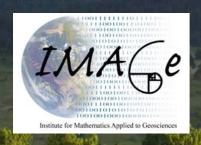
Multi-resolution models for large data sets

Douglas Nychka,

National Center for Atmospheric Research



National Science Foundation

SIAM Austin May, 2013

Credits

- Steve Sain, Tamra Greasby, NCAR
- Dorit Hammerling, SAMSI
- Soutir Bandyopadhyay, Lehigh
- Finn Lindgren, U Bath, UK
- James Gattiker, LANL

Outline

- Surface observations of rainfall
- Regional Climate simulation and NARCCAP
- Compact basis functions (Φ) , Markov Random fields (H)
- The multi-resolution model
- Covariance for summer precipitation.
- Changes in the seasonality for future climate

Key idea: Introduce a sparse basis and precision matrices without compromising the spatial model.

Estimating a curve or surface.

An additive statistical model:

Given n pairs of observations (x_i, y_i) , i = 1, ..., n

$$y_i = g(x_i) + \epsilon_i$$

 ϵ_i 's are random errors and g is an unknown, smooth realization of a Gaussian process.

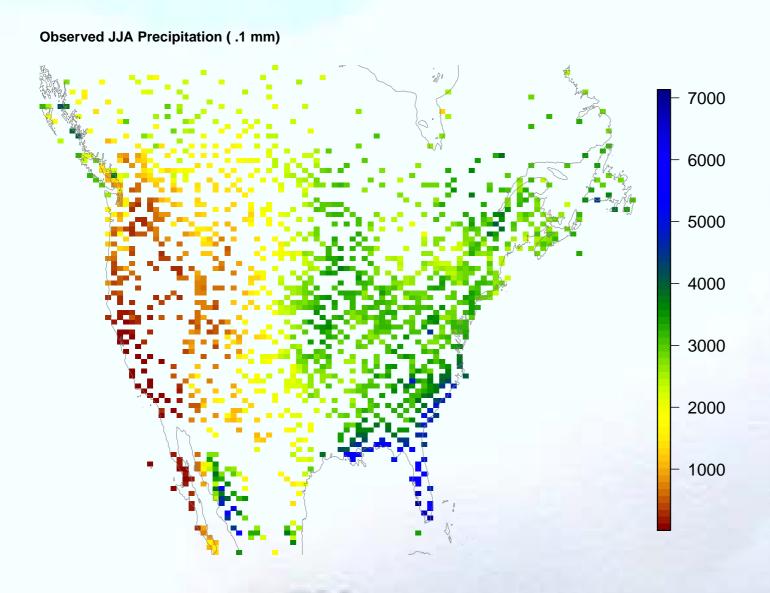
Estimate g(x)

Quantify the uncertainty of the estimate ...

Statistical perspective: You need a model

Observed mean summer precipitation

1720 stations reporting, "mean" for 1950-2010



Current Climate

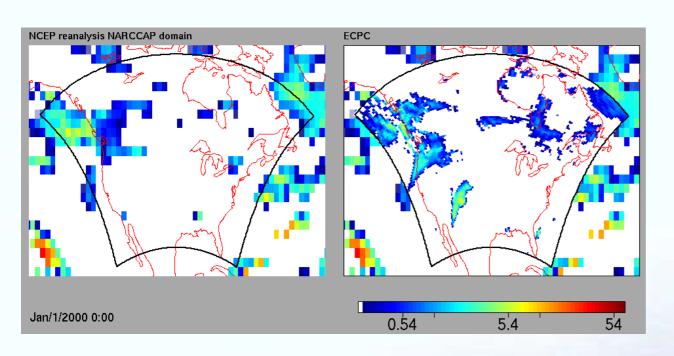
What is the spatial pattern for expected rainfall?

A climate model grid box (?)

An approach to Regional Climate

 Nest a fine-scale weather model in part of a global model's domain.

Regional model simulates higher resolution weather based on the global model for boundary values and fluxes.



A snapshot from the 3-dimensional RSM3 model (right) forced by global observations (left)

Consider different combinations of global and regional models to characterize model uncertainty.

