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Agenda

* Introduction (25 min)

— Big Data Mining: Opportunities & Challenges
— Online Learning: What, Why, Where

* Online Learning
— Overview (5 min)
— Traditional Linear Online Learning (30 min)
— Non-traditional Linear Online Learning (30 min)
— Kernel-based Online Learning (30 min)
— Online Multiple Kernel Learning (30 min)

* Discussions + Q&A (30 min)
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Big Data is data that is too large,
‘complex and dynamic for any
conventional data tools to capture,
store, manage and analyze. :
The right use of Big Data allows
analysts to spot trends and gives
niche insights that help create
value and innovation much faster
than conventional methods.

57.6% OF ORGANIZATIONS
SURVEYED SAY THAT BIG
DATA IS A CHALLENGE

72.7% GONSIDER
DRIVING OPERATIONAL
EFFICIENCIES TO BE THE
BIGGEST BENEFIT OF A
BIG DATA STRATEGY

50% SAY THAT BIG DATA
HELPS IN BETTER MEETING
CONSUMER DEMAND AND
FACILITATING GROWTH

Visuakzation: Seventhanc

From http://visual.ly/big-data
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The “three V's”, i.e the Volume, Variety and Velocity
of the data coming in is what creates the challenge.
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$300 billion is
the potential
annual value
to Healthcare

TRANSPARENCY IN

CLINICAL DATA AND
CLINICAL DECISION
SUPPORT

AGGREGATION OF
PATIENT RECORDS,
ONLINE PLATFORMS
AND COMMUNITIES

$165B

CLINICAL

PUBLIC HEALTH

SURVEILLANCE $47B RESEARCH AND
AND RESPONSE DEVELOPMENT;
SYSTEMS ACCOUNTS PERSONALIZED
MEDICINE;
CLINICAL TRIAL
ADVANCED FRAUD
DETECTION; QESIGH
PERFORMANCE
BASED DRUG
PRICING
]
40% 5%
PROJECTED PROJECTED
GROWTH GROWTH
IN GLOBAL IN GLOBAL IT
DATA CREATED SPENDING
PER YEAR PER YEAR
0

The estimated size of the digital universe in 2011 was
1.8 zettabytes. It is predicted that between 2009 and
2020, this will grow 44 fold to 35 zettabytes per year.
A well defined data management strategy is essential
to successfully utilize Big Data.

Sources - @ Reaping the Rewards of Big Data - Wipro Report @ Big Data: The Next Frontie for knovation,
Competition and Productivity - McKinsey Global insit (5] i Group @
the Business impacts of Effective Data - study by University o Texas, Austin @S Departmant of Labour

DO BUSINESS BETTER
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Applying Thought




Big Data Mining: Opportunities

- Big Data: The Moving Parts

¢ g i ‘ ]
1 ' ( unsupervised learning
i - |

4
SciPy ! §  social media analytics

Increasing
Age & Maturity

sentiment analysis /

predictive modeling AN ‘ —
MWB I fdentifying realtme cost optimizations
‘ : . ¥ faste accurate decision making

. Y better and more holistic R&I

network analysis

»wsuaﬁzaﬂon J

Business
Objectives

* simulation »

From http://blogs.zdnet.com/Hinchcliffe
the growth of data will be exponential for the foreseeable future

| terabytes | petabytes | exabytes | zettabytes |

Tthe amount of data stored by the average company today
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Big Data Mining: Challenges

e Limited O n | i ne * data size in

computational millions or even

capacity & budget 1 billions scale
(CPU/RAM/DISK) Le arnin g

 Capability of handling diverse
information evolving dynamically
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What is Online Learning?

Batch/Offline Learning vs. Online Learning

— Learn a model from a — Learn a model incrementally
batch of training data from a sequence of instances
— A test data set is used to — Make the sequence of online
validate the model predictions accurately
Yt
Xt f(x¢)
Predictor >

Example:
Online Classification
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Why Online Learning?

v’ Avoid re-training when adding new data

v’ High efficiency

v Excellent scalability

v’ Strong adaptability to changing environments
v'Simple to understand

v Trivial to implement

v Easy to be parallelized

v’ Theoretical guarantee
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Where to apply Online Learning?

Social
Media

' Internet

TR Security

Online
Learning

Multi-
media

Computer
Vision
Search
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Online Learning : Applications

Social
Media

Internet
Security

Online
Learning

- Multi-

media Computer

Vision
Search
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Online Learning for Social Media

* Online mining of social media streams

* Business intelligence applications
— Public emotion analytics
— Product sentiment detection
—Track brand sentiments /-

Sentiment analysis for lumia Sentiment analysis for iphone

Sentiment by Percent Sentiment by Percent
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Online Learning : Applications

Social
Media

Internet
Security

Online
Learning

~ Multi-
media

Computer
Vision
Search
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Online Learning for Internet Security

* Online Anomaly Detection (outlier/intrusion)

= ’Llhl ”‘ “-l
Y " | | | , 1N
0 100 200 300 ~— 400 N_400
 Example

— Detection of fraud credit card transactions
— Network intrusion detection systems
— Spam email filtering, etc. sy
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Online Learning : Applications

Internet

FEREs Security

Online
Learning

Computer
Vision
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Online Learning for Computer Vision

* Video surveillance application by online learning

— Real-time object tracking

InputVideo Foreground Objects Tracks Abnormal Events

— Detect anomalous
events from real-time

: | Background Object
video streams Subtraction 4.|Tracjtfirr:1g:! |

Scene Model Feedback
(size and background learning rate parameters)

(Basharat et al. 2008)

Narhe

(a) Normal Track (b) Unusual Path (c) Bicycle on sidewalk
(abnormal size and speed)

05/04/2013 (Saturday) Online Learning - Steven Hoi



Online Learning : Applications

Internet
Security

Online
Learning

Computer
Vision
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Online Learning for Multimedia Search

* Web-scale Content-based Multimedia Retrieval
— Interactive Image/Video Search via online relevance feedback

click &Y

Refine yourresults

* Collaborative Multimedia Search & Annotation
— Mining massive side info (e.g., search log data) incrementally
— Example: distance metric learning, online kernel learning, etc.
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Online Learning : Applications

Internet
Security

Online
Learning

~ Multi- |
media

Computer
Vision
Search
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Online Learning for Finance

e On-line Portfolio Selection

— Sequential decisions of investing wealth among assets
(Li et al. ML’12, ICML’12)

PAMR —&— |

10'® | Market —+—

BCRP x
Anticor —e—

0000000000

10" |
108 i
104 i

Total Wealth Achieved

10‘0 i i

1 1500 3000 4500

Trading Days
(a) NYSE (O) dataset
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Agenda

* Online Learning
— Overview (5 min)
— Traditional Linear Online Learning (30 min)
— Non-traditional Linear Online Learning (30 min)
— Kernel-based Online Learning (30 min)
— Online Multiple Kernel Learning (30 min)

* Discussions + Q&A (30 min)
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Online Learning: Overview
* Big Data Mining: topic coverage

Data Mining Tasks

T

Descriptive Predictive

Regression

Association Classification

Rule Mining

Outlier

Clustering Sequence Detection

Pattern Mining
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Online Learning: Overview

Online Learning

Online Learning with
Full Feedback

Online Learning with
Partial Feedback

e Not covered in this tutorial

— Bandits
* ACML12 Tutorial: http://www.princeton.edu/~sbubeck/tutorial.html
e ICML Tutorial: https://sites.google.com/site/banditstutorial/
* Prediction, Learning, and Games (Nicolo Cesa-Bianchi & Gabor Lugosi)
— Reinforcement learning
* http://chercheurs.lille.inria.fr/~ghavamza/ICML2012-Tutorial.html
* http://hunch.net/~jl/projects/RL/RLTheoryTutorial.pdf . O
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Online Learning: Overview

v'First order OL v'Kernel OL
v'Second order OL v'Budget OL
v'Sparse OL
Traditional Ll
. Kernel .
Linear Non-Linear
Methods Methods
Non- Multiple
Traditional = Kernels
v'Online MKL
v'Online AUC Max. v'OMKC
v Cost-Sensitive OL v'OMDL

v Online Transfer Learning
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Notation

Notation | Explanation

domain of an input feature space (e.g.,R?)
domain of class labels ({—1,+1} for two-class);
an instance vector from AX’;
true class label of x
predicted class label of x
a weight vector of a classifier;
a positive instance vector;
a negative instance vector;
an integer index for the t-th example;
‘() a loss function;
- an indicator function that outputs 1 if m holds and 0 else;
K(ey ) a kernel function;
K a kernel matrix.
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Online Learning: Overview

Traditional Single
Kernel

Non-Linear
Methods

Linear
Methods

Non- Multiple
Traditional Kernels
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Traditional Linear Online Learning

* Online learning protocol for classification

The following scenario is repeated indefinitely:

 The algorithm receives an unlabeled example

 The algorithm predicts a classification of this example;
 The algorithm is then told the correct answer

 The algorithm updates the classifier when appropriate

e Objective

— To minimize the mistake rate of online classification
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Perceptron Algorithm (rosenbiatt Frank, 1958)

+

Wi

. Wit < Wi — Xy

W2— Wil < Wy + Xt
N

1. Start with the all-zeroes weight vector w; = 0, and initialize ¢ to 1.
2. Given example x, predict positive iff w; - x > 0.
3. On a mistake, update as follows:

e Mistake on positive: wyq <— W; + X.

e Mistake on negative: w;i 1 < w; — X.

t<«1t+1. — ==
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Traditional Linear Online Learning (cont’)

* First Order Learning methods
— Perceptron (Rosenblatt, Frank, 1958)
— Online Gradient Descent (Zinkevich et al., 2003)
— Passive Aggressive learning (Crammer et al., 2006)

— Others (including but not limited)
 MIRA: Margin Infused Relaxed Algorithm (Crammer and Singer, 2003)

* NORMA: Naive Online R-reg Minimization Algorithm (Kivinen et al.,
2002)

* ROMMA: Relaxed Online Maximum Margin Algorithm (Li and Long,
2002)

 ALMA: A New Approximate Maximal Margin Classification Algorithm
(Gentile, 2001)
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Online Gradient Descent

* Online Convex Optimization (Zinkevich et al., 2003)
* Consider a convex objective function

f:5—=R

where S cR"” is a bounded convex set

 The update by Online Gradient Descent (OGD) or Stochastic
Gradient Descent (SGD):

Wit — lg(wy =V f(wy))

where 77 is called the learning rate
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Online Gradient Descent (OGD) algorithm

* Repeat from t=1,2,...
— An unlabeled example X; arrives
— Make a prediction based on existing weights

~ T

Yy = sgn(w, Xy)
— Observe the true class label ¥: € {+1,—1}
— Update the weights by the OGD rule:

Wi lg(wy =V f(wy))

where 7 > 0 is a learning rate
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Passive Aggressive Online Learning

e Passive Aggressive learning (Crammer et al., 2006)

— PA
1
Wip1 = arg min§||w —wi||* st Ow; (x4, 4))) = 0.
0 y(w-x) > 1
(o 5 = {4 o |
— PA-I 1 —y(w-x) otherwise

1
Wil = argmin§Hw —wil|* +CE st L(wi(xg,y)) <€ and € >0.

— PA-II

1
W;,1 = arg min §||W — w2+ CE st U(ws(xp 1)) < E.
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Passive Aggressive Online Learning

 Closed-form solutions can be derived:

Wi — Wy —|— TtY Xy

T, = H:f:\P (PA)

v =min{C, L=} (PA-D)
[

Y P (PA-ID

INPUT: aggressiveness parameter C > 0
INITIALIZE: w; = (0,...,0)
For #=1.2,...

e recelve instance: x; € R”

o predict: j; = sign(w; - x;)

e receive correct label: y, € {—1,+1}

e suffer loss: /; = max{0, 1 — y,(w; - x;)}

e update:

1. set:

{
==
7 IxlP

(PA)

= min{c, mf} (PA-)

= —4r
E7 P+ %

2. update: w1 =w,+ T VX

(PA-II)
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Traditional Linear Online Learning (cont’)

* First-Order methods
— Learn a linear weight vector (first order) of model

* Pros and Cons
@ Simple and easy to implement
Efficient and scalable for high-dimensional data
@ Relatively slow convergence rate
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Second Order Online Learning methods

 Keyidea

— Update the weight vector w by maintaining and exploring second

order information in addition to the first order information

 Some representative methods

— SOP: Second order Perceptron (Cesa-Bianchi et al, 2005)

— CW: Confidence Weighted learning (Dredze et al, 2008)

— AROW: Adaptive Regularization of Weights (Crammer, 2009)

— SCW: Soft Confidence Weighted (SCW) (Wang et al, 2012)

— Others (but not limited)
e |ELLIP:Online Learning by Ellipsoid Method (Yang et al., 2009)
 NHERD: Gaussian Herding (Crammer & Lee 2010)
« NAROW: New variant of AROW algorithm (Orabona & Crammer 2010)
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SOP: Second Order Perceptron

 SOP: Second order Perceptron (cesa-Bianch et al. 2005)
 Whiten Perceptron (Not incremental!!)

* Correlation matrix M = 23:1 Tz,

* Simply run a standard Perceptron for the following

(M2, y1), (M~ 2@y, y2), ..., (M~ 2xp, yr)

T - T
Z (ﬂ-f_lf2 ) (1“[ 1/2 ) _ Zﬂ'f_l/th m;l_ﬂf_lfg

t=1 t=1
= M~Y2)N M2
=1,.
* Online algorithm (an incremental variant of Whiten Perceptron)
e Augmented matrix: S¢ = [Xp—1 x|  Xo = 0 (the empty matrix)
* Correlation matrix: ¢/, + 5, S, =
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SOP: Second Order Perceptron

* SOP: Second order Perceptron (cesa-Bianch et al. 2005)

Parameter: a > 0.
Initialization: Xy =0; vg =0; k = 1.
Repeat fort =1,2,...:
1. get instance x; € R";
2. set St = [Xk—l ﬂjt};
3. predict 7; = SGN(w, ;) € {—1, +1},
where w; = (al,, + S StT)_l Vi_1;
4. get label 1 € {—1,+1};
5. if Y¢ # y¢, then:

Vi = Vg1 + Yt Ty,
Xk? — Sta
ke k41.
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CW: Confidence Weighted learning

 CW: Confidence Weighted learning (predze et al. 2008)

— Draw a parameter vector q ~ N(ﬂa 2)
— The margin is viewed as a random variable:
M~N (yi(p-z) , x, Tz;)

— The probability of a correct prediction is

Priy~n(us) M 2 0] = Prynus) [Us (w - ;) > 0]
— Optimization of CW

(g1, Xit1) = min Dgp, (M (. ) | NV (g, 20))

s.t. Prily;, (w-x;) >0 >1n.

Dit, (N (pg. Zo) [V (1. 1)) :% (log (de ED) +Tr (57 S0) + (e — o) S (Hy = o) d)
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CW: Confidence Weighted learning

Pr{y: (w-2x:) > 0] > 1 can be written as
d is the cumulative function of the

g1
Yt (’,1, . iDt) > Cb\/iD;rZCCt ¢=2"" () normal distribution.

det X 2 2
s.t. yi(p-x;) > ¢ (wZTE:I:@) :

. | det Zi 1 _ 1 ] [r—
(ﬂiﬂ: Yi+1) = min 2 log ( ) + =Tt (Ei 12) + = (p — @) X ! (1 — )

1 det X, 1
o= Lo ( ¢ ) SE )
Algorithm 1 Variance Algorithm (Approximate) 2 det X 2
Input: confidence parameter ¢ = &~1(n) +l (o, — ) 271 (1 — )
initial variance parameter a > 0 2 -
Initialize: pu, =0, %, =al tor (=yi (- i) + ¢ (@) X))
fori=1,2... do Lemma 1: The optimal value of
Receive ; € RY ., y; € {+1, -1} the Lagrange multiplier is given
Set the following variables: by @i = max {~;.0}

a; as in Lemma 1
Hisy = pi F oayizis (1) —(L26M;)+\/ (1+26M5)°—86 (M;—6Vi)

YL =30 4 2040 diag (x5) (17) /i 15V,

i+1
end for M; =y (zi p;) V; = ] Sz,
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AROW: Adaptive Regularization of Weights

* AROW (Crammer et al. 2009)
— Extension of CW learning

— Key properties: large margin training, confidence weighting, and the
capacity to handle non-separable data

e Formulations

C (11,%) = Dr (N (1, 2) [NV (11, Ze-1)) + Mlye (g, - ) + doz) Sy

Crz (Yo, po- @) = (max{0, 1 — y, (- @) })°

1 det X _ 1 B 1 T d
C(p, %) = §log ( dettZ] 1) + §Tr (Et—l1z) + 2 (th - M) 25—11 (ﬂ’t—l - ﬂ) 35

1
4 %Eh? (ys, o - 1) + Q_T‘:Bt Y,
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AROW: Adaptive Regularization of Weights

 AROW algorithm (Crammer et al. 2009)

Input parameters r
Initialize p, =0, Xy =1,
Port=1,...,F
e Receive a training example x; € R?
e Compute margin and confidence m+ = p, |- T v = ) Y 1Ty
e Receive true label y:, and suffer loss ¢; = 1 if sign (m:) # yu
o If miy: < 1, update using eqs. (7) & (9):

My = by + Qe it — 1 Yr Dk D=2 4 — /Btzt——lwtwjzt—l
1
Br =

-
£y Et—lmt +7r

fry — IEx (0, 1 — yt:c;rut_l) Bt

Output: Weight vector p, and confidence Y.
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SCW: Soft Confidence Weighted learning

 SCW (Wang et al. 2012)
— Four salient properties

@ Large margin, Non-separable, Confidence
weighted (2nd order), Adaptive margin

— Formulation
e SCW-I
(He+1, Ber1) = argmin Dxcr (N (1, D) IV (e, 1)) + C2 (N (1, 2); (1, 91))

(° (N(ﬂ'a %); (%t yt)) = mMax (Oa O\ X Xy — Yept Xt)

¢ SCW-II
(W41, Deg1) = arglfrjﬂg Drr (N, 2) N (e, %)) + C? (N (i, 2); (e, yt))2
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SCW: Soft Confidence Weighted learning

Proposition 1. The closed-form solution of the opti-

¢ SCW AI g O rit h m S mization problem (4) is expressed as follows:

Bet1 = fhe + Y XeXe, Dpp1 = Xp — [5rEthTXt2r

where the updating coefficients are as follows:

Algorithm 1 SCW learning algorithms (SCW) 1 pY |
a; = min{C, max{0, —(—m + 'me'Z + v 02¢)}}
INPUT: parameters C' > 0, n > 0. | Vs§
: ¢
INITIALIZATION: po = (0,...,0)", ¥y = I. B = m
EETI,
fort=1,...,7T do ] | - 5
. i where w; = Z(—(l'f[.?qu + \/afgtrf?rjr +4v)c e =
Receive an example x; € R%; i o e g g
o R i X¢' DeXe,Me = Ys(he - X¢),0 = 7 (),¥ = 1+ 5 and
Make prediction: ¢, = sgn(pi—1 - X¢); C=14 ¢
Receive true label yt; Proposition 2. The closed-form solution of the opti-
suffer loss fqﬁ (N([J,t_l, Zt—l)? (Xt, yt)); mization problem (5) is:
if ¢ (N(”'t—la Zt—l); (Xta yt)) > 0 then Bi+1 = Bt + 0l BeXe, Doyt = Sp — BeZexe T % T
_ _ T
i1 = pe+ 0 ytztxt: Zt—H = 2 _ﬁtztxt Xt 2t The updating coefficients are as follows:
where a; and 3; are computed by either Propo- — (o, S2mem: + 2 rmstse) oy
sition 1 (SCW-I) or Proposition 2 (SCW-II); @= TR T neund?)
end if W -
end for " VUt + Ui
where ¢ = ¢/ B*miv? + dngur(ng + v1d?), and ny =
Yy 4 %
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Traditional Linear Online Learning (cont’)

e Second-Order Methods

— Learn both first order and second order info

* Pros and Cons
@ Faster convergence rate
® Expensive for high-dimensional data
® Relatively sensitive to noise
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Traditional Linear Online Learning (cont’)

 Empirical Results (Wang et al., ICML'12)

n.145 1 1 1 | BDD I I ] ]
: : : : Perceptron : :
014 e IR A ; :
o5 || == agg-ROMMA| __ . ..
A35F -\ e P A —]
g [P A—] |
A W e SOF
£ 013 5200+ et S P
Sp.125 g —— IELLIP
E —— NHERD
— 012 E1507 | g AROW
& o —t— NAROW
£0.115}--F @ —— SCW—] :
% : P00 || e SCW—I |- - :
0.11 © : o
£ : i :
5(].1[)5--- 5[)- A -
0.1 '
0.095 i ; 5 ’ % 5
- 0 0.5 1 1.5 = 2.5 Mumber of sal:nnles w -|n“-
MNumber of samples v 10t
Online Mistake Rate Online Time Cost
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Sparse Online Learning

* Motivation

— How to induce Sparsity in the weights of online learning
algorithms for high-dimensional data

— Space constraints (memory overflow)
— Test-time constraints (test computational cost)

 Some popular existing work

— Truncated gradient (Langford et al., 2009)

— FOBOS: Forward Looking Subgradients (Duchi and Singer 2009)
— Bayesian sparse online learning (Balakrishnan and Madigan 2008)
— etc.
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Truncated gradient (Langford et al., 2009)

* Main ldea

— Truncated gradient: impose sparsity by modifying
the stochastic gradient descent

[
2 L(Wj,Zj) Zj = (Xfa yl)
i=1

e Stochastic Gradient Descent
f(WI) = W; — T]VIL(WI':,ZI').
* Simple Coefficient Rounding

f(w;) = To(w;—nV1L(w}, 7),0) = =
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Truncated gradient (Langford et al., 2009)

Simple Coefficient Rounding vs. Less aggregative truncation

(max(0,v;,—o) if v; € [0,6]

To(v;,0) = 0 iffy; S 0 h(v;.0.0) = <¢min(0.v;+a) ifv;e[-06,0]
vj otherwise V) otherwise
4 To(x,0) | T4(x,a.,0)
X > -Q - X >
0 0 ’ a6
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Truncated gradient (Langford et al., 2009)
f(Wl) — H(Wi_nVIL(Wia Zf):ngfae)

 The amount of shrinkage is

Algorithm 1 Truncated Gradient for Least Squares

measured by a gravity Inputs:
e threshold © > 0
pa rameter gj > O e gravity sequence g; => 0
. e learning rate ) € (0,1)
 The truncation can be e example oracle O
performed every K online steps e vegho v =0U=1..0
° When gf f— 0 1. Acquire an unlabeled example x = [x', ¥, ..., x9] from oracle O
the update rule is identical to > Prtveigte U=t
the Standard SGD (a) if w/ > 0 and w/ < O then W/ — max{w/ — gmn.,0}

(b) elseif w/ < 0 and w’/ > —0 then W/ — min{w’ + gm.0}
e Loss Functions: L(w,z) = ¢(w!x,y) 3 Compute prediction: j=3 u/y’
_ LogiStiC (I)(p,y) _ 11’1(1 +exp(—py)) 4. Acquire the label y from oracle O
— SVM (hinge) ¢(p.y) = max(0,1 — py)
— Least Square ¢(p, y) = (p—y)?

5. Update weights for all features j: w/ < n/ +2n(y— y)&/
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Truncated gradient (Langford et al., 2009)

 Comparison to other baselines

magic04

0. -~ Trunc. Grad. |
~+- Rounding
0.4r -8- Sub—gradient}
03 = [Lasso
10’ 10" 10° 10°

Number of Features

spambase

—-o-Trunc. Grad. |

054 .o
++- Rounding
N -B8- Sub—gradientr
0.3 % Lasso
10° 10" v =

Number of Features
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Variants of Sparse Online Learning

* Online Feature Selection (OFS)
— A variant of Sparse Online Learning

— The key difference is that OFS focuses on selecting a
fixed subset of features in online learning process

— Could be used as an alternative tool for batch
feature selection when dealing with big data
* Existing Work

— Online Feature Selection (Hoi et al, 2012) proposed an OFS
scheme by exploring the Sparse Projection to choose a
fixed set of active features in online learning
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Summary of Traditional Linear OL

* Pros
@ Efficient for computation & memory
@ Extremely scalable
Theoretical bounds on the mistake rate
* Cons
@ Learn Linear prediction models
@ Optimize the mistake rate only
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Online Learning: Overview

Traditional (e
Kernel
Linear
Methods Multiple

Non-

Traditional Kernels
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Non-Traditional Linear OL

* Online AUC Maximization
e Cost-Sensitive Online Learning
* Online Transfer Learning
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Online AUC Maximization

* Motivation

— The mistake rate (or classification accuracy) measure could
be misleading for many real-world applications

e Example:

Consider a set of 10,000 instances with only 10 “positive” and
9,990 “negative”. A naive classifier that simply declares every
instance as “negative” has 99.9% accuracy.

 Many applications (e.g., anomaly detection) often adopt
other metrics, e.g., AUC (area under the ROC curve).

Can online learning directly optimize AUC?
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Online AUC Maximization

e What is AUC?

— AUC (Area Under the ROC Curve)
— ROC (Receiver Operating Characteristic) curve details the rate of

True Positives (TP) against T
False Positives (FP) over gk, oSl g
the range of possible thresholds. |
— AUC measures the probability -+ ° .
for a randomly drawn positive =« A S .
instance to have a higher :
decision value than a randomly £t \ P4 :
sampled negative instance \ .
— ROC was first used in World War Il T /" e = 1
for the analysis of radar signals. i

1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 08 1
FPR or (1 - specificity)
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Online AUC Maximization

* Motivation

— To develop an online learning algorithm for training an
online classifier to maximize the AUC metric instead of
mistake rate/accuracy

— “Online AUC Maximization” (Zhao et al., ICML'11)

* Key Challenge

— In math, AUC is expressed as a sum of pairwise losses
between instances from different classes, which is
quadratic in the number of received training examples

— Hard to directly solve the AUC optimization efficiently
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Formulation

« AdatasetD={(x,y)eR!x{-1+1}|ie[l]}

* Positive instances D ={(x.,+1)|ie[T. ]}
* Negative instancesD_ =1{(x;,—1)| j€[T_]}
* Given a classifier w, its AUC on the dataset D:

==
=

4 —_ + —
(wx;>wx,) _ (wx;<wx;)

AUC(w) = —= =1-
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Formulation (cont’)

* Replace the indicator function | with its
convex surrogate, i.e., the hinge loss function

) = max{0, 1 —W'(X? _Xj_)}

((w.x; —x;

* Find the optimal classifier w by minimizing

R (W) =%H wik+C3 S f(w.x7 —x)) (1)

i=1 j=1

e |tis not difficult to show that

R(w)> %u wlf +CT.T (1= AUC(W))
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Formulation (cont’)

* Re-writing objective function (1) into:

| I, T
EH w H; +C ZZE(W,,X?—X;)

i=1 j=1

L(w;x, ) =1, _ B (WL, _ (A (W)

t—1

Bl (w Z Iy, ——)l(W.xe — %) h(w) = Y Iy, —pi)l(w.xpy —x;)

t'=1

* In onlme learning task, given (X;, Y;), we may

do online update:
P wir1 = wy — CV L (W)

The loss function is related to all received examples.
Have to store all the received training examples!!



Main Idea of OAM

e Cache a small number of received examples;

* Two buffers of fixed size, Bt+ and B,~, to cache the
positive and negative instances;

Yi

Reservoir

sampling
Xt

Sequential or

\Predictor Gradient
=+1 =-1
Update buffer <yt ¥ yt Update buffer

< Buffer + @ Buffer — (Ba

Flow of the proposed online AUC maximization process
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OAM Framework

A Framework for Online AUC Maximization (OAM)

Input: the penalty parameter C, the maximum buffer size N, and N_
Initializew;, =0, B} =B =0, N =N' =0
fort=1.2.....,T do
Receive a training instance (xt, yt)
if yr = +1 then
N =N+ 1 N = NC B™ =B Cr = Cmax(1,NL/N-)
B't' = UpdateBuffer(8’,x¢, N;, N™)
W, = UpdateClassifier(w:, x:, yt, Ct, B™")
else
N =N g NPT = NG BT = BY L G = Cmax(1, NL/NL)
B! = UpdateBuffer(B", x;, N_,N'"")
w;.; = UpdateClassifier(w;, x;. y:. C;, B."")
end if
end for
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Update Buffer

* Reservoir Sampling (J. S. Vitter, 1985)

— A family of classical sampling algorithms for randomly
choosing k samples from a data set with n items, where n is
either a very large or unknown number.

— In general, it takes a random sample set of the desired size in
only one pass over the underlying dataset.

— The UpdateBuffer algorithm is simple and very efficient:

Sample Z from a Bernoulli distribution with Pr(Z =1) = N/N¢ya
if 7 =1 then

Randomly delete an instance from B

Bt = B U {x,}
end if
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Update Classifier

e Algorithm 1: Sequential update by PA:
— Follow the idea of Passive aggressive learning (Crammer et al.06)
— For each x in buffer B, update the classifier:

w'tl = arg min |w — w*|5 + Cl(W, ye(x¢ — X))

* Algorithm 2: Gradient-based update

— Follow the idea of online gradient descent

— For each x in buffer B, update the classifier:
if yyw; - (x; —x) <1 then

Wil = Wil + Crye (X — X) /2
end if
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Empirical Results of OAM

* Comparisons

— Traditional algorithms:
* Perceptron, PA, Cost-sensitive PA (CPA), CW

— The proposed OAM algorithms:

(i) OAM-seq, OAM-gra, (ii) OAM-inf (infinite buffer size)

e Evaluation of AUC for Classification tasks
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0.956 &= 0.013
0.955 = 0.014

0.956 4+ 0.013

0.820 & 0.016
0.817 = 0.023
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Algorithm segment letter satimage

Perceptron | 0.852 4+ 0.024 0.551 + 0.092 | 0.605 = 0.025
PA-I 0.863 £ 0.021 0.533 + 0.104 | 0.646 £ 0.024
CW-full 0.896 £+ 0.021 0.804 + 0.025 | 0.619 £+ 0.024
CPApgp 0.888 £ 0.018 0.784 + 0.056 | 0.811 £ 0.022
CPAML 0.886 &+ 0.021 0.802 + 0.035 | 0.828 4+ 0.024

0.919 = 0.014
0.911 & 0.017

0.921 + 0.013




Cost-Sensitive Online Learning

* Motivation
— Beyond optimizing the mistake rate or accuracy
— Attempt to optimize the cost-sensitive measures
* Sum sum = 1), X sensitivity + 1, X speci ficity
T, — M, To— M, 1np+n,=1

sensitivity = T , specificily = T ’ 0<n,,n, <1
D T _— Pt —

* Cost cost = c, x M, + ¢, x M,

0 < ¢y < 1 ¢ +0¢p = 1

e Existing Work
— Cost-sensitive Online Gradient Descent (Wang et al. 2012)
— Cost-Sensitive Double Updating Online Learning (Zhao et al. 2013)

(e”
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Cost-Sensitive Online Learning

* Our goal is to designh online learning algorithms
to optimize the cost-sensitive metrics directly

* Proposition 1:

— Consider a cost-sensitive classification problem, the goal of
maximizing the weighted sum or minimizing the weighted
cost is equivalent to minimizing the following objective:

P Z Iytf}{t <0) + Z Iytf}{t )<0)
Yt=—

yt=-+1
ML,
— where P = 0T for the maximization of the weighted sum;
ntp
C

_ o o
—and P = c_ for the minimization of the cost. §
n Y
X
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Cost-Sensitive Online Learning
* Convex Relaxation
— Modified Hinge Loss:
Replace the indicator function with modified hinge loss:

w; (x,9)) = max(0, (p*Iy=1) + [(y=—1)) — y(W - X))
Mw; (x,y) = (p*Iy=1)+l(y=—1))*max(0,1 — y(w - x))

Two madified Hinge Loss functions

s Hinge LosS
Modified Loss in CSOGD-I
Modified Loss in CSOGD-II

Npd
Ml

* sum p=
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Cost-Sensitive Online Gradient Descent

e CSOGD: Cost-Sensitive Online Gradient Descent
— Cost-sensitive objective functions

T
1
Frw)=sw|*+CY ¢ (w; (xe,5:) * € {I,1T}
R t=1

Hows (x,y)) = max(0, (p* Ly=1) + Ly=—_1)) — y(W- X))
Hws; (x,9)) = (p* Iiye1)+l(y=—1))kmax(0, 1 — y(w - x))
* where p = ZP? for optimizing sumorp — E—pforcost
ndp mn

— Update by Online Gradient Descent

Wil = W, — AV (wy)

w4 W + Ayexy i £ (wy) >0 Wiy = Wi + Apryexe i G(wy) >0
tl Wi otherwise

05/04/2013 (Saturday) Online Learning - Steven Hoi

Wi otherwise —




Cost-Sensitive Online Gradient Descent

e CSOGD: Cost-Sensitive Online Gradient Descent

— Formulate the cost-sensitive objective functions

T
1

Fr(w)= 5““””2 + C E 0 (w; (x¢,yt)) =€ {l,1l}
- i=1

ow; (x,y)) = max(0, (p*Ly=1) +Ly=—1)) — y(W-x))
Mw; (x,9)) = (p*ym1)Hy=_1))*max(0,1 — y(w - x))
* where p = ZP? for optimizing sumorp = E—pforcost
nLp e

— Update by Online Gradient Descent

Wi = Wi — AV (wy)

Wt dxg i G(wy) >0 ] Wt Apeexe if le(wy) >0
Wi+l = Wi otherwise t+l Wy otherwise
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Cost-Sensitive Online Gradient Descent

Algorithm 1 The proposed CSOGD algorithms.

INPUT: learning rate \; bias parameter p =
“sum” and p = =& for “cost”
INITIALIZATION: wi = 0.
fort=1,....7 do
recelve mstance: x; € R";
predict: 7 = sign(wy - X¢);
receive correct label: y; € {—1, +1};
suffer loss 0+ (wy) = 0*(wy; (x4, 9¢)); * € {I[, 11}
update classifier: w; 1 = w; — AV (wy);
end if
end for
OUTPUT: wr..

npTn

2_ for
NnTp
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Cost-Sensitive Online Classification

o i

(| == percepiron |
| —+—ROMMA |7
i —l— apg-ROMMA|:
o =——pa :
| —— PA-I :
.l = PAUM |
i i| = CPA-PB
| —t— CEOGD-
| ——tl— CSOGD-NI

[ ERRR o r i
e i | e e R N R

Ui
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Online Transfer Learning

* Transfer learning (TL)

— Extract knowledge from one or more source tasks
and then apply them to solve target tasks

Source RSN Learning B ol
data SR nowledge

8

VRIS _— Lea rning
data /
system

performance

higher slope higher asymptote

...... with transfer
- Without transfer

higher start

training

— Three ways which transfer might improve learning

—Two Types of TL tasks

* Homogeneous vs Heterogeneous TL
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Online Transfer Learning (zhao and Hoi 2011)

* Online Transfer learning (OTL)

— Assume training data for target domain arrives sequentially
— Assume a classifier was learnt from a source domain

— online algorithms for transferring knowledge from source
domain to target domain

* Settings
— Old/source data space: X, x YV, X, = R™ and Y, = {—1, +1}
— New/target domain: Xy X Vs
— A sequence of examples from new/target domain
7yt =1}
— OTL on Homogeneous domains X7 = A5
— OTL on heterogeneous domains X # X .
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Online Transfer Learning (zhao and Hoi 2011)

e OTL on Homogeneous domains X7 = A5

— Key Ideas: explore ensemble learning by combining
both source and target classifiers

. . 1
Up = sign (O{l?tH(VTXt) + Q:’Q?tH(W;rXt) — §)

vy 454 (V) N _ (v9. 151 (Wy)
1 15¢(V) + Qo psi(wy) St

Y] t+1 =

si(w) = exp{—nC*(Ia"x). O(y))} () = (2 — )

— Update rules using any existing OL algorithms (e.g., PA)
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Online Transfer Learning (zhao and Hoi 2011)

* OTL on Heterogeneous domains X, + X,
— Assumption: not completely different

— Each instance x;, € X intarget domain can be
splitinto two views: x,, € X, Xg, € X'/ X,
— The key idea is to use a co-regularization principle

for online optimizing two classifiers w; ; and wy,

(Wit1, Warp1) e mn}‘irﬁle]}@n—m %le —wie + %”Wz — wa||* + CUwy, W t)

— Prediction can be made by

i = sign (S(wToxa )
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Online Transfer Learning (zhao and Hoi 2011)

Heterogeneous OTL algorithm

INPUT: the old classifier v € R™ and parameters 7, v, and C'
Initialize w1 = v and wo; =0

receive instance: x; € X
T T
predict: y; = sign ( (Wl X1t + Wy ;X 1f))

receive correct label: y; € {—1,4+1}
suffer loss: ¢, = |1 — yt%(WItXLf + W;t}{zt)]

if ¢, > 0 then
7, = min{C,

4v1v24¢ }
Z1 t72+42 t71

Wittl = Wi+ 3 thl t» Wopr1 = Wag + 5 fo?t

end if

end for
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Online Learning: Overview

Single
Traditional Kernel

Linear Non-Linear

Methods Non- Multiple Methods
Traditional Kernels
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Kernel-based Online Learning

e Motivation
— Linear classifier is limited in certain situations

Decision Function e

Original Feature Space High Dimensional Space

* Objective

— Learn a non-linear model for online classification
tasks using the kernel trick
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Kernel-based Online Learning
* Kernel Perceptron

Kernel Perceptron

For any new training data (x;. yt), whenever there is a mistake:
@ Update classifier: f; = f;_1 + yer(X¢, -)
@ Add (X¢,y:) into current support vector set SV

The output prediction model:

f(x) = yir(xi.x)

ieSV

e Related Work
— Single Updating: Kernel PA, Kernel OGD, etc.
— Double Updating Online Learning (Zhao et al, 2011)
— Others (e.g., Online SVM by fully optimal update)

05/04/2013 (Saturday) Online Learning - Steven Hoi



Double Updating Online Learning (DUOL)

e Motivation

— When a new support vector (SV) is added, the weights of
existing SVs remain unchanged (i.e., only the update is
applied for a single SV )

— How to update the weights of existing SVs in an efficient
and effective approach

e Main idea

— Update the weight for one more existing SV in addition to
the update of the new SV

* Challenge
— which existing SV should be updated and how to update?

05/04/2013 (Saturday) Online Learning - Steven Hoi



Double Updating Online Learning (DUOL)

 Denote a new Support Vector as: (T4, Ya)
« Choose an auxiliary example (2b.Y5) € D from existing SVs:

— Misclassified:  ypf(xp) < 0

— Conflict most with new SV: k(Zp, Za)Yap < —p
. Update the current hypothesis by

= Y vik(x) + Dok, ) + YalTa, )
ieS—{b}

* How to optimize the weights of the two SVs

 DUOL formulates the problem as a simple QP task of large
margin optimization, and gives closed-form solutions.
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Double Updating Online Learning (DUOL)

Algorithm 1 The Double Updating Online Learning Algorithm (DUOL)
PROCEDURE 21 for Vi € S; do
1: Initialize So =0, fo = 0; 22: fi 4 fioi + viveyer(Xi, X)
2: fard=12,. ..,;Tdo + yi(vp — V) ypk(Xi, Xp);
3: Receive a new instance x; 23: end for
4: Predict 9: = sign(fi—1(X¢)); 24: ft = fim1 + veyer(Xe, -)
b Receive its label v;: +(vb — Vo) Upk(Xp, -);
6: li = max{0,1 — ye fr—1(X¢) } 25: else /* no auxiliary example found */
T if [; > 0 then 26: v¢ = min(C, by /k(xt, xt));
8: Winim = 0K, 2T for Vi € S; do
9: for Vi € S;_1 do 28: o el Yiyeyek(Xi, Xz );
10: if (ff_l < 1) then 20: end for
i W if (yiyer(Xi,X¢) < wmin) then 30: ft = fi—1 +veyer(Xe, - );
12: Winin = Wlek(Xi,X2); 31 end if
i3 (x5 90) = (x9:); 32: else
14: end if 33; Fr = o128 = 81
15; end if 34: for Vi € S; do
16: end for L35 Pg= 1840
1 fio1 = wfioa(xe); 36: end for
18: S = 8Si_1 U {t}; 37 end if
19: if (wWmin < —p) then 38: end for
20: Compute v; and -+, by solving return fr, St
the optimization (5) END
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Kernel-based Online Learning

* Challenge

— The number of support vectors with the kernel-
based classification model is often unbounded!

— Non-scalable and inefficient in practice!!

* Question
— Can we bound the number of support vectors?

e Solution
— “Budget Online Learning”
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Budget Online Learning

* Problem

— Kernel-based Online Learning by bounding the
number of support vectors for a given budget B
* Related Work in literature
— Randomized Budget Perceptron (Cavallanti et al.,2007)
— Forgetron (Dekel et al.,2005)
— Projectron (Orabona et al.,2008)
— Bounded Online Gradient Descent (Zhao et al 2012)
— Others
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RBP: Randomized Budget Perceptron

(Cavallanti et al.,2007)

* |dea: maintaining budget by means of randomization

 Repeat whenever there is a mistake at round t:
* |f the number of SVs <= B, then apply Kernel Perceptron

ft < fr +yek(xy, )
St — St—l -+ {t}

 Otherwise randomly discard one existing support vector
r < random € S;_;

ft < fe +yek(xe, ) — yrk(xy, -)
St < St—l g {t} — {?"}
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Forgetron (Dekel et al.,2005)

Step (1) - Perceptron

fi() = frx) + 9K (%) [ ] Tl 1 Tl il T

1 2 3 .. t-1 1
Step (2) — Shrinking

f:za’@,tﬂyik(xi,-) 1 2 3 t-1 1
€S,

Step (3) — Remove Oldest
r = min S, IIIII-I--IF

St%St_lLJ{t}—{?“} 1 2 3 .. t-1 1t

05/04/2013 (Saturday) Online Learning - Steven Hoi



Projectron (Orabona et al., 2008)

: Algorithm 2 Projectron Algorithm
* The new hypothesis i

fé _ ft—l ‘f_ytk(xt; ) for t = 1.2.....T do

Receive new instance xy

. . P d : -~ — ;‘-G' _
is projected onto the space b))
if y; # 1; then
spanned by S, , e
" /I " = f! projected onto the space S;_
t —Pt—lff, = P (ft—l —l-yt]f(xt;')) 5;; f—fﬁ' 1
N if [|6,] < 7 th
* How to solve the projection? ‘ JM A
St = Si—1
f;r — ft—l + ytPt—lk(Xta ) else
fo=1i
0r = f{' — fi = ye Proak(xe, ) — yek(xe, ) St = Se-1 Ut}
9 end if
else
16:11° = (dlﬂi‘i_l) Z dik(x;,) — k(xt, ) ;];tti];t—_ll
€S
JEoe end if
fél — ft_l —|— yt Z d}: ]{(Xj’ -) d* _ Kt__llkt end fOI‘ —
JES 1
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Bounded Online Gradient Descent
(Zhao et al 2012)

e Limitations of previous work
— Perceptron-based, heuristic or expensive update

e Motivation of BOGD

— Learn the kernel-based model using online gradient
descent by constraining the SV size less than a
predefined budget B

e Challenges
— How to efficiently maintain the budget?

— How to minimize the impact due to the budget
maintenance?
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Bounded Online Gradient Descent
(Zhao et al 2012)

 Main idea of the BOGD algorithms

— A stochastic budget maintenance strategy to guarantee
* One existing SV will be discarded by multinomial sampling
* Unbiased estimation with only B SVs;
* Formulation D
R =) alyir(x, )
— Current hypothesis p—

— Construct an unbiased estimator (to ensure E[ﬁ()} = f+(+))
. ‘ |
() =" (alzt +bL) yik(x, )
1=1

Zil Z =1 Z,f — 1 indicates the i-th SV is selected for removal _
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Bounded Online Gradient Descent
(Zhao et al 2012)

e Zis obtained according a sampling distribution:

p' = (p1,---»Pp)
* The final weights of SV:

a't! = min ((1 — Z}) e 04351777) , 1€ |B]

* How to choose a proper sampling p?

— Uniform sampling pi = 1/Bforanyi € [B]
— Non-uniform sampling »i = 1—saiv/k(xi,x;)
(B—1)

S p—
SoP L ainy/r(xixi)
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Empirical Results of BOGD

* Comparison
— Baseline: Forgetron, RBP, Projectron, Projectron++
— QOur algorithms: BOGD (uniform), BOGD++ (non-uniform)

* Evaluation of budget online learning algorithms

Budget Size B=500 B=1000 B=2000

Algorithm Mistake (%) Time (s) Mistakes (%) Time (s) Mistakes (%) Time (s)
RBP 17.130 %+ 0.078 11.519 16.139 %+ 0.046 26.736 15.532 %4 0.051 58.715
Forgetron 16.773 %+ 0.069 13.275 15.962 %+ 0.120 30.298 15.316 %+ 0.052 65.292
Projectron 16.883 %+ 0.606 58.718 16.375 %41 0.666 312.179 15.333 %+ 0.540 1287.570
Projectron++ 15.967 %+ 0.721 208.015 15.025 %4 0.743 851.189 14.636 %+ 0.815 1926.070
BOGD 18.504 %+ 0.236 11.601 18.465 %+ 0.225 27.471 15.274 %4 0.660 56.439
BOGD++ 15.634 %= 0.603 12.313 14.418 %= 0.206 28.552 13.439 %= 0.220 61.181

Experimental result of varied budget sizes on the codrna data set (n=271617)
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Summary

* Pros of BOGD
@ Very efficient due to stochastic strategy
Rather scalable
@ State-of-the-art performance
@ Theoretical guarantee

* Cons of existing BOL
@ Predefined budget size (optimal budget size)?
@ Only learn with a single kernel
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Online Learning: Overview

Single
Kernel

Traditional

Non-Linear
Methods

Linear
Methods

Non-

Multipl
Traditional itipte

Kernels
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Online Multiple Kernel Learning

* Motivation
— Kernel defines a similarity measure for two objects
— Many ways to define a kernel function

— Example: Multimedia Applications
* Image: color, texture, shape, local features, etc
e Video: visual, textural, audio features, etc.

* Problem

— Can we learn a kernel-based model incrementally
from a sequence of (multi-modal) instances using
multiple kernels in an online learning setting?
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Kernel and Multimodal Representation

* Kernel trick
— Mapping observations from a general set S into an inner product space V
* Kernel function K(x, x’) for any x, x’ from S

— Expressed as an inner product between two objects in V

(p(z), p(a')) =: k(z, o)

— Defines a similarity measure between any two objects

— Example: linear, polynomial, Gaussian, etc.

— Kernels on structured data: tree, graph, etc,
 Multi-modal representations for image applications

— Color features (color histogram, color moment, etc)

— Texture features (Gabor, GIST, etc)

— Edge features (edge direction histogram, etc)

— Local features (bag of SIFT features, bag of words, etc)
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What is MKL?

 Multiple Kernel Learning (MKL)
— Kernel method by an optimal combination of multiple kernels
* Batch MKL Formulation

min min C [(f
TR MRS ot

A= ‘[9 = H$|HTEm — 1} K(@)(a ) — Zlil 9@!&3@(', )
g e { 1o - 5oy (Z Qiﬁri) o }

* Hard to solve the convex-concave optimization for big data!

Can we avoid having to directly solve the optimization?
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Online MKL (Hoi et al., MI’'12)
* Objective

— Learn a kernel-based predictor with multiple kernels from
a sequence of (multi-modal) data examples

— Avoid the need of solving complicated optimizations
* Main idea: a simple two-step online learning

At each learning iteration, if there is a mistake:

— Step 1: Online learning with each single kernel
e Kernel Perceptron (Rosenblatt Frank, 1958, Freund 1999)
ft+1,z‘(33) — ftz(iU) + Zi(t)yt/‘ii(wt, CU)
— Step 2: Learning to update the combination weights
* Hedging algorithm
fi(t+1) = 0;(t)= " ]
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Online MKL for Classification

* Empirical Results of OMKC for classification

Algorithm | Perceptron | Perceptron (u) [ Perceptron (*) | OM-2 | OMKCp p)
australian n= 690 d=14 m=16 best kernel expert: gaussian kemnel of o =2

Mistake (%o) 3954 = 1.51 3950 x 2.70 38.04 = 2.56 39.62 + 2.88 S7.67 = 1.20
SV (#) 2729 £ 104 272.6 £ 18.6 2624 1+ 164 27341199 4743.8 £ 70.0
Time (s) 0.010 &= 0.001 0.010 £ 0.001 0.091 & 0.003 0.266 £ 0.006 0.779 1 0.017
diabetes n= 768 d=8 m= 16 best kernel expert: gaussian kernel of ¢ = 32

Mistake (%) 4414 = 1.50 4518 = 219 3555 2.07 4555 £ 218 33.69 = 1.29
SV (# 339.0 143 347.0 & 16.8 273.0 £ 159 348.3 & 16.7 4614.6 = 63.8
Time (s) 0.012 &= 0.001 0.012 £ 0.001 0.099 4 0.006 0.321 4 0.014 0.886 1 0.021
fourclass n= 862 d=2 m=16 best kernel expert: ganssian kernel of o0 = 8

Mistake (%) | 36.29 = 1.09 | 35.82 = 1.56 3.8 £0.76 3592 £ 1.65 3.19 = 0.38
SV (#) 3128 £ 94 308.8 £ 13.4 326 6.6 309.6 £ 14.2 3131.0 £ 335
Time (s) 0.013 & 0.001 0.012 £ 0.001 0.092 £ 0.001 0.348 £ 0.005 0.862 1 0.010
Splice n= 1000 d= 60 m= 16 best kernel expert: gaussian kemel of o0 = 4

Mistake (%) 451 = 1.41 5044 = 0.97 2928 = 5.84 S0./9 = 1.25 24.57 = 1.07
SV (# 3451 141 3044 £ 9.7 202.8 £ 384 307.9 4123 5830.9 £ 90.6
Time (s) 0.015 + 0.001 0.013 4+ 0.001 0.128 4- 0.004 0.417 4 0.013 1.122 4+ 0.018
Dorothea n=1150 d= 100000 m= 16 best kernel expert: gaussian kemel of 0 = 8

Mistake (%) | 10.07 = 0.50 | 10.64 = 0.61 11.21 = 2.93 10.70 =0.72 8.92 = 0.37
SV (#) 1158 £ 5.8 12244+ 7.0 128.9 £ 33.7 1241476 7855.3 £ 69.9
Time (s) 0.031 & 0.001 0.031 £ 0.001 0.169 = 0.004 0.435 £ 0.013 1.647 £ 0.071
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Online MKL for Multimedia Retrieval

* Online Multi-Modal Distance Learning (xia et al 2013)

— Goal: Learning multi-kernel distance for multimedia retrieval
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Problem Settings

Consider a multi-modal object retrieval task
e A set of n multimedia objects XY — Ix;|i=1,2,....n}

* A collection of triplet constraints

C = {(itajta kf)a r = 1: R T}
where each triplet (; ; ,) indicates that object X,
similar to objectX;, , but dissimilar to object X

* For simplicity, we will simply denote X;, as X;
for the rest of discussion.

* Aset of m predefined kernel functions

KA xX - R p=12,...,m
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Formulation

e Kernel-based distance measure

d(x;i,x;) = S i (K? — K?)'WP(KP — K?)

p=1
W € R™**n K% — [k(xiaxl)? '“ak(XiaX’ﬂ)]T

* For each triple constraint (i, j;, k¢)

d(xi,x;) +1 < d(xi.xk) + &k, Sijk =0

. Graph Laplauan Regularlzer

ZSUH = ,«—Hz
2 L=1-DY2spl/2

ij=1
= tr(VLV') = tr(LK) A A
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Formulation (cont’)

Graph Laplacian Regularization
the Triplet Constraints

Loss of violating }
on Target Kernel

g LW S (G
m

st d(xix) =) (KP—KP)TWP(KP — K?)
p=1
d(xi,xj) +1 < d(x;, x) a ik > 0,Y(i,j, k) €C
WP>-0 p=12...,m

* Difficult to solve the above optimization directly.
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Online Learning with A Single Kernel

* For areceived triplet (i, j¢, k;) atroundt

q]vig %HW — W, _1||z + Citr(KWKL) + G¢

S.T. d(x;;Xj) — (K,‘ — Kj)TW(K,' — Kj)
d(xj,x;) +1 < d(xp.x) +&, >0
W >0

e Closed-form solutions can be derived with PSD.
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Online Learning with Multiple Kernels

e Multi-modal distance functions

d(Xij Xj Z ppdp(Xi, X;)

* How to optimize the combmatlon weights MUp ?
* Online Learning for the Optimal Combination

pp (t) = pp(t — 1)"7%(” p=12..,m

zp(t) outputs 1 when d,(x;,%x;) > dp(Xi,Xk) and () otherwise

€ (0,1) is a decay factor

. The above approach follows the idea of Hedging algorlthm
for learning with expert advice
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OMDL-LR: Low-rank Approximation

* |nstead of learning a high dimensional matrix W which is d x
d, we learn a matrix W, p of dimensiond g X dir (dir < d)

* Wegeneratea d X dLR projection matrix P based on a
Gaussian distribution, and use PW,;zP ' to approximate W.

W =~ PWLRPT

* Once the random projection matrix P is chosen, it is
straightforward for improving the rest of the algorithm by
projecting the columns of kernel values accordingly,

K, + P'K;
* One could also try other low-rank approximation methodes,
e.g., Nystrom (Williams and Seeger, 2001).
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Results (mAP) for Multi-modal Image Retrieval

| _Algorithm | Metric | Caltech10 | Caltech20 | Caltech50 | Corel5000 | ImageCLEF | ImageCLEF+ |

4 N Kernel-Best mAP 0.2315 0.1657 0.1010 0.1789 0.4090 0.0959
std +0.0000 +0.0000 +0.0000 -+0.0000 +0.0000 +0.0000
RCA-Best mAP 0.2343 0.1714 0.1012 0.1801 0.4709 0.1098
, std +40.0003 +0.0001 +0.0001 +0.0001 +0.0004 +0.0002
Selecting " REA Best mAP 0.2489 0.1867 0.1087 02113 0.5497 0.1078
Bt std +40.0004 +0.0003 +0.0001 -+0.0002 40.0012 +0.0008
Modality T TINN-Best mAP 0.2365 0.1696 0.1049 0.1909 0.4939 0.1069
std 40.0013 +0.0014 +0.0002 +0.0002 +0.0013 +0.0019
OASIS-Best mAP 0.2472 0.1852 0.1010 0.1797 0.4325 0.1062
S y std 40.0036 +0.0052 +0.0000 +0.0054 +0.0087 +0.0115
( Y Kernel-Con mAP 0.2115 0.1600 0.0998 0.2518 0.3959 0.1598
std +40.0000 +0.0000 +0.0000 -+0.0000 +0.0000 +0.0000
RCA-Con mAP 0.2173 0.1699 0.1040 0.2501 0.5044 0.2176
Concaten std +40.0001 +0.0002 +0.0000 -+0.0002 +0.0006 +0.0009
ating all KRCA-Con mAP 0.2404 0.1955 0.1114 0.3240 0.5797 0.1936
the std +0.0008 +0.0001 +0.0001 +0.0002 +0.0012 +0.0005
features LMNN-Con mAP 0.2419 0.1781 0.1007 0.2768 0.5373 0.2272
std +0.0009 +0.0013 +0.0002 +0.0005 +0.0021 +0.0030
OASIS-Con mAP 0.2350 0.1633 0.1001 0.2518 0.4518 0.1560
\_ y std +40.0044 +0.0043 +0.0004 +0.0077 40.0119 +0.0047
an N~ Kernel-U mAP 0.2536 0.2133 0.1247 0.3310 0.4415 0.2554
Simple std +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
combine Kernel-W mAP 0.2557 0.2148 0.1253 0.3321 0.4602 0.2682
. d kernel std +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
OMDL-LR mAP 0.3377 0.2498 0.1356 0.36390 0.6136 0.3147
std +0.0047 +0.0025 +0.0004 +0.0068 +0.0098 40.0220
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Summary of OMKL

* Pros
@ Nonlinear models for tough applications

@ Avoid solving complicated optimization directly

@ Handle multi-modal data
@ Theoretical guarantee

* Cons
@ Scalability has to be further improved
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Discussions and Open Issues

* Challenges of Big Data

— Volume

* Explosive growing data: from million to billion scales

* From a single machine to multiple machines in parallel
— Velocity

e Data arrives extremely fast

* From a normal scheme to a real-time solution
— Variety

* Heterogeneous data and diverse sources

* From centralized approach to distributed solutions
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Discussions and Open Issues

e Other Issues
— High-dimensionality
— Data sparsity
— Structural data
— Noise and incomplete data
— Concept drifting
— Domain adaption
— Incorporation of background knowledge
— Parallel & distributed computing

e User interaction
— Interactive OL vs Passive OL
— Human computation
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Discussions and Open Issues

* Applications of Big Data Mining
— Web Search and Mining
— Social Network and Social Media
— Speech Recognition & Mining (e.g., SIRI)
— Multimedia Retrieval
— Computer Vision
— Medical and Healthcare Informatics
— Financial Engineering
— etc
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Conclusion

* Introduction of emerging opportunities and
challenges for big data mining

* Introduction of online learning, widely applied
for various real-word appllcatlons
with big data mining

e Survey of classical and
state-of-the-art online
learning techniques Non- S

Traditional = Kernels

Single
Kernel

| Traditional

05/04/2013 (Saturday) Online Learning - Steven Hoi



Take-Home Message

* Online learning is promising for big data mining

* More challenges and opportunities ahead:
— More smart online learning algorithms

— Handle more real-world challenges, e.g., concept drifting,
noise, sparse data, high-dimensional issues, etc.

— Scale up for mining billions of instances using distributed
computing facilities & parallel programming (e.g., Hadoop)

LIBOL: An open-source Library of Online Learning Algorithms
http://libol.stevenhoi.org

THANKS!

05/04/2013 (Saturday) Online Learning- Steven Hoi 112




References

Steven C.H. Hoi, Rong Jin, Tianbao Yang, Peilin Zhao, "Online Multiple Kernel Classification",
Machine Learning (ML), 2013.

Hao Xia, Pengcheng Wu, Steven C.H. Hoi, "Online Multi-modal Distance Learning for Scalable
Multimedia Retrieval®, ACM Intl. Conf. on Web Search and Data Mining (WSDM),2013.

Peilin Zhao, Jialei Wang, Pengcheng Wu, Rong Jin, Steven C.H. Hoi, "Fast Bounded Online
Gradient Descent Algorithms for Scalable Kernel-Based Online Learning", The 29th
International Conference on Machine Learning (ICML), June 26 - July 1, 2012.

Jialei Wang, Steven C.H. Hoi, "Exact Soft Confidence-Weighted Learning ", The 29th
International Conference on Machine Learning (ICML), June 26 - July 1, 2012.

Bin Li, Steven C.H. Hoi, "On-line Portfolio Selection with Moving Average Reversion", The 29th
International Conference on Machine Learning (ICML), June 26-July 1, 2012.

Jialei Wang, Peilin Zhao, Steven C.H. Hoi, "Cost-Sensitive Online Classification®, IEEE
International Conference on Data Mining (ICDM), 2012.

Bin Li, Peilin Zhao, Steven C.H. Hoi, V. Gopalkrishnan, "PAMR: Passive-Aggressive Mean
Reversion Strategy for Portfolio Selection", Machine Learning, vol.87, no.2, pp.221-258, 2012.

Steven C.H. Hoi, Jialei Wang, Peilin Zhao, Rong Jin, Online Feature Selection for Big Data
Mining, ACM SIGKDD Workshop on Big Data Mining (BigMine), Beijing, China, 2012

Peilin Zhao, Steven C.H. Hoi, Rong Jin, "Double Updating Online Learning", Journal of Machine
Learning Research (JMLR), 2011.

Peilin Zhao, Steven C.H. Hoi, Rong Jin, Tianbo Yang, "Online AUC Maximization" The 28th
International Conference on Machine Learning (ICML), 2011. ﬁ
e L

05/04/2013 (Saturday) Online Learning - Steven Hoi



References

Duchi, John C., Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for online learning
and stochastic optimization. IMLR, 12:2121-2159, 2011.

Jin, R,, Hoi, S. C. H. and Yang, T. Online multiple kernel learning: Algorithms and mistake bounds,
ALT, pp. 390—-404., 2010.

Peilin Zhao and Steven C.H. Hoi, "OTL: A Framework of Online Transfer Learning" The 27th
International Conference on Machine Learning, Haifa, Israel, 21-24 June, 2010

Crammer, Koby and D.Lee, Daniel. Learning via gaussian herding. In NIPS, pp. 345-352, 2010.

Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vectors. In
Advances in Neural Information Processing Systems (NIPS), 20089.

M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In ICML, pages
264-271, 2008.

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: A kernel-based perceptron on
a budget. SIAM J. Comput., 37(5):1342-1372, 2008. ISSN 0097-5397.

Francesco Orabona, Joseph Keshet, and Barbara Caputo. The projectron: a bounded kernel-
based perceptron. In ICML, pages 720-727, 2008.

Crammer, Koby, Dredze, Mark, and Pereira, Fernando. Exact convex confidence-weighted
learning. In NIPS, pp. 345-352, 2008.

Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio Gentile. Tracking the best hyperplane with
a simple budget perceptron. Machine Learning, 69(2-3):143-167, 2007.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University -
Press, 2006. e 7
05/04/2013 (Saturday) Online Learning - Steven Hoi AL




References

Crammer, Koby, Dekel, Ofer, Keshet, Joseph, Shalev-Shwartz, Shai, and Singer, Yoram. Online
passive aggressive algorithms. JMLR, 7:551-585, 2006.

Cesa-Bianchi, Nicol o, Conconi, Alex, and Gentile, Claudio. A second-order perceptron
algorithm. SIAM J. Comput., 34(3):640-668, 2005.

Koby Crammer, Jaz S. Kandola, and Yoram Singer. Online classification on a budget. In
Advances in Neural Information Processing Systems (NIPS), 2003.

Claudio Gentile. A new approximate maximal margin classification algorithm. Journal of
Machine Learning Research, 2:213-242, 2001.

Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson. Online learning with kernels. In
Advances in Neural Information Processing Systems (NIPS), pages 785—-792, 2001.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron
algorithm. Mach. Learn., 37(3):277-296, 1999.

Yi Li and Philip M. Long. The relaxed online maximum margin algorithm. In Advances in
Neural Information Processing Systems (NIPS), pages 498—504, 1999.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119--139,
(1997).

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386—407, 1958.

05/04/2013 (Saturday) Online Learning - Steven Hoi





