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Outline of Talk

What is individual level-data?
— Historical context and examples

How can we use individual-level data?
— Opportunities for machine learning and data mining

Research example:

— Modeling of personal archive data

Conclusions
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Individual Data: Demographics

e 1950’s: availability of demographic data
— Age, zip-code, income, education, employment

e Applications:

— Direct mail marketing

— Consumer credit and loans

e Example: Fair Isaac and FICO scores
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Individual Data: Transactions

e 1980’s, 1990s’
— Billing and purchase transaction data

e Applications
— Direct marketing/advertising
— Fraud detection
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Fraud Detection at AT&T

From Becker, Volinsky, Wilks, Techometrics, 2010
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Individual Data: Internet

2000’s
— Web pages visited, Web searches
— Ads clicked on
— Text (microblogs, emails)
— Social networks (online, cell phones, etc)
— Location (GPS, mobile phone)

Applications
— Online advertising
— Recommender systems
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The Corporate View of Individual Data
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The Individual’s View of Individual Data
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Measurements
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Individual-Level Data

e Digital Data
— Emails
— Text messages
— Phone calls
— Location

— Social media events

e Physiological Data
— Activity
— Exercise
— Sleep
— Blood pressure
— Diet
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Email Data
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Time plot of 1/3 million emails sent by Stephen Wolfram over 20 years

Figures from The Personal Analytics of My Life
blog.stephenwolfram.com, March 2012
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Email Data
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Volume of Emails Sent
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Time plots of Keystrokes

Figures from The Personal Analytics of My Life
blog.stephenwolfram.com, March 2012
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Aggregated Daily Rhythms
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Time of Day Variation in Enron Emails

Weekdays Weekend

Time of Day Variation in Personal Email
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What can we Measure?

e Monitoring of the digital world
— Email, texts, Web clicks, searches, social media actions
— Keystrokes, mouse movement, eye tracking
— GPS location
— Andsoon...

e Monitoring of the physical world
— Heart-rate monitoring, skin conductance, etc
— Acceleration/activity
— Diet
— Sleep patterns
— Audio and speech
— Video
— Andsoon..
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Exercise, Activity, Sleep Monitoring
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Measuring Blood Flow from Video Images

From Wu et al, MIT/Quanta, SIGGRAPH 2012
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Where does data mining and machine learning fit?
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® Focusing on “total capture,” current
approaches to lifelogging have failed
to explore what practical purpose such
exhaustive personal digital records
might actually serve.



Potential Applications?

Physical and Psychological Health Monitoring
— Behavioral modification, e.g., monitoring + feedback to reduce stress
— Monitoring of existing conditions, e.g., depression
— Early-warning via symptoms, e.g., Alzheimer’s

Information Management Tools
— Search and retrieval of personal information
— Ranking and prioritizing (e.g., email)

Sustainability
— Monitoring and feedback of energy consumption

Education

— Skills assessment, ntegrated with online learning
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Opportunities for Data Mining and Machine Learning

e Exploratory Data Analysis
— Visualization, Clustering, Summarization

e Social Network Analysis

— Analyzing ego-networks over time

e Time-Series Modeling
— Change detection, segmentation, trend analysis

e Text Analysis
— sentiment classification, dialog analysis

e Prediction

— Activity classification, ranking/prioritizing activities
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From Doherty et al,
Computers in Human Behavior, 2011
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From Doherty et al,
Computers in Human Behavior, 2011
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BeWell System, Andrew Campbell, Dartmouth
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BeWell System, Andrew Campbell, Dartmouth
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Inferring What is Stressful

Ayzenberg, Hernandez, Picard, CHI 2012
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Dear X,

We have just been notified
that the deadline for your
grant request was not
extended. Please submit
the request according to the
original schedule.

