 1.363 6.101 21.071 5.8191+:0.945 5.87910.972
M48 MSE | 6.644 =2.750  6.000 = 2.738 5.751 £ 2.081 5.880 +1.848 5.837 £2.160
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Performance
Ridge TGL cFSGL nFSGL1 nkFSGL2
Target: MMSE
nMSE 0.404 +0.056 0.320 £0.044  0.311 £ 0.042 0.308 = 0.046  0.303 £ 0.046
R 0.788 &2 0.032 0.839 £ 0.027  0.841 £ 0.026 0.839 4 0.027  0.843 £ 0.027
MO6 MSE | 2.188 £0.194 1.943£0.161  1.912+£0.153 1.935 £ 0.150 1.906 = 0.149
M12 MSE | 2.744 £ 0.638 2.366 £0.722  2.356 £0.713 2.374 £0.696  2.326 £0.707
M24 MSE | 3.113 %+ 0.560 2.821 £0.664  2.823 £ 0.656 2.766 £0.601  2.730 £ 0.604
M36 MSE | 3.150 £ 0.517 2.933 £0.657 2.878 £0.640 2.755 £ 0.550 2.792 +0.523
M48 MSE | 3.639 £ 0.959 3.544 £1.136 3.098 £1.013 2.942 +£0.928 2.961 £ 0.969
Target: ADAS-Cog

nMSE 0.3144+0.036 0.278 £0.034 0.233+0.035 0.238 +0.035 0.243 +0.035
R 0.840 4 0.015 0.868 £0.016 0.886 +0.014 0.884 + 0.015 0.880 4+ 0.013
MO6 MSE | 3.972 +0.415 3.560 £ 0.469  3.553 £+ 0.375 3.659 4 0.356  3.535 4+ 0.403
M12 MSE | 4.365 % 0.469 4.080 £0.598 3.678 £0.389  3.739 £ 0.367 3.742 4+ 0.430
M24 MSE | 6.028 & 1.128 5.888 +1.641 5.115+1.277 5.111 +£1.222 5257+ 1.337
M36 MSE | 5.824 +1.076 5.639 £ 1.339  4.747 £0.957 4.737 +0.917 5.055+1.033
M48 MSE | 6.192 & 2.327 6.337 £2.487 5.065£1.446 4.968 £1.339  5.404 & 1.802
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Longitudinal Stability Selection on ADAS-Cog

e Using FSGL

e From the distribution of stability scores, we can
observe temporal patters of MRI biomarkers.

T T T T T T T T T T

MO6 |-

M12 -

M24
M36

(a) Target: ADAS-Cog (25 stable features)
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Longitudinal Stability Selection on MMSE
observe temporal patters of MRI b

e From the distribution of stability scores, we can
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Case Study: Missing Data in Multi-Source
Learning

e |n many applications, y MRI e
multiple data sources Jesoosese| |
0 I
may suffer from a 00000000 |
. LA & &2 a 2 24 2 an o oo oo
considerable amount of 00000000 96000
missing data. : 00000000 96664
Subleci | 0000000000000

 In ADNI, over half of the : : :
_ Sublectus | 00000000 96600
subjects lack CSF e 00000000 |
Subject | 00000000 |
measurements; an Y & ~ N /

independent half of the
subjects do not have
FDG-PET.
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Challenges

e Simply removing samples with missing values will

dramatically reduces the number of samples in the
analysis.

e Plus, the resource and time devoted to those
subjects with incomplete data are totally wasted.

e Estimating the entire chunk of missing values is very
challenging.
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Incomplete Multi Source Feature Learning
(iMSF)

e A “row-wise” strategy

— We first partition the samples into multiple blocks, one for
each combination of data sources available

— We then build one different model for each block of data

— Using multi-task techniques, all models involving a specific
source are constrained to select a common set of features
for that particular source
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Overview of iMSF

Model |

Model Il
Model Il

i Model IV
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iMSF: the Formulation

e Suppose the data set is divided into m tasks: T* = {x},y}},
i =1..m,j =1..N;, where N; is the number of subjects in
the i-th task

e Denote 3! as the weight vector for the i-th task

* fi(sk) denotes all the model parameters corresponding to the
k-th feature in the s-th data source

e We Solve:

S Ds

m N;
1 1 L
Y Qi 0 40, ) el

s=1k=1
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ARIZONA STATE UNIVERSITY

iIMSF: Performance

0.85
0.84
0.83 .
m iMSF
3 082
E H Zero
0.81
3 = EM
Q
< 0.8 = KNN
0.79
m SVD
0.78
0.77 I R .
50.0% 66.7% 75.0%
0.5 1
0.45
0.4 0.99
0.35 m iMSF m iMSF
.*? ; 0.98
2 0.3 m Zero ] m Zero
X2 025 = 097
7] mEM o mEM
5 0.2 g_
v 0.15 m KNN o 0.96 = KNN
0.1 mSvD 0.95 mSVD
0.05
0 0.94

50.0% 66.7% 75.0% 50.0% 66.7% 75.0%
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Case Study: Drosophila Gene Expression
Image Analysis

Quantitative Anatomy
[Megason and Fraser (2007) Cell]
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“We are much more like
flies in our development
than you might think.”