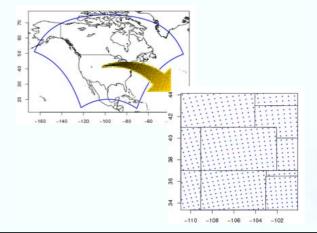
NARCCAP — the design

4GCMS × 6RCMs:

12 runs – balanced half fraction design

Global observations × 6RCMs

X High resolution global atmosphere



GLOBAL FORCING	REGIONAL MODELS							
Tortents	MM5I	WRF	HADRM	REGCM	RSM	CRCM	time slice	
GFDL			•	•	O		X	
HADCM3	0		•		•			
CCSM	•						X	
CGCM3				•				
Reanalysis	•	•	•	•	•	•		

A designed experiment is amenable to a statistical analysis and can contain more information.

But just 2-d temperatures fields are 72Gb of data.

Climate change

How will the seasonal cycle for temperature change in the future?

The goals:

- Estimate g(x) based on the observations
- Quantify the uncertainty in the estimate.
- Handle larger spatial data sets in a interactive mode

The goals:

- Estimate g(x) based on the observations
- Quantify the uncertainty in the estimate.
- Handle larger spatial data sets in a interactive mode

I am not interested in spatial data

$$y_i = g(x_i) + \epsilon_i$$

Nonlinear autoregressions

 Z_t a time series

$$Y_i \equiv Z_t$$
, $x_i \equiv Z_{t-1}, Z_{t-2}, \dots$

Nonparametric regression

 $oldsymbol{y}_i$ a response and $oldsymbol{x}_i$ covariates

Basic least squares setup is a first step in algorithms for nongaussian and quantile regression.

As a spline (or flexible form)

$$\min_{oldsymbol{c}} \sum_{i} (oldsymbol{y}_i - g_{oldsymbol{c}}(oldsymbol{x}_i)^2 + \lambda oldsymbol{c}^T Q oldsymbol{c}$$

How this is done ...

Michael Grab, Gravity Artist

gravityglue.com

Random Effects/Linear model for g

 $\{\Phi_j\}$: m basis functions

$$g(x) = \sum_{j} \Phi_{j}(x) c_{j}$$

A linear model:

$$y = \Phi c + \epsilon$$

Random effects:

$$m{c} \sim MN(\mathbf{0}, m{
ho}m{P})$$
 and $m{\epsilon} \sim MN(\mathbf{0}, m{\sigma^2}m{I})$

Implied Covariance:

$$E[g(\mathbf{x})g(\mathbf{x}')] = \sum_{j,k} \Phi_j(\mathbf{x}) \rho \mathbf{P}_{j,k} \Phi_k(\mathbf{x}')$$

Also
$$P = (H^T H)^{-1}$$

 $\lambda = \sigma^2/\rho$ plays an important role as a parameter.

Key ideas for large data sets

- Inverse of P chosen to be sparse.
- Basis functions have compact support.
- Still have a useful spatial model!

The estimate

Find c by:

Ridge regression/ conditional expectation/BLUE/ Posterior mean

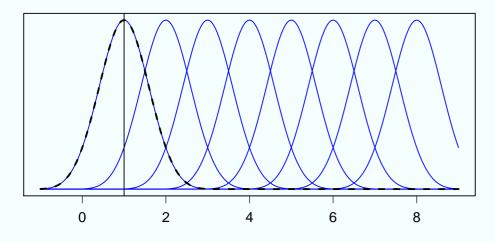
$$\hat{g}(x) = E[g(x)|y, P] = \sum_{k=1}^{n} \hat{c}_k \Phi_k(x)$$

$$\hat{c} = (\Phi^T \Phi + \lambda P^{-1})^{-1} \Phi^T y, \quad \lambda = \sigma^2 / \rho$$

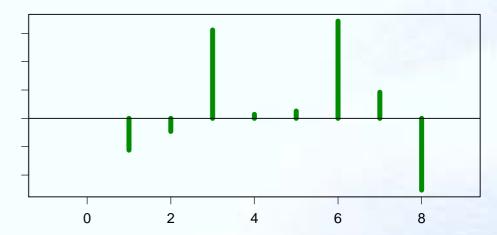
 Φ^T , $\Phi^T\Phi$, P^{-1} are sparse.

A 1-d cartoon ...

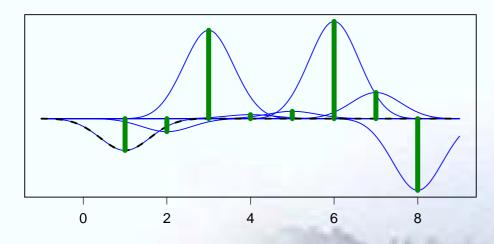
8 basis functions



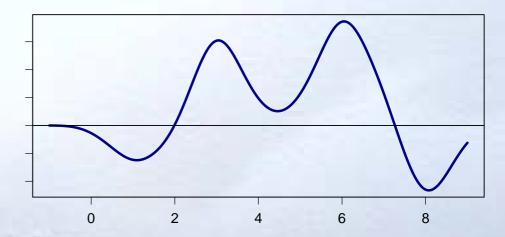
8 (random) weights



weighted basis

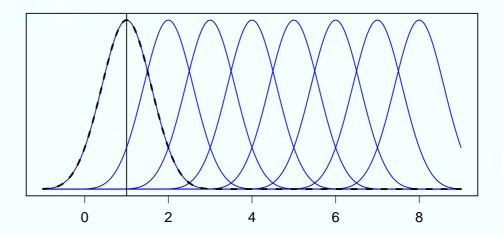


Random curve

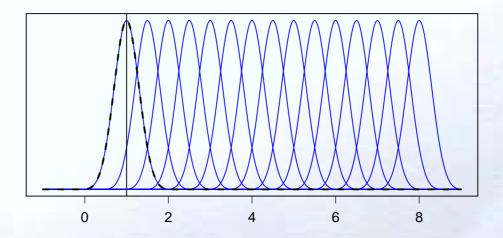


A Multiresolution

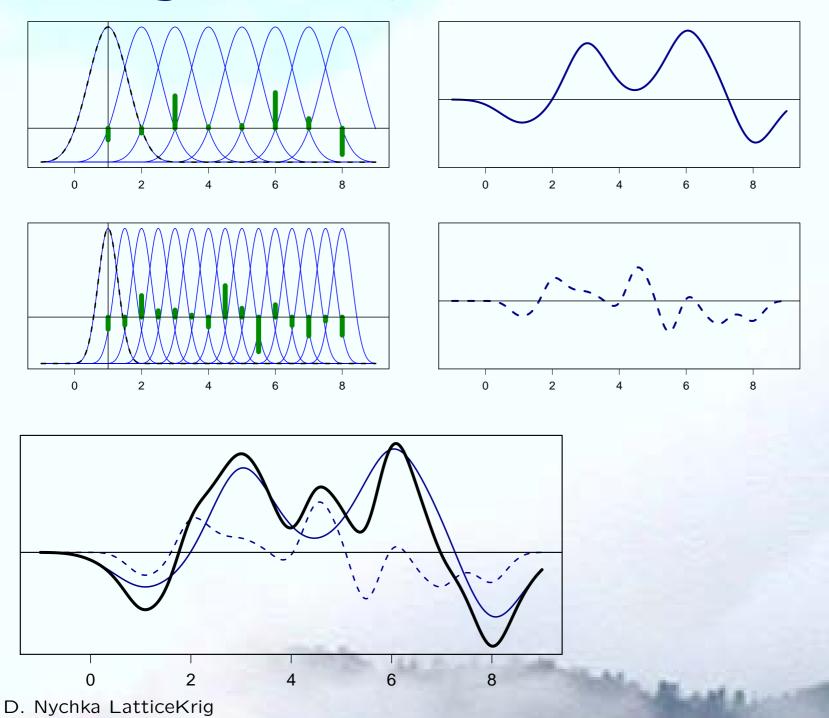
8 basis functions



16 basis functions

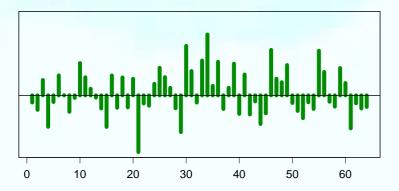


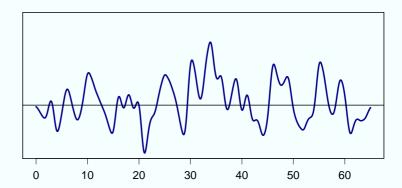
Adding them up



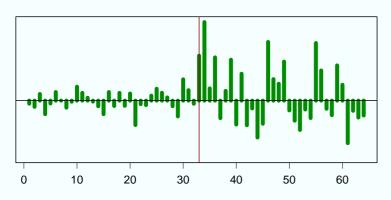
Distributions of coefficients

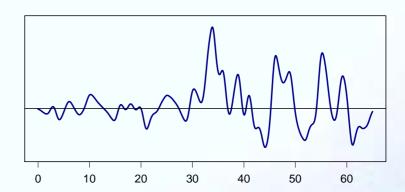
Uncorrelated (stationary)