From Ayzenberg, Hernandez, Picard, CHI 2012 Thanks,
John Smith

Senior Administrator
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A Wandering Mind
Unhappy Mind

Matthew A. Killingsworth* and Daniel T. Gilbert

nlike other animals, human beings spend
a lot of time thinking about what is not
U going on around them, contemplating
events that happened in the past, might happen
in the future, or will never happen at all. Indeed,
“stimulus-independent thought” or “mind wan-
dering” appears to be the brain’s default mode
of operation (/-3). Although this ability is a re-
markable evolutionary achievement that allows
people to leam, reason, and plan, it may have an
emotional cost. Many philosophical and religious
traditions teach that happiness is to be found by
living in the moment, and practitioners are trained
to resist mind wandering and “to be here now.”
These traditions suggest that a wandering mind is
an unhappy mind. Are they right?

Laboratory experiments have revealed a great
deal about the cognitive and neural bases of mind
wandering (3-7), but little about its emotional
consequences in everyday life. The most reliable
method for investigating real-world emotion is ex-
perience sampling, which involves contacting peo-
ple as they engage in their everyday activities and
asking them to report their thoughts, feelings, and
actions at that moment. Unfortunately, collecting
real-time reports from large numbers of people as
they go about their daily lives is so cumbersome
and expensive that experience sampling has rarely
been used to investigate the relationship between
mind wandering and happiness and has always
been limited to very small samples (8, 9).

We solved this problem by developing a Web
application for the iPhone (Apple Incorporated,
Cupertino, California), which we used to create
an unusually large database of real-time reports
of thoughts, feelings, and actions of a broad range
of people as they went about their daily activ-
ities. The application contacts participants through
their iPhones at random moments during their
waking hours, presents them with questions,
and records their answers to a database at www.
trackyourhappiness.org. The database currently
contains nearly a quarter of a million samples
from about 5000 people from 83 different coun-
tries who range in age from 18 to 88 and who
collectively represent every one of 86 major oc-
cupational categories.

To find out how often people’s minds wander,
what topics they wander to, and how those wan-
derings affect their happiness, we analyzed samples
from 2250 adults (58.8% male, 73.9% residing in
the United States, mean age of 34 years) who were
randomly assigned to answer a happiness question
(“How are you feeling right now?”) answered on a
continuous sliding scale fiom very bad (0) to very
good (100), an activity question (“What are you
doing right now?”) answered by endorsing one or

Is an

more of 22 activities adapted from the day recon-
struction method (70, /1), and a mind-wandering
question (“Are you thinking about something
other than what you're currently doing?”) answered
with one of four options: no; yes, something pleas-
ant; yes, something neutral; or yes, something un-
pleasant. Our analyses revealed three facts.

First, people’s minds wandered frequently, re-
gardless of what they were doing, Mind wandering
occurred in 46.9% of the samples and in at least
30% of the samples taken during every activity
except making love. The frequency of mind wan-
dering in our real-world sample was considerably
higher than is typically seen in laboratory experi-
ments. Surprisingly, the nature of people’s activ-
ities had only a modest impact on whether their
minds wandered and had almost no impact on the
pleasantness of the topics to which their minds
wandered (12).

Second, multilevel regression revealed that peo-
ple were less happy when their minds were wan-
dering than when they were not [slope (b) =-8.79,
P < 0.001], and this was true during all activities,

s @

3 45 85 &5 75 8BS 05

. 1. Mean happiness reported during each ac-
ity (top) and while mind wandering to unpleas-
ant topics, neutral topics, pleasant topics or not
mind wandering (bottom). Dashed line indicates
mean of happiness across all samples. Bubble area
indicates the frequency of occurrence. The largest

including the least enjoyable. Although people’s
minds were more likely to wander to pleasant topics.
(42.5% of samples) than to unpleasant topics
(26.5% of samples) or neutral topics (31% of sam-
ples), people were no happier when thinking about
pleasant topics than about their current activity (b =
—0.52, not significant) and were considerably un-
happier when thinking about neutral topics (b =
~7.2, P < 0.001) or unpleasant topics (b = —23.9,
P<0.001) than about their current activity (Fig. 1,
bottom). Although negative moods are known
to cause mind wandering (/3), time-lag analyses
strongly suggested that mind wandering in our
sample was generally the cause, and not merely
the consequence, of unhappiness (/2).