L. Wolpert

m Syncytial
___blastoderm

€ 3
- o Eﬁge 3-4
i ’ ’ [ N Days fertilization® :
?1‘ | | )—-’j afte.ro * g
o -_L_J___J___J_-J‘/ fertilization® Manis = 180 Gastrulation .
after embryogenesis
f'"m
lava -~ —— J
_,—f‘/-_ —J? 24
I// J!
ﬁ = S & /—j
third instar TV T T
// ,/
{ /l
} - 3 e el
secondinstar '
first instar =

*At 25°Cincubation

[Wolpert et al. (2006) Principles of Development]




Center for Evolutionary Medicine and Informatics

Drosophila gene expression pattern images

. . LY )

Var, Vi
~ LEXT T X
en i1 d - A - ) V
/,f. Fivins Fivins ST T
Stage 4-6 Stage 7-8 Stage 9-10 Stage 11-12 Stage 13-

Berkeley Drosophila Genome Project (BDGP)
http://www.fruitfly.org/

Stage 1-3 Stage 4-5 Stage 6-7 Stage 8-9 Stage 10-
Fly-FISH

http://fly-fish.ccbr.utoronto.ca/
[Tomancak et al. (2002) Genome Biology; Lécuyer et al. (2007) Cell]

Expressions

hb

runt
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Comparative image analysis

Twist heartless

T

stage 4-6
anterior endoderm AISN dorsal ectoderm AISN
trunk mesoderm AISN procephalic ectoderm AISN
subset subset
cellular blastoderm cellular blastoderm
mesoderm AISN mesoderm AISN

stage 7-8 “ s"

trunk mesoderm PR
head mesoderm PR
anterior endoderm anlage

trunk mesoderm PR
head mesoderm PR

stumps

L

anterior endoderm AISN
trunk mesoderm AISN
head mesoderm AISN

yolk nuclei

trunk mesoderm PR

head mesoderm PR
anterior endoderm anlage

We need the spatial and temporal annotations of expressions

[Tomancak et al. (2002) Genome Biology; Sandmann et al. (2007) Genes & Dev.]
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Challenges of manual annotation

180000

160000 - —
Cumulative number of in situ images

140000

20000

1
100000

80000

60000

Number of images

40000

20000

0 ___-l,.,llll[

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
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procephalic ectoderm
primordium . .
ventral ectoderm primordum NUSC I e p rimo rd ium

inclusive hindgut primordium

mesectoderm primordium
trunk mesoderm primordium

head epidermis primordium P1
clypeo-labral primordium
atrium primordium

dorsal epidermis primordium
ventral epidermis primordium
ventral nerve cord primordium
hindgut proper primordium
midline primordium

Multiple keywords are associated with multiple images
Exact correspondences among keywords and images are NOT given

e Prior approaches assume all keywords are associated with all images
— Zhou and Peng (2007) Bioinformatics

[tagell-lz J ..”'f‘\'\\ 2
o *41 4 : ‘
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What are the challenges?

“We used human annotation, rather than automated approaches
based on pattern recognition algorithms, because of the
overwhelming complexity of annotation. Variation in morphology
and incomplete knowledge of the shape and position of various
embryonic structures make computational approaches
impracticable at present.”

P. Tomancak et al. (2002) Genome Biology

Local invariant High-level Multi-task
features representations learning
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Method outline

Feature extraction Model construction

Kernel-based
approach

Low-rank

Bag-of-words .
& multi-task

Images

Graph-based

Sparse coding multi-task

[Ji et al. (2008) Bioinformatics; Ji et al. (2009) BMC Bioinformatics; Ji et al. (2009) NIPS]
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From bag-of-words to sparse coding

Bag-of-words . 0 1 0
/ min 1HAx—u\2
X 2

st. x {01}, x'e=1

codebook

U [ 1

»

A —) . 02| 06| 03

Sparse coding

Both can be improved by incorporating the

min - Ax—ulf + 2],

proximity information of local patches

st. x>0

[Ji et al. (2009) SIGKDD]
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Low rank multi-task learning model

X Y W
Sparse coding features * >
« n Low rank
-

trace norm = sum of singular values

Loss term

[Argyriou et al. (2008) Machine Learning]
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Graph-based multi-task learning model

sensory system
0.56 head _/
ventral sensory
complex
0.79|
0.50 embryonic antennal
dorsal/lateral sense organ 4
sensory complexes
0.60

embryonic maxillary
sensory complex /

I 0.36
sensory nervous

system 4

loss 2-norm
k n

S %, Y) AW+ 2, Ta(Cole [w, —san(C o)W, |

i=1 j=1 (p.a)e

Closed-form solution

[Ji et al. (2009) SIGKDD]
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Spatial annotation performance

M SC+LR

m SC+Graph

m BoW+Graph
B Kernel+SVM

Stages 4-6 Stages 7-8 Stages 9-10  Stages 11-12  Stages 13-16

e 50% data for training and 50% for testing and 30 random trials are generated
e Sparse coding with low rank multi-task learning achieves the best performance



MALSAR Package

Multi-TAsk Learning via
StructurAl Regularization
MALSAR package

e Jiayu Zhou, Jianhui Chen, Jieping Ye

e http://www.public.asu.edu/~jzhou29/Software/MAL
SAR/index.html

107
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Functions in MALSAR Package

e Regularized Multi-Task Learning
e Joint Feature Learning

e Trace Norm Minimization

e ASO

e Clustered Multi-Task Learning

e Network Multi-Task Learning

e Robust Multi-Task Learning

108




BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

Trends in Multi-Task Learning

e Develop efficient algorithms for large-scale multi-
task learning. In many areas where multi-task
learning is applied, such as bioinformatics, the
dimensionality of data can be huge.

e |Learn task structures automatically in MTL

e Most multi-task learning techniques deal with
supervised learning problems. There is a high
demand of developing new methods for semi-
supervised and unsupervised learning.
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Thank You!
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