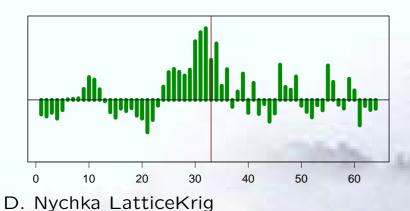


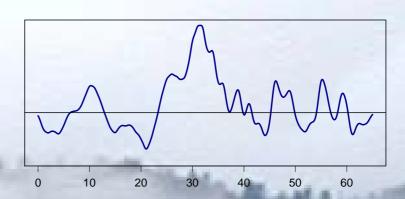
Different variability





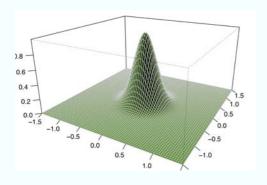
Different Correlation





A recipe for 2-d RBFs

Basis function
$$_j(x) = \varphi(||x - u_j||/\theta)$$



2-d Wendland

- φ is a positive definite, compactly supported function a nice bump.
- ullet $\{u_j\}$ basis centers on a regular grid
- ullet heta scale set to provide some overlap

Four level multi-resolution starting with 11×11 grid has 8804 basis functions.

A recipe for P^{-1}

Recall:
$$g(x) = \sum_{j} \Phi_{j}(x)c_{j}$$

c at each resolution level is a Markov random field:

$$(4 + \kappa^2)c_j - \sum_{l \in \mathcal{N}} c_l = e_j, \qquad Hc = e$$

 $\{e_j\}$ are uncorrelated N(0,1) and $\mathcal N$ is 4 nearest neighbors.

Precision matrix for c is sparse: $P = (H^T H)^{-1}$

Two dimensions

Combination of 4 levels starting with an 8×8 grid

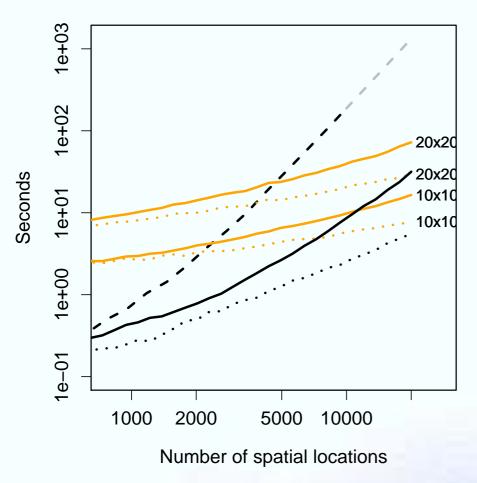
Uncorrelated weights Correlated weights Rougher fields Correlation function2 Correlation 0.0 0.2 0.4 Distance Smoother fields Correlation 9.0 0.2 0.0 0.4

D. Nychka LatticeKrig

Distance

Timing

An evaluation of the likelihood using the standard dense matrix Kriging and LatticeKrig



Standard Model: dashed – exponential covariance

Lattice Krig model:
Solid - with normalization,
short dashed - without grid = number of locationsfour levels $10 \times 10 M \approx 8000$

four levels $20 \times 20 \text{ M} \approx 30000$

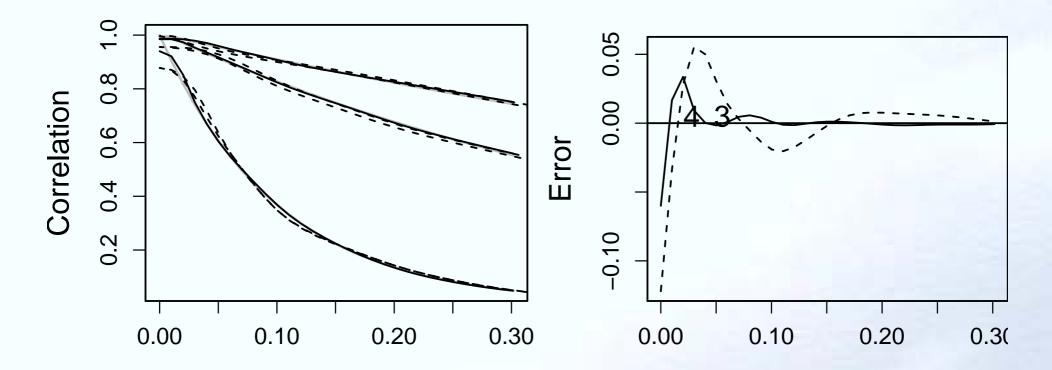
At 20,000 observations:

standard Kriging about 21 minutes, LatticeKrig is 5-10 seconds.

Flexibility of LatticeKrig model

Fitting an exponential (minimizing mean squared error)

- First level resolution of 10×10
- 3 levels, 4 levels, target exponential

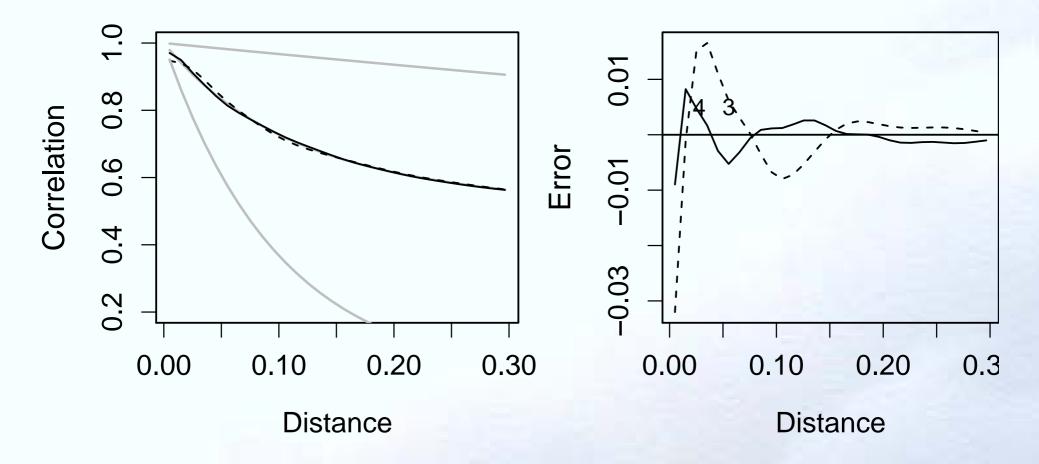


Also works well for approximating smoother covariances.

More Flexibility of LatticeKrig model

Fitting a mixture of exponentials

- \bullet First level resolution of 10×10
- 3 levels, 4 levels, target: .4Exp(.1) + .6Exp(3)



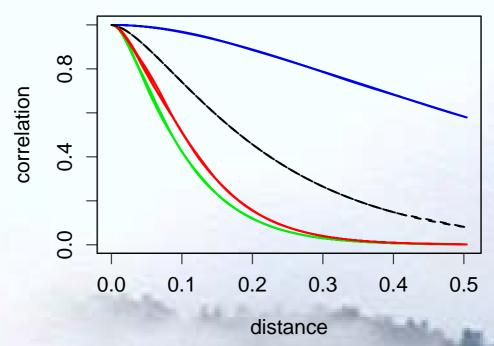
Back to climate data

Some details for observed data:

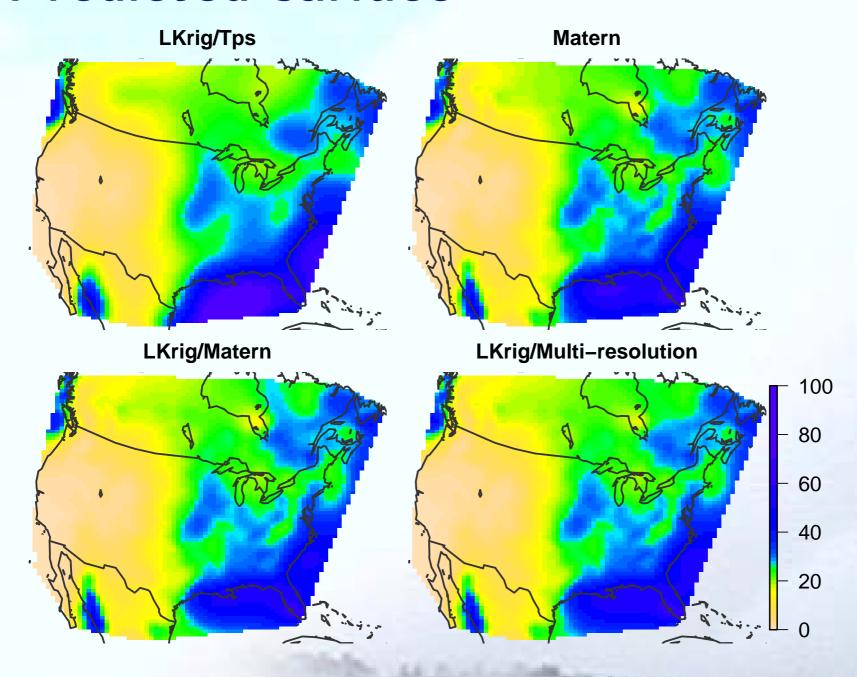
- Used log transformation and stereographic projection for locations
- Elevation included as linear fixed effect.
- Covariance parameters found by maximum likelihood

Estimated covariance functions

Matern, thin plate like, Matern-like, Multiresolution (3 levels)



Predicted surface



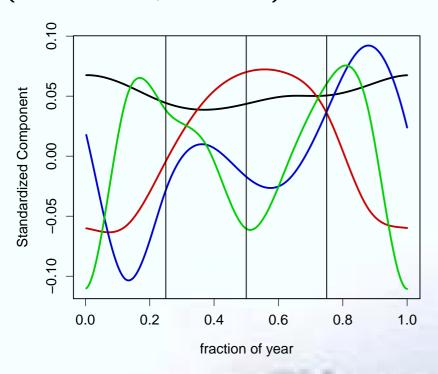
Climate change

How will the seasonal cycle for temperature change in the future?

Back to NARCCAP

- A 2 × 2 subset of NARCCAP (4 global/regional combinations)
- (Future Present) seasonal cycle expand in 4 principle components ... gives 4 coefficient spatial fields for each model.
- Approximately 8000 spatial locations

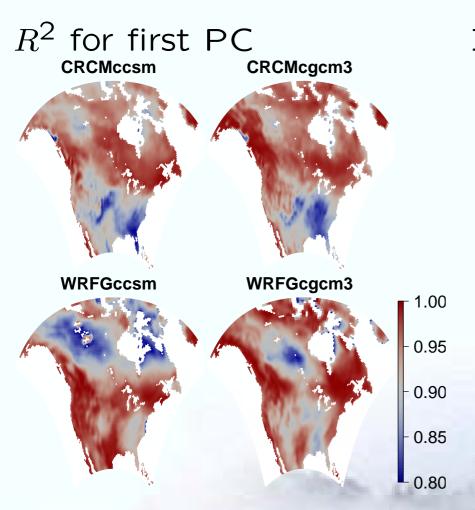
Seasonal PCs (future - present)



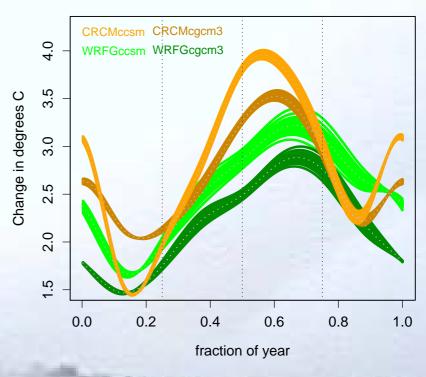
NARCCAP domain

Results

- Thin plate spline model (1 level $120 \times 55 \approx 6000$ basis functions)
- λ found by MLE (equivalent to sill and nugget)
- Conditional simulation of fields (facilitates nonlinear statistics)
- Works in United Econoplus!



Inference for Boulder grid box



Summary

- Computational efficiency gained by compact basis functions and sparse precision matrix.
- Flexibility in model to account for nonstationary spatial dependence.
- Multi-resolution can approximate standard covariance families (e.g. Matern)

See LatticeKrig package in R

Thank you!