Third, what people were thinking was a better
predictor of their happiness than was what they
were doing. The nature of people’s activities ex-
plained 4.6% of the within-person variance in hap-
piness and 3.2% of the between-person variance in
happiness, but mind wandering explained 10.8%
of within-person variance in happiness and 17.7%
of between-person variance in happiness. The var-
iance explained by mind wandering was largely
independent of the variance explained by the na-
ture of activities, suggesting that the two were in-
dependent influences on happiness.

In conclusion, a human mind is a wandering
mind, and a wandering mind is an unhappy mind.
The ability to think about what is not happening
is a cognitive achievement that comes at an emo-
tional cost.
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indicates the frequency of occurrence. The largest

including the least enjoyable. Although people’s
minds were more likely to wander to pleasant topics.
(42.5% of samples) than to unpleasant topics
(26.5% of samples) or neutral topics (31% of sam-
ples), people were no happier when thinking about
pleasant topics than about their current activity (b =
—0.52, not significant) and were considerably un-
happier when thinking about neutral topics (b =
~7.2, P < 0.001) or unpleasant topics (b = —23.9,
P<0.001) than about their current activity (Fig. 1,
bottom). Although negative moods are known
to cause mind wandering (/3), time-lag analyses
strongly suggested that mind wandering in our
sample was generally the cause, and not merely
the consequence, of unhappiness (/2).

Third, what people were thinking was a better
predictor of their happiness than was what they
were doing. The nature of people’s activities ex-
plained 4.6% of the within-person variance in hap-
piness and 3.2% of the between-person variance in
happiness, but mind wandering explained 10.8%
of within-person variance in happiness and 17.7%
of between-person variance in happiness. The var-
iance explained by mind wandering was largely
independent of the variance explained by the na-
ture of activities, suggesting that the two were in-
dependent influences on happiness.

In conclusion, a human mind is a wandering
mind, and a wandering mind is an unhappy mind.
The ability to think about what is not happening
is a cognitive achievement that comes at an emo-
tional cost.
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5000 individuals

250,000 self-reports from a Web app
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A Random Selection of Personal Photos

P. Sinha, WWW 2011

Xian, China - Daytrip Museums, London, UK - Daytrip Sight Seeing. Beijing, China - Day1r|p Sight Seeing, Angkor Wat, Cambodia - Vacation/ Travel,
2009:09:20 2009:05:06 20 16 2009:08:23

London, UK - Daytrip Sight Seeing, Xian, China - Daymp Sight Seeing, Beijing, China - Daytrip Sight Seeing, Xian, China - Daytrip Museums,
2009:05:06 2009:09:19 2009:09:16 2009:09:20

Shanghai, China - Daytrip Sight Seeing, Nagpur, India - Ceremonies Anniversary, Beijing, China - Daymp Sight Seeing, Xian, China - Daytrip Museums,
2009:09:12 2009:04:13 2009:09:17 2009:09:20

P. Smyth, SIAM-DM, May 2013: 50



System-Generated Photo Summary

Beijing, China - Daytrip Sight Seeing,
2009:09:14

Irvine, California - Holiday Christmas,
2009:12:25

Irvine, California - Holiday Thanksgiving,
2009:11:26

Irvine, California - Party Birthday,
2009:02:07

Nagpur, India - Ceremonies Anniversary,
2009:04:13

Bath, UK - Daytrip Museums,
2009:05:09

New Delhi, India - Prof Trip,
2009:12:18

K- s
Angkor Wat, Cambodia - Vacation/ Travel,
2009:08:23

Shanghai, China - Daytrip Sight Seeing,
2009:09:13

P. Sinha, WWW 2011

London, UK - Daytrip Sight Seeing,
2009:05:08

San Diego, California - Party Others,
2009:03:08

Irvine, California, California - Family/ Friends,

2009:02:14
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JOURNAL OF APPLIED BEHAVIOR ANALYSIS 1979, 12, 173-184 NUMBER 2 (SUMMER 1979)

