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Outline

e Surface observations of rainfall
e Regional Climate simulation and NARCCAP
e Compact basis functions (&),
Markov Random fields (H)
e [ he multi-resolution model
e (Covariance for summer precipitation.

e Changes in the seasonality for future climate

Key idea: Introduce a sparse basis and precision
matrices without compromising the spatial model.
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Estimating a curve or surface.

An additive statistical model:

Given n pairs of observations (z;,y;), i=1,...,n
y; = g(x;) + €
€;'S are random errors and g is an unknown, smooth realization of a
Gaussian process.
Estimate g(x)

Quantify the uncertainty of the estimate ...

Statistical perspective: You need a model
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Observed mean summer precipitation
1720 stations reporting, "mean’ for 1950-2010

Observed JJA Precipitation (.1 mm)
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Current Climate

What is the spatial pattern for expected rainfall?
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A climate model gr
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An approach to Regional Climate

e Nest a fine-scale weather model in part of a global model’s
domain.

Regional model simulates higher resolution weather based on the global
model for boundary values and fluxes.

A snapshot from the
3-dimensional RSM3
model (right) forced
by global observa-
tions (left)

Jan/1/2000 0:00

0.54 B4 54

e Consider different combinations of global and regional mod-
els to characterize model uncertainty.
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4GCMS x 6RCMs:
12 runs — balanced half fraction design

Global observations x 6RCMs
X High resolution global atmosphere

GLOBAL REGIONAL MODELS
FORCING

MM5I | WRF | HADRM | REGCM | RSM | CRCM | time slice
GFDL ® ® O X
HADCM3 O o ®
CCSM o | m X
CGCM3 | o n
Reanalysis o o ® o o o

A designed experiment is amenable to a statistical analysis

and can contain more information.

But just 2-d temperatures fields are 72Gb of data.
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Climate change

How will the seasonal cycle for temperature change in
the future?
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T he goals:
e Estimate g(x) based on the observations
e QQuantify the uncertainty in the estimate.

e Handle larger spatial data sets in a interactive mode
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T he goals:

e Estimate g(x) based on the observations
e QQuantify the uncertainty in the estimate.

e Handle larger spatial data sets in a interactive mode
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I am not interested In spatial data

v, = g(x;) + ¢
Nonlinear autoregressions

Z: a time series
Yi=2t, ¢i= 241,212, ...

Nonparametric regression

y,; a response and x; covariates

Basic least squares setup is a first step in algorithms for nongaussian
and quantile regression.

As a spline (or flexible form)

min Z(yi — ge(z)? + Al Qe

= 52
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How this iIs done ...

Michael Grab, Gravity Artist

gravityglue.com
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Random Effects/Linear model for g

{P;}: m basis functions
g(z) = Y ®;(x)c;
J

A linear model:
Yy = Pc+ €

Random effects:
c~ MN(O, pP) and € ~ MN(0,c2I)

Implied Covariance:
Elg(z)g(x')] = 2, Pj(x)pP; ; Pr (')

Also P = (H'H)1

\ = o2 plays an important role as a:parameter.
/P -hl Lo TWEPLY.
E Ll e
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Key ideas for large data sets

e Inverse of P chosen to be sparse.
e Basis functions have compact support.

e Still have a useful spatial modell
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T he estimate

Find c by:

Ridge regression/ conditional expectation/BLUE/ Posterior

mean

§(z) = Elg(z)|y, P] = él e P ()

—1

c= (oo AP oty A=0%/p

o' oT'p, p~1 are sparse.

D. Nychka LatticeKrig

i-.h.._ 1_6 - -




A 1-d cartoon ...

8 basis functions

/
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weighted basis
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A Multiresolution

8 basis functions

16 basis functions
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Adding them up
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Distributions of coefficients

Uncorrelated (stationary)
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A recipe for 2-d RBFs

Basis function;(x) = (|| — u;||/0)

e © IS a positive definite, compactly sup-
ported function — a nice bump.

e {u;} basis centers on a regular grid

2-d Wendland e 0 scale set to provide some overlap

Four level multi-resolution starting with 11 x 11 grid
has 8804 basis functions.
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A recipe for P—1
Recall: g(z) = 2.5 CD](:IZ)CJ

c at each resolution level is a Markov random field:

(4+/€2)Cj—lz;vcl=ej, Hec=ce
=

{e;} are uncorrelated N(0,1) and N is 4 nearest neighbors.

Weights in lattice format: . -1 (4 + k2) -1

Precision matrix for c is sparse: P.= (H' H)1
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Two dimensions

Combination of 4 levels starting with an 8 x 8 grid

Uncorrelated weights Correlated weights
Rougher fields Correlation function?

Correlation
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Timing

An evaluation of the likelihood using the standard dense matrix Kriging

and LatticeKrig
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le-01
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Number of spatial locations

At 20,000 observations:

Standard Model:
dashed — exponential covariance

Lattice Krig model:

Solid - with normalization,
short dashed - without

grid = number of locations

standard Kriging about 21 minutes , LatticeKrig is 5-10 seconds.
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Flexibility of LatticeKrig model

Fitting an exponential (minimizing mean squared error)
e First level resolution of 10 x 10
e 3 levels, 4 |evels, target exponential
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Also works well for approximating smoother covariances.
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More Flexibility of LatticeKrig model

Fitting a mixture of exponentials
e First level resolution of 10 x 10
e 3 levels, 4 levels, target: .4Exp(.1) + .6Exp(3)
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Back to climate data

D. Nychka LatticeKrig



Some details for observed data:

e Used log transformation and stereographic projection for locations
e Elevation included as linear fixed effect.
e Covariance parameters found by maximum likelihood

Estimated covariance functions
Matern, thin plate like |, , Multiresolution (3 levels)
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Predicted surface

LKrig/Tps Matern

D. Nychka LatticeKrig



Climate change

How will the seasonal cycle for temperature change in
the future?
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Back to NARCCAP

e A 2 x 2 subset of NARCCAP (4 global/regional combinations)

e (Future - Present) seasonal cycle expand in 4 principle components
. gives 4 coefficient spatial fields for each model.

e Approximately 8000 spatial locations

Seasonal PCs
(future - present) NARCCAP domaln
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Results

e Thin plate spline model (1 level 120 x 55 =~ 6000 basis functions)
e )\ found by MLE (equivalent to sill and nugget)

e Conditional simulation of fields ( facilitates nonlinear statistics)
e Works in United Econoplus !

R?2 for first PC Inference for Boulder grid box
CRCMccsm CRCMcgcm3

&
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WRFGcesm WRFGegem3
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Summary

e Computational efficiency gained by compact basis
functions and sparse precision matrix.

e Flexibility in model to account for nonstationary spa-
tial dependence.

e Multi-resolution can approximate standard covariance
families (e.g. Matern)

See LatticeKrig package in R
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T hank you!
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