EFFECTS OF SELF-MONITORING AND FEEDBACK ON
RESIDENTIAL ELECTRICITY CONSUMPTION

RICHARD A. WINETT, MICHAEL S. NEALE,
AND H. CANNON GRIER

INSTITUTE FOR BEHAVIORAL RESEARCH, INC., SILVER SPRING, MARYLAND

Prior research has indicated that frequent feedback could reduce residential electricity
consumption by 10% to 15%. However, because feedback was primarily given in writ-
ten form, this procedure might not be practical. The present study evaluated a potentially
more practical feedback procedure during peak-use periods with high electricity con-
suming households. The study was conducted during the winter in an upper-middle
class neighborhood of almost identical, all-electric townhouses (N = 71) that averaged
about 170 KWH per day per household for a monthly bill of over $200. Twelve house-
holds received daily written feedback. Sixteen households (self-monitoring) were taught
to read their outdoor electricity meter and to record KWH used every day. A comparison
group was composed of 14 households that had volunteered to participate and 29 others
that had only given permission to have their meters read. During a 1-month period that
the procedures were in effect, the feedback group reduced consumption by 13% and the
self-monitoring group by about 7%. These reductions, relative to the comparison group,
were maintained during an early spring 1-month follow-up period and, to a lesser extent,
during a 6-week warm spring period. Self-monitoring participants were highly reliable
and persistent meter readers. Reductions in electricity use were reported by households
to be largely attributable to lowering of the heat thermostat, and large monetary and
KWH savings were found. Techniques to make self-monitoring cost-effective impor-
tant components of the self-monitoring procedure, methods to apply self-monitoring
more broadly, and plans to combine behavioral procedures with physical technology are
discussed.

DESCRIPTORS: behavioral community psychology, feedback, self-monitoring, energy
consumption, energy conservation, households

P. Smyth, SIAM-DM, May 2013: 52



Research Challenges

Non-IID data

Non-stationary, temporal variability
Context (e.g., time of day, calendar effects)
Multi-modal data

Privacy issues

And more.....
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Example: Analyzing Personal Email Histories

For more details see
Navaroli, Dubois, Smyth, ACML 2012/ML Journal 2013
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Email Data

Foonl

004 2006 2008

2010

000 2002
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Email Recipient Data

Email ID Recipient IDs
1 t {1,3,5}
2 t {3}
3 t+1 {5, 9}
4 t+2 {1, 3, 4, 6, 8}

5 t+2 {2, 5}

P. Smyth, SIAM-DM, May 2013: 56



Learning Groups and Segments

Navaroli, Dubois, Smyth, ACML 2012/ML Journal 2013

Each email is assumed to come from 1 of K latent groups
— Group k =set of conditionally independent Bernoullis over recipients

Group k has a Poisson rate Kkt fordayt

— P(email is sent to group k | day t) proportional to A,

Group rates A,, are piecewise constant over time
— Unobserved number and location of segment boundaries, per group

Learning via Markov Chain Monte Carlo
— Algorithm learns groups, Poisson rates over time, and segment boundaries
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Individual 1 Individual 2 Individual 3
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Proposal writing.

Proposal awarded.

Project activities
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A A

KDD 2011 Planning Kickoff
_KDD 2011 Conference
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Predictive Performance

Y-axis: difference in log-likelihood relative to proposed model
— Smaller is better
— Zero = proposed model

Baselines:
— Uniform (overly simple...but calibrates y-axis)
— Single group
— Single time segment
— Sliding window
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Predictive Performance
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Concluding Comments
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The Individual’s View of Individual Data

Gorp CarD
175 500 oW W2

i BB

£

4N V VL

P. Smyth, SIAM-DM, May 2013: 65



Privacy and Data Sharing

Data sharing
— Surprising willingness of individuals to share data
— Medical/health data is however more sensitive than Web clicks
— Legal limits on data sharing between companies

Opt-in models seem likely
— Default is that only the individual gets to see and analyze their combined data
— modeling/analysis is local, no sharing of data across individuals
— Individuals may be willing to share their combined data on an opt-in basis

Not clear yet the balance between open-source/research and
commercial involvement
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Conclusions and Predictions

The technology exists to measure and record every aspect of our
daily lives

Potentially tremendous benefits in physiological and behavioral
health

However, we do not know how to adequately analyze and make
predictions with this type of data

— Ample opportunities for data mining and machine learning

This is a brave new world ... its coming whether we like it or not